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Abstract

A compelling use case of offline reinforcement learning (RL) is to obtain a policy
initialization from existing datasets followed by fast online fine-tuning with limited
interaction. However, existing offline RL methods tend to behave poorly during fine-
tuning. In this paper, we study the fine-tuning problem in the context of conservative
offline RL methods and we devise an approach for learning an effective initialization
from offline data that also enables fast online fine-tuning capabilities. Our approach,
calibrated Q-learning (Cal-QL), accomplishes this by learning a conservative value
function initialization that underestimates the value of the learned policy from
offline data, while also ensuring that the learned Q-values are at a reasonable scale.
We refer to this property as calibration, and define it formally as providing a lower
bound on the true value function of the learned policy and an upper bound on
the value of some other (suboptimal) reference policy, which may simply be the
behavior policy. We show that a conservative offline RL algorithm that also learns
a calibrated value function leads to effective online fine-tuning, enabling us to take
the benefits of offline initializations in online fine-tuning. In practice, Cal-QL can
be implemented on top of the conservative Q learning (CQL) [32] for offline RL
within a one-line code change. Empirically, Cal-QL outperforms state-of-the-art
methods on 9/11 fine-tuning benchmark tasks that we study in this paper. Code
and video are available at https://nakamotoo.github.io/Cal-QL

1 Introduction
Modern machine learning successes follow a common recipe: pre-training models on general-purpose,
Internet-scale data, followed by fine-tuning the pre-trained initialization on a limited amount of data
for the task of interest [22, 7]. How can we translate such a recipe to sequential decision-making
problems? A natural way to instantiate this paradigm is to utilize offline reinforcement learning
(RL) [37] for initializing value functions and policies from static datasets, followed by online fine-
tuning to improve this initialization with limited active interaction. If successful, such a recipe might
enable efficient online RL with much fewer samples than current methods that learn from scratch.
Many algorithms for offline RL have been applied to online fine-tuning. Empirical results across
such works suggest a counter-intuitive trend: policy initializations obtained from more effective
offline RL methods tend to exhibit worse online fine-tuning performance, even within the same
task (see Table 2 of Kostrikov et al. [31] & Figure 4 of Xiao et al. [57]). On the other end, on-
line RL methods training from scratch (or RL from demonstrations [53], where the replay buffer
is seeded with the offline data) seem to improve online at a significantly faster rate. However,
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these online methods require actively collecting data by rolling out policies from scratch, which
inherits similar limitations to naïve online RL methods in problems where data collection is ex-
pensive or dangerous. Overall, these results suggest that it is challenging to devise an offline RL
algorithm that both acquires a good initialization from prior data and also enables efficient fine-tuning.
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Figure 1: We study offline RL pre-training followed
by online RL fine-tuning. Some prior offline RL meth-
ods tend to exhibit slow performance improvement in
this setting (yellow), resulting in worse asymptotic per-
formance. Others suffer from initial performance degra-
dation once online fine-tuning begins (red), resulting in
a high cumulative regret. We develop an approach that
“calibrates” the learned value function to attain a fast
improvement with a smaller regret (blue).

How can we devise a method to learn an effec-
tive policy initialization that also improves dur-
ing fine-tuning? Prior work [32, 6] shows that
one can learn a good offline initialization by op-
timizing the policy against a conservative value
function obtained from an offline dataset. But,
as we show in Section 4.1, conservatism alone is
insufficient for efficient online fine-tuning. Con-
servative methods often tend to “unlearn” the
policy initialization learned from offline data
and waste samples collected via online interac-
tion in recovering this initialization. We find
that the “unlearning” phenomenon is a conse-
quence of the fact that value estimates produced
via conservative methods can be significantly
lower than the ground-truth return of any valid
policy. Having Q-value estimates that do not
lie on a similar scale as the return of a valid
policy is problematic. Because once fine-tuning
begins, actions executed in the environment for
exploration that are actually worse than the pol-
icy learned from offline data could erroneously
appear better, if their ground-truth return value is larger than the learned conservative value estimate.
Hence, subsequent policy optimization will degrade the policy performance until the method recovers.
If we can ensure that the conservative value estimates learned using the offline data are calibrated,
meaning that these estimates are on a similar scale as the true return values, then we can avoid the
unlearning phenomenon caused by conservative methods (see the formal definition in 4.1). Of course,
we cannot enforce such a condition perfectly, since it would require eliminating all errors in the value
function. Instead, we devise a method for ensuring that the learned values upper bound the true values
of some reference policy whose values can be estimated more easily (e.g., the behavior policy), while
still lower bounding the values of the learned policy. Though this does not perfectly ensure that the
learned values are correct, we show that it still leads to sample-efficient online fine-tuning. Thus,
our practical method, calibrated Q-learning (Cal-QL), learns conservative value functions that are
“calibrated” against the behavior policy, via a simple modification to existing conservative methods.
The main contribution of this paper is Cal-QL, a method for acquiring an offline initialization that
facilitates online fine-tuning. Cal-QL aims to learn conservative value functions that are calibrated
with respect to a reference policy (e.g., the behavior policy). Our analysis of Cal-QL shows that
Cal-QL attains stronger guarantees on cumulative regret during fine-tuning. In practice, Cal-QL
can be implemented on top of conservative Q-learning [32], a prior offline RL method, without
any additional hyperparameters. We evaluate Cal-QL across a range of benchmark tasks from [10],
[51] and [44], including robotic manipulation and navigation. We show that Cal-QL matches or
outperforms the best methods on all tasks, in some cases by 30-40%.

2 Related Work
Several prior works suggest that online RL methods typically require a large number of samples [50,
54, 61, 26, 64, 18, 38] to learn from scratch. We can utilize offline data to accelerate online
RL algorithms. Prior works do this in a variety of ways: incorporating the offline data into the
replay buffer of online RL [48, 53, 23, 52], utilizing auxiliary behavioral cloning losses with policy
gradients [46, 27, 67, 66], or extracting a high-level skill space for downstream online RL [17, 1].
While these methods improve the sample efficiency of online RL from scratch, as we will also show
in our results, they do not eliminate the need to actively roll out poor policies for data collection.
To address this issue, a different line of work first runs offline RL for learning a good policy and value
initialization from the offline data, followed by online fine-tuning [45, 30, 41, 3, 56, 36, 42]. These
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approaches typically employ offline RL methods based on policy constraints or pessimism [12, 49, 16,
15, 30, 51, 36] on the offline data, then continue training with the same method on a combination of
offline and online data once fine-tuning begins [43, 28, 62, 32, 4]. Although pessimism is crucial for
offline RL [25, 6], using pessimism or constraints for fine-tuning [45, 30, 41] slows down fine-tuning
or leads to initial unlearning, as we will show in Section 4.1. In effect, these prior methods either
fail to improve as fast as online RL or lose the initialization from offline RL. We aim to address this
limitation by understanding some conditions on the offline initialization that enable fast fine-tuning.
Our work is most related to methods that utilize a pessimistic RL algorithm for offline training but
incorporate exploration in fine-tuning [36, 42, 56]. In contrast to these works, our method aims to
learn a better offline initialization that enables standard online fine-tuning. Our approach fine-tunes
naïvely without ensembles [36] or exploration [42] and, as we show in our experiments, this alone is
enough to outperform approaches that employ explicit optimism during data collection.

3 Preliminaries and Background
The goal in RL is to learn the optimal policy for an MDP M = (S,A, P, r, ρ, γ). S,A denote
the state and action spaces. P (s′|s, a) and r(s, a) are the dynamics and reward functions. ρ(s)
denotes the initial state distribution. γ ∈ (0, 1) denotes the discount factor. Formally, the goal is
to learn a policy π : S 7→ A that maximizes cumulative discounted value function, denoted by
V π(s) = 1

1−γ
∑
t Eat∼π(st) [γtr(st, at)|s0 = s]. The Q-function of a given policy π is defined as

Qπ(s, a) = 1
1−γ

∑
t Eat∼π(st) [γtr(st, at)|s0 = s, a0 = a], and we use Qπθ to denote the estimate

of the Q-function of a policy π as obtained via a neural network with parameters θ.
Given access to an offline dataset D = {(s, a, r, s′)} collected using a behavior policy πβ , we aim
to first train a good policy and value function using the offline dataset D alone, followed by an
online phase that utilizes online interaction in M. Our goal during fine-tuning is to obtain the
optimal policy with the smallest number of online samples. This can be expressed as minimizing the
cumulative regret over rounds of online interaction: Reg(K) := Es∼ρ

∑K
k=1

[
V ?(s)− V πk(s)

]
.

As we demonstrate in Section 7, existing methods face challenges in this setting.
Our approach will build on the conservative Q-learning (CQL) [32] algorithm. CQL imposes an
additional regularizer that penalizes the learned Q-function on out-of-distribution (OOD) actions
while compensating for this pessimism on actions seen within the training dataset. Assuming that the
value function is represented by a function, Qθ, the training objective of CQL is given by

min
θ
α (Es∼D,a∼π [Qθ(s, a)]− Es,a∼D [Qθ(s, a)])︸ ︷︷ ︸

Conservative regularizerR(θ)

+
1

2
Es,a,s′∼D

[(
Qθ(s, a)− BπQ̄(s, a)

)2]
,

(3.1)

where BπQ̄(s, a) is the backup operator applied to a delayed target Q-network, Q̄: BπQ̄(s, a) :=
r(s, a) + γEa′∼π(a′|s′)[Q̄(s′, a′)]. The second term is the standard TD error [40, 13, 20]. The first
termR(θ) (in blue) is a conservative regularizer that aims to prevent overestimation in the Q-values
for OOD actions by minimizing the Q-values under the policy π(a|s), and counterbalances by
maximizing the Q-values of the actions in the dataset following the behavior policy πβ .

4 When Can Offline RL Initializations Enable Fast Online Fine-Tuning?

A starting point for offline pre-training and online fine-tuning is to simply initialize the value function
with one that is produced by an existing offline RL method and then perform fine-tuning. However,
we empirically find that initializations learned by many offline RL algorithms can perform poorly
during fine-tuning. We will study the reasons for this poor performance for the subset of conservative
methods to motivate and develop our approach for online fine-tuning, calibrated Q-learning.

4.1 Empirical Analysis

Offline RL followed by online fine-tuning typically poses non-trivial challenges for a variety of
methods. While analysis in prior work [45] notes challenges for a subset of offline RL methods, in
Figure 2, we evaluate the fine-tuning performance of a variety of prior offline RL methods (CQL [32],
IQL [30], TD3+BC [11], AWAC [45]) on a particular diagnostic instance of a visual pick-and-place
task with a distractor object and sparse binary rewards [51], and find that all methods struggle
to attain the best possible performance, quickly. More details about this task are in Appendix B.
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Figure 3: The evolution of the average Q-value and the success rate of CQL over the course of offline
pre-training and online fine-tuning. Fine-tuning begins at 50K steps. The red-colored part denotes the period
of performance recovery which also coincides with the period of Q-value adjustment.
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Figure 2: Multiple prior offline RL al-
gorithms suffer from difficulties during
fine-tuning including poor asymptotic per-
formance and initial unlearning.

