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ABSTRACT

We present WinSyn, a dataset consisting of high-resolution photographs and ren-
derings of 3D models as a testbed for synthetic-to-real research. The dataset
consists of 75,739 high-resolution photographs of building windows, includ-
ing traditional and modern designs, captured globally. These include 89,318
cropped subimages of windows, of which 9,002 are semantically labeled. Fur-
ther, we present our domain-matched photorealistic procedural model which en-
ables experimentation over a variety of parameter distributions and engineering
approaches. Our procedural model provides a second corresponding dataset of
21,290 synthetic images. This jointly developed dataset is designed to facilitate
research in the field of synthetic-to-real learning and synthetic data generation.
WinSyn allows experimentation into the factors which make it challenging for
synthetic data to compete with real-world data. We perform ablations using our
synthetic model to identify the salient rendering, materials, and geometric factors
pertinent to accuracy within the labeling task. We chose windows as a benchmark
because they exhibit a large variability of geometry and materials in their design,
making them ideal to study synthetic data generation in a constrained setting. We
argue that the dataset is a crucial step to enable future research in synthetic data
generation for deep learning.

1 INTRODUCTION

We describe a dataset for the purpose of advancing research in synthetic data generation for synthetic
to real transfer and generative modeling. We overcome several limitations in previous data collection
efforts for training machine learning systems to do 3D building modeling and reverse engineering
of architecture. First, windows exhibit a high degree of variability in design and appearance char-
acteristics, and yet also tend to have many symmetries that must be captured, making them more
challenging than commonly used datasets for driving or faces. Furthermore, they have many thin
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Figure 1: Photographers in 28 geographic regions capture real-world photos (a) of windows that are
cropped (b) to single windows, which are then labeled (c). Synthetic windows are rendered giving
color (f) and labels(d), while other passes such as depth (e; normalized per-image) are also possible.
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structures (Fig. 1b) and reflections. The general trend is that solutions for generative modeling (dif-
fusion or GANs) benefit from large datasets and that discriminative models such as segmentation
methods may need to train for many iterations to capture fine details, but risk overtraining if the
dataset is small. Our proposed dataset includes 75,739 images, which is similar to the sizes of the
well-known CelebA-HQ dataset and the FFHQ dataset. This amount of data is sufficient to train
high-quality generative models. Second, we would like to have high-quality and high-resolution
images. Many modern images are captured and stored at resolutions of 4K or higher. A large por-
tion of the images in our dataset have between 4K to 6K resolution which we ensured by restricting
the cameras that were eligible for taking the images. Third, some datasets are captured by scraping
the web but do not maintain copyright or ownership of the images. This can cause issues as data
distributed over links disappears over time. Longterm availability of the dataset is more reliable if
we own the rights to all the images. We, therefore, organized image collection from many subcon-
tractors from around the globe. Fourth, we would like to select a domain that is especially suited for
research in synthetic data generation. Synthetic data generation is a fascinating topic, but it generally
has a large room for improvement. Architectural data, such as windows, is ideally situated for this,
as many procedural models exist and are used in mapping, social and energy research applications,
cinema, and video games. We selected the domain of windows for multiple reasons. The domain has
sufficient variability, but it also has many constraints. We relay additional details of this discussion
in the next paragraph. Fifth, we need a benchmark task that can be used to evaluate the success
of synthetic data generation and training on synthetic data. For this benchmark task, we selected
segmentation and we contracted a labeling company to provide segmentation labels for a subset of
the window images. We also provide the corresponding dataset splits to evaluate different aspects
of synthetic data. Finally, we wanted to have a set of images that can be used for feature extraction
from raw images.

