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SUMMARY
Deep learning (DL) can accelerate the prediction of prognostic biomarkers from routine pathology slides in
colorectal cancer (CRC). However, current approaches rely on convolutional neural networks (CNNs) and
have mostly been validated on small patient cohorts. Here, we develop a new transformer-based pipeline
for end-to-end biomarker prediction from pathology slides by combining a pre-trained transformer encoder
with a transformer network for patch aggregation. Our transformer-based approach substantially improves
the performance, generalizability, data efficiency, and interpretability as compared with current state-of-the-
art algorithms. After training and evaluating on a large multicenter cohort of over 13,000 patients from 16
colorectal cancer cohorts, we achieve a sensitivity of 0.99 with a negative predictive value of over 0.99 for
prediction of microsatellite instability (MSI) on surgical resection specimens. We demonstrate that resection
specimen-only training reaches clinical-grade performance on endoscopic biopsy tissue, solving a long-
standing diagnostic problem.
INTRODUCTION

Precision oncology in colorectal cancer (CRC) requires the eval-

uation of genetic biomarkers, such as microsatellite instability
1650 Cancer Cell 41, 1650–1661, September 11, 2023 ª 2023 The A
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(MSI)1–8 and mutations in the BRAF4,7 and NRAS/KRAS9 genes.

These biomarkers are typically assessed by polymerase chain

reaction (PCR), sequencing, or immunohistochemical assays.

Biomarker identification in patients with CRC is an important
uthor(s). Published by Elsevier Inc.
commons.org/licenses/by/4.0/).
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step in providing treatment as recommended by various medical

guidelines, such as those in the USA (NCCN guideline),10 UK

(NICE guideline),11 and EU (ESMO guideline).12 Increasingly, ge-

netic biomarkers such as MSI are also used in earlier tumor

stages of CRC.13 In the future, the importance of biomarker-

stratified therapy will likely increase.14 The presence of MSI

should also trigger additional diagnostic processes for a

possible diagnosis of Lynch syndrome, one of the most preva-

lent hereditary cancer syndromes. However, genetic diagnostic

assays have several disadvantages. For many patients in low-

and middle-income countries, genetic biomarkers are not

routinely available due to the prohibitive costs and complex

infrastructure required for testing. Even in high-income countries

with universal healthcare coverage where genetic biomarkers

may be routinely available, their utilization is not without its draw-

backs. In such contexts, biomarker assessment can take several

days to weeks delaying therapy decisions.15

The diagnosis of CRC requires a pathologist’s histopatholog-

ical evaluation of tissue sections. Thus, tissue sections stained

with hematoxylin and eosin (H&E) are routinely available for all

patients with CRC. Since 2019, dozens of studies have shown

that deep learning (DL) can predict genetic biomarkers directly

from digitized H&E-stained CRC tissue sections.1,3,7,8,16,17

Based on these studies, the first commercial DL algorithm for
biomarker detection from H&E images has been approved for

routine clinical use in Europe in 2022 (MSIntuit, Owkin, Paris/

New York).18 When evaluated in external patient cohorts, the

state-of-the-art approaches reach a sensitivity and specificity

of 0.95 and 0.46, respectively.19 Increasing the specificity would

be away to improve these established approaches. Another clin-

ically significant limitation of current approaches is the poor per-

formance on endoscopic biopsy tissue. Recent clinical trials

(NICHE20 and NICHE-213) show high efficacy of neoadjuvant

immunotherapy for patients with MSI CRC. These findings imply

that in the future every patient with CRC should be tested for MSI

on the initial biopsy tissue, although not all current medical

guidelines reflect this. Among previous DL-based studies for

MSI detection, only Echle et al.3 determine the performance of

DL-based biomarker prediction on CRC biopsy tissue in a multi-

centric setting. They report amuch lower performance on biopsy

tissue than on surgical resection tissue sections (biopsy AUROC:

0.78; resection AUROC of 0.96). Current clinically approved

commercial products for MSI detection in CRC from histopathol-

ogy are only applicable to surgical resection tissue. Therefore,

DL-based MSI testing of biopsies is a clinical need.

The technology underlying these algorithms in literature is

based on weakly supervised learning, consisting of two compo-

nents: the feature extractor and the aggregation module.21 The
Cancer Cell 41, 1650–1661, September 11, 2023 1651
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feature extractor is mostly based on a convolutional neural

network (CNN), which processes multiple small tissue regions

called tiles or patches.22 The CNN-based representations ob-

tained from these tiles are subsequently aggregated to obtain

a single prediction for the patient. Between 2019 and 2021,

most studies used simple heuristics, such as taking the

maximum (max pooling) or averaging (average pooling), as an

aggregation module. Since then, variations of multiple instance

learning (MIL) have become the new standard for this task,

particularly for the prediction of genetic alterations from pathol-

ogy slides.6,23,24 Themost common approach replaces the pool-

ing aggregation with a small two-layer network to learn the

patch-level weighting of the embeddings.23 However, current

MIL approaches univariately consider a single tile during aggre-

gation and do not place it in context with other tiles even though

local and global contexts are crucial for medical diagnosis.

In many non-medical and medical image-processing tasks,

transformer neural networks have recently been adopted for

computer vision tasks,25–27 replacing CNNs because of their

improved performance and robustness.28 Originally proposed

for sequencing tasks such as natural language processing,

transformer networks show impressive capabilities of learning

long-range dependencies and contextualizing concepts in long

sequences. In computational pathology, transformers have

therefore been proposed as potentially superior feature extrac-

tors29 or aggregation models,30–33 though these proposals still

lack empirical evidence from large-scale analyses.