While the offline Q-function initialization obtained from all
methods attains a similar (normalized) return of around 0.5,
they suffer from difficulties during fine-tuning: TD3+BC,
IQL, AWAC attain slow asymptotic performance and CQL
unlearns the offline initialization, followed by spending a
large amount of online interaction to recover the offline
performance again, before any further improvement. This
initial unlearning appears in multiple tasks as we show in
Appendix F. In this work, we focus on developing effective
fine-tuning strategies on top of conservative methods like
CQL. To do so, we next aim to understand the potential
reason behind the initial unlearning in CQL.
Why does CQL unlearn initially? To understand why
CQL unlearns initially, we inspect the learned Q-values aver-
aged over the dataset in Figure 3. Observe that the Q-values
learned by CQL in the offline phase are much smaller than their ground-truth value (as expected), but
these Q-values drastically jump and adjust in scale when fine-tuning begins. In fact, we observe that
performance recovery (red segment in Figure 3) coincides with a period where the range of Q-values
changes to match the true range. This is as expected: as a conservative Q-function experiences new
online data, actions much worse than the offline policy on the rollout states appear to attain higher
rewards compared to the highly underestimated offline Q-function, which in turn deceives the policy
optimizer into unlearning the initial policy. We illustrate this idea visually in Figure 4. Once the
Q-function has adjusted and the range of Q-values closely matches the true range, then fine-tuning
can proceed normally, after the dip.
To summarize, our empirical analysis indicates that methods existing fine-tuning methods suffer
from difficulties such as initial unlearning or poor asymptotic performance. In particular, we observed
that conservative methods can attain good asymptotic performance, but “waste” samples to correct the
learned Q-function. Thus, in this paper, we attempt to develop a good fine-tuning method that builds
on top of an existing conservative offline RL method, CQL, but aims to “calibrate” the Q-function so
that the initial dip in performance can be avoided.

4.2 Conditions on the Offline Initialization that Enable Fast Fine-Tuning
Our observations from the preceding discussion motivate two conclusions in regard to the offline
Q-initialization for fast fine-tuning: (a) methods that learn conservative Q-functions can attain good
asymptotic performance, and (b) if the learned Q-values closely match the range of ground-truth
Q-values on the task, then online fine-tuning does not need to devote samples to unlearn and then
recover the offline initialization. One approach to formalize this intuition of Q-values lying on a
similar scale as the ground-truth Q-function is via the requirement that the conservative Q-values
learned by the conservative offline RL method must be lower-bounded by the ground-truth Q-value of
a sub-optimal reference policy. This will prevent conservatism from learning overly small Q-values.
We will refer to this property as “calibration” with respect to the reference policy.
Definition 4.1 (Calibration). An estimated Q-functionQπθ for a given policy π is said to be calibrated
with respect to a reference policy µ if Ea∼π [Qπθ (s, a)] ≥ Ea∼µ [Qµ(s, a)] := V µ(s),∀s ∈ D.

If the learned Q-function Qπθ is calibrated with respect to a policy µ that is worse than π, it would
prevent unlearning during fine-tuning that we observed in the case of CQL. This is because the
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policy optimizer would not unlearn π in favor of a policy that is worse than the reference policy
µ upon observing new online data as the expected value of π is constrained to be larger than V µ:
Ea∼π [Qπθ (s, a)] ≥ V µ(s). Our practical approach Cal-QL will enforce calibration with respect to
a policy µ whose ground-truth value, V µ(s), can be estimated reliably without bootstrapping error
(e.g., the behavior policy induced by the dataset). This is the key idea behind our method (as we will
discuss next) and is visually illustrated in Figure 4.

5 Cal-QL: Calibrated Q-Learning
Our approach, calibrated Q-learning (Cal-QL) aims to learn a conservative and calibrated value
function initializations from an offline dataset. To this end, Cal-QL builds on CQL [32] and then
constrains the learned Q-function to produce Q-values larger than the Q-value of a reference policy µ
per Definition 4.1. In principle, our approach can utilize many different choices of reference policies,
but for developing a practical method, we simply utilize the behavior policy as our reference policy.
Calibrating CQL. We can constrain the learned Q-function Qπθ to be larger than V µ via a simple
change to the CQL training objective shown in Equation 3.1: masking out the push down of the
learned Q-value on out-of-distribution (OOD) actions in CQL if the Q-function is not calibrated, i.e.,
if Ea∼π [Qπθ (s, a)] ≤ V µ(s). Cal-QL modifies the CQL regularizer,R(θ) in this manner:

Es∼D,a∼π [max (Qθ(s, a), V µ(s))]− Es,a∼D [Qθ(s, a)] , (5.1)

where the changes from standard CQL are depicted in red. As long as α (in Equation 3.1) is large, for
any state-action pair where the learned Q-value is smaller than Qµ, the Q-function in Equation 5.1
will upper bound Qµ in a tabular setting. Of course, as with any practical RL method, with function
approximators and gradient-based optimizers, we cannot guarantee that we can enforce this condition
for every state-action pair, but in our experiments, we find that Equation 5.1 is sufficient to enforce
the calibration in expectation over the states in the dataset.
Pseudo-code and implementation details. Our implementation of Cal-QL directly builds on the
implementation of CQL from Geng [14]. We present a pseudo-code for Cal-QL in Appendix A.
Additionally, we list the hyperparameters α for the CQL algorithm and our baselines for each suite of
tasks in Appendix C. Following the protocol in prior work [30, 52], the practical implementation of
Cal-QL trains on a mixture of the offline data and the new online data, weighted in some proportion
during fine-tuning. To get V µ(s), we can fit a function approximator Qµθ or V µθ to the return-to-go
values via regression, but we observed that also simply utilizing the return-to-go estimates for tasks
that end in a terminal was sufficient for our use case. We show in Section 7, how this simple one-line
change to the objective drastically improves over prior fine-tuning results.
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Figure 4: Intuition behind policy unlearning with CQL and the idea behind Cal-QL. The plot visualizes
a slice of the learned Q-function and the ground-truth values for a given state. Erroneous peaks on suboptimal
actions (x-axis) arise when updating CQL Q-functions with online data. This in turn can lead the policy to
deviate away from high-reward actions covered by the dataset in favor of erroneous new actions, resulting in
deterioration of the pre-trained policy. In contrast, Cal-QL corrects the scale of the learned Q-values by using
a reference value function, such that actions with worse Q-values than the reference value function do not
erroneously appear optimal in fine-tuning.
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6 Theoretical Analysis of Cal-QL
We will now analyze the cumulative regret attained over online fine-tuning, when the value function
is pre-trained with Cal-QL, and show that enforcing calibration (Defintion 4.1) leads to a favorable
regret bound during the online phase. Our analysis utilizes tools from Song et al. [52], but studies the
impact of calibration on fine-tuning. We also remark that we simplify the treatment of certain aspects
(e.g., how to incorporate pessimism) as it allows us to cleanly demonstrate the benefits of calibration.
Notation & terminology. In our analysis, we will consider an idealized version of Cal-QL for
simplicity. Specifically, following prior work [52] under the bilinear model [9], we will operate
in a finite-horizon setting with a horizon H . We denote the learned Q-function at each learning
iteration k for a given (s, a) pair and time-step h by Qkθ(s, a). For any given policy π, let Cπ ≥ 1

denote the concentrability coefficient such that Cπ := maxf∈C

∑H−1
h=0 Es,a∼dπ

h
[T fh+1(s,a)−fh(s,a)]√∑H−1

h=0 Es,a∼νh (T fh+1(s,a)−fh(s,a))2
,

i.e., a coefficient that quantifies the distribution shift between the policy π and the dataset D, in
terms of the ratio of Bellman errors averaged under π and the dataset D. Note that C represents
the Q-function class and we assume C has a bellman-bilinear rank [9] of d. We also use Cµπ to
denote the concentrability coefficient over a subset of calibrated Q-functions w.r.t. a reference policy

µ: Cµπ := maxf∈C,f(s,a)≥Qµ(s,a)

∑H−1
h=0 Es,a∼dπ

h
[T fh+1(s,a)−fh(s,a)]√∑H−1

h=0 Es,a∼νh (T fh+1(s,a)−fh(s,a))2
, which provides Cµπ ≤ Cπ.

Similar to C, let dµ denote the bellman bilinear rank of Cµ – the calibrated Q-function class w.r.t. the
reference policy µ. Intuitively, we have Cµ ⊂ C, which implies that dµ ≤ d. The formal definitions
are provided in Appendix H.2. We will use πk to denote the arg-max policy induced by Qkθ .
Intuition. We intuitively discuss how calibration and conservatism enable Cal-QL to attain a smaller
regret compared to not imposing calibration. Our goal is to bound the cumulative regret of online
fine-tuning,

∑
k Es0∼ρ[V π

?

(s0)− V πk(s0)]. We can decompose this expression into two terms:

Reg(K) =
K∑
k=1

Es0∼ρ
[
V ?(s0)−max

a
Qkθ(s0, a)

]
︸ ︷︷ ︸

(i) := miscalibration

+
K∑
k=1

Es0∼ρ
[
max
a

Qkθ(s0, a)− V πk(s0)
]

︸ ︷︷ ︸
(ii) := overestimation

. (6.1)

This decomposition of regret into terms (i) and (ii) is instructive. Term (ii) corresponds to the amount
of over-estimation in the learned value function, which is expected to be small if a conservative RL
algorithm is used for training. Term (i) is the difference between the ground-truth value of the optimal
policy and the learned Q-function and is negative if the learned Q-function were calibrated against
the optimal policy (per Definition 4.1). Of course, this is not always possible because we do not know
V ? a priori. But note that when Cal-QL utilizes a reference policy µ with a high value V µ, close to
V ?, then the learned Q-function Qθ is calibrated with respect to Qµ per Condition 4.1 and term (i)
can still be controlled. Therefore, controlling this regret requires striking a balance between learning
a calibrated (term (i)) and conservative (term (ii)) Q-function. We now formalize this intuition and
defer the detailed proof to Appendix H.6.

Theorem 6.1 (Informal regret bound of Cal-QL). With high probability, Cal-QL obtains the following
bound on total regret accumulated during online fine-tuning:

Reg(K) = Õ
(

min
{
Cµπ?H

√
dK log (|F|), KEρ[V ?(s0)− V µ(s0)] +H

√
dµK log (|F|)

})
,

where F is the functional class of the Q-function.

Comparison to Song et al. [52]. Song et al. [52] analyzes an online RL algorithm that utilizes offline
data without imposing conservatism or calibration. We now compare Theorem 6.1 to Theorem 1 of
Song et al. [52] to understand the impact of these conditions on the final regret guarantee. Theorem 1
of Song et al. [52] presents a regret bound: Reg(K) = Õ

(
Cπ?H

√
dK log (|F|)

)
and we note some

improvements in our guarantee, that we also verify via experiments in Section 7.3: (a) for the setting
where the reference policy µ contains near-optimal behavior, i.e., V ?−V µ . O(H

√
d log (|F|) /K),

Cal-QL can enable a tighter regret guarantee compared to Song et al. [52]; (b) as we show in
Appendix H.3, the concentrability coefficient Cµπ? appearing in our guarantee is no larger than the
one that appears in Theorem 1 of Song et al. [52], providing another source of improvement; and (c)
finally, in the case where the reference policy has broad coverage and is highly sub-optimal, Cal-QL
reverts back to the guarantee from [52], meaning that Cal-QL improves upon this prior work.
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Figure 6: Online fine-tuning after offline initialization on the benchmark tasks. The plots show the online
fine-tuning phase after pre-training for each method (except SAC-based approaches which are not pre-trained).
Observe that Cal-QL consistently matches or exceeds the speed and final performance of the best prior method
and is the only algorithm to do so across all tasks. (6 seeds)

7 Experimental Evaluation

The goal of our experimental evaluation is to study how well Cal-QL can facilitate sample-efficient
online fine-tuning. To this end, we compare Cal-QL with several other state-of-the-art fine-tuning
methods on a variety of offline RL benchmark tasks from D4RL [10], Singh et al. [51], and Nair
et al. [45], evaluating performance before and after fine-tuning. We also study the effectiveness of
Cal-QL on higher-dimensional tasks, where the policy and value function must process raw image
observations. Finally, we perform empirical studies to understand the efficacy of Cal-QL with
different dataset compositions and the impact of errors in the reference value function estimation.