Windows have a large variability in structure. They appear in different countries, showcase different
elements, materials, styles, and shapes. Nevertheless, we were confident that we could model the
geometry and materials procedurally in high quality. The most complex aspects of windows are
the glass elements, building interiors, and reflections. Windows are also important and common in
urban images. We consider them to be a stepping stone to complete architectural models. By con-
trast, existing work (Wood et al.) had amazing success using artists to tackle the domain of humans.
Unlike windows and other architectural elements, humans change shape but have comparably low
variation in their overall structure and anatomy - whereas windows come in a variety of completely
different structural configurations and textures. Architectural elements like windows have varying
types and numbers of elements that interact in context-dependent ways – for example, it can be chal-
lenging even to determine if someone is looking at a single window vs multiple windows in some
of the examples shown in Appendix Fig. 1, left. They also contain many similar, but confound-
ing elements - such as reflections that mimic actual components, and design features like muntins
that could be confused with divided lites. Additionally, there is semantic ambiguity in identifying
specific components like sills, frames, and jambs, especially when they blend into the architectural
context as seen in some instances in Fig. 2. On top of this, they exhibit a variety of regularities,
such as symmetrical patterns, that are crucial to capture accurately; any deviations in spacing or
symmetry are readily noticeable. These geometrical constraints, including thin structures and sharp
corners, are particularly challenging for machine learning algorithms to model and represent. These
complexities make windows a particularly challenging domain.

We also considered entire cityscapes (Dosovitskiy et al., 2017), but they are too complex to model
realistically. Cityscapes would require realistic human models, car models, vegetation, and buildings
as highly nontrivial modeling sub-problems. We hypothesized that it would be possible to create
photo-realistic procedural models of windows in an academic setting, and it should be possible for
others to compete on the tasks we set out. In spite of the narrower domain, we still observe a large
gap in segmentation performance between real labeled images and synthetic labeled images. It is
our belief that solutions that bridge the gap for windows may be extended to larger domains.

While our dataset was mainly motivated by the idea to improve synthetic data generation, we also
support new research on a variety of different tasks. In summary, we make the following contribu-
tions: (1) We provide a 4K resolution dataset with 75,739 real-world images of windows (in some
case multiple windows in an image) from around the world. Unlike previous datasets, these im-
ages are 4K×6K pixels cropped to 89,318 individual windows, providing an unprecedented level of
detail for architectural image data. (2) We provide segmentation labels for 9,002 of these images.
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All images and labels will be released. The URL will be released upon acceptance. (3) We pro-
pose a procedural model for windows and highlight design choices that are important for generating
synthetic data for machine learning. (4) We introduce a dataset of 21,290 synthetic window images,
including a wide variety of features that we have observed in real imagery. (5) We explore the im-
portance of many features of a synthetic dataset in relation to the segmentation task using a wide
variety of different experiments and ablations over our synthetic dataset.

2 RELATED WORK

Several datasets of architectural imagery have been created in the past, enabling applications such as
architectural style classification (Xu et al., 2014; Chen et al., 2021; Barz & Denzler, 2021), building
functional use classification (Kang et al., 2018; Zhao et al., 2021), architectural heritage classifi-
cation (Llamas et al., 2017), landmark identification (Philbin et al., 2007), or urban scene match-
ing (Hauagge & Snavely, 2012). Of particular note are datasets that support image synthesis or
image segmentation. The FaSyn13 dataset (Dai et al., 2013) collected 200 facade images for the
purpose of texture synthesis; but this is not enough data for modern generative models. The LSAA
dataset (Zhu et al., 2022) contains 199,723 images of facades and 516,000 cropped images of win-
dows. This is enough images, however, the resolution of each cropped window varies greatly, with
the majority less than 100 pixels in the longest dimension. While the dataset we propose has fewer
windows than LSAA, it is the highest resolution dataset of window images we are aware of at an
average resolution of 4,000 pixels per side for cropped windows.

Several architectural image datasets exist that support semantic segmentation or facade parsing.
The Graz dataset (Riemenschneider et al., 2012) contains 50 rectified images, and the eTRIMS
datset (Korč & Förstner, 2009b) contains 60 non-rectified images. Without special “low shot” tech-
niques, these datasets are not large enough to train modern deep-learning systems. The CMP-Facade
dataset (Tyleček & Šára, 2013b) contains 606 images, with about half of them fairly high resolu-
tion (1024 pixels on the long edge) but limited diversity of image locations. The LabelME-Facade
dataset (Brust et al., 2015a) has the largest number of images at 945, with each image varying in size
between 512 and 768 pixels on a side. However, these datasets do not have fine-grained labels for
windows, and neither the number of images nor the resolution is ideal for training the latest image
segmentation methods. With 9,002 labeled images at four times the resolution of these datasets, our
proposed dataset of real-world images is an order of magnitude larger.