In this work, we first aim to enhance the performance of DL-

based biomarker detection from pathology slides. Thereafter, in

order to provide large-scale evidence of the performance on

clinically relevant tasks, we investigate the use of a fully trans-

former-based workflow in CRC. Here, we present a new

method derived from a transformer-based feature extractor

and a transformer-based aggregation model (Figure 1A-C),

which we evaluate in a large multi-centric study of 15 cohorts

with resection specimen slides from over 13,000 patients with

CRC worldwide, as well as two cohorts of CRC biopsies from

over 1,500 patients in total (Figure 1D-F).

RESULTS

Transformer-based MSI prediction outperforms the
state-of-the-art
We tested our pipeline on MSI prediction in surgical resection

cohorts of patients with CRC (Figure 1) in two ways: First, we

trained the model on a single cohort and tested it on a held-out

test set (in-domain) and on all other cohorts (external). We found

that large cohorts, e.g., DACHS, QUASAR, or NLCS, achieved

in-domain test AUROCs around 0.95 (Figure 2A). The model

also achieved high performance close to 0.9 AUROC for early

onset CRC, i.e., CRC in patients younger than 50 years (Fig-

ure S2B). We compared this performance to the work by Echle

et al.3 which updated the CNN-based feature extractor during

training and used mean pooling as their patch aggregation func-

tion. Our approach outperformed the CNN-based approach on

all four cohorts. Further, we also evaluated AttentionMIL by Ilse

et al.23 with CTransPath as a feature extractor yielding higher

performance than theCNN-based approach on the large cohorts

but partly lower results on the external validation trained on the
1652 Cancer Cell 41, 1650–1661, September 11, 2023
smaller cohort TCGA. Overall, we observed the tendency of

higher performance and better generalization for models trained

on datasets with more than 1,000 patients. However, factors

such as differing population genetics (e.g., for MECC) or the

type of slide scanners (e.g., for ERLANGEN) influence the gener-

alization capabilities beyond the training dataset size.

Second, we trained our model on all cohorts of CRC resec-

tions except YCR-BCIP and evaluated it on the external cohort

YCR-BCIP (Figure 2B). In particular, we obtained a sensitivity

of 0.99 with a negative predictive value of over 0.99 (Figure S2F,

and Table S1). Analyzing the ROCs of patients with different clin-

icopathological properties showed that the model performs

consistently well on all of these subgroups. Only on left-sided tu-

mors the performance slightly dropped to 0.93 AUROC (Fig-

ure S2D). Moreover, a high-mean AUPRC score of 0.86 showed

that the transformer-based model achieved high sensitivity with

high precision despite a strong class imbalance of 12.9% MSI-

high samples on average across all cohorts (Figure 2C). In

parallel to our findings mentioned previously, we observed a

generalization gap when intrinsic biological factors, such as

ethnicity, change. However, the performance of our model on

a cohort of MSI-high patients from Guangzhou, China, was still

high with a sensitivity of 0.9. For a better comparison to state-

of-the-art, we also mirrored the experimental setup of Echle

et al.3 We trained AttentionMIL and our fully transformer-based

model on the four large cohorts (DACHS, NLCS, QUASAR,

and TCGA) using the same feature extractor CTransPath. The

CNN-based approach from Echle et al. achieved an AUROC of

0.96, AttentionMIL yielded an AUROC of 0.96, and the fully

transformer-based approach performed slightly better with an

AUROC of 0.97.

The classical patch-based approach by Echle et al.3 suffered

from severe losses in performance upon external testing. The

largest performance drop in the AUROC of 0.21 was observed

by a model trained on the DACHS and tested on the QUASAR

cohort. Our transformer model, however, reduced the perfor-

mance loss for external testing to a maximum of 0.09 for training

on the NLCS and testing on the TCGA cohort (Figure 2). In

addition, AttentionMIL trained with the same transformer-based

feature extractor also demonstrated better generalization

capabilities compared to the classical patch-based approach

with mean pooling. This suggests that self-supervised pre-

training on histology data contributes positively toward better

generalization.

In summary, these results show that a fully transformer-based

approach yields a higher performance for biomarker prediction

both on large cohorts (DACHS, QUASAR, and NLCS) as well

as on smaller cohorts (TCGA). Perhaps more importantly from

a clinical perspective, the transformer-based approach resulted

in a better generalization performance and more reliable results,

as the deviation between the external cohorts was smaller. We

published all trained models for reuse and further fine-tuning if

needed.

The transformer-based model predicts multiple
biomarkers in CRC
Next, we investigatedwhether the fully transformer-basedmodel

yields a similar high performance in other biomarker-prediction

tasks. Following the experimental setup for MSI prediction, we
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Figure 1. Workflow overview with pre-processing and model architecture and cohort overview

(A) The data pre-processing pipeline with the steps whole slide image (WSI) digitization, tissue segmentation, WSI tessellation into patches, and stain

augmentation, (B) the model architecture including the pre-trained feature extractor CTransPath and our transformer-based aggregation module, and (C) details

of the transformer layer architecture.

(D) Overview of the 16 cohorts of CRC resections and biopsies with MSI/dMMR status, which were used in this study and the subsets of six cohorts with (E)BRAF

and (F) KRAS ground truth data, respectively.
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trained the model first on single cohorts evaluated on all other

external cohorts and second on one fully merged multi-center

cohort excluding only one cohort from the training set to consti-

tute an external test set. In clinical routine workup for CRC, the

biomarkers BRAF and KRAS are determined in addition to

MSI. We tested whether and how well these were predictable

on the DACHS, QUASAR, MCO, NLCS, TCGA, and Epi700 co-

horts, where the Epi700 cohort served as an external test set

in the multi-centric run.

