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Abstract

Recently, self-supervised learning has enabled the pre-
training of vision transformers (ViT) using vast amounts of
unlabeled data to obtain rich representations. Using well-
trained representations in transfer learning can lead to bet-
ter performance and faster convergence compared to train-
ing from scratch. However, even if such good representa-
tions are transferred, a model can easily overfit the limited
training dataset and lose the characteristics of the trans-
ferred representations. This phenomenon is more severe in
ViT, which has low inductive bias. Through experimental
analysis using attention maps in ViT, we observe that the
rich representations deteriorate when trained on a small
dataset. Motivated by this finding, we propose a novel and
simple regularization method for ViT called guided trans-
fer of spatial attention (GTA). Our proposed method reg-
ularizes the self-attention maps between source and target
models. Through this explicit regularization, a target model
can fully exploit the knowledge related to object localiza-
tion properties. Our experimental results show that the pro-
posed GTA consistently improves the accuracy across five
benchmark datasets especially when the number of training
data is small. As far as we know, there has been no previous
study to improve transfer learning performance, specifically
considering the ViT architecture.

1. Introduction
The Vision Transformer (ViT) has demonstrated impres-

sive performance in a variety of computer vision tasks such
as image classification [11, 35, 32, 34, 24, 39, 23], segmen-
tation [34, 24, 23, 39], object detection [24, 23, 39], and im-
age generation [6, 31, 41], surpassing traditional convolu-
tional neural networks (CNNs). Unlike CNNs that rely en-
tirely on convolution operations which are designed to cap-
ture locality, neighborhood structure, and translation equiv-
ariance, only the multi-layer perceptron (MLP) component
in ViT is responsible for learning those characteristics. The
main difference between ViT and CNNs is the self-attention
mechanism in the multi-head self-attention (MSA) layer,

Figure 1. Comparison of self-attention maps from pre-trained,
naı̈vely fine-tuned, and GTA-traind models. The self-attention
maps of the multiple heads are aggregated with max values, and vi-
sualized in red color. Each column shows the attention maps from
the models that are pre-trained using SSL, fine-tuned, and fine-
tuned with GTA on 15% and 100% of training data, respectively.
GTA shows that it is capable of fully leveraging object-centric rep-
resentations learned by the SSL model.

which globally aggregates spatial features from input to-
kens with normalized importance [11]. ViT is known to
have a lower inductive bias compared to CNNs, mean-
ing that it requires more training data to obtain a well-
performing model. As a result, when the available train-
ing data is limited, ViT generally shows lower performance
than CNNs [21]. In a recent study [29], the authors argued
that MSA has both advantages and disadvantages. The ad-
vantage is its ability to flatten the loss landscape, which can
improve accuracy and robustness in large data regimes. On
the other hand, the disadvantage is that MSA allows the neg-
ative Hessian eigenvalues when trained on limited training
data. These negative Hessian eigenvalues can lead to a non-
convex loss landscape, which can disturb model training.
The study also demonstrated that self-attention can be inter-
preted as a large-sized and data-specific spatial kernel [29].

When training data is scarce, transfer learning (TL) has
been considered as the de-facto paradigm in practice. Pre-
trained models, which have been trained with supervised
learning (SL) on large-scale datasets, have enabled faster
training and high generalization performance in TL scenar-
ios. Such SL models possess rich discriminative features
that are effective in distinguishing between images, by us-
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ing class labels during training. However, since the features
are optimized for a specific large-scale dataset (e.g., Ima-
geNet), they may not be as effective for various downstream
datasets. For example, pre-trained models trained with a
large-scale dataset consisting of animal images may not be
suitable for downstream tasks in the medical domain. To
maximize its effectiveness, large-scale datasets with labels
should be readily available, and the domain of downstream
data should be similar to that of pre-training data. Con-
sequently, the conventional strategy of transferring the SL
backbone has inherent limitations in terms of its applicabil-
ity to a wide spectrum of downstream tasks.