Several authors have attempted to use synthetically generated data to bootstrap performance on
real images. This approach seems to work best in domains where the human annotation is not
directly feasible, such as reinforcement learning, especially for driving applications (Dosovitskiy
et al., 2017), depth or optical flow (Butler et al., 2012; Gaidon et al., 2016), or 6DoF pose estimation
for robotic grasping or manipulation (Tyree et al., 2022; Hodaň et al., 2020; Kaskman et al., 2019).

Infinigen (Raistrick et al., 2023) is a good example of a procedural model, however there is no vali-
dation of the effectiveness of the model for machine learning tasks. Of particular note is the SynthIA
dataset (Ros et al., 2016), a driving dataset built on video game technology specifically designed to
support semantic segmentation in urban environments. A very large engineering effort went into
this, as well as CARLA, and we believe that reproducing such high-quality synthetic data is out
of reach for most academic teams. Similar to our dataset, SynthIA aims at pushing the envelope
to use synthetic data to improve computer vision even for problems where large human-annotated
datasets (KITTI (Menze & Geiger, 2015), LabelME-Facade (Brust et al., 2015b), Camvid (Brostow
et al., 2008)) already exist. Similar to our findings, they are able to get some results from purely
synthetic data but they cannot out-compete even relatively small real-world labeled images, but by
combining synthetic and real at a 4:6 ratio they obtain their best results. However, unlike SynthIA,
our segmentation challenge is more constrained (only windows) and we think would require fewer
resources for academic researchers to develop competing procedural models for synthetic training.
Simultaneously domain transfer is more challenging due to the amount of variety and complex de-
pendencies between architectural elements, whereas the categories of objects used in driving scenes
are much clearer. In addition, the high resolution of the images we use makes the synthesis of real-
istic textures and precise object boundaries critical, and the higher-capacity segmentation models of
today vs 2016 (when SynthIA was published) are more precise but may also be more likely to overfit
synthetic data. Our dataset of real and synthetic imagery is unique as a high-resolution, voluminous
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Figure 2: Left: Samples from the 75,739 photographs in the dataset. Each column shows a variety
of examples of windows from different geographic locations. From left to right: Chicago (USA),
Cambridge (UK), Bangkok (Thailand), Cairo (Egypt), and Vienna (Austria). The dataset has a
variety of window shapes and architectural styles. Right: A scatter plot of the resolution of the
89,318 crops taken from these photos.

dataset and serves as a proving ground for synthetic to real training, image generation, and semantic
segmentation tasks.

To our knowledge, the most successful work on using synthetic data for segmentations seems to
be the ‘Fake It Till You Make It’ paper by Wood et al., which seems to report improvements in
segmentation when a U-Net is trained using their synthetic data vs real image. However, in order to
get these improved results, they used label adaptation. This is counter to our goals for using synthetic
data, but it does highlight that the gap may be related to the synthetic vs human understanding of the
label semantics. They do not report segmentation results without label adaptation, but they do show
in their ablation study on landmark localization that label adaptation is critical for benefiting from
synthetic data.

3 REAL-WINDOWS DATASET

We have collected the largest (over 75,739 photos), highest-resolution (up to 4K × 6K) dataset
of images of windows that we are aware of, and unlike datasets formed by scraping the web or
Flickr (Karras et al., 2019; 2017), we have ensured that we have the copyright ownership of each
individual image1. When collecting photos of windows, it was important for us to have a diverse
collection that included a variety of locations, viewpoints, and architectural styles. To achieve this,
we decided to hire workers from several countries to ensure that the collection was representative
of different regions and styles. While some of our own images are represented in the dataset, the
overwhelming majority of the images were collected using freelancers, most of them hired on Up-
work. Once hired, they collected the photos and submitted them for feedback to ensure that they
met the following required standards. The photos must be framed in a way that showcases the win-
dow design and architecture without any unnecessary distractions. The framing should encompass
the entire window and any interactions with the wall. As much as possible, foreground elements
(vegetation, cars, wires) should be avoided. The photos must also be in focus, with sharp details
and no blurriness or distortion of the window. The exposure of the images should be well-balanced,
with reasonable image noise; therefore, most of the images were taken during the day. Workers
should take care to avoid including people in private situations, personal items, and avoid personally
identifying information in sensitive areas such as schools and hospitals to ensure that the privacy
of individuals is respected. The images should show the window in a minimum of 4k resolution,