In the case of the largest cohorts, DACHS and NLCS, single

cohort training was already capable of achieving good results,

with AUROCs of 0.88 and 0.87, respectively (Figure 2D). The

smaller cohorts achieved slightly poorer results with 0.83–0.85

AUROC and 0.78 for TCGA. Nonetheless, the AUROC for the

in-domain test using TCGA by far outperformed previous ap-

proaches with AUROCs of 0.57,63 0.66,64 and 0.7333 in a more

recent transformer-based method. The large multi-centric

cohort yielded an AUROC of 0.88, almost reaching clinical-grade

performance (Figure 2E). Furthermore, we observed that the

generalization gap from the internal test set to external cohorts
was consistently small with the largest internal-to-external gap

of 0.03 drop in AUROC. This was also the case in multi-centric

evaluation, where the performance did not decrease from the in-

ternal to the external test cohort.

We observed similar results regarding the generalization when

investigating KRAS as a target (Figures 2F and 2G), with an

AUROC of 0.80 when trained on the multi-centric cohort outper-

forming state-of-the-art methods. The AUROCs of the single

cohort training ranged from 0.53 to 0.77 for single cohorts, in

line with or higher than state-of-the-art results.33,63,64 While

DL-based prediction performance for KRAS is still relatively

low compared to MSI or BRAF, the results show that perfor-

mance profits substantially from multi-cohort training and larger

training cohorts.

Overall, these findings show that our model can predict multi-

ple biomarkers that are relevant for routine diagnostics in CRC

while highlighting the importance of large training cohorts to

reach clinically relevant performance even in biomarkers such

as KRASwhich are notoriously difficult to predict from pathology

images alone.
Cancer Cell 41, 1650–1661, September 11, 2023 1653



Figure 2. Evaluation of the prediction performance for the biomarkers MSI, BRAF, and KRAS in single cohort and large-scale multi-centric

experiments

Experimental results for MSI-high (A–C), BRAF (D,E), and KRAS (F,G) prediction. All values represent the mean of 5-fold cross-validation: (A) AUROC scores for

single cohort experiments for all CRCcohorts ordered by size of the cohort. Each row shows the test performance of training on one cohort with the in-domain test

results in the diagonal. Results for our transformer approach, AttentionMIL, and CNN approach (results taken from Echle et al.) are visualized separately. Note that

compared to AttentionMIL and CNN, our transformer not only shows higher overall prediction accuracy but also better model generalizability, demonstrated by a

smaller gap between internal and external testing cohorts. Raw data for the heatmap in Table S5.

(B) Receiver operator curve (ROC) for the model trained on all resection cohorts except YCR-BCIP, tested on YCR-BCIP.

(C) Precision recall curve (PRC) for the model trained on all resection cohorts except YCR-BCIP, tested on YCR-BCIP.

(D) AUROC scores for single cohort experiments.

(E) ROC for the model trained on all BRAF cohorts except Epi700, tested on Epi700.

(F) AUROC scores for single cohort experiments.

(G) ROC for the model trained on all KRAS cohorts except Epi700, tested on Epi700.
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Transformer-based workflows are explainable
Ideally, DL-based biomarker predictions should be explainable

to domain experts. To this end, we visualized how much each

patch contributed to the final classification via attention rollout

as well as whether it contributes toward a positive or negative

classification (Figures 3A–3C, and S3).

For better comparability, we used the same WSIs from the

external cohort YCR-BCIP as had been used in a previous study3

for these visualizations (Figure 3A). For all three cases, themajor-

ity of highly contributing patches originate from tumor regions. In

the MSI-high case, the mucinous region that is morphologically

linked to MSI is correctly identified as important by high scores

in the attention rollout as well as the patch-level classification

(see the boxes in the first row of Figure 3). The MS-stable case

in the second row of Figures 3A–3C attributes high contributions

to the model’s prediction to carcinoma regions. At the same

time, these patches all receive low-classification scores yielding

the correct classification result. Similarly, the second MS-stable

case in the third row had highly contributing scores in the tumor

region while having only low-classification scores for all patches.

Further tissue details that are morphologically related to MSI,

such as solid growth pattern, poor differentiation, or tumor-infil-

trating lymphocytes (Figure S3A) are highlighted in the attention

heads of the last layer together with healthy tissue structures,
1654 Cancer Cell 41, 1650–1661, September 11, 2023
such as the colon wall including muscle tissue or vessels (Fig-

ure 3D). The two cases with MSI-high ground truth predicted

as MSS also show that relevant regions are identified and

contribute to the prediction but the combination of potentially

false attentions and associated classification scores of these

attentive patches infer a wrong prediction (Figure S3B).

We quantified the morphological patterns occurring in high-

attention regions in a small user study, where two pathologists

annotated the patterns in 160 patches of 40 patients that the

model attributes high attention to. We chose the 10 patients

with the lowest and highest classification score for each MSS

and MSI-high ground truth. For every patient, we chose the

two patches associated with the highest and lowest class scores

of the top 100 attention tiles. Our study showed that the majority

of tiles belong to the tumor region (0.99% for high and 0.81% for

low-classification scores) and cell types that are important for

the prediction of MSI-high, such as lymphocytes occur in both

tiles with low- and high-classification score in a similar ratio

(0.28% vs. 0.2%, Figure 4A). Furthermore, morphological pat-

terns related only to MSI-high, such as mucinous regions, occur

more often in tiles with high-classification scores (0.4% vs.