Recently, self-supervised learning (SSL) has emerged as
a promising alternative for learning visual representations
without using class labels. Unlike SL, which focuses pri-
marily on discriminative features, SSL can establish its own
pretext tasks to produce richer representations that are help-
ful in describing the semantics of objects in images. Studies
on SSL have demonstrated better TL performance than SL
in various downstream tasks such as classification [17, 7,
9, 15, 44, 45, 16, 2, 12], localization [17, 15, 44, 45, 16],
and segmentation [17, 15, 4, 44, 45, 16]. In addition, SSL
enables to obtain the domain-oriented representations by
training an unlabeled large-scale dataset related to the tar-
get domain of interest, e.g., SSL on large-scale medical im-
ages [3]. With these advantages, SSL can serve as a pow-
erful alternative to SL, helping to address the domain dis-
crepancies in various TL scenarios. The ViT architecture
has recently proven advantageous for SSL due to its abil-
ity to fully leverage large-scale datasets. In particular, some
studies have demonstrated high TL performance by utiliz-
ing accurate object-centric representation features that can
be also helpful for semantic segmentation [4, 44]

Various TL techniques have been proposed to effectively
learn target tasks by utilizing well-trained representations
transferred from pre-trained models [28, 37, 8, 38, 33].
However, the majority of existing knowledge-exploiting
methods are designed for CNNs [28, 37, 8, 38], and there
are few effective TL methods that can leverage the charac-
teristics of ViT [33]. When applying commonly used TL
techniques to ViT, the object-centric representations from
well-trained models may deteriorate. We experimentally
confirmed that the quality of well-trained SSL features dete-
riorates after fine-tuning based on the visualization of self-
attention maps from fine-tuned ViT models, and assessed
the influence of the amount of training data (see Figure 1).
Through the self-attention maps, we can visually see which
image tokens are particularly attended to perform the target
task. As shown in Figure 1, visualization results indicate
that ViT trained with basic fine-tuning tends to overfit to the
features corresponding to the background (i.e., non-object
area). Even with a relatively sufficient amount of training
data, ViT still focuses on non-object regions due to its low

inductive bias. Motivating by this observation, we hypothe-
size that TL performance can be improved if we can prevent
the degradation of attention quality of pre-trained SSL mod-
els.

In this paper, to address this issue, we propose the
Guided Transfer of spatial Attention (GTA) method that
effectively leverages pre-trained knowledge that contains
object-centric attention to enhance TL performance of ViT,
even with the limited size of the training dataset. Specif-
ically, we explicitly regularize self-attention logits of a
downstream network (i.e., a target network) through a sim-
ple squared L2 distance. Using various benchmark datasets,
we compare our proposed GTA with existing TL meth-
ods including a method designed specifically for ViT [33]
to demonstrate its superiority over comparison targets. To
evaluate the effectiveness and importance of guiding self-
attention, we compare the performance of guiding other
output features from ViT, e.g., outputs of MSA layers or
transformer blocks. In addition, we experimentally evaluate
whether we can expect a performance boost when GTA is
used in conjunction with TransMix [5], a label-mixing aug-
mentation method specifically designed for ViT based on at-
tention scores. It differs from Mixup [42] and CutMix [40]
which determine augmented labels based on randomly sam-
pled mixing coefficients between two images. Finally, we
evaluate the factors that can affect the performance of GTA
including the use of SL as a guide model.

Our main contribution can be summarized as follows:

• We propose a simple yet effective TL technique
for ViT named GTA. Our proposed GTA effectively
improves performance by explicitly guiding self-
attention logits. To the best of our knowledge, no prior
work has proposed to improve the TL performance
through a specific focus on the ViT architecture, par-
ticularly the MSA component.

• We demonstrate that as the amount of training data
decreases, the likelihood of self-attention deviating
from the pre-trained model and concentrating on non-
object regions increases. Our experimental results
show the critical importance of guiding self-attention
during ViT training in TL settings, particularly when
the amount of training data is limited.