Figure 5: Tasks: We evaluate Cal-QL on a diverse set
of benchmark problems: AntMaze and Frankakitchen
domains from [10], Adroit tasks from [45] and a vision-
based robotic manipulation task from [34].

Offline RL tasks and datasets. We evaluate
Cal-QL on a number of benchmark tasks and
datasets used by prior works [30, 45] to evalu-
ate fine-tuning performance: (1) The AntMaze
tasks from D4RL [10] that require controlling
an ant quadruped robot to navigate from a start-
ing point to a desired goal location in a maze.
The reward is +1 if the agent reaches within a
pre-specified small radius around the goal and
0 otherwise. (2) The FrankaKitchen tasks from D4RL require controlling a 9-DoF Franka robot
to attain a desired configuration of a kitchen. To succeed, a policy must complete four sub-tasks
in the kitchen within a single rollout, and it receives a binary reward of +1/0 for every sub-task
it completes. (3) Three Adroit dexterous manipulation tasks [47, 30, 45] that require learning
complex manipulation skills on a 28-DoF five-fingered hand to (a) manipulate a pen in-hand to a
desired configuration (pen-binary), (b) open a door by unlatching the handle (door-binary), and
(c) relocating a ball to a desired location (relocate-binary). The agent obtains a sparse binary
+1/0 reward if it succeeds in solving the task. Each of these tasks only provides a narrow offline
dataset consisting of 25 demonstrations collected via human teleoperation and additional trajectories
collected by a BC policy. Finally, to evaluate the efficacy of Cal-QL on a task where we learn from
raw visual observations, we study (4) a pick-and-place task from prior work [51, 34] that requires
learning to pick a ball and place it in a bowl, in the presence of distractors. Additionally, we compared
Cal-QL on D4RL locomotion tasks (halfcheetah, hopper, walker) in Appendix D.
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Comparisons, prior methods, and evaluation protocol. We compare Cal-QL to running online
SAC [21] from scratch, as well as prior approaches that leverage offline data. This includes naïvely
fine-tuning offline RL methods such as CQL [32] and IQL [30], as well as fine-tuning with AWAC [45],
O3F [42] and online decision transformer (ODT) [65], methods specifically designed for offline RL
followed by online fine-tuning. In addition, we also compare to a baseline that trains SAC [21] using
both online data and offline data (denoted by “SAC + offline data”) that mimics DDPGfD [53] but
utilizes SAC instead of DDPG. We also compare to Hybrid RL [52], a recently proposed method
that improves the sample efficiency of the “SAC + offline data” approach, and “CQL+SAC”, which
first pre-train with CQL and then run fine-tuning with SAC on a mixture of offline and online data
without conservatism. More details of each method can be found in Appendix C. We present learning
curves for online fine-tuning and also quantitatively evaluate each method on its ability to improve the
initialization learned from offline data measured in terms of (i) final performance after a pre-defined
number of steps per domain and (ii) the cumulative regret over the course of online fine-tuning. In
Section 7.2, we run Cal-QL with a higher update-to-data (UTD) ratio and compare it to RLPD [2], a
more sample-efficient version of “SAC + offline data”.

7.1 Empirical Results
We first present a comparison of Cal-QL in terms of the normalized performance before and after
fine-tuning in Table 1 and the cumulative regret in a fixed number of online steps in Table 2. Following
the protocol of [10], we normalize the average return values for each domain with respect to the
highest possible return (+4 in FrankaKitchen; +1 in other tasks; see Appendix C.1 for more details).
Cal-QL improves the offline initialization significantly. Observe in Table 1 and Figure 6 that while
the performance of offline initialization acquired by Cal-QL is comparable to that of other methods
such as CQL and IQL, Cal-QL is able to improve over its offline initialization the most by 106.9% in
aggregate and achieve the best fine-tuned performance in 9 out of 11 tasks.
Cal-QL enables fast fine-tuning. Observe in Table 2 that Cal-QL achieves the smallest regret on 8
out of 11 tasks, attaining an average regret of 0.22 which improves over the next best method (IQL)
by 42%. Intuitively, this means that Cal-QL does not require running highly sub-optimal policies. In
tasks such as relocate-binary, Cal-QL enjoys the fast online learning benefits associated with
naïve online RL methods that incorporate the offline data in the replay buffer (SAC + offline data
and Cal-QL are the only two methods to attain a score of ≥ 90% on this task) unlike prior offline RL
methods. As shown in Figure 6, in the kitchen and antmaze domains, Cal-QL brings the benefits
of fast online learning together with a good offline initialization, improving drastically on the regret
metric. Finally, observe that the initial unlearning at the beginning of fine-tuning with conservative
methods observed in Section 4.1 is greatly alleviated in all tasks (see Appendix F for details).

Task CQL IQL AWAC O3F ODT CQL+SAC Hybrid SRL SAC+od SAC Cal-QL (Ours)
large-diverse 25→ 87 40→ 59 00→ 00 59→ 28 00→ 01 36→ 00 → 00 → 00 → 00 33→ 95
large-play 34→ 76 41→ 51 00→ 00 68→ 01 00→ 00 21→ 00 → 00 → 00 → 00 26→ 90
medium-diverse 65→ 98 70→ 92 00→ 00 92→ 97 00→ 03 64→ 98 → 02 → 68 → 00 75→ 98
medium-play 62→ 98 72→ 94 00→ 00 89→ 99 00→ 05 67→ 98 → 25 → 96 → 00 54→ 97
partial 71→ 75 40→ 60 01→ 13 11→ 22 - 71→ 00 → 00 → 07 → 03 67→ 79
mixed 56→ 50 48→ 48 02→ 12 06→ 33 - 59→ 01 → 01 → 00 → 02 38→ 80
complete 13→ 34 57→ 50 01→ 08 17→ 41 - 21→ 06 → 00 → 05 → 06 22→ 68
pen 55→ 13 88→ 92 88→ 92 91→ 89 - 48→ 10 → 54 → 17 → 11 79→ 99
door 22→ 88 41→ 88 29→ 13 04→ 08 - 29→ 66 → 88 → 39 → 17 35→ 92
relocate 06→ 69 06→ 45 06→ 08 03→ 35 - 01→ 00 → 99 → 16 → 00 03→ 98
manipulation 50→ 97 49→ 81 50→ 73 - - 42→ 41 → 00 → 01 → 01 49→ 99
average 42→ 71 50→ 69 16→ 20 44→ 45 00→ 02 42→ 29 → 24 → 23 → 04 44→ 90
improvement + 71.0% + 37.7% + 23.7% + 3.0% N/A - 30.3% N/A N/A N/A + 106.9%

a
Table 1: Normalized score before & after online fine-tuning. Observe that Cal-QL improves over the
best prior fine-tuning method and attains a much larger performance improvement over the course of online
fine-tuning. The numbers represent the normalized score out of 100 following the convention in [10].

7.2 Cal-QL With High Update-to-Data (UTD) Ratio
We can further enhance the online sample efficiency of Cal-QL by increasing the number of gradient
steps per environment step made by the algorithm. The number of updates per environment step is
usually called the update-to-data (UTD) ratio. In standard online RL, running off-policy Q-learning
with a high UTD value (e.g., 20, compared to the typical value of 1) often results in challenges
pertaining to overfitting [39, 5, 2, 8]. As expected, we noticed that running Cal-QL with a high
UTD value also leads these overfitting challenges. To address these challenges in high UTD settings,
we combine Cal-QL with the Q-function architecture in recent work, RLPD [2] (i.e., we utilized
layer normalization in the Q-function and ensembles akin to Chen et al. [5]), that attempts to tackle
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Task CQL IQL AWAC O3F ODT CQL+SAC Hybrid RL SAC+od SAC Cal-QL (Ours)
large-diverse 0.35 0.46 1.00 0.62 0.98 0.99 1.00 1.00 1.00 0.20
large-play 0.32 0.52 1.00 0.91 1.00 0.99 1.00 1.00 1.00 0.28
medium-diverse 0.06 0.08 0.99 0.03 0.95 0.06 0.98 0.77 1.00 0.05
medium-play 0.09 0.10 0.99 0.04 0.96 0.06 0.90 0.47 1.00 0.07
partial 0.31 0.49 0.89 0.78 - 0.97 0.98 0.98 0.92 0.27
mixed 0.55 0.60 0.88 0.72 - 0.97 0.99 1.00 0.91 0.27
complete 0.70 0.53 0.97 0.66 - 0.99 0.99 0.96 0.91 0.44
pen 0.86 0.11 0.12 0.13 - 0.90 0.56 0.75 0.87 0.11
door 0.36 0.25 0.81 0.82 - 0.23 0.35 0.60 0.94 0.23
relocate 0.71 0.74 0.95 0.71 - 0.86 0.30 0.89 1.00 0.43
manipulation 0.15 0.32 0.38 - - 0.61 1.00 1.00 0.99 0.11
average 0.41 0.38 0.82 0.54 0.97 0.69 0.82 0.86 0.96 0.22

Table 2: Cumulative regret averaged over the steps of fine-tuning. The smaller the better and 1.00 is the
worst. Cal-QL attains the smallest overall regret, achieving the best performance among 8 / 11 tasks.
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Figure 7: Cal-QL with UTD=20. Incorporating design choices from RLPD enables Cal-QL to achieve
sample-efficient fine-tuning with UTD=20. Specifically, Cal-QL generally attains similar or higher asymptotic
performance as RLPD, while also exhibiting a smaller cumulative regret. (3 seeds)

overfitting challenges. Note that Cal-QL still first pre-trains on the offline dataset using Equation 5.1
followed by online fine-tuning, unlike RLPD that runs online RL right from the start. In Figure 7,
we compare Cal-QL (UTD = 20) with RLPD [2] (UTD = 20) and also Cal-QL (UTD = 1) as a
baseline. Observe that Cal-QL (UTD = 20) improves over Cal-QL (UTD = 1) and training from
scratch (RLPD).

7.3 Understanding the Behavior of Cal-QL

In this section, we aim to understand the behavior of Cal-QL by performing controlled experiments
that modify the dataset composition, and by investigating various metrics to understand the properties
of scenarios where utilizing Cal-QL is especially important for online fine-tuning.
Effect of data composition. To understand the efficacy of Cal-QL with different data compositions,
we ran it on a newly constructed fine-tuning task on the medium-size AntMaze domain with a
low-coverage offline dataset, which is generated via a scripted controller that starts from a fixed
initial position and navigates the ant to a fixed goal position. In Figure 8, we plot the performance of
Cal-QL and baseline CQL (for comparison) on this task, alongside the trend of average Q-values
over the course of offline pre-training (to the left of the dashed vertical line, before 250 training
epochs) and online fine-tuning (to the right of the vertical dashed line, after 250 training epochs),
and the trend of bounding rate, i.e., the fraction of transitions in the data-buffer for which the
constraint in Cal-QL actively lower-bounds the learned Q-function with the reference value. For
comparison, we also plot these quantities for a diverse dataset with high coverage on the task (we use
the antmaze-medium-diverse from Fu et al. [10] as a representative diverse dataset) in Figure 8.
Observe that for the diverse dataset, both naïve CQL and Cal-QL perform similarly, and indeed, the
learned Q-values behave similarly for both of these methods. In this setting, online learning doesn’t
spend samples to correct the Q-function when fine-tuning begins leading to a low bounding rate,
almost always close to 0. Instead, with the narrow dataset, we observe that the Q-values learned by
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Figure 8: Performance of Cal-QL with data compositions. Cal-QL is most effective with narrow datasets,
where Q-values need to be corrected at the beginning of fine-tuning.

naïve CQL are much smaller, and are corrected once fine-tuning begins. This correction co-occurs
with a drop in performance (solid blue line on left), and naïve CQL is unable to recover from this
drop. Cal-QL which calibrates the scale of the Q-function for many more samples in the dataset,
stably transitions to online fine-tuning with no unlearning (solid red line on left).
This suggests that in settings with narrow datasets (e.g., in the experiment above and in the adroit and
visual-manipulation domains from Figure 6), Q-values learned by naïve conservative methods
are more likely to be smaller than the ground-truth Q-function of the behavior policy due to function
approximation errors. Hence utilizing Cal-QL to calibrate the Q-function against the behavior policy
can be significantly helpful. On the other hand, with significantly high-coverage datasets, especially
in problems where the behavior policy is also random and sub-optimal, Q-values learned by naïve
methods are likely to already be calibrated with respect to those of the behavior policy. Therefore
no explicit calibration might be needed (and indeed, the bounding rate tends to be very close to 0
as shown in Figure 8). In this case, Cal-QL will revert back to standard CQL, as we observe in the
case of the diverse dataset above. This intuition is also reflected in Theorem 6.1: when the reference
policy µ is close to a narrow, expert policy, we would expect Cal-QL to be especially effective in
controlling the efficiency of online fine-tuning.