0.1%). A chi-square test for independence shows that the under-

lying distributions of tiles with high- and low-classification scores

are likely to be independent (p value = 5.6$10�6 < 5$10�5).



A B C

D

Figure 3. Attention and class score visualization for better model interpretability

(A) Resection specimen from the external cohort YCR-BCIP. The three depicted slides are the same as in Echle et al.3 Tumor regions are outlined in black.

(B) Attention rollout per patch for our trained transformer-based feature aggregation model. Large values (yellow) signify a high contribution to the model’s

prediction, small values (purple) a low contribution.

(C) MSI classification scores per patch, where MSI-high is the positive class and MS-stable is the negative class.

(D) The attention heatmaps from eight heads, four of the first and four of the second layer. Themodel weights are taken from the best-performing fold of the multi-

centric training on all cohorts except YCR-BCIP.
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These examples showed that the model learns concepts rele-

vant to MSI-high prediction and thus possesses a high degree of

explainability. Visualizing the attention rollout together with the
classification scores demonstrates that relevant regions can

receive high-attention scores while the model can learn to ignore

non-relevant regions or give them low-classification scores.
Cancer Cell 41, 1650–1661, September 11, 2023 1655
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Figure 4. Analysis of the quantitative user study on high-attention tiles, data efficiency, and model generalization to biopsies

(A) Prevalence of 12 histological patterns in 160 patches of high attention regions from 40 patients split by low and high patch-wise classification scores.

(B) AUROC scores on YCR-BCIP depending on the number of patients available for training. The samples were randomly drawn from all resection cohorts except

YCR-BCIP.

(C) ROC and PRC for testing our model on YCR-BCIP-biopsies, trained on resections from all cohorts except YCR-BCIP.

(D) ROC and PRC for testing our model on biopsies of the cohort MAINZ, trained on resections from all cohorts except YCR-BCIP.
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Transformer-based workflows are more data efficient
A long-standing problem in computational pathology is to deter-

mine the number of samples required for a given prediction task.

This is primarily due to two reasons. First, it is unclear what the

minimum required sample size is, and second, it is unclear if add-

ing more samples improves performance, and if so, up to what

point. To investigate this, we varied the number of patients in

the training set and analyzed its impact on the test performance.

Specifically, wemerged all cohorts except for an external valida-

tion cohort, YCR-BCIP, resulting in a training set with 8,181 pa-

tients from nine cohorts.We trainedmodels using a fixed number

of epochs and randomly sampled patients from the training set.

All experiments were repeated five times, and we reported the

means and standard deviations of the results.

Our fully transformer-based model architecture achieved a

mean testing AUROC value above 0.9 with 250 patients (in

particular, an AUROC value of 0.92), while the AttentionMIL

model exceeded an AUROC of 0.9 only with 4,000 patients (Fig-

ure 4A). In a similar vein, our model surpassed the 0.95 mean

testing AUROC with already 1,500 patients, while AttentionMIL

did not reach this performance. Hence, the transformer-based

aggregation module helped the model to learn from data in a

more efficient way than the attention mechanism. This may be

due to the attention mechanism not contextualizing information

from all input patches. Of note, above 1,000 patients, the per-

formance of the transformer-based model seems to slowly

saturate, while the attention mechanism continues to increase

in performance with more patients but on a lower level.
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Our fully transformer-based approach yielded high performa-

nce with a small sample size. Compared to an AttentionMIL-

based approach, our approach is more data efficient in the

regime of small numbers of patients. Looking at larger training

numbers, we observed that performance increase is directly pro-

portional to the number of patients for both approaches, but the

fully transformer-based approach reaches equivalent perfor-

mance already with much smaller datasets.

Transformer-based workflows result in clinical-grade
performance on biopsies
Virtually all previous studies on biomarker prediction in CRC

were performed using surgical resection slides. For this reason,

commercially available MSI detection algorithms are intended to

be used only with resection slides. However, recent clinical evi-

dence shows that MSI-positive patients with CRC require immu-

notherapy prior to surgery13,65 and hence need to be tested for

MSI on biopsy material. We addressed this problem by training

our model on resections from all cohorts except YCR-BCIP

and evaluating it on biopsies from 1,592 patients with CRC of

the YCIP-BCIP.

Our model yielded a mean AUROC score of 0.92 and 0.86

when validated on biopsies from two external cohorts, YCR-

BCIP andMAINZ, respectively (Figure 4B). It is worth mentioning

that the MSI-high ratio in the MAINZ biopsy cohort was higher

than in the training cohorts. We outperformed existing ap-

proaches (0.78 by Echle et al.3) by far and achieved clinical-

grade performance on biopsies after model training on resection



Figure 5. Envisioned clinical workflow for the proposed MSI-high classifier on biopsies

This assumes the system reaches a sufficient performance in additional external validation and is approved as a medical device. This workflow would only apply

to non-metastatic disease. Neoadjuvant immunotherapy is not yet recommended by medical guidelines but is backed up by Phase-II clinical trials. Not shown:

tissue preprocessing and scanning pipelines and confirmatory tests of MSI-high after a positive deep learning-based pre-screening.
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specimens (Figure S4). Themean AUPRC score of 0.69 and 0.82,

respectively, however, was lower than that of the external cohort

YCR-BCIP for resections (0.86) (Figure 4C). Hence, choosing a

classification threshold with high sensitivity, the ratio of correctly

MSI positive predicted cases from all positive predicted cases

was lower on biopsies compared to resections. Still, with a clas-

sification threshold fixed on the in-domain test set of resections,

our model obtains sensitivity scores of 0.98 and 0.91, respec-

tively, with negative predictive values of 0.99 and 0.9. Of note,

these values are higher than (for the cohort YCR-BCIP) and close

to (for the MAINZ cohort) the clinically approved DL algorithm for

resections,19 suggesting that our algorithm has potential for clin-

ical usage for biopsies.