1In the papers we cited, the authors took great care to use images with permissive licenses and to maintain
the correct attribution of each individual image. As we own the copyright to each image in our dataset this is
less of a concern.
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wall window-frame window-pane wall-frame misc-object blind

Figure 3: Examples of the labels used to annotate our data. Each instance receives its own polygon.
The reader may wish to zoom into the figure for details.

although this was not strictly enforced, with a goal of 2k pixels across each window. Finally, The
images should be taken with a professional-level SLR or Mirrorless camera. Images collected this
way ended up costing between US $0.20-$0.50 each, depending on the contract. This is in addition
to our own cost of quality control and managing the subcontracts. We hired 24 photographers in
total over 12 months.

The diversity of image locations is indicated in Table 1 of the appendix, along with the number of
images that include semantic segmentation labels and RAW camera data. RAW camera data refers to
the unprocessed and uncompressed image data captured by a digital camera’s sensor. It contains all
the information captured by the camera’s sensor without any loss of detail or quality. This data may
include higher precision (typically 12-14 bits rather than 8 bits per channel; see Appendix Figure 4)
of radiometric color information that has not already been subject to de-mosaicing from a Bayer
filter, color space conversion, or any other in-camera image signal processing (ISP) followed by
JPEG compression. We hypothesize that this information may allow for improved performance on
certain tasks, however, each camera may use its own proprietary RAW format, and it is much more
voluminous and harder to distribute, load, and manipulate than compressed imagery. Our dataset
includes 6,666 photographs with both the RAW camera information and segmentation masks.

Many images included multiple windows. We manually annotated each image to a region that
includes a single window in the center, along with any portion of the wall that may have been
adapted to the window (such as brickwork or molding) and a small portion of the wall on all four
sides of the window. Due to cropping, window images are in a variety of sizes, as shown in Fig. 2.
We store the original images and the cropping information separately and generate a cropped version
of the dataset on demand.

4 SYNTHETIC DATA

We designed a pipeline combining procedural modeling, texturing, and rendering to create 21,290
synthetic images of windows and corresponding labels, as detailed in Appendix Fig. 2. Our system is
Python-based and uses Blender (Community, 2023). Our pipeline sequentially generates geometry,
applies textures, sets lighting, and configures cameras. Rather than render a realistic subset of
real-world data we aim for higher model diversity, allowing implausible results and akin to domain
randomization (Tobin et al., 2017). In order to handle reflections and shadows, windows are rendered
in context within buildings, streets, and urban elements; details are in Appendix Fig 8. Further
details are in section 5 of the appendix.

The procedural model relies on two types of Split Grammar (Wonka et al., 2003). We employ the
CGA language (Mueller et al., 2006) for facades, windows, and urban structures. Window shapes
use Bézier splines for various geometries (e.g. arched or circular windows). A second grammar
splits the windows into individual panes with distinct extruded profiles. Pseudo-random distributions
guide the generation process, and parameters stored in text files for reproducibility. Each parameter
is sampled from its own distribution, and the number of parameters depend on the random sequence
of steps taken by the procedural model. In practice, the pipeline is parameterized by 216 to 21,735
variables, enabling a wide range of scene variations.