Figure 9: Using a neural net-
work approximator for the ref-
erence value function performs
comparable to using the Monte-
Carlo return. This indicates that
errors in the reference Q-function
do not negatively impact the per-
formance.

Estimation errors in the reference value function do not affect
performance significantly. In our experiments, we compute the ref-
erence value functions using Monte-Carlo return estimates. However,
this may not be available in all tasks. How does Cal-QL behave when
reference value functions must be estimated using the offline dataset
itself? To answer this, we ran an experiment on the kitchen domain,
where instead of using an estimate for Qµ based on the Monte-Carlo
return, we train a neural network function approximator Qµθ to ap-
proximate Qµ via supervised regression on to Monte-Carlo return,
which is then utilized by Cal-QL. Observe in Figure 9, that the per-
formance of Cal-QL largely remains unaltered. This implies as long
as we can obtain a reasonable function approximator to estimate the
Q-function of the reference policy (in this case, the behavior policy),
errors in the reference Q-function do not affect the performance of
Cal-QL significantly.

8 Discussion, Future Directions, and Limitations

In this work we developed Cal-QL a method for acquiring conservative offline initializations that
facilitate fast online fine-tuning. Cal-QL learns conservative value functions that are constrained to be
larger than the value function of a reference policy. This form of calibration allows us to avoid initial
unlearning when fine-tuning with conservative methods, while also retaining the effective asymptotic
performance that these methods exhibit. Our theoretical and experimental results highlight the benefit
of Cal-QL in enabling fast online fine-tuning. While Cal-QL outperforms prior methods, we believe
that we can develop even more effective methods by adjusting calibration and conservatism more
carefully. A limitation of our work is that we do not consider fine-tuning setups where pre-training
and fine-tuning tasks are different, but this is an interesting avenue for future work.

10



Acknowledgments
This research was partially supported by the Office of Naval Research N00014-21-1-2838, N00014-
22-1-2102, ARO W911NF-21-1-0097, the joint Simons Foundation-NSF DMS grant #2031899,
AFOSR FA9550-22-1-0273, and Tsinghua-Berkeley Shenzhen Institute (TBSI) Research Fund, as
well as support from Intel and C3.ai, the Savio computational cluster resource provided by the
Berkeley Research Computing program, and computing support from Google. We thank Philip J.
Ball, Laura Smith, and Ilya Kostrikov for sharing the experimental results of RLPD. AK is supported
by the Apple Scholars in AI/ML PhD Fellowship. MN is partially supported by the Nakajima
Foundation Fellowship. YZ is partially supported by Siemens CITRIS and TBSI research fund. YZ
would like to thank Prof. Song Mei for insightful suggestions on the presentation of Theorem 6.1.

References
[1] A. Ajay, A. Kumar, P. Agrawal, S. Levine, and O. Nachum. Opal: Offline primitive discovery

for accelerating offline reinforcement learning. arXiv preprint arXiv:2010.13611, 2020.

[2] P. J. Ball, L. Smith, I. Kostrikov, and S. Levine. Efficient online reinforcement learning with
offline data. arXiv preprint arXiv:2302.02948, 2023.

[3] A. Beeson and G. Montana. Improving td3-bc: Relaxed policy constraint for offline learning
and stable online fine-tuning. arXiv preprint arXiv:2211.11802, 2022.

[4] J. Buckman, C. Gelada, and M. G. Bellemare. The importance of pessimism in fixed-dataset
policy optimization. arXiv preprint arXiv:2009.06799, 2020.

[5] X. Chen, C. Wang, Z. Zhou, and K. W. Ross. Randomized ensembled double q-learning:
Learning fast without a model. In International Conference on Learning Representations, 2021.
URL https://openreview.net/forum?id=AY8zfZm0tDd.

[6] C.-A. Cheng, T. Xie, N. Jiang, and A. Agarwal. Adversarially trained actor critic for offline
reinforcement learning. arXiv preprint arXiv:2202.02446, 2022.

[7] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

[8] P. D’Oro, M. Schwarzer, E. Nikishin, P.-L. Bacon, M. G. Bellemare, and A. Courville. Sample-
efficient reinforcement learning by breaking the replay ratio barrier. In The Eleventh Inter-
national Conference on Learning Representations, 2023. URL https://openreview.net/
forum?id=OpC-9aBBVJe.

[9] S. Du, S. Kakade, J. Lee, S. Lovett, G. Mahajan, W. Sun, and R. Wang. Bilinear classes: A
structural framework for provable generalization in rl. In International Conference on Machine
Learning, pages 2826–2836. PMLR, 2021.

[10] J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine. D4rl: Datasets for deep data-driven
reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

[11] S. Fujimoto and S. S. Gu. A minimalist approach to offline reinforcement learning. arXiv
preprint arXiv:2106.06860, 2021.

[12] S. Fujimoto, D. Meger, and D. Precup. Off-policy deep reinforcement learning without explo-
ration. arXiv preprint arXiv:1812.02900, 2018.

[13] S. Fujimoto, H. van Hoof, and D. Meger. Addressing function approximation error in actor-critic
methods. In International Conference on Machine Learning (ICML), pages 1587–1596, 2018.

[14] X. Geng. Jaxcql: a simple implementation of sac and cql in jax. 2022. URL https://github.
com/young-geng/JaxCQL.

[15] S. K. S. Ghasemipour, D. Schuurmans, and S. S. Gu. Emaq: Expected-max q-learning operator
for simple yet effective offline and online rl. In International Conference on Machine Learning,
pages 3682–3691. PMLR, 2021.

11

https://openreview.net/forum?id=AY8zfZm0tDd
https://openreview.net/forum?id=OpC-9aBBVJe
https://openreview.net/forum?id=OpC-9aBBVJe
https://github.com/young-geng/JaxCQL
https://github.com/young-geng/JaxCQL


[16] Y. Guo, S. Feng, N. Le Roux, E. Chi, H. Lee, and M. Chen. Batch reinforcement learning
through continuation method. In International Conference on Learning Representations, 2020.

[17] A. Gupta, V. Kumar, C. Lynch, S. Levine, and K. Hausman. Relay policy learning: Solving
long-horizon tasks via imitation and reinforcement learning. arXiv preprint arXiv:1910.11956,
2019.

[18] A. Gupta, A. Pacchiano, Y. Zhai, S. M. Kakade, and S. Levine. Unpacking reward shap-
ing: Understanding the benefits of reward engineering on sample complexity. arXiv preprint
arXiv:2210.09579, 2022.

[19] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. In arXiv, 2018. URL https:
//arxiv.org/pdf/1801.01290.pdf.

[20] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar, H. Zhu, A. Gupta,
P. Abbeel, and S. Levine. Soft actor-critic algorithms and applications. Technical report, 2018.

[21] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar, H. Zhu, A. Gupta,
P. Abbeel, et al. Soft actor-critic algorithms and applications. arXiv preprint arXiv:1812.05905,
2018.

[22] K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick. Masked autoencoders are scalable
vision learners. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 16000–16009, 2022.

[23] T. Hester, M. Vecerik, O. Pietquin, M. Lanctot, T. Schaul, B. Piot, D. Horgan, J. Quan,
A. Sendonaris, I. Osband, et al. Deep q-learning from demonstrations. In Thirty-Second AAAI
Conference on Artificial Intelligence, 2018.

[24] C. Jin, Q. Liu, and S. Miryoosefi. Bellman eluder dimension: New rich classes of rl problems,
and sample-efficient algorithms. Advances in neural information processing systems, 34:
13406–13418, 2021.

[25] Y. Jin, Z. Yang, and Z. Wang. Is pessimism provably efficient for offline rl? In International
Conference on Machine Learning, pages 5084–5096. PMLR, 2021.

[26] S. Kakade and J. Langford. Approximately optimal approximate reinforcement learning. In
International Conference on Machine Learning (ICML), volume 2, 2002.

[27] B. Kang, Z. Jie, and J. Feng. Policy optimization with demonstrations. In International
conference on machine learning, pages 2469–2478. PMLR, 2018.

[28] R. Kidambi, A. Rajeswaran, P. Netrapalli, and T. Joachims. Morel: Model-based offline
reinforcement learning. arXiv preprint arXiv:2005.05951, 2020.

[29] I. Kostrikov. JAXRL: Implementations of Reinforcement Learning algorithms in JAX, 10 2021.
URL https://github.com/ikostrikov/jaxrl.

[30] I. Kostrikov, A. Nair, and S. Levine. Offline reinforcement learning with implicit q-learning.
arXiv preprint arXiv:2110.06169, 2021.

[31] I. Kostrikov, J. Tompson, R. Fergus, and O. Nachum. Offline reinforcement learning with fisher
divergence critic regularization. arXiv preprint arXiv:2103.08050, 2021.

[32] A. Kumar, A. Zhou, G. Tucker, and S. Levine. Conservative q-learning for offline reinforcement
learning. arXiv preprint arXiv:2006.04779, 2020.

[33] A. Kumar, A. Singh, F. Ebert, Y. Yang, C. Finn, and S. Levine. Pre-Training for Robots: Offline
RL Enables Learning New Tasks from a Handful of Trials. arXiv e-prints, art. arXiv:2210.05178,
Oct. 2022. doi: 10.48550/arXiv.2210.05178.

[34] A. Kumar, A. Singh, F. Ebert, Y. Yang, C. Finn, and S. Levine. Pre-training for robots: Offline
rl enables learning new tasks from a handful of trials. arXiv preprint arXiv:2210.05178, 2022.

12

https://arxiv.org/pdf/1801.01290.pdf
https://arxiv.org/pdf/1801.01290.pdf
https://github.com/ikostrikov/jaxrl


[35] T. Lattimore and C. Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

[36] S. Lee, Y. Seo, K. Lee, P. Abbeel, and J. Shin. Offline-to-online reinforcement learning
via balanced replay and pessimistic q-ensemble. In Conference on Robot Learning, pages
1702–1712. PMLR, 2022.

[37] S. Levine, A. Kumar, G. Tucker, and J. Fu. Offline reinforcement learning: Tutorial, review,
and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

[38] Q. Li, Y. Zhai, Y. Ma, and S. Levine. Understanding the complexity gains of single-task rl with
a curriculum. arXiv preprint arXiv:2212.12809, 2022.

[39] Q. Li, A. Kumar, I. Kostrikov, and S. Levine. Efficient deep reinforcement learning requires
regulating overfitting. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=14-kr46GvP-.