Our intendedclinical useof thisworkflow is as follows (Figure5):

First, a patient attends a clinic either with suspected CRC or for

routineCRCscreening.Acolonoscopyshowsasuspicious tumor,

which is evaluated histologically and found to be an adenocarci-

noma. In many countries, this biopsy will then be tested for MSI/

MMR status and BRAF and/or RAS mutation status. In practice,

theseproceduresmay take several days toevenweeks.However,

in low- or middle-income countries, this might not happen at all.

Based on theMSI,BRAF, andRAS status, themost suitable treat-

ment approach will be chosen for the patient. For example, in pa-

tients with early (non-metastatic) CRC, the presence ofMSI could

qualify a patient for neoadjuvant immunotherapy followed by sur-

gery with curative intent. Similarly, in the metastatic disease

setting, the presence of MSI in the biopsy tissue would qualify a

patient for palliative immunotherapy. Because of its high sensi-

tivity, our algorithmcould serve as a filtering step followedby affir-

mative testing for MSI-high predicted cases. Applying AI-based

biomarker prediction would reduce the additional testing burden

and therefore speed up the step between taking the biopsy and

the molecular determination of MSI-high status, thus enabling

an earlier treatment with immunotherapy if indicated.

In summary, to the best of our knowledge, we developed aDL-

based MSI-high predictor for biopsies that achieves clinical-

grade performance. In particular, this high performance was

also observed for external tests and could therefore improve

clinical routine and speed up treatment decisions.
DISCUSSION

The rollout of precision oncology to patients with CRC promises

gains in life expectancy.66 Unfortunately, however, its implemen-

tation still remains slow and patchy. One reason for this is that

precision oncology biomarkers are complex, costly, and require

intricate instrumentation and expertise. DL is emerging as a

possible solution for this problem.22,67 DL can extract biomarker

information directly from routinely available material, thereby

potentially providing cost savings.1 Using DL-based analysis of

histopathology slides to extract biomarkers for oncology has

become a common approach in the research setting in 2018.68

In turn, this has recently led to regulatory approval of multiple al-

gorithms for clinical use. Some of these examples include a

breast cancer survival prediction algorithm by Paige (New

York, NY, USA), a method to predict survival in CRC by DoMore

Diagnostics (Oslo, Norway), a method to predict MSI status in

CRC by Owkin (Paris, France, and New York, NY, USA), among

others.18,69 However, existing DL biomarkers have some key lim-

itations: it is debated whether or not their performance is suffi-

cient for large-scale use, they do not necessarily generalize to

any patient population, and finally, they are not approved for

use on biopsy material, as the application of DL algorithms to bi-

opsies typically results in much lower performance compared to

application to surgical specimens.3

A key reason for the limited performance of existing DL sys-

tems could be the fundamental limitations of the technology

employed. Most studies between 2018 and 2020 used convolu-

tional neural networks (CNNs) as their DL backbone,31 using

publicly available information. Commercial products in the DL

biomarker space are based on the same technology.19,69,70

However, a new class of neural networks has recently started

to replace CNNs: transformers. Originating from the field of nat-

ural language processing, transformers are a powerful tool to

process sequences and leverage the potential of large amounts

of data. Also in computer vision, transformers yield a higher ac-

curacy for image classification in non-medical tasks,25,26 are

more robust to distortions in the input data28 and provide more

detailed explainability.30 These advantages of transformers
Cancer Cell 41, 1650–1661, September 11, 2023 1657
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compared to CNNs have the potential to translate into more ac-

curate and more generalizable clinical biomarkers, but there is

currently no evidence to support this.

In the present study, we developed a transformer-based

approach for biomarker prediction on whole-slide images of

H&E-stained CRC tissue sections. Ourmodel consists of a trans-

former-based feature extractor that was pretrained on histopa-

thology images and a transformer-based aggregation module.

In contrast to the state-of-the-art attention-based MIL appro-

aches, the contribution of each patch was not only determined

according to its feature embeddings but also contextualized

with the feature embeddings of all other patches in the WSI via

self-attention layers. Further, we presented a large-scale evalu-

ation of transformers in biomarker prediction on WSIs. We

demonstrated that transformer-based approaches learned bet-

ter from small amounts of data andwere thereforemore data effi-

cient than attention-based MIL approaches. At the same time,

the performance increased proportionally with the number of

training samples. Even though the performance seemed to

plateau for MSI prediction, this suggests that larger training co-

horts could lead to higher performance-approaching clinical

application, also for more challenging tasks such as the predic-

tion of the BRAF and KRAS mutational status. Our large-scale

evaluation also showed that MIL and in particular transformer-

based approaches generalize much better than the existing

CNN approaches. We proved this by training themodel on single

cohorts and testing the generalization on all other cohorts. These

experiments showed that the transformer-based approach

reduced the drop in AUROC to under 0.09, while the CNN-based

approach dropped by more than 0.21 in some cohorts. Most

importantly, our approach trained on resections did not only

generalize well to external cohorts of resections from geograph-

ically distinct regions but also to biopsies with a clinical-grade

performance of 0.98 sensitivity on the YCR-BCIP biopsy cohort

and 0.91 on the MAINZ cohort.