Textures include static images, but are primarily procedural shaders (Burley & Studios, 2012), con-
trolling materials like wood, brick, or glass. To add realism, we captured exterior clutter like signs
and trash cans through LiDAR and RGB scanning (Appendix Fig. 9). Lighting is a blend of skybox
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Label Images Using Area %
wall 8907 43.02%

window pane 8362 22.58%
wall frame 8697 14.91%

window frame 8681 9.71%
unlabeled 2994 3.09%

shutter 931 2.56%
balcony 973 1.08%

misc object 2357 1.07%
blind 375 0.75%
bars 679 0.68%

open-window 977 0.55%

Figure 4: Left: The labels used, their frequency of use, and percentage by area for the square-
cropped dataset used for our experiments. We note that the dataset is a mix of well-used labels such
as wall and less-used ones, such as door or bars. The ‘unlabeled‘ category contained areas beyond
the building (e.g., sky, streets) and a much smaller number of ambiguous areas where we could not
reach a decision on how to label a feature. Right: the label fraction for the different geographic
partitions of the labeled data

emission, direct sun-lamp, and optional interior sources. The camera is strategically positioned in
order to capture the entire from a predominantly frontal view.

5 SEMANTIC SEGMENTATION

We propose semantic segmentation as a suitable benchmark task for evaluating the quality of
synthetic data. The idea is to train a segmentation method using synthetically generated data, train
the same method using manually labeled real-world data, and then use the difference in performance
as a way to evaluate the quality of the synthetic data.

Existing segmentation datasets often have a single label for ‘window’, possibly with labels for ad-
ditional adornments such as ‘shutter’, ‘blind’, or ‘sill’ (Tyleček & Šára, 2013a; Korč & Förstner,
2009a; Brust et al., 2015b). We found that these labels are difficult to apply consistently in light of
the variety of architectural styles encountered in the imagery. Some elements in the images had dual
or ambiguous labels, and sometimes an identical element had a different semantic role in different
images or relative to different objects (e.g., a higher window’s ‘sill’ is a ‘lintel’ of a window below).
Among other things, this made it challenging to describe a consistent set of categories that could be
communicated to the multiple individuals who label the data. Instead, we developed a set of twelve
semantic categories that could be applied to most images, including labels such as ‘window-pane‘
(transparent openings), ‘window-frame‘, ‘wall frame‘ (the portion of the wall adapted to a window),
and others. Each instance was annotated by its own polygon. Often it was clear that an object, such
as a wall or a window pane, was divided into separate parts based on changes in material, texture,
or depth. In these cases, the individual parts were given separate polygons with the same label,
however, this was not consistently applied, in part due to different interpretations of the images by
annotators. In many cases, some element of the image would be ambiguous, and no single label
could be determined with certainty. Examples include a painting of a window or objects in the back-
ground that are out of focus. These objects were explicitly marked as ‘unlabeled’. Examples of
images annotated using these labels are shown in Fig. 3, and label frequencies are shown in Table 4.
The complete set of labels is described in the supplemental. Each image was manually annotated,
and then carefully reviewed for quality and consistency. The resulting set of 9,002 annotated images
was acquired at a cost of about US $3.90 per image – this cost is manageable to some degree, but
the price of annotation is significantly higher than the cost of image acquisition, so any method that
can reduce the number of labels is important, especially for segmentation which is labor-intensive.
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test
global Austria Egypt UK USA other synthetic

tr
ai

n

global 53.79 58.20 56.85 42.64 50.16 54.74 31.21
Austria 39.49 58.23 28.36 34.40 35.67 41.32 21.87
Egypt 47.51 38.32 61.85 33.02 38.01 49.75 31.34
UK 37.76 40.68 25.23 38.56 35.39 37.64 28.51
USA 41.08 42.50 27.39 33.30 50.08 39.39 27.02
other 51.22 48.54 39.47 37.44 41.33 52.74 28.39
synthetic 31.23 29.53 29.33 32.15 34.17 35.02 62.12

Table 1: mIoU for different splits of the real labeled data on the segmentation task. Trained on
n = 1024, tested on n = 300. global is a mixture of all the real data; other data is from locales
outside of Austria, Egypt, UK, or USA. Here our synthetic model is similarly trained on n = 1024
samples from our baseline synthetic model.