[40] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra.
Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

[41] J. Lyu, X. Ma, X. Li, and Z. Lu. Mildly conservative q-learning for offline reinforcement
learning. arXiv preprint arXiv:2206.04745, 2022.

[42] M. S. Mark, A. Ghadirzadeh, X. Chen, and C. Finn. Fine-tuning offline policies with optimistic
action selection. In Deep Reinforcement Learning Workshop NeurIPS 2022, 2022.

[43] O. Nachum, B. Dai, I. Kostrikov, Y. Chow, L. Li, and D. Schuurmans. Algaedice: Policy
gradient from arbitrary experience. arXiv preprint arXiv:1912.02074, 2019.

[44] A. Nair, M. Dalal, A. Gupta, and S. Levine. Accelerating online reinforcement learning with
offline datasets. CoRR, abs/2006.09359, 2020. URL https://arxiv.org/abs/2006.09359.

[45] A. Nair, M. Dalal, A. Gupta, and S. Levine. Accelerating online reinforcement learning with
offline datasets. arXiv preprint arXiv:2006.09359, 2020.

[46] A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schulman, E. Todorov, and S. Levine.
Learning complex dexterous manipulation with deep reinforcement learning and demonstrations.
arXiv preprint arXiv:1709.10087, 2017.

[47] A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schulman, E. Todorov, and S. Levine.
Learning complex dexterous manipulation with deep reinforcement learning and demonstrations.
In Robotics: Science and Systems, 2018.

[48] S. Schaal. Learning from demonstration. Advances in neural information processing systems, 9,
1996.

[49] N. Y. Siegel, J. T. Springenberg, F. Berkenkamp, A. Abdolmaleki, M. Neunert, T. Lampe,
R. Hafner, and M. Riedmiller. Keep doing what worked: Behavioral modelling priors for offline
reinforcement learning. arXiv preprint arXiv:2002.08396, 2020.

[50] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mastering the game of go with deep neural
networks and tree search. nature, 529(7587):484–489, 2016.

[51] A. Singh, A. Yu, J. Yang, J. Zhang, A. Kumar, and S. Levine. Cog: Connecting new skills to
past experience with offline reinforcement learning. arXiv preprint arXiv:2010.14500, 2020.

[52] Y. Song, Y. Zhou, A. Sekhari, D. Bagnell, A. Krishnamurthy, and W. Sun. Hybrid RL:
Using both offline and online data can make RL efficient. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=yyBis80iUuU.

[53] M. Vecerik, T. Hester, J. Scholz, F. Wang, O. Pietquin, B. Piot, N. Heess, T. Rothörl, T. Lampe,
and M. Riedmiller. Leveraging demonstrations for deep reinforcement learning on robotics
problems with sparse rewards. arXiv preprint arXiv:1707.08817, 2017.

13

https://openreview.net/forum?id=14-kr46GvP-
https://arxiv.org/abs/2006.09359
https://openreview.net/forum?id=yyBis80iUuU
https://openreview.net/forum?id=yyBis80iUuU


[54] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung, D. H. Choi,
R. Powell, T. Ewalds, P. Georgiev, et al. Grandmaster level in starcraft ii using multi-agent
reinforcement learning. Nature, 575(7782):350–354, 2019.

[55] A. Wagenmaker and A. Pacchiano. Leveraging offline data in online reinforcement learning.
arXiv preprint arXiv:2211.04974, 2022.

[56] J. Wu, H. Wu, Z. Qiu, J. Wang, and M. Long. Supported policy optimization for offline
reinforcement learning. arXiv preprint arXiv:2202.06239, 2022.

[57] C. Xiao, H. Wang, Y. Pan, A. White, and M. White. The in-sample softmax for offline
reinforcement learning. In International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=u-RuvyDYqCM.

[58] T. Xie and N. Jiang. Q* approximation schemes for batch reinforcement learning: A theoretical
comparison. In Conference on Uncertainty in Artificial Intelligence, pages 550–559. PMLR,
2020.

[59] T. Xie, C.-A. Cheng, N. Jiang, P. Mineiro, and A. Agarwal. Bellman-consistent pessimism for
offline reinforcement learning. Advances in neural information processing systems, 34, 2021.

[60] T. Xie, N. Jiang, H. Wang, C. Xiong, and Y. Bai. Policy finetuning: Bridging sample-efficient
offline and online reinforcement learning. Advances in neural information processing systems,
34:27395–27407, 2021.

[61] D. Ye, G. Chen, W. Zhang, S. Chen, B. Yuan, B. Liu, J. Chen, Z. Liu, F. Qiu, H. Yu, Y. Yin,
B. Shi, L. Wang, T. Shi, Q. Fu, W. Yang, L. Huang, and W. Liu. Towards playing full moba
games with deep reinforcement learning. In H. Larochelle, M. Ranzato, R. Hadsell, M. F.
Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33,
pages 621–632. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/
paper/2020/file/06d5ae105ea1bea4d800bc96491876e9-Paper.pdf.

[62] T. Yu, G. Thomas, L. Yu, S. Ermon, J. Zou, S. Levine, C. Finn, and T. Ma. Mopo: Model-based
offline policy optimization. arXiv preprint arXiv:2005.13239, 2020.

[63] A. Zanette, M. J. Wainwright, and E. Brunskill. Provable benefits of actor-critic methods
for offline reinforcement learning. Advances in neural information processing systems, 34:
13626–13640, 2021.

[64] Y. Zhai, C. Baek, Z. Zhou, J. Jiao, and Y. Ma. Computational benefits of intermediate rewards
for goal-reaching policy learning. Journal of Artificial Intelligence Research, 73:847–896, 2022.

[65] Q. Zheng, A. Zhang, and A. Grover. Online decision transformer. In International Conference
on Machine Learning, pages 27042–27059. PMLR, 2022.

[66] H. Zhu, A. Gupta, A. Rajeswaran, S. Levine, and V. Kumar. Dexterous manipulation with deep
reinforcement learning: Efficient, general, and low-cost. In 2019 International Conference on
Robotics and Automation (ICRA), pages 3651–3657. IEEE, 2019.

[67] Y. Zhu, Z. Wang, J. Merel, A. Rusu, T. Erez, S. Cabi, S. Tunyasuvunakool, J. Kramár, R. Hadsell,
N. de Freitas, et al. Reinforcement and imitation learning for diverse visuomotor skills. arXiv
preprint arXiv:1802.09564, 2018.

14

https://openreview.net/forum?id=u-RuvyDYqCM
https://proceedings.neurips.cc/paper/2020/file/06d5ae105ea1bea4d800bc96491876e9-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/06d5ae105ea1bea4d800bc96491876e9-Paper.pdf


Appendices
A Implementation details of Cal-QL

Our algorithm, Cal-QL is illustrated in Algorithm 1. A python-style implementation is provided
in Appendix A.2. The official code and experimental logs are available at https://github.com/
nakamotoo/Cal-QL

A.1 Cal-QL Algorithm

We use JQ(θ) to denote the calibrated conservative regularizer for the Q network update:

JQ(θ) := α (Es∼D,a∼π [max (Qθ(s, a), Qµ(s, a))]− Es,a∼D [Qθ(s, a)])︸ ︷︷ ︸
Calibrated conservative regularizerR(θ)

(A.1)

+
1

2
Es,a,s′∼D

[(
Qθ(s, a)− BπQ̄(s, a)

)2]
. (A.2)

Algorithm 1 Cal-QL pseudo-code

1: Initialize Q-function, Qθ, a policy, πφ
2: for step t in {1, . . . , N} do
3: Train the Q-function using the conservative regularizer

in Eq. A.1:

θt := θt−1 − ηQ∇θJQ(θ) (A.3)

4: Improve policy πφ with SAC-style update:

φt := φt−1 + ηπEs∼D,a∼πφ(·|s)[Qθ(s, a)−log πφ(a|s)]
(A.4)

5: end for

A.2 Python Implementation

Listing 1: Training Q networks given a batch of data
q_data = critic(batch[’observations ’], batch[’actions ’])

next_dist = actor(batch[’next_observations ’])
next_pi_actions , next_log_pis = next_dist.sample ()

target_qval = target_critic(batch[’observations ’], next_pi_actions)
target_qval = batch[’rewards ’] + self.gamma * (1 - batch[’dones’]) * target_qval

td_loss = mse_loss(q_data , target_qval)

num_samples = 4
random_actions = uniform (( num_samples , batch_size , action_dim), min=-1, max=1)
random_pi = 0.5 ** batch[’actions ’].shape[-1]

pi_actions , log_pis = actor(batch[’observations ’])

q_rand_is = critic(batch[’observations ’], random_actions) - random_pi
q_pi_is = critic(batch[’observations ’], pi_actions) - log_pis

# Cal -QL’s modification
mc_return = batch[’mc_return ’]. repeat(num_samples)
q_pi_is = max(q_pi_is , mc_return)

cat_q = concatenate ([q_rand_is , q_pi_is], new_axis=True)
cat_q = logsumexp(cat_q , axis =0) # sum over num_samples
critic_loss = td_loss + ((cat_q - q_data ).mean() * cql_alpha)

critic_optimizer.zero_grad ()
critic_loss.backward ()
critic_optimizer.step()
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Listing 2: Training the policy (or the actor) given a batch of data
# return distribution of actions
pi_actions , log_pis = actor(batch[’observations ’])

# calculate q value of actor actions
qpi = critic(batch[’observations ’], actions)
qpi = qpi.min(axis =0)

# same objective as CQL (kumar et al.)
actor_loss = (log_pis * self.alpha - qpi).mean()

# optimize loss
actor_optimizer.zero_grad ()
actor_loss.backward ()
actor_optimizer.step()

B Environment Details

B.1 Antmaze

The Antmaze navigation tasks aim to control an 8-DoF ant quadruped robot to move from a starting
point to a desired goal in a maze. The agent will receive sparse +1/0 rewards depending on whether
it reaches the goal or not. We study each method on “medium” and “hard” (shown in Figure 5)
mazes which are difficult to solve, using the following datasets from D4RL [10]: large-diverse,
large-play, medium-diverse, and medium-play. The difference between “diverse” and “play”
datasets is the optimality of the trajectories they contain. The “diverse” datasets contain the trajectories
commanded to a random goal from random starting points, while the “play” datasets contain the
trajectories commanded to specific locations which are not necessarily the goal. We used an episode
length of 1000 for each task. For Cal-QL, CQL, and IQL, we pre-trained the agent using the offline
dataset for 1M steps. We then trained online fine-tuning for 1M environment steps for each method.

B.2 Franka Kitchen

The Franka Kitchen domain require controlling a 9-DoF Franka robot to arrange a kitchen environment
into a desired configuration. The configuration is decomposed into 4 subtasks, and the agent will
receive rewards of 0, +1, +2, +3, or +4 depending on how many subtasks it has managed to solve. To
solve the whole task and reach the desired configuration, it is important to learn not only how to solve
each subtask, but also to figure out the correct order to solve. We study this domain using datasets
with three different optimalities: kitchen-complete, kitchen-partial, and kitchen-mixed.
The “complete” dataset contains the trajectories of the robot performing the whole task completely.
The “partial” dataset partially contains some complete demonstrations, while others are incomplete
demonstrations solving the subtasks. The “mixed” dataset only contains incomplete data without any
complete demonstrations, which is hard and requires the highest degree of stitching and generalization
ability. We used an episode length of 1000 for each task. For Cal-QL, CQL, and IQL, we pre-trained
the agent using the offline dataset for 500K steps. We then performed online fine-tuning for 1.25M
environment steps for each method.