A caveat of our observations is that the ground truth might not

be perfect. Potentially, the DL model is performing better than

stated in the paper because dMMR and MSI only agree around

92%of the time and neither are 100%sensitive.57,71 Also, a small

subset of CRCs have POLD1 and POLE mutations with a high-

mutation burden that behaves clinically similar to MSI and might

have a similar phenotype but are not detected by established

MSI detection assays.72 Similarly, gene sequencing does not

detect all mutations in KRAS/NRAS/BRAF depending on the

sensitivity of the technology used and the presence of smaller

clonal mutations. Current DL tests are at such high levels of per-

formance that these nuanced subpopulations may be important.

Our study has additional limitations: The focus of this study was

to investigate the effect of handling the data with fully trans-

former-based approaches, especially in the context of large-

scale multi-institutional data. Therefore, we did not exhaustively

optimize every single hyperparameter. Points for optimization in

this direction would be finding a fitting positional encoding and

tuning the architecture of the transformer network and attention

mechanisms. Additionally, collecting biopsy samples from

different hospitals, for multi-cohort training directly on biopsy

data could potentially improve the performance of our model

on biopsy material. This would also hold for the prediction of

BRAFmutation status and, in particular, of RASmutation status,
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where we observed the largest potential for improvement. In

both targets, the performance was higher on the larger cohorts

with around 2,000 patients and increased dramatically by

training on multiple cohorts. Further, we acknowledge that

achieving an even higher specificity would be desirable.

Choosing the final classification threshold is always a trade-off

between sensitivity and specificity, where clinical application

prefers a higher sensitivity, especially for pre-screening test as

proposed in this study. Our method’s performance on biopsies

is in the same range as current clinically approved assays on re-

sections, but unlike these assays, our method also works on

biopsies.

In summary, to the best of our knowledge, we presented a

fully transformer-based model to predict MSI on WSI from

CRC with an AUROC of 0.97 on resections and 0.92 and 0.86

on biopsies on external validation cohorts. Our model general-

ized better to unseen cohorts and was more data efficient

compared to existing state-of-the-art MIL or CNN approaches.

By publishing all trained models, we enable researchers and cli-

nicians to apply the automated MSI prediction tool for research

purposes, which we expect to bring the field of DL-based bio-

markers a step closer to large-scale integration in the clinical

workflow.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

The Cancer Genome Archive (TCGA) https://portal.gdc.cancer.gov/ RRID:SCR_003193

Clinical Proteomic Tumor Analysis

Consortium (CPTAC)

https://proteomic.datacommons.

cancer.gov/pdc/

RRID:SCR_017135

Software and algorithms

Framework for experiments and

model implementation

This manuscript; https://github.

com/peng-lab/HistoBistro

https://zenodo.org/badge/

latestdoi/613444008

The model has also been implemented

in this framework

https://github.com/

KatherLab/marugoto
RESOURCE AVAILABILITY

Lead contact
Further information and requests regarding this manuscript should be sent to and will be fulfilled by the lead investigator, Jakob Ni-

kolas Kather (jakob_nikolas.kather@tu-dresden.de).

Materials availability
We release all multi-cohort model weights created in this study under an open-source license. More specifically, the model for MSI

high, BRAF, and KRAS detection.

Data and code availability
Some of the data that support the findings of this study are publicly available, and some are proprietary datasets provided under

collaboration agreements. All data (including histological images) from the TCGA database are available at https://portal.gdc.

cancer.gov/. All data from the CPTAC cohort are available at https://proteomic.datacommons.cancer.gov/. All molecular data for

patients in the TCGA and CPTAC cohorts are available at https://cbioportal.org/. Data access for the Northern Ireland Biobank

can be requested at http://www.nibiobank.org/for-researchers. Data access for the MCO cohort can be requested at https://

researchdata.edu.au/mco-study-tumour-collection/1957427. All other data are under controlled access according to the local

ethical guidelines and can only be requested directly from the respective study groups that independently manage data access

for their study cohorts.

All code was implemented in Python using the DL framework PyTorch. All source codes to reproduce the experiments of this paper

are available under an open-source license at https://github.com/peng-lab/HistoBistro (https://doi.org/10.5281/zenodo.8208791).

The model is also implemented in the DL pipeline https://github.com/KatherLab/marugoto/tree/transformer. We release all model

weights under an open-source license.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Ethics statement
In this study, we retrospectively analyzed anonymized patient samples from multiple academic institutions. At each of the following

sites, the respective ethics board has given consent to this analysis: DACHS, Epi700, ERLANGEN, MAINZ, MECC, MUNICH, NLCS,

QUASAR, FOxTROT, TRANSCOT, MCO. At the following sites, specific ethics approval was not required for a retrospective analysis

of anonymized samples: CPTAC, DUSSEL, TCGA, GUANGZHOU, and YCR-BCIP. Our study adheres to STARD (Table S3).

