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Abstract
There is considerable interest in employing deep
learning algorithms to predict pharmaceutically
relevant properties of small molecules. To over-
come the issues inherent in this low-data regime,
researchers are increasingly exploring multi-task
and meta-learning algorithms that leverage sets
of related biochemical and toxicological assays
to learn robust and generalisable representations.
However, we show that the data from which
commonly used multi-task benchmarks are de-
rived often exhibits systematic experimental er-
rors that lead to confounding statistical dependen-
cies across tasks. Representation learning mod-
els that aim to acquire an inductive bias in this
domain risk compounding these biases and may
overfit to patterns that are counterproductive to
many downstream applications of interest. We in-
vestigate to what extent these issues are reflected
in the molecular embeddings learned by multi-
task graph neural networks and discuss methods
to address this pathology.

1. Introduction
The impressive performance of modern deep learning al-
gorithms in traditional machine learning domains such as
computer vision and natural language processing has led to a
resurgence of interest in applying them to various problems
throughout the drug discovery pipeline. While many parts
of the pre-clinical drug discovery process stand to benefit
from robust computational models, the tasks of predicting
the bioactivity or toxicity of a molecule from its structure
have emerged as one of the most popular benchmarks for
algorithmic progress in this area (Wu et al., 2018; Mayr
et al., 2018).
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One of the fundamental practical issues of adapting existing
and developing novel approaches to this problem is that
the size of available high-quality labelled datasets is orders
of magnitude below that of the well-known benchmarks
to which much of the recent progress in e.g. computer vi-
sion has been ascribed (Sun et al., 2017). This limitation
stems from the inherently experimental nature of medici-
nal chemistry, and while high-throughput screening (HTS)
technologies are steadily improving, it is unlikely that this
bottleneck will be overcome in the near future.

To train models that are viable in this low-data regime, a
considerable amount of recent work has investigated the
ability of multi-task and meta-learning algorithms to lever-
age a collection of related datasets (e.g. Ramsundar et al.
(2015); Lenselink et al. (2017); Mayr et al. (2018); Nguyen
et al. (2020); Stanley et al. (2021)). The rationale behind
these approaches is that requiring a model to perform well
on a set of related but distinct tasks leads to more power-
ful and generalisable representations, mediated by both the
increased quantity of training data and the implicit regu-
larisation of optimising multiple predictive performances.
This objective of attending to underlying causal factors that
are shared across tasks, while de-emphasising task-specific
noise, is referred to as learning a domain-specific inductive
bias (Caruana, 1997).

However, this approach is clearly counter-productive if the
set of tasks from which an inductive bias is derived exhibits
statistical dependencies that are adversarial to a particular
downstream application of interest. For example, one of the
main limitations of high-throughput bioactivity and toxicity
screens is their tendency to produce large numbers of repro-
ducible false positives. These well-known artefacts often
stem from compound-dependent interference with the assay
system and can be responsible for up to 95% of ostensibly
active compounds (Thorne et al., 2010). As many of the
mechanisms that are known to produce these false positives
act orthogonally to any specific biochemical interaction of
interest, it is plausible to assume that they persist across dif-
ferent assays, which is indeed what is observed in practice
(Baell & Holloway, 2010; M Nissink & Blackburn, 2014;
Schorpp et al., 2014).
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The prevalence of these falsely active compounds and their
recurrence across biologically unrelated systems presents
a challenge for many multi-task and meta-learning algo-
rithms. If a substantial proportion of positive labels can be
consistently attributed to a small set of assay-interfering sub-
structures, this may present a more attractive inductive bias
than learning complex biochemical interactions, especially
if the representational capacity of a model is restricted by
further regularisation, as is common in low-data domains.

In the following, we will review how bioactivity data is
measured and highlight different forms of assay interference
(Section 2). We then demonstrate that the resulting biases
are prevalent many popular bioactivity benchmarks and
influence the representations learned by multi-task graph
neural networks (Sections 3 and 4). Finally, we propose
approaches to address this issue (Section 5).