B.3 Adroit

The Adroit domain involves controlling a 24-DoF shadow hand robot. There are 3 tasks we consider
in this domain: pen-binary, relocate-binary, relocate-binary. These tasks comprise a
limited set of narrow human expert data distributions (∼ 25) with additional trajectories collected by
a behavior-cloned policy. We truncated each trajectory and used the positive segments (terminate
when the positive reward signal is found) for all methods. This domain has a very narrow dataset
distribution and a large action space. In addition, learning in this domain is difficult due to the sparse
reward, which leads to exploration challenges. We utilized a variant of the dataset used in prior work
[44] to have a standard comparison with SOTA offline fine-tuning experiments that consider this
domain. For the offline learning phase, we pre-trained the agent for 20K steps. We then performed
online fine-tuning for 300K environment steps for the pen-binary task, and 1M environment steps
for the door-binary and relocate-binary tasks. The episode length is 100, 200, and 200 for
pen-binary, door-binary, and relocate-binary respectively.

16



B.4 Visual Manipulation Domain

The Visual Manipulation domain consists of a pick-and-place task. This task is a multitask formulation
explored in the work, Pre-training for Robots (PTR) [33]. Here each task is defined as placing an
object in a bin. A distractor object was present in the scene as an adversarial object which the agent
had to avoid picking. There were 10 unique objects and no overlap between the task objects and
the interfering/distractor objects. The episode length is 40. For the offline phase, we pre-trained the
policy with offline data for 50K steps. We then performed online fine-tuning for 100K environment
steps for each method, taking 5 gradient steps per environment step.

C Experiment Details

C.1 Normalized Scores

The visual-manipulation, adroit, and antmaze domains are all goal-oriented, sparse reward
tasks. In these domains, we computed the normalized metric as simply the goal achieved rate for each
method. For example, in the visual manipulation environment, if the object was placed successfully in
the bin, a +1 reward was given to the agent and the task is completed. Similarly, for the door-binary
task in the adroit tasks, we considered the success rate of opening the door. For the kitchen task, the
task is to solve a series of 4 sub-tasks that need to be solved in an iterative manner. The normalized
score is computed simply as #tasks solved

total tasks .

C.2 Mixing Ratio Hyperparameter

In this work, we explore the mixing ratio parameter m, which is used during the online fine-tuning
phase. The mixing ratio is either a value in the range [0, 1] or the value -1. If this mixing ratio is
within [0, 1], it represents what percentage of offline and online data is seen in each batch when
fine-tuning. For example, if the mixing ratio m = 0.25, that means for each batch we sample 25%
from the offline data and 75% from online data. Instead, if the mixing ratio is -1, the buffers are
appended to each other and sampled uniformly. We present an ablation study over mixing ratio in
Appendix G.

C.3 Details and Hyperparameters for CQL and Cal-QL

We list the hyperparameters for CQL and Cal-QL in Table 3. We utilized a variant of Bellman backup
that computes the target value by performing a maximization over target values computed for k
actions sampled from the policy at the next state, where we used k = 4 in visual pick and place
domain and k = 10 in others. In the Antmaze domain, we used the dual version of CQL [32] and
conducted ablations over the value of the threshold of the CQL regularizerR(θ) (target action gap)
instead of α. In the visual-manipulation domain which is not presented in the original paper, we
swept over the alpha values of α = 0.5, 1, 5, 10, and utilized separate α values for offline (α = 5)
and online (α = 0.5) phases for the final results. We built our code upon the CQL implementation
from https://github.com/young-geng/JaxCQL [14]. We used a single NVIDIA TITAN RTX
chip to run each of our experiments.

C.4 Details and Hyperparameters for IQL

We list the hyperparameters for IQL in Table 4. To conduct our experiments, we used the of-
ficial implementation of IQL provided by the authors [30], and primarily followed their recom-
mended parameters, which they previously ablated over in their work. In the visual-manipulation
domain which is not presented in the original paper, we performed a parameter sweep over expec-
tile τ = 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99 and temperature β = 1, 3, 5, 10, 25, 50 and selected the
best-performing values of τ = 0.7 and β = 10 for our final results. In addition, as the second
best-performing method in the visual-manipulation domain, we also attempted to use separate β
values for IQL, for a fair comparison with CQL and Cal-QL. However, we found that it has little to
no effect, as shown in Figure 10.

C.5 Details and Hyperparameters for AWAC and ODT

We used the JAX implementation of AWAC from https://github.com/ikostrikov/jaxrl [29].
We primarily followed the author’s recommended parameters, where we used the Lagrange multiplier
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λ = 1.0 for the Antmaze and Franka Kitchen domains, and λ = 0.3 for the Adroit domain. In
the visual-manipulation domain, we performed a parameter sweep over λ = 0.1, 0.3, 1, 3, 10 and
selected the best-performing value of λ = 1 for our final results. For ODT, we used the author’s
official implementation from https://github.com/facebookresearch/online-dt, with the
author’s recommended parameters they used in the Antmaze domain. In addition, in support of our
result of AWAC and ODT (as shown in Table 1), the poor performance of Decision Transformers and
AWAC in the Antmaze domain can also be observed in Table 1 and Table 2 of the IQL paper [30].

C.6 Details and Hyperparameters for SAC, SAC + Offline Data, Hybrid RL and CQL +
SAC

We used the standard hyperparameters for SAC as derived from the original implementation in [19].
We used the same other hyperparameters as CQL and Cal-QL. We used automatic entropy tuning for
the policy and critic entropy terms, with a target entropy of the negative action dimension. For SAC,
the agent is only trained with the online explored data. For SAC + Offline Data, the offline data and
online explored data is combined together and sampled uniformly. For Hybrid RL, we use the same
mixing ratio used for CQL and Cal-QL presented in Table 3. For CQL + SAC, we first pre-train with
CQL and then run online fine-tuning using both offline and online data, also using the same mixing
ratio presented in Table 3.

Table 3: CQL, Cal-QL Hyperparameters
Hyperparameters Adroit Kitchen Antmaze Manipulation
α 1 5 - 5 (online: 0.5)
target action gap - - 0.8 -
mixing ratio -1, 0.25, 0.5 -1, 0.25, 0.5 0.5 0.2, 0.5, 0.7, 0.9

Table 4: IQL Hyperparameters
Hyperparameters Adroit Kitchen Antmaze Manipulation
expectile τ 0.8 0.7 0.9 0.7
temperature β 3 0.5 10 10
mixing ratio -1, 0.2, 0.5 -1, 0.25, 0.5 0.5 0.2, 0.5, 0.7, 0.9

D D4RL locomotion benchmark

In this section, we further compare Cal-QL with previous methods on the D4RL locomotion bench-
marks. Since the dataset for these tasks does not end in a terminal, we estimate the reference value
functions using a neural network by fitting a SARSA Q-function to the offline dataset. We present
the normalized scores before and after fine-tuning in Table 5, and the cumulative regret in Table 6.
Overall, we observe that Cal-QL outperforms state-of-the-art methods such as IQL and AWAC, as
well as fast online RL methods that do not employ pre-training (Hybrid RL), performing comparably
to CQL.

Task CQL IQL AWAC Hybrid RL Cal-QL (Ours)
halfcheetah-expert-v2 0.79→ 1.02 0.95→ 0.54 0.69→ 0.65 N/A→ 0.84 0.85→ 1.00
halfcheetah-medium-expert-v2 0.59→ 1.00 0.86→ 0.57 0.72→ 0.77 N/A→ 0.86 0.54→ 0.99
halfcheetah-medium-replay-v2 0.51→ 0.95 0.43→ 0.36 0.43→ 0.47 N/A→ 0.89 0.51→ 0.93
halfcheetah-medium-v2 0.53→ 0.97 0.47→ 0.43 0.49→ 0.57 N/A→ 0.88 0.52→ 0.93
halfcheetah-random-v2 0.36→ 1.01 0.11→ 0.54 0.14→ 0.37 N/A→ 0.80 0.33→ 1.04
hopper-expert-v2 1.00→ 0.73 1.02→ 0.52 1.12→ 1.11 N/A→ 0.54 0.58→ 0.75
hopper-medium-expert-v2 0.86→ 0.92 0.07→ 0.81 0.30→ 1.03 N/A→ 1.00 0.69→ 0.76
hopper-medium-replay-v2 0.69→ 1.11 0.76→ 0.86 0.70→ 1.08 N/A→ 0.77 0.76→ 1.10
hopper-medium-v2 0.78→ 0.99 0.57→ 0.26 0.58→ 0.90 N/A→ 1.06 0.89→ 0.98
hopper-random-v2 0.09→ 1.08 0.08→ 0.64 0.09→ 0.43 N/A→ 0.80 0.10→ 0.79
walker2d-expert-v2 1.08→ 1.12 1.09→ 1.02 1.11→ 1.24 N/A→ 1.12 0.92→ 1.00
walker2d-medium-expert-v2 1.00→ 0.56 1.09→ 1.06 0.86→ 1.16 N/A→ 0.95 0.96→ 0.77
walker2d-medium-replay-v2 0.76→ 0.92 0.63→ 0.95 0.60→ 0.94 N/A→ 1.03 0.52→ 0.99
walker2d-medium-v2 0.80→ 1.11 0.81→ 1.04 0.75→ 0.98 N/A→ 0.86 0.75→ 1.03
walker2d-random-v2 0.05→ 0.85 0.06→ 0.09 0.04→ 0.04 N/A→ 0.90 0.04→ 0.49
average 0.66→ 0.96 0.60→ 0.65 0.57→ 0.78 N/A→ 0.89 0.60→ 0.90

Table 5: Normalized score before & after online fine-tuning on D4RL locomotion tasks.
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Task CQL IQL AWAC Hybrid RL Cal-QL (Ours)
halfcheetah-expert-v2 0.03 0.47 0.28 0.49 0.08
halfcheetah-medium-expert-v2 0.05 0.42 0.24 0.49 0.07
halfcheetah-medium-replay-v2 0.14 0.65 0.56 0.29 0.16
halfcheetah-medium-v2 0.15 0.61 0.48 0.31 0.17
halfcheetah-random-v2 0.11 0.54 0.67 0.33 0.10
hopper-expert-v2 0.17 0.58 -0.07 0.37 0.22
hopper-medium-expert-v2 0.09 0.32 -0.02 0.32 0.17
hopper-medium-replay-v2 0.09 0.09 0.05 0.27 0.12
hopper-medium-v2 0.04 0.73 0.08 0.26 0.05
hopper-random-v2 0.17 0.54 0.74 0.37 0.27
walker2d-expert-v2 -0.02 0.15 -0.18 0.11 0.15
walker2d-medium-expert-v2 0.03 0.02 -0.14 0.17 0.10
walker2d-medium-replay-v2 0.06 0.10 0.19 0.30 0.13
walker2d-medium-v2 0.11 0.12 0.07 0.29 0.22
walker2d-random-v2 0.53 0.92 0.96 0.56 0.49
average 0.12 0.42 0.26 0.33 0.17

Table 6: Cumulative regret on D4RL locomotion tasks. The smaller the better and 1.00 is the worst.

E Extended Discussion on Limitations of Existing Fine-Tuning Methods

In this section, we aim to highlight some potential reasons behind the slow improvement of other
methods in our empirical analysis experiment in Section 4.1, and specifically, we use IQL for the
analysis. We first swept over the temperature β values used in the online fine-tuning phase for IQL,
which controls the constraint on how closely the learned policy should match the behavior policy. As
shown in Figure 10, the change in the temperature β has little to no effect on the sample efficiency.
Another natural hypothesis is that IQL improves slowly because we are not making enough updates
per unit of data collected by the environment. To investigate this, we ran IQL with (a) five times as
many gradient steps per step of data collection (UTD = 5), and (b) with a more aggressive policy
update. Observe in Figure 11 that (a) does not improve the asymptotic performance of IQL, although
it does improve CQL meaning that there is room for improvement on this task by making more
gradient updates. Observe in Figure 11 that (b) often induces policy unlearning, similar to the failure
mode in CQL. These two observations together indicate that a policy constraint approach can slow
down learning asymptotically, and we cannot increase the speed by making more aggressive updates
as this causes the policy to find erroneously optimistic out-of-distribution actions, and unlearn the
policy learned from offline data.
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Figure 10: Abalation on IQL’s online temperature values: The change in the temperature β used in online
fine-tuning phase has little to no effect on the sample efficiency.