2. Related Work
Transfer learning. TL is the most common and popu-
lar method in deep learning that can be applied to various
downstream tasks [1, 14]. It not only improves performance
but also ensures fast convergence of training by utilizing
pre-trained models [18]. Some studies have proposed meth-
ods to exploit the pre-trained knowledge and improve per-
formance by regularizing features [22, 8]. DELTA measures
the importance of feature channels in the CNN model and
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Figure 2. The overall pipeline of the proposed GTA. An image is first fed into both the frozen source model and the trainable target
model. By minimizing the L2 distance between the attention logits from each model, the target model is optimized for the current task
while focusing on the image tokens that require attention by exploiting the source model.

regularizes the channels far from the pre-trained activations
to leverage transferred knowledge [22]. BSS shows that
small eigenvalues of transfer features cause negative trans-
fer, and penalizing small eigenvalues during TL to suppress
untransferable spectral components can improve perfor-
mance [8]. Another method of exploiting prior knowledge
is weight-based regularization, which controls the weight
changes during downstream training [28, 37]. L2 regular-
ization penalizes changes in model weights [28], and L2-
SP utilizes L2 constraints on the weights by using the pre-
trained model as the starting point to leverage the learned in-
ductive bias [37]. Co-tuning [38] has shown impressive per-
formance improvements by leveraging the label relationship
between the upstream and downstream tasks. However, in
this work, to ensure ease of implementation and scalability,
we only focus on methods that do not require additional data
or pre-processing steps for training [22, 38]. Hence, we ex-
clude previous approaches that utilize label information, as
they cannot be used with annotation-free pre-trained mod-
els such as SSL. While many studies on TL have focused
on CNNs, few studies have investigated the performance of
TL with ViT [33]. In [33], it is shown that fine-tuning only
the MSA layers can improve performance compared to full
fine-tuning.

Self-supervised learning. SSL has received considerable
attention due to its ability to learn meaningful representa-
tions without requiring human annotations [17, 7, 9, 15, 4,
44, 45, 16, 2, 12]. This is accomplished by engaging in self-
imposed pretext tasks such as contrastive learning [7, 17],
utilizing the teacher-student framework [4, 15], predicting
pixels of masked patches [16] and a combination of pre-
text tasks [44, 45, 2]. Especially, there are two interesting
SSL methods, DINO [4] and iBOT [44], that can provide
valuable object-centric representations with ViT. DINO uti-

lizes a distillation-based pretext that enables a model to un-
derstand the semantic layout of scenes. iBOT combines
the masked image modeling task and pretext task used in
DINO, and has shown improved attention quality and per-
formance over DINO. However, there are few studies on
how to effectively transfer those well-trained representa-
tions of ViT.

3. Method
This section presents our proposed approach, which aims

to fully exploit the SSL representations from ViT for effec-
tive TL to unseen target datasets. We first provide a brief
summary of the computations involved in ViT and then in-
troduce the proposed GTA method.

3.1. Preliminaries

ViT consists of a stack of transformer blocks, each of
which contains MSA and feed-forward layers. Let z ∈
R(N+1)×D be input features of a specific transformer block,
where N denotes the number of input features correspond-
ing to image patches and D represents the dimensionality
of features. Note that z has one extra dimension since the
extra learnable [cls] token is typically used to aggregate
patch-level features. The value of N can be calculated as
N = HW/P 2, where H and W denote the height and
width of an image, respectively, and P represents the size
of patches.