2. Measuring and Mismeasuring Bioactivity
Identifying molecules that have a strong effect on a given
target is challenging, as usually only very few compounds
elicit a desired response. This is compounded by the fact
that chemical space is vast, with estimates for the number
of unique drug-like molecules ranging from 1020 to 1060

(Bohacek et al., 1996; Ertl, 2003; Polishchuk et al., 2013).

To increase the coverage with which molecules can be
investigated, drug discovery research makes use of high-
throughput screens (HTS) to identify promising lead candi-
dates for extensive follow-up studies. These usually consist
of a large molecular library being passed in an automated
fashion through a miniaturised assay system that translates
the physiological effect of a molecule into an easily measur-
able readout.

As in any chemical system, the magnitude of the effect that a
compound exerts is dependent on its concentration, and the
objective of most screening campaigns is to find molecules
that show a strong biological effect at a minimal dose. A
common approach to identifying such compounds is to first
assay the entire compound library at a single concentration,
and then select the molecules with the strongest response to
be re-measured in a dilution series. A logistic model is then
fit to this dose-response data and used to derive quantitative
measures of the binding dynamics, such as the widely-used
half-maximal active concentration1.

One common issue with HTS assay systems is that the bio-
logical target of interest is not the only or even the main com-
ponent that molecules can interact with. Different classes of
substructural motifs can elicit a wide variety of behaviours

1i.e. the concentration at which a compound exerts half of
its maximal physiological effect; depending on the context of-
ten also referred to as the half-maximal inhibitory/effective/lethal
concentration/dose (IC50/EC50/LD50)

that are orthogonal to the physiological interaction being
investigated, but nevertheless result in a positive readout.
Examples include compound aggregation (McGovern et al.,
2002; Ryan et al., 2003; Feng et al., 2007), reactivity to-
wards the protein target (Rishton, 1997), and interference
with the readout method (Baell & Holloway, 2010; Baell &
Nissink, 2018).

As these confounding interactions are not experimental
noise, but reproducible, concentration-dependent, and of-
ten platform-independent positive readouts, it is generally
difficult to differentiate them from truly active compounds
without extensive validation experiments (termed counter-
screens). Researchers have extensively examined historic
HTS data and collated lists of molecular substructures that
are enriched in compounds with high frequencies of hits,
exemplified by the well-known library of Pan-Assay INter-
ference compoundS, or PAINS (Baell & Holloway, 2010).
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Figure 1. Representative structural submotifs that are correlated
with hit frequencies, adapted from (Baell & Holloway, 2010).

And while medicinal chemists have grown cognisant of
seemingly active compounds containing known assay-
interfering substructures, they remain prevalent in popu-
lar bioactivity databases and published research (Dahlin &
Walters, 2016). Moreover, many unidentified or less exten-
sively characterised substructural motifs are bound to exist
in high-throughput screening datasets, further complicating
analysis.

As outlined in Section 1, representations learned by multi-
task and meta-learning models trained on datasets that are
populated with these problematic compound sets risk favour-
ing this more accessible inductive bias over the challenging
and complex biochemical interactions that are of practical
relevance.

3. Bias in Bioactivity Benchmarks
To quantify the prevalence of this issue in multi-task bioac-
tivity prediction datasets, we investigated the extent to which
the hit frequency of a compound across screens can predict
binding in any individual screen with a very simple model.
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Consider the label matrix Y ∈ {0, 1, –}|M |×|A| of a
multi-task binary classification problem, denoting whether
a molecule mi ∈ M = {m1,m2, . . . ,mL} was inac-
tive, active, or not measured in an assay aj ∈ A =
{a1, a2, . . . , aK}. For all molecules that were measured
in a given assay aj

Mj = {mi ∈M |Yij ∈ {0, 1}}

we calculate the frequency of hits across all other assays
they were measured in

hij =
|{ak ∈ A \ j|Yik = 1}|

|{ak ∈ A \ j|Yik ∈ {0, 1}}|

and use these hit frequencies to calculate the areas under the
receiver operator characteristic (AUC-ROC) and the preci-
sion recall curve (AUC-PRC) with respect to the labels in
aj . Molecules that are only measured in a single assay are
assigned the global hit frequency across Y2. The summary
of this characterisation is shown in Table 1, where the met-
rics are averaged across all assays and compared against the
expected performance of a random classifier using the label
ratio of each aj .