6 ANALYSIS

6.1 GENERALIZATION RESULTS WITH BEIT

We use BEiT v2 (Peng et al., 2022; Bao et al., 2022) as a baseline model for image segmentation
because it is near the state of the art for segmentation at this time, and a reliable implementation
of it exists which can be trained quickly in order to conduct experiments. BEiT adapts the con-
cept of masked language modeling from BERT (Devlin et al., 2018) and applies it to images by
self-supervised masked image pretraining, wherein portions of an image are masked-out and BEiT
predicts the missing piece. BEiT is then refined for specific tasks such as semantic segmentation.
BEiT has a ‘base’ model with 86M parameters and a ‘large’ model with 300M parameters. In all
of our experiments, we fine-tune a BEiT ‘base’ model that was pre-trained on ImageNet-1k, trained
on ImageNet-21k, and fine-tuned on ours. We evaluated the mIoU over 10 labels, excluding “unla-
belled” category. All images are 512 pixels square.

A key concern is the generalizability of models trained on architectural datasets, especially since
it can be challenging to collect data from a diverse set of locations. To test this, we conducted the
following experiment. We grouped our images into five groups; from Austria, Egypt, UK, USA, and
“other” locales. For each group, we sampled 1,024 images for training, and a further 300 images for
testing.

We are particularly interested in how well segmentation performance scales with the size of our
training dataset. We established an experimental set of n = 4.9k images (which we use for the
remainder of the paper; except where noted), to allow training on n = 4096 images and testing
on the remaining 804. In Table. 1, we found that synthetic data yields performance ranging from
29.33 to 35.02, whereas training on different cities produces a wider range, from 25.23 to 49.75.
Although training on individual cities outperforms synthetic data when evaluated on the global set,
these figures are influenced by the inclusion of each city in the global data. On the positive side, the
performance of synthetic data can even be better than training on real data from a different country
(England vs. Egypt). On the negative side, the difference on the global dataset is still much larger
than desirable (53.79 vs. 31.21 mIoU).

Fig. 5 explores the impact of synthetic data on segmentation. From the tests, we draw the following
conclusions: First, we see that training on 100% synthetic data already gives fair quality (mIoU
32.58). As more real data is added to the training dataset, the performance, improves until it reaches
an mIoU of 44.45%, which is about 76% of the best mIoU obtained by using all the real-world
imagery in the split (59.192) and it does so using only 3.7% of the real-world data. It is noteworthy
that for larger amounts of real-world data, the synthetic imagery slightly harms performance. When
all the real world and synthetic data from this split are used, the mIoU is 57.074, which is 96%
as good as using only the real world imagery. This is to be expected if our synthetic data does
not perfectly match the distribution of real images. Because synthetic data is low-cost and easy to
create, we are able to generate large datasets quickly. Ideally, all training could be done on synthetic
images and the costly real imagery could be used only for testing. However, our experiments show
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32.58
44.96 (n=152)

59.19

57.07

11.05

Figure 5: Varying real-world dataset sizes on mIoU with (blue) and without (red) an additional
2,048 synthetic samples. Intersection at n = 152 with mIoU of 44.96 shows efficiency of synthetic
data. At larger datasets, synthetic data reduces mIoU by approx 3.6% relative to real-world data.

1spp

8spp

64spp

BL

512spp

Figure 6: The impact of rendering samples per pixel (spp) on segmentation task accuracy. Left
image column: example rendering. Right column: zoomed section of rendering. BL = baseline.

improvements are limited and that the number of synthetic images which are useful depends on the
number of real images available.

6.2 PROCEDURAL MODEL VARIATIONS

We assess the impact of synthetic dataset variations on a segmentation model by comparing against
our baseline model. Each variation has 2K training examples and uses the same geometry, lighting,
and rendering settings as the baseline unless specified. To gauge variation importance, we either
use mIoU’s relative range as a percentage of the baseline or report Spearman’s rank correlation(rs).
Detailed results are in section 6 of the appendix and are summarized here.

Rendering samples. We evaluated the impact of samples per pixel (spp) on render quality, noting
diminishing returns beyond 256spp (Fig. 6). Render times scale from 6.4s at 1spp to 85.2s at 512spp.
A strong correlation (rs = 1, n = 10) exists between spp and mIoU, with a 68% change in mIoU
scores relative to baseline, underlining the importance of spp. In our experiments’ no denoising was
done; however, our baseline model used 256spp and a powerful neural denoiser.