Figure 11: IQL and CQL: Step 0 on the x-axis is the performance after offline pre-training. Observe while
CQL suffers from initial policy unlearning, IQL improves slower throughout fine-tuning.
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F Initial Unlearning of CQL on Multiple Tasks
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Figure 12: While CQL experiences initial unlearning, Cal-QL effectively mitigates it and quickly recovers its
performance.

In this section, we show the learning curves of CQL and Cal-QL from Figure 6 and zoom in on the
x-axis to provide a clearer visualization of CQL’s initial unlearning in the Franka Kitchen, Adroit,
and the visual-manipulation domains. As depicted in Figure 12, it is evident across all tasks that
while CQL experiences initial unlearning, Cal-QL can effectively mitigate it and quickly recovers its
performance. Regarding the Antmaze domain, as we discussed in section 7.3, CQL does not exhibit
initial unlearning since the default dataset has a high coverage of data. However, we can observe a
similar phenomenon if we narrow down the dataset distribution (as shown in Figure 8).

G Ablation Study over Mixing Ratio Hyperparameter

Here we present an ablation study over mixing ratio on the adroit door-binary task for Cal-QL (left)
and IQL (right). Perhaps as intuitively expected, we generally observe the trend that a larger mixing
ratio (i.e., more offline data) exhibits slower performance improvement during online fine-tuning.

Figure 13: Ablation study over mixing ratio on the adroit door-binary task for Cal-QL (left) and IQL (right).

H Regret Analysis of Cal-QL

We provide a theoretical version of Cal-QL in Algorithm 2. Policy fine-tuning has been studied in
different settings [60, 52, 55]. Our analysis largely adopts the settings and results in Song et al. [52],
with additional changes in Assumption H.1, Assumption H.3, and Definition H.4. Note that the goal
of this proof is to demonstrate that a pessimistic functional class (Assumption H.1) allows one to
utilize the offline data efficiently, rather than providing a new analytical technique for regret analysis.

20



See comparisons between Section H.3 and Section I.1. Note that we use f instead of Qθ in the main
text to denote the estimated Q function for notation simplicity.

Algorithm 2 Theoretical version of Cal-QL

1: Input: Value function class F , # total iterations K, offline dataset Dνh of size moff for h ∈
[H − 1].

2: Initialize f1
h(s, a) = 0,∀(s, a).

3: for k = 1, . . . ,K do
4: Let πt be the greedy policy w.r.t. fk . I.e., πkh(s) = arg maxa f

k
h (s, a).

5: For each h, collect mon online tuples Dkh ∼ dπ
k

h . online data collection
6: Set fk+1

H (s, a) = 0,∀(s, a).
7: for h = H − 1, . . . 0 do . FQI with offline and online data
8: Estimate fk+1

h using conservative least squares on the aggregated data: . I.e., CQL
regularized class Ch

f
k+1
h ← arg min

f∈Ch

{
ÊDν

h

[
f(s, a)− r −max

a′
f
k+1
h+1 (s

′
, a
′
)

]2
+

K∑
τ=1

ÊDτ
h

[
f(s, a)− r −max

a′
f
k+1
h+1 (s

′
, a
′
)

]2}
(H.1)

9: fk+1
h = max{fk+1

h , Qref
h } . Set a reference policy for calibration (Definition 4.1)

10: end for
11: end for
12: Output: πK

H.1 Preliminaries

In this subsection, we follow most of the notations and definitions in Song et al. [52]. In particular,
we consider the finite horizon cases, where the value function and Q function are defined as:

V πh (s) = E

[
H−1∑
τ=h

rτ |π, sh = s

]
(H.2)

Qπh(s, a) = E

[
H−1∑
τ=h

rτ |π, sh = s, ah = a

]
. (H.3)

We also define the Bellman operator T such that ∀f : S ×A:

T f(s, a) = Es,a[R(s, a)] + Es′∼P (s,a) max
a′

f(s′, a′), ∀(s, a) ∈ S ×A, (H.4)

where R(s, a) ∈ ∆[0, 1] represents a stochastic reward function.

H.2 Notations

• Feature covariance matrix Σk;h:

Σk;h =

k∑
τ=1

Xh(fτ )(Xh(fτ ))> + λI (H.5)

• Matrix Norm Zanette et al. [63]: for a matrix Σ, the matrix norm ‖u‖Σ is defined as:

‖u‖Σ =
√
uΣu> (H.6)

• Weighted `2 norm: for a given distribution β ∈ ∆(S ×A) and a function f : S ×A 7→ R,
we denote the weighted `2 norm as:

‖f‖22,β :=
√

E(s,a)∼βf2(s, a) (H.7)

• A stochastic reward function R(s, a) ∈ ∆([0, 1])

• For each offline data distribution ν = {ν0, . . . , νH−1}, the offline data set at time step h
(νh) contains data samples (s, a, r, s′), where (s, a) ∼ νh, r ∈ R(s, a), s′ ∼ P (s, a).
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• Given a policy π := {π0, . . . , πH−1}, where πh : S 7→ ∆(A), dπh ∈ ∆(s, a) denotes the
state-action occupancy induced by π at step h.

• We consider the value-based function approximation setting, where we are given a function
class C = C0 × . . . CH−1 with Ch ⊂ S ×A 7→ [0, Vmax].

• A policy πf is defined as the greedy policy w.r.t. f : πfh(s) = arg maxa fh(s, a). Specifi-
cally, at iteration k, we use πk to denote the greedy policy w.r.t. fk.

H.3 Assumptions and Defintions

Assumption H.1 (Pessimistic Realizability and Completeness). For any policy πe, we say Ch is
a pessimistic function class w.r.t. πe, if for any h, we have Qπ

e

h ∈ Ch, and additionally, for any
fh+1 ∈ Ch+1, we have T fh+1 ∈ Ch and fh(s, a) ≤ Qπeh (s, a),∀(s, a) ∈ S ×A.

Definition H.2 (Bilinear model Du et al. [9]). We say that the MDP together with the function
class F is a bilinear model of rand d of for any h ∈ [H − 1], there exist two (known) mappings
Xh,Wh : F 7→ Rd with maxf ‖Xh(f)‖2 ≤ BX and maxf ‖Wh(f)‖2 ≤ BW such that

∀f, g ∈ F :
∣∣∣Es,a∼dπfh [gh(s, a)− T gh+1(s, a)]

∣∣∣ = |〈Xh(f),Wh(g)〉| . (H.8)

Assumption H.3 (Bilinear Rank of Reference Policies). Suppose Qref ∈ Cref ⊂ C, where Cref is the
function class of our reference policy, we assume the Bilinear rank of Cref is dref and dref ≤ d.

Definition H.4 (Calibrated Bellman error transfer coefficient). For any policy π, we define the
calibrated transfer coefficient w.r.t. to a reference policy πref as

Cref
π := max

f∈C,f(s,a)≥Qref (s,a)

∑H−1
h=0 Es,a∼dπh [T fh+1(s, a)− fh(s, a)]√∑H−1
h=0 Es,a∼νh(T fh+1(s, a)− fh(s, a))2

, (H.9)

where Qref = Qπ
ref

.

H.4 Discussions on the Assumptions

The pessimistic realizability and completeness assumption (Assumption H.1) is motivated by some
theoretical studies of the pessimistic offline methods [59, 6] with regularizers:

min
θ
α (Es∼D,a∼π [Qθ(s, a)]− Es,a∼D [Qθ(s, a)])︸ ︷︷ ︸

Conservative regularizerR(θ)

+
1

2
Es,a,s′∼D

[(
Qθ(s, a)− BπQ̄(s, a)

)2]
.

(H.10)

Since the goal of the conservative regularizerR(θ) intrinsically wants to enforce

Qθ(s, π(s)) ≤ Qθ(s, πe(s)), (H.11)

where π is the training policy and πe is the reference (behavior) policy. One can consider (H.10) as
the Lagrange duality formulation of the following primal optimization problem:

min
θ

Es,a,s′∼D
[(
Qθ(s, a)− BπQ̄(s, a)

)2]
, subject to Es∼D,a∼π [Qθ(s, a)] ≤ Es∼D,a∼πe [Qθ(s, a)] ,

(H.12)
where the constraint set is equivalent to Assumption H.1. Although Assumption H.1 directly

characterizes the constraint set of the primal form of (H.10) the exact theoretical connection between
the pessimistic realizability and the regularized bellman consistency equation is beyond the scope of
this work and we would like to leave that for future studies.
Assumption H.1 allows us to restrict the functional class of interest to a smaller conservative function
class C ⊂ F , which leads to a smaller Bellman rank of the reference policy (dref ≤ d) suggested in
Assumption H.3, and a smaller concentrability coefficient (Cref

π ≤ Cπ) defined in Definition H.4,
and I.2. Assumption H.3 and Definition I.2 provide the Bellman Bilinear rank and Bellman error
transfer coefficient of the pessimistic functional class C of interest.
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H.5 Proof Structure Overview

We provide an overview of the proof structure and its dependency on different assumptions below:

• Theorem H.5: the total regret is decomposed into offline regrets and online regrets.

– Bounding offline regrets, requiring Definition H.4 and the following lemmas:

* Performance difference lemma w.r.t. a comparator policy (Lemma I.5).
* Least square generalization bound (Lemma I.4), requiring Assumption H.1.

– Bounding online regrets, requiring Definition H.2

* Performance difference lemma for the online error (Lemma I.6).
* Least square generalization bound (Lemma I.4), requiring Assumption H.1.
* Upper bounds with the bilinear model assumption (Lemma I.7).
* Applying Elliptical Potential Lemma [35] with bellman rank d and dref

(Lemma I.8), requiring Assumption H.3.

H.6 Our Results

Theorem H.5 (Formal Result of Theorem 6.1). Fix δ ∈ (0, 1),moff = K,mon = 1, suppose and the
function class C follows Assumption H.1 w.r.t. πe. Suppose the underlying MDP admits Bilinear rank
d on function class C and dref on Cref , respectively, then with probability at least 1− δ, Algorithm 2
obtains the following bound on cumulative suboptimality w.r.t. any comparator policy πe:
K∑
t=1

V π
e

− V π
k

= Õ
(

min
{
Cref
πeH

√
dK log (|F|/δ), K

(
V π

e

− V ref
)

+H
√
drefK log (|F|/δ)

})
.

(H.13)

Note that Theorem H.5 provides a guarantee for any comparator policy πe, which can be directly
applied to π? described in our informal result (Theorem 6.1). We also change the notation for the
reference policy from µ in Theorem 6.1 to πref (similarly, dref , V

ref , Cref
πe correspond to dµ, V µ, C

µ
πe

in Theorem 6.1) for notation consistency in the proof. Our proof of Theorem H.5 largely follows the
proof of Theorem 1 of [52], and the major changes are caused by Assumption H.1, Assumption H.3,
and Definition H.4.