If the assays in A investigate reasonably distinct biological
systems, as is the case in public repositories such as Pub-
Chem (Kim et al., 2021) and ChEMBL (Gaulton et al.,
2017), this approach is not expected to perform signifi-
cantly better than a random classifier. These databases cover
hundreds of different targets spanning many physiologi-
cal functionalities and scales, meaning that any consistent
activity across screens is much more likely to stem from
target-independent interference mechanisms than selective
biochemical interactions.

To characterise this behaviour, five multi-task benchmarks
were retrieved from their respective sources and the Molecu-
leNet repository (Wu et al., 2018), including:
CHEMBL - a preprocessed subset of the ChEMBL database
(Mayr et al., 2018), designed for multi-task bioactivity pre-
diction;
MUV - an extensively preprocessed subset of the PubChem
database (Rohrer & Baumann, 2009), originally designed
for virtual screening;
PCBA - a large, minimally preprocessed subset of the Pub-
Chem database (Ramsundar et al., 2015), designed for multi-
task bioactivity prediction; and
TOX21/TOXCAST - a collection of assays measuring bind-
ing to targets involved in known adverse physiological reac-
tions (Dix et al., 2007).

The degree to which the issue of target-independent as-
say interference is addressed varies between benchmarks.

2Alternative approaches of assigning the hit rate of aj or ignor-
ing these compounds entirely only negligibly changes the results.

Table 1. The AUC-ROC and AUC-PRC classification metrics of
the frequency of hits model discussed in Section 3, with the ex-
pected performance of a random classifier in parentheses.

DATASET AUC-ROC AUC-PRC |A| |M |
CHEMBL 0.76 (0.50) 0.69 (0.43) 1310 456 331
PCBA 0.80 (0.50) 0.12 (0.02) 128 439 863
MUV 0.57 (0.50) 0.01 (0.00) 17 93 127
TOX21 0.81 (0.50) 0.32 (0.08) 12 8 014
TOXCAST 0.79 (0.50) 0.44 (0.20) 617 8 615

While the authors of the PCBA dataset acknowledge the
possibility of multi-task models focussing on interfering
substructures, they argue that the predictive performance of
networks trained on cleaner data alleviates this concern. The
authors of the MUV dataset go further and apply extensive
preprocessing steps, including the removal of all compounds
with a hit rate over 26%. The curators of TOXCAST pursue
an even more rigorous approach and perform extensive ex-
perimental counter-screens for each assay. However, in the
form that this dataset is currently distributed and used these
counter-screens are simply treated as additional predictive
tasks, strongly amplifying the adverse incentive presented
by assay-interfering compounds.

The results of our experiment in Table 1 closely mirror these
considerations. The datasets that have not been preprocessed
to remove potential artefacts (CHEMBL, PCBA, TOX21,
and TOXCAST) show a substantial correlation between the
readouts of different assays. The only dataset on which
the performance is close to random is MUV, where many
potentially interfering compounds are filtered out.

4. Impact on Learned Representations
To investigate to what extent these statistical dependencies
are reflected in the representations that models learn, we
examined the molecular embeddings that a multi-head graph
neural network derives from the CHEMBL dataset. Specif-
ically, we used the graph isomorphism network (Xu et al.,
2018) architecture introduced in Hu et al. (2019), consist-
ing of a representation-learning network ψ : G → Rd that
maps a molecular graph G to a continuous embedding in
Rd, followed by a multi-head linear layer ϕ : Rd → R|A|

to model bioactivity labels. In the following experiments,
we compare the molecular representations generated by a
random initialisation3 of ψ to those that were optimised to
perform well in the supervised multi-task setting by (Hu
et al., 2019).

3In contrast to other deep learning models, it is well-established
that graph neural networks can already extract highly useful rep-
resentations in their randomly initialised state (Kipf & Welling,
2016; Hamilton et al., 2017; Velickovic et al., 2019).
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Our hypothesis is that the strong predictive performance of
a frequency of hits regression model demonstrated above
leads to representations that encode molecular promiscu-
ity and propensity to target-independent assay interference,
rather than modelling the biochemical concepts underlying
target-specific interactions.