The MSA layer computes a weighted sum of value em-
beddings, where the weights are computed with query and
key embeddings. For a single attention head, these embed-
dings are obtained by the associated weights Wq, Wk, and
Wv, respectively. Specifically, a query q, a key k, and a
value v are given by:

q = zWq,k = zWk,v = zWv, (1)
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i.e., q, k, and v are all (N + 1) × k dimensional matri-
ces where k denotes an embedding dimension of a single
attention head. Typically, k is set to D/h when MSA has
h attention heads. By computing a scaled dot product be-
tween q and k, we can obtain the attention logit matrix A
as follows:

A = qkT /
√
k, A ∈ R(N+1)×(N+1). (2)

It should be noted that this attention logit plays a crucial role
in our GTA. Then, the output features SA(z) ∈ R(N+1)×k

can be obtained by softmax(A)v where softmax(·) applies
the softmax operation to every row of a matrix. Finally,
MSA aggregates the outputs from h attention heads using
the weight Wproj ∈ R(h·k)×D to compute the final MSA
output:

MSA(z) = [SA1(z), · · · ,SAh(z)]Wproj. (3)

Finally, position-wise feed-forward layers are employed to
generate output features z′ of a transformer block from
MSA(z). Note that we have excluded layer normalization
to simplify the explanation.

3.2. Spatial Attention Guidance

Inspired by the findings that ViT models pre-trained on
large-scale datasets using SSL show remarkable foreground
localization capabilities, and that MSA facilitates spatial
mixing of input features, we propose a simple yet effective
TL strategy that is tailor-made for ViT.

Given the attention logit matrix A(l,m) (Eq. 2) of the l-th
head in m-th transformer block, we focus on the attention
logit values that relate to the [cls] token query. More
specifically, given A(l,m) = [A

(l,m)
[cls];A

(l,m)
1 ; · · · ;A(l,m)

N ],
we only consider the [cls] attention vector, excluding the
first element (which is simply a scaled norm of the [cls]
query vector), denoted as A

(l,m)
[cls]\1. This attention vec-

tor contains valuable information on which input patches
should be attended to perform a given task.

Assuming that A(l,m)
[cls]\1 offers robust spatial mixing co-

efficients, leveraging this knowledge for TL on downstream
tasks can be achieved through a straightforward implemen-
tation of constrained optimization, with the constraint that
fine-tuned attention logits should be similar to those of ini-
tial models (e.g., pre-trained SSL models):

min LCE s.t. A
(l,m)
[cls]\1 ≈ Ã

(l,m)
[cls]\1 ∀ l,m (4)

where LCE represents the cross entropy loss and Ã denotes
an attention logit matrix of a target model trained during
fine-tuning. To this end, we employ a simple squared L2

distance for the constraint. Therefore, given a coefficient λ,
our objective function L during fine-tuning reduces to:

L = LCE + λ
∑
l,m

∥∥∥A(l,m)
[cls]\1 − Ã

(l,m)
[cls]\1

∥∥∥2
2

(5)

Our regularization term, GTA, can be interpreted as
transferring spatial kernels from a pre-trained model to a
target model. That is, the target model tries to learn how to
mix channel information while preserving the similarity of
spatial mixing coefficients to those of the pre-trained model.
It is worth noting that although GTA is motivated by the lo-
calization property of SSL models, it is also effective in TL
with SL models since it allows the target model to selec-
tively utilize pre-trained features.

Dataset # category # train # test
CUB [36] 200 5994 5794
Cars [20] 196 8144 8041
Aircraft [26] 100 6667 3333
Dogs [19] 120 12000 8580
Pet [30] 37 3680 3669

Table 1. Overview of dataset statistics. Table shows the number
of classes, and training and test images of each dataset used in our
experiments.

4. Experimental Results
In this section, we evaluate the effectiveness of our

method across multiple fine-grained datasets, which serve
as standard benchmarks for assessing TL performance. Our
experiments highlight the significance of applying regular-
ization to the attention logits of the [cls] token. We also
present segmentation results that demonstrate how the at-
tention logits of the target model focus on objects that are
relevant to the target task, rather than merely duplicating
those of the source model. Furthermore, we assess the
synergies between our method and the recent augmenta-
tion technique TransMix [5] that utilizes attention outputs
in ViT. Finally, we conduct an ablation study to investigate
the impact of key factors on the performance of our pro-
posed method.