Cohort description
Through coordination by the MSIDETECT consortium (www.msidetect.eu), we have collected over 20,000 H&E tissue sections of

13,689 patients with CRC from 16 patient cohorts in total, including two public databases (Figures 1D–1F). The cohorts obtained

are as follows:

1. The public database ‘‘The Clinical Proteomic Tumor Analysis Consortium’’, CPTAC (publicly available at https://pdc.cancer.

gov/pdc/, USA)37,38 which includes tumors of any stage;
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2. DACHS (Darmkrebs: Chancen der Verh€utung durch Screening, Southwest Germany),39,40 a large population-based case-

control and patient cohort study on CRC, including samples of patients with stages I-IV from different laboratories in south-

western Germany coordinated by the German Cancer Research Center (Heidelberg, Germany);

3. The DUSSEL (DUSSELdorf, Germany) cohort, a case series of CRC tumors resected with curative intent and collected at the

Marien-Hospital in Duesseldorf, Germany, between January 1990 and December 199541;

4. Epi700 (Belfast, N. Ireland, UK),42,43 a population-based cohort of stage II and III colon cancers treated by surgical resection

between 2003 and 2008;

5. The ERLANGEN cohort, a CRC cohort collected at the Uniklinikum Erlangen in Germany between 2002 and 2010.

6. The ‘‘Fluoropyrimidine, Oxaliplatin, and Targeted Receptor pre-Operative Therapy for colon cancer cohort’’ (FOxTROT)44

including pre-therapeutic biopsy and post-therapeutic resection tumors from UK sites;

7. The GUANGZHOU cohort, a small CRC case series of MSI-high cases collected in The Second Affiliated Hospital of Guangz-

hou Medical University, China;

8. The MAINZ cohort, a small CRC case series of biopsies collected in the University Medical Center Mainz in Germany.

9. The Molecular and Cellular Oncology Study (MCO) cohort45–48 from the University of New South Wales, Australia;

10. MECC (Molecular Epidemiology of Colorectal Cancer, Israel),49 a population-based case-control study in northern Israel;

11. The MUNICH (Munich, Germany) CRC series, a case series collected at the Technical University of Munich in Germany.

12. The NLCS (Netherlands Cohort Study, The Netherlands)50,51 cohort, which contains tissue samples obtained from patients

with any tumor stage as part of the Rainbow-TMA consortium study;

13. QUASAR, the ‘‘Quick and Simple and Reliable’’ trial investigating survival benefit of adjuvant chemotherapy in patients from

the United Kingdom with mostly stage II tumors52,53;

14. The public repository ‘‘The Cancer Genome Atlas’’, TCGA (publicly available at https://portal.gdc.cancer.gov/, USA)54,55

which includes tumors of any stage;

15. The TransSCOT cohort, the translational arm of the SCOT trial, an ‘‘international, randomised, phase 3, non-inferiority trial’’

involving adult patients with high-risk stage II or stage III CRC56;

16. The YCR-BCIP (Yorkshire Cancer Research Bowel Cancer Improvement Program, Yorkshire, United Kingdom [UK]), a pop-

ulation-based register of bowel cancer patients in Yorkshire, UK,57,58 for which surgical resections and biopsies were avail-

able as separate cohorts.

Detailed clinicopathological variables are shown in Table S4. In all cohorts, formalin-fixed paraffin-embedded (FFPE) tissue was

used. Slides have been scanned at their respective centers. For each patient, either an MSI status or an MMR status, obtained by

PCRor IHC, respectively, is available. AlthoughMSI status andMMR status are not fully concordant,57 they are used interchangeably

in clinical routine and grouped as a single category in this study. KRAS and BRAF mutational status are available for the cohorts

DACHS, Epi700, NLCS, QUASAR, and TCGA.

METHOD DETAILS

Model description
Our biomarker prediction pipeline consists of three steps (Figure 1): i) the data pre-processing pipeline (Figure 1A), ii) the transformer-

based feature extractor, and iii) the transformer-based aggregation module that yields the final prediction from the embeddings of all

patches of a whole-slide image (WSI) (Figure 1B).

In the pre-processing pipeline, tissue regions are segmented using RGB thresholding and Canny edge detection34 to detect back-

ground and blurry regions.We include all tiles from aWSI, i.e., both tumor and healthy tissue tiles, thus reducing the burden of manual

annotationswhen applying the algorithm. Subsequently, theWSI is tessellated into tiles of size 5123 512 pixels at 203 magnification

with a resolution of 0.5 microns per pixel. To reduce the impact of the staining color on the model generalization, the tiles are stain-

color augmented using a structure-preserving GAN trained on TCGA.35

We extract feature representations of dimension 768 for every tile using the CTransPath model.29 (Figure 1B). The model architec-

ture is based on a Swin Transformer26 that combines the hierarchical structure of CNNs with the global self-attention modules of

transformers by computing self-attention in a sliding-window fashion. Similar to CNNs, these are stacked to increase the receptive

field in every stage. CTransPath consists of three convolutional layers at the beginning to facilitate local feature extraction and

improve training stability,29 followed by four Swin Transformer stages. Wang et al. trained the network using an unsupervised

contrastive loss on data from TCGA and PAIP36 from multiple organs and provided the weights for public use. The embeddings

for each tile are stored for the subsequent training procedure.