Materials. We experimented with 9 material variations, including uniform gray, edge shaders, and
random textures. Some tests used a single material for the entire scene, others assigned different
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materials per object. Simplifying materials, such as rendering only the albedo channel, resulted in
a significant performance drop. Fig. 12 shows that any material restriction led to at least an 18%
mIoU decrease from the baseline.

Lighting. We examined 8 lighting model variations and their mIoU impact, as detailed in Fig. 13.
Lighting models like albedo-only were crucial, while lighting-conditions such as nighttime had
moderate importance. Conditions varied mIoU by 15.35% from baseline. Daylight-only training
decreased baseline mIoU by 1.04% relative to baseline.

Camera. We experimented with the distribution of camera positions. These 6 variations used a
simple model which sampled a camera position over a circle, of radius r = {0..48} meters, truncated
at the floor plane. The circle is positioned at 5 meters from the wall, directly in front of the window.
All cameras have their field of view adjusted to the apparent window size. We observed very little
impact on mIoU as r changes; correlation was poor (rs = 0.14, n = 6).

Window Geometry. We ran 7 tests varying window dimensions and shapes, including square and
non-rectangular windows. The mIoU impact was minor, fluctuating by up to 5.7% relative to the
baseline (1.86 absolute), with the best variation 1.2% worse relative to the baseline (−0.04 absolute).
Small features, though noticeable to humans, had a weak impact on model performance.

Labels Modeled. In developing our procedural synthetic data generator, we prioritized labels by
size, starting with wall and ending with open-window (Figure 5). This enabled assessment of mIoU
at nine developmental stages. Adding smaller classes later showed diminishing returns and occa-
sionally reduced label accuracy.

Histogram Matching: We investigated histogram matching (Gonzales & Wintz, 1987) to align the
training data’s distribution with that of the real-world training split. Unlike the unsupervised per-
image histogram equalization (see Appendix section 6.2), this required supervision. The method led
to a minor mIoU improvement, from 32.58 to 32.96 (1.17% increase).

Label Adaptation: Our focus is on reducing the need for labeled images. Despite this aim, we tested
label adaptation as per Wood et al.. Though it doesn’t minimize labeled image use, it significantly
boosted mIoU from 32.58 to 41.55. This technique is akin to adding 64-128 real samples to our
synthetic training set. See examples in Fig. 17 of the appendix. We believe that the technique of
label adaptation may create an overly optimistic picture of synthetic data. It often indirectly uses
real data as shape prior and it seems to do a lot more than simply adapting differences in labeling.

In summary, we can conclude that synthetic data can be very useful, but the gap between synthetic
and real data is still larger than desirable, even in a constrained setting such as windows (53.79 vs.
31.21 mIoU on the global dataset). While we did spend an extensive effort to create a very high-
quality procedural model, we believe that much additional work will be needed to understand and
create synthetic data. We believe that our dataset can be the stepping stone to future progress.

7 CONCLUSION

We have introduced a new dataset of 75,739 photos (2.09 terapixels), 9,002 semantically labeled
images (including RAW images), for applications like superresolution, 3D reconstruction, and gen-
erative modeling. We also presented a high-quality procedural model that closely approximates
real-world variation, making it effective for image segmentation tasks. We systematically explored
the effect of variations on our model on mIoU. The mIoU performance gap between our synthetic
and real-world data is comparable to inter-city differences with largely different architectural styles.
However, the difference between synthetic data and real data is still much larger than desired. This
gap is not really explained by either our work or any other competing work. We, therefore, believe
that research in synthetic data generation is important and that our dataset can be a significant con-
tributor to future work in this area and to getting a better understanding of the critical differences
between real and synthetic data. Our work contributes a sizable, versatile dataset that can be the
basis of exciting and much-needed progress in the area of synthetic data generation for machine
learning. The key value of our dataset is that as a new benchmark of simulated and real images
it enables others to study the problem at the right level of complexity and that it will therefore be
instrumental in making progress.
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