Datasets. We employ five widely used fine-grained
datasets: CUB-200-2011 (CUB) [36], Stanford Cars
(Cars) [20], FGVC-Aircraft (Aircraft) [26], Stanford Dogs
(Dogs) [19], and Oxford-IIIT Pet (Pet) [30], which contain
birds, cars, airplanes, dogs, and pets, respectively. Table 1
shows the data statistics for the datasets. We conduct ex-
periments using four different configurations based on the
amount of training data following [8, 38]. Each configura-
tion consists of a varying percentage of randomly selected
training samples for each category: 15%, 30%, 50%, and
100%.

Training configurations. We follow DINO fine-tuning
configurations [4] and apply them across all methods, in-
cluding the baseline (i.e., naı̈ve fine-tuning). All methods
are trained using AdamW optimizer with a momentum of
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Sampling Rates [Acc@1]
Dataset Method 15% 30% 50% 100%
CUB Fine-tune (baseline) 41.376 ± 0.415 62.697 ± 0.552 75.158 ± 0.369 84.444 ± 0.166

L2-SP [37] 41.554 ± 1.020 63.261 ± 0.640 75.371 ± 0.345 84.898 ± 0.274
BSS [8] 41.382 ± 0.787 62.870 ± 0.343 75.406 ± 0.147 84.501 ± 0.320
Attention only (freeze FFN) [33] 42.636 ± 0.582 62.686 ± 0.511 75.175 ± 0.036 85.048 ± 0.232
FFN only (freeze attention) [33] 37.349 ± 0.901 58.181 ± 0.121 71.839 ± 0.217 82.902 ± 0.138
GTA 51.525 ± 0.449 68.416 ± 0.419 78.058 ± 0.089 85.543 ± 0.320

Cars Fine-tune (baseline) 56.100 ± 0.675 78.502 ± 0.167 87.091 ± 0.132 93.065 ± 0.093
L2-SP [37] 56.676 ± 0.783 78.713 ± 0.316 87.257 ± 0.168 93.276 ± 0.038
BSS [8] 56.154 ± 0.718 78.796 ± 0.131 87.170 ± 0.050 93.206 ± 0.044
Attention only (freeze FFN) [33] 56.701 ± 0.521 77.872 ± 0.233 86.747 ± 0.256 92.414 ± 0.000
FFN only (freeze attention) [33] 51.171 ± 0.799 75.418 ± 0.386 85.769 ± 0.273 92.671 ± 0.059
GTA 59.271 ± 0.248 79.488 ± 0.202 87.651 ± 0.111 93.239 ± 0.097

Aircraft Fine-tune (baseline) 52.115 ± 0.412 68.447 ± 0.647 76.848 ± 0.330 86.939 ± 0.076
L2-SP [37] 51.645 ± 0.465 68.777 ± 0.666 76.978 ± 0.625 87.209 ± 0.121
BSS [8] 52.285 ± 0.291 68.677 ± 0.692 76.998 ± 0.330 87.129 ± 0.369
Attention only (freeze FFN) [33] 50.735 ± 1.379 67.477 ± 0.505 76.098 ± 0.362 85.639 ± 0.522
FFN only (freeze attention) [33] 51.195 ± 0.243 67.207 ± 0.390 75.198 ± 0.392 85.399 ± 0.809
GTA 54.635 ± 0.572 70.027 ± 0.778 77.548 ± 0.632 86.989 ± 0.191

Dogs Fine-tune (baseline) 59.775 ± 0.256 72.137 ± 0.220 78.131 ± 0.037 83.318 ± 0.007
L2-SP [37] 63.893 ± 0.477 75.715 ± 0.603 81.453 ± 0.338 85.264 ± 0.186
BSS [8] 59.817 ± 0.303 72.253 ± 0.087 78.155 ± 0.219 83.570 ± 0.251
Attention only (freeze FFN) [33] 62.747 ± 0.455 74.577 ± 0.298 80.113 ± 0.114 84.938 ± 0.205
FFN only (freeze attention) [33] 57.502 ± 0.299 70.194 ± 0.095 77.253 ± 0.125 83.182 ± 0.273
GTA 69.196 ± 0.222 78.054 ± 0.194 81.803 ± 0.036 85.633 ± 0.192