To quantify this, we replaced the last layer of the multi-task
network with a single-head regression output ϕ′ : Rd → R,
keeping ψ fixed, and trained this new predictive layer on
hit frequencies across the CHEMBL dataset. As expected,
we observe that a linear model fit on top of the pretrained
embeddings is able to predict molecular hit frequencies
much better than one that is trained on the naive embed-
dings, summarised by Pearson correlations of 0.43 and 0.28
respectively.

A complimentary approach to testing this hypothesis is to
examine the topology of the learned representation space.
Rohrer & Baumann (2009) outline the method of refined
nearest neighbour analysis, which can be used to describe
how evenly two classes of molecules are distributed in chem-
ical space. We adapt this method to quantify how clearly
compounds containing well-known assay-interfering molec-
ular substructures are separated from compounds that do
not and use the resulting metric to compare the pretrained
and naı̈ve embedding spaces.

First, we annotate all compounds from the CHEMBL bench-
mark containing one or more of the substructures enumer-
ated in the PAINS library (Baell & Holloway, 2010). As a
sanity check, we compare the distribution of hit frequencies
between these and the remaining compounds and find that
flagged molecules have a significantly4 higher hit rate than
molecules without PAINS substructures. Next, we define
G(di) as the proportion of flagged compounds for which the
distance to the nearest other flagged compound is less than
di and the function F (di) as the proportion of PAINS-free
compounds for which the distance to the nearest flagged
compound is less than di. The resulting distributional metric

S =
1

Nd

Nd∑
i=1

(F (di)−G(di))

captures the cumulative difference between F and G over
a set of distance thresholds {di}Nd

i=1. Intuitively, if F (di)
is consistently lower than G(di) over a range of different
distance thresholds, i.e. when S < 0, molecules that contain
PAINS substructures are clustered in the embedding space
and are thus more easily distinguishable from molecules that
do not. We follow Rohrer & Baumann (2009) and generate
the distance threshold sets by creating Nd = 500 evenly
spaced splits in [0, 3dm], where dm is the median nearest
neighbour distance.

4one-sided two-sample K-S test statistic of 0.22, p < 10−300

Consistent with the findings from the previous experiment,
the representation space of the trained network exhibits a
significantly greater separability of PAINS-containing com-
pounds (S = −0.39) than the representation space derived
from a random initialisation (S = −0.29).

While a more thorough investigation of different models
in different settings is necessary, these results indicate that
multi-task datasets on which significant discriminative per-
formance can be achieved by recognising assay-interfering
substructures are able to induce representations that reflect
this shortcut. And while these representations may perform
well on the benchmark in question, they are inadequate
for many downstream applications, as for example a gen-
erative model built on them would preferentially generate
assay-interfering compounds and not molecules with actual
physiological activity.

5. Conclusions and Future Work
Systematic experimental errors that cause assay-
independent false positive readouts in biochemical
and toxicological high-throughput screens are present
in many popular multi-task benchmarks. The resulting
statistical dependencies lead to a high correlation between
tasks and can compel multi-task and meta-learning
algorithms to focus on predicting hit frequencies, leading
to representations that are counterproductive to many
impactful downstream applications of interest.

The most robust way to address this issue is to make use of
experimental information from counter-screens and remove
active compounds that are likely assay-interfering or non-
selective. Several instances of high-throughput screens with
associated validation assays exist (see e.g. Butkiewicz et al.
(2013)) and could be compiled into a collection of high-
quality data that is used as a clean test set.

However, the vast majority of screening data in repositories
such as ChEMBL or PubChem is not linked to assay-specific
counter-screens that could be used to filter out potential false
positives. To still recognise problematic compounds in these
screens, it may be beneficial to examine the associated mea-
surement meta-data, as the MUV dataset shows that even
highly empirical rules-of-thumb can already significantly
improve the quality of a dataset. Going even further, the
large quantities of meta-data in repositories such as Pub-
Chem could present an opportunity to systematically de-
velop more sophisticated de-biasing and de-confounding
techniques.

Conclusions from these techniques could then in turn be
used to process new single- and multi-task datasets and in-
crease the efficacy with which molecular property prediction
models can learn from publicly available bioactivity data.
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