Proof. Let Ek denote the event that
{
fk0 (s, a) ≤ Qref(s, a)

}
and Ēk denote the event that{

fk0 (s, a) > Qref(s, a)
}

. Let V ref(s) = maxaQ
ref(s, a), we start by noting that

K∑
k=1

V π
e − V πf

k

=

K∑
k=1

Es∼ρ
[
V π

e

0 (s)− V πf
k

0 (s)

]

=
K∑
k=1

Es∼ρ
[
1
{
Ēk
}(

V π
e

0 (s)− V ref(s)
)]

︸ ︷︷ ︸
Γ0

+

K∑
k=1

Es∼ρ
[
1
{
Ēk
}(

V ref(s)−max
a

fk0 (s, a)
)]

︸ ︷︷ ︸
=0, by the definition of Ēk and line 9 of Algorithm 2

+

K∑
t=1

Es∼ρ
[
1
{
Ēk
}(

max
a

fk0 (s, a)− V πf
k

0 (s)

)]
︸ ︷︷ ︸

Γ1

+

K∑
k=1

Es∼ρ
[
1 {Ek}

(
V π

e

0 (s)−max
a

fk0 (s, a)
)]

︸ ︷︷ ︸
Γ2

+

T∑
t=1

Es∼ρ
[
1 {Ek}

(
max
a

fk0 (s, a)− V πf
k

0 (s)

)]
︸ ︷︷ ︸

Γ3

.

(H.14)

Let K1 =
∑K
k=1 1

{
fk0 (s, a) > Qref(s, a)

}
and K2 =

∑K
k=1 1

{
fk0 (s, a) ≤ Qref(s, a)

}
(or equiva-

lently K1 =
∑K
k=1 1

{
Ēk
}

, K2 =
∑K
k=1 1 {Ek}). For Γ0, we have

Γ0 = K2Es∼ρ
(
V π

e

(s)− V ref(s)
)
. (H.15)
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For Γ2, we have

Γ2 =

K∑
k=1

Es∼ρ
[
1 {Ek}

(
V π

e

0 (s)−max
a

fk0 (s, a)
)]

(i)

≤
K∑
k=1

1 {Ek}
H−1∑
h=0

Es,a∼dπeh
[
T fkh+1(s, a)− fkh (s, a)

]
(ii)

≤
K∑
k=1

Cref
πe · 1 {Ek}

√√√√H−1∑
h=0

Es,a∼νh
[(
fkh (s, a)− T fkh+1(s, a)

)2]
(iii)

≤ K1C
ref
πe

√
H ·∆off ,

(H.16)

where ∆off is similarly defined as Song et al. [52] (See (I.3) of Lemma I.4). Inequality (i) holds
because of Lemma I.5, inequality (ii) holds by the definition of Cref

πe (Definition H.4), inequality (iii)
holds by applying Lemma I.4 with the function class satisfying Assumption H.1, and Definition H.4.
Note that the telescoping decomposition technique in the above equation also appears in [58, 24, 9].
Next, we will bound Γ1 + Γ3:

Γ1 + Γ3 =

K∑
k=1

(
1 {Ek}+ 1

{
Ēk
})

Es∼d0
[
max
a

fk0 (s, a)− V πf
k

0 (s)

]
(i)

≤
K∑
k=1

(
1 {Ek}+ 1

{
Ēk
})H−1∑

h=0

∣∣∣∣Es,a∼dπfkh

[
fkh (s, a)− T fkh+1(s, a)

]∣∣∣∣
(ii)
=

K∑
t=1

[(
1 {Ek}+ 1

{
Ēk
})H−1∑

h=0

∣∣〈Xh(fk),Wh(fk)
〉∣∣]

(iii)

≤
K∑
k=1

[(
1 {Ek}+ 1

{
Ēk
})H−1∑

h=0

∥∥Xh(fk)
∥∥
Σ−1
k−1;h

√
∆on + λB2

W

]
,

(H.17)

where ∆on is similarly defined as Song et al. [52] (See (I.4) of Lemma I.4). Inequality (i) holds
by Lemma I.6, equation (ii) holds by the definition of Bilinear model ((H.8) in Definition H.2),
inequality (iii) holds by Lemma I.7 and Lemma I.4 with the function class satisfying Assumption H.1.
Using Lemma I.8, we have that

Γ1 + Γ3

≤
K∑
k=1

[(
1 {Ek}+ 1

{
Ēk
})H−1∑

h=0

∥∥∥Xh(fk)
∥∥∥
Σ−1
k−1;h

√
∆on + λB2

W

]
(i)

≤H

√
2d log

(
1 +

K1B2
X

λd

)
· (∆on + λB2

W ) ·K1 +H

√
2dref log

(
1 +

K2B2
X

λdref

)
· (∆on + λB2

W ) ·K2

(ii)

≤H

(√
2d log

(
1 +

K1

d

)
· (∆on +B2

XB
2
W ) ·K1 +

√
2dref log

(
1 +

K2

dref

)
· (∆on +B2

XB
2
W ) ·K2

)
,

(H.18)

where the first part of inequality (i) holds by the assumption that the underlying MDPs have
bellman rank d (Definition H.2) when Ēk happens, and the second part of inequality (i) holds by the
assumption that Cref has bilinear rank dref (Assumption H.3) Cref has bellman rank dref when Ek
happens. Inequality (ii) holds by plugging in λ = B2

X . Substituting (H.15), inequality H.16, and
inequality (H.18) into (H.14), we have

K∑
t=1

V π
e

− V π
fk

≤ Γ0 + Γ2 + Γ1 + Γ3 ≤ K2

(
V π

e

(s)− V ref(s)
)

+K1C
ref
πe
√
H ·∆off

+H

(√
2d log

(
1 +

K1

d

)
· (∆on +B2

XB
2
W ) ·K1 +

√
2dref log

(
1 +

K2

dref

)
· (∆on +B2

XB
2
W ) ·K2

)
(H.19)
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Plugging in the values of ∆on,∆off from (I.3) and (I.4), and using the subadditivity of the square
root function, we have

K∑
k=1

V π
e

− V π
fk

≤ K2

(
V π

e

(s)− V ref(s)
)

+ 16VmaxC
ref
πeK1

√
H

moff
log

(
2HK1|F|

δ

)

+

(
16Vmax

√
1

mon
log

(
2HK1|F|

δ

)
+BXBW

)
·H

√
2dK1 log

(
1 +

K1

d

)

+

(
16Vmax

√
1

mon
log

(
2HK2|F|

δ

)
+BXBW

)
·H

√
2drefK2 log

(
1 +

K2

dref

)
.

(H.20)

Setting moff = K,mon = 1 in the above equation completes the proof, we have
K∑
k=1

V π
e − V πk

≤ Õ
(
Cref
πe

√
HK1 log (|F|/δ)

)
+ Õ

(
H
√
dK1 log (|F|/δ)

)
+K2

(
V π

e

(s)− V ref(s)
)

+ Õ
(
H
√
drefK2 log (|F|/δ)

)
≤

Õ
(
Cref
πe H

√
dK1 log (|F|/δ)

)
if K1 � K2,

Õ
(
K2

(
V π

e − V ref
)

+H
√
drefK2 log (|F|/δ)

)
otherwise.

≤ Õ
(

min
{
Cref
πe H

√
dK log (|F|/δ), K

(
V π

e − V ref
)

+H
√
drefK log (|F|/δ)

})
,

(H.21)

where the last inequality holds because K1,K2 ≤ K, which completes the proof.

I Key Results of HyQ [52]

In this section, we restate the major theoretical results of Hy-Q [52] for completeness.

I.1 Assumptions

Assumption I.1 (Realizability and Bellman completeness). For any h, we have Q?h ∈ Fh, and
additionally, for any fh+1 ∈ Fh+1, we have T fh+1 ∈ Fh.
Definition I.2 (Bellman error transfer coefficient). For any policy π, we define the transfer coefficient
as

Cπ := max

0,max
f∈F

∑H−1
h=0 Es,a∼dπh [T fh+1(s, a)− fh(s, a)]√∑H−1
h=0 Es,a∼νh(T fh+1(s, a)− fh(s, a))2

 . (I.1)

I.2 Main Theorem of Hy-Q

Theorem I.3 (Theorem 1 of Song et al. [52]). Fix δ ∈ (0, 1),moff = K,mon = 1, and suppose
that the underlying MDP admits Bilinear rank d (Definition H.2), and the function class F satisfies
Assumption I.1. Then with probability at least 1− δ, HyQ obtains the following bound on cumulative
suboptimality w.r.t. any comparator policy πe:

Reg(K) = Õ
(

max{Cπe , 1}VmaxBXBW
√
dH2K · log(|F|/δ)

)
. (I.2)

I.3 Key Lemmas

I.3.1 Least Squares Generalization and Applications
Lemma I.4 (Lemma 7 of Song et al. [52], Online and Offline Bellman Error Bound for FQI). Let
δ ∈ (0, 1) and ∀h ∈ [H − 1], k ∈ [K], let fk+1

h be the estimated value function for time step h
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computed via least square regression using samples in the dataset {Dνh,D1
h, . . . ,DTh } in (H.1) in the

iteration t of Algorithm 2. Then with probability at least 1− δ, for any h ∈ [H − 1] and k ∈ [K], we
have ∥∥fk+1

h − T fk+1
h+1

∥∥2

2,νh
≤ 1

moff
256V 2

max log(2HK|F|/δ) =: ∆off (I.3)

and
k∑
τ=1

∥∥fk+1
h − T fk+1

h+1

∥∥2

2,µτh
≤ 1

mon
256V 2

max log(2HK|F|/δ) =: ∆on, (I.4)

where νh denotes the offline data distribution at time h, and the distribution µτh ∈ ∆(s, a) is defined
such that s, a ∼ dπτh .

I.3.2 Bounding Offline Suboptimality via Performance Difference Lemma
Lemma I.5 (Lemma 5 of Song et al. [52], performance difference lemma of w.r.t. πe). Let πe =
(πe0, . . . , π

e
H−1) be a comparator policy and consider any value function f = (f0, . . . , fH−1), where

fh : S ×A 7→ R. Then we have

Es∼d0
[
V π

e

0 (s)−max
a

f0(s, a)
]
≤
H−1∑
i=1

Es,a∼dπei [T fi+1(s, a)− fi(s, a)] , (I.5)

where we define fH(s, a) = 0,∀(s, a).

I.3.3 Bounding Online Suboptimality via Performance Difference Lemma
Lemma I.6 (Lemma 4 of Song et al. [52], performance difference lemma). For any function f =
(f0, . . . , fH−1) where fh : S ×A 7→ R and h ∈ [H − 1], we have

Es∼d0
[
max
a

f0(s, a)− V πf0 (s)
]
≤
H−1∑
h=0

∣∣∣Es,a∼dπfh [fh(s, a)− T fh+1(s, a)]
∣∣∣ , (I.6)

where we define fH(s, a) = 0,∀s, a.

Lemma I.7 (Lemma 8 of Song et al. [52], upper bounding bilinear class). For any k ≥ 2 and
h ∈ [H − 1], we have

∣∣〈Wh(fk), Xh(fk)
〉∣∣ ≤ ∥∥Xh(fk)

∥∥
Σ−1
k−1;h

√√√√k−1∑
i=1

E
s,a∼df

i

h

[(
fkh − T fkh+1

)2]
+ λB2

W , (I.7)

where Σk−1;h is defined as (H.5) and we use df
k

h to denote dπ
fk

h .

Lemma I.8 (Lemma 6 of Song et al. [52], bounding the inverse covariance norm). Let
Xh(f1), . . . , Xh(fK) ∈ Rd be a sequence of vectors with

∥∥Xh(fk)
∥∥

2
≤ BX < ∞,∀k ≤ K.

Then we have
K∑
k=1

∥∥Xh(fk)
∥∥
Σ−1
k−1;h

≤
√

2dK log

(
1 +

KB2
X

λd

)
, (I.8)

where we define Σk;h :=
∑k
τ=1Xh(fτ )Xh(fτ )T + λI and we assume λ ≥ B2

X holds ∀k ∈ [K].
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