The final part of the model takes all patches of a WSI as input and predicts one biomarker for all input patches in a weakly super-

vised manner (Figure 1B). Common attention-based MIL approaches23 use a small neural network, which mostly consists of two

layers, to compute patch importance based on the embeddings. Each weight is computed based on one patch and finally, all weights

are normalized over the input elements. In contrast to this, in ourmodel, the patch embeddings are passed into a transformer network

using multi-headed self-attention that considers the patch embeddings as a sequence and relates each element to every other

element. In particular, assuming that x˛Rn3d is the input sequence representing a WSI with n patch embeddings of dimension d,

the self-attention layer computes a query-key product in the following way
Cancer Cell 41, 1650–1661.e1–e4, September 11, 2023 e2

https://portal.gdc.cancer.gov/


ll
OPEN ACCESS Article
SAðQ;K;VÞ = softmax

�
QKTffiffiffi
d

p
k

�
V ;

where queries Q˛Rn3dk , keys K ˛Rn3dk , and values V ˛Rn3dv .These are computed from the input sequence x by

Q = WQ$x;K = WK$x and V = WV$x;

whereWQ ˛Rd3dk ,WK ˛Rd3dk , andWV ˛Rd3dv are learnable parameters. Multi-headed self-attention applies self-attention in every

head and concatenates the heads in a weighted manner:

MSAðxÞ = concatðhead1; :::; headhÞ$WO

where headi = SAðQðiÞ;KðiÞ;V ðiÞÞ for i˛ f1; :::;hg
andWO ˛Rhdv3d is learnable. We choose a small transformer network architecture consisting of two layers with each eight heads

(h = 8), a latent dimension of 512, and the same dimension for query, keys, and values. Therefore, the latent dimension of each head

is dv = dk = 64, such that hdv = 8$64 = 512 .

Assuming that n is the number of patches perWSI, the embeddings of each patch i˛ f1;.;ng are stacked to a sequence of dimen-

sion n3768 and are passed through a linear projection layer followed by the non-linear activation ReLU to reduce the dimension from

768 to 512. Subsequently, a class token is concatenated to the input, similar to the usage in vision transformers,25 yielding an input of

dimension ðn + 1Þ3512 that is passed to the transformer layer. In each transformer layer, a block of layer normalization and multi-

headed self-attention is followed by a block of layer normalization and a multi-layer perceptron (MLP), with skip connections applied

across each block (Figure 1C).

After the two transformer layers, the class token of size 13512 is passed into an MLP head. Depending on the number of class

tokens used, this enables single-target or multi-target binary prediction. Instead of attaching a class token, all n sequence ele-

ments could be averaged to a single sequence element of size 13512 and passed into the MLP head. The averaging approach

achieves similar performance to the class token version (Table S2), but we decided to use the class token for better interpretability

of the attention heads. We also compared our model architecture to the existing transformer-based aggregation module

TransMIL32 (Table S2).

Experimental setup and implementation details
We performed all experiments using 5-fold cross-validation with in-domain validation and testing. In this cross-validation variant, in-

domain validation and test set are split off the full dataset on patient level, leaving 3-folds for training. By also cycling the in-domain

test set through the complete dataset, we evaluated our model on more representative test sets than when fixing one smaller set for

the dataset. During training, the validation set was used to determine the best model, which was finally evaluated on the test set. We

further evaluated our models on external cohorts outside the dataset for out-of-domain testing.

The transformer models were trained with the AdamW59 optimizer using weight decay and learning rate both of 2 � 10� 5 . All

models were trained for eight epochs with batch size of one for two reasons: first, the sequences of embeddings had different lengths

due to the variable number of tiles per WSI and could thus not be stacked to mini-batches of equal length inputs; second, limits in

GPU capacity (32GB) because of the quadratic complexity of the self-attention mechanism and the large number of tiles per slide (up

to 12,000, Figure S1). To account for the varying cohort size, we evaluated the models every 500 iterations for runs on single cohorts,

and every 1000 iterations for runs on multiple cohorts.

For comparison, we implemented the attention-based MIL approach from Ilse et al.,23 referred to as AttentionMIL. It provided the

best results with Adam60 optimizer, 1 � 10� 2 as weight decay value, along with the fit-one-cycle learning rate scheduling policy61 with

a maximum learning rate of 1 � 10� 4, trained over 32 epochs, and the first 25% of the cycle with increasing learning rate.

Visualization and explainability
The final prediction is retrieved via the class token that is attached to the input sequence. To visualize the contribution of each

input patch, we employed attention rollout as introduced by Abnar and Zuidema.62 To obtain the attention at the class token

in the final layer, the attention maps of the preceding layers are multiplied recursively. Attention rollout thus quantifies to which

extent each patch contributes to the final prediction in the class score. Additionally, we visualized the attention scores for each

head in the transformer by taking the class token’s self-attention, i.e., the query and key product. All presented attention scores

were normalized to the range ½0;1� and clamped to the lower and higher 5%-quantiles, respectively, for better visual

interpretability.

To visualize whether a patch contributed toward a positive or negative classification outcome, we fed the patches one-by-one

through the transformer and visualized the resulting classification scores of the model. These scores were naturally in the range

½0; 1� and can thus be directly visualized without further normalizing or clamping of values.

QUANTIFICATION AND STATISTICAL ANALYSIS

We used the area under the receiver operator curve (AUROC) as our main evaluation metric. Since our data are naturally highly

imbalanced with respect to the target variables MSI, BRAF, and KRAS (Figures 1D and 1E), we further used the area under the
e3 Cancer Cell 41, 1650–1661.e1–e4, September 11, 2023
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precision-recall curve (AUPRC) as a metric as this metric accounts better for class imbalances than the AUROC metric. The preci-

sion-recall curve relates the recall or specificity, i.e., the ratio of correctly positive predicted samples to all positive samples, to the

precision, i.e., the ratio of correctly positive predicted samples to all positive predicted samples. For every experiment, we reported

the mean and the standard deviation of respective 5-fold cross-validation’s model in-domain and external test performances. We

split the dataset into patient-wise training, validation, and internal test sets stratified by the target label, thus ensuring that every pa-

tient can only occur in one of these sets. The external test sets always consisted of different cohorts to better quantify the general-

ization properties of our algorithms.
Cancer Cell 41, 1650–1661.e1–e4, September 11, 2023 e4
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