Pet Fine-tune (baseline) 77.342 ± 0.382 86.418 ± 0.433 90.206 ± 0.096 93.123 ± 0.201
L2-SP [37] 81.185 ± 0.500 88.871 ± 0.220 92.169 ± 0.299 94.276 ± 0.439
BSS [8] 77.478 ± 0.488 86.572 ± 0.450 90.597 ± 0.206 93.286 ± 0.417
Attention only (freeze FFN) [33] 81.030 ± 0.666 88.698 ± 0.259 91.832 ± 0.306 93.786 ± 0.166
FFN only (freeze attention) [33] 74.825 ± 0.886 84.755 ± 0.129 89.697 ± 0.382 92.723 ± 0.142
GTA 83.856 ± 0.063 89.906 ± 0.197 92.478 ± 0.245 94.022 ± 0.246

Table 2. Comparison of transfer learning methods. The baseline refers to the naı̈vely fine-tuned model. “Attention only” and “FFN only”
represent training of only attention layers and feed-forward network (FFN), respectively. GTA shows higher accuracy across all datasets
and all sampling rates, with particularly significant improvements when the training data is limited. The best results are bold-faced.

0.9 during 3k iterations, and the learning rate is decreased
by cosine annealing scheduler [25]. We set the batch size,
weight decay, and initial learning rate to 768, 0.05, and
0.0001, respectively. Input images are resized to 224×224.
RandAugment [10] is employed for augmentation. How-
ever, we do not use random erasing [43] since self-attention
layers heavily focus on the areas erased by random eras-
ing, which may lead to inaccurate attention guidance. All
experiments are conducted with the ViT-small architecture.
All weights are initialized with the ImageNet-1k pre-trained
checkpoint of iBOT. We repeat each experiment three times
with different random seeds to report performance varia-
tions.

4.1. Transfer Learning Performance

Firstly, we compare our method and previous TL meth-
ods (see Table 2) to verify their compatibility with ViT.
Also, we evaluate the effectiveness of GTA in leveraging

object-centric representations. To make the comparison as
fair as possible, we mostly use the hyperparameter settings
reported in each paper, but a regularization coefficient λ is
tested with three values based on the default values of each
TL method. Specifically, we train models with 0.1×α, α,
and 10×α when α is the default value. We report the best
performance among the results obtained using three differ-
ent λ values.

At the smallest sampling rate setting (i.e. 15%), GTA can
significantly enhance performance compared to the base-
line for all datasets. Specifically, each dataset shows an
improvement of at least 2.52% and up to 10.15%. When
the training data is insufficient, ViT tends to attend more
to the background instead of foreground objects, making it
challenging to classify images with different backgrounds
in the test dataset. However, GTA addresses this issue by
explicitly regularizing the attention on foreground objects.
As the amount of training data increases, the degree of im-

5



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

ICCV
#XXXXX

ICCV
#XXXXX

ICCV 2023 Submission #XXXXX. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

provement decreases. For example, with the CUB dataset,
the gaps between GTA and baseline are decreased as 15%:
10.149, 30%: 5.719, 50%: 2.900, and 100%: 1.099.

We also compare GTA with commonly used TL meth-
ods such as L2-SP [37], BSS [8], and ViT-specific meth-
ods [33]. Our results demonstrate that GTA consistently
outperforms comparison methods across all sampling rates,
especially in cases where the training dataset is relatively
small. Across all target datasets, the gap between GTA
and the best-performing previous TL methods ranges from
2.35% to 8.89% at the 15% setting. While this trend re-
mains at the 30% and 50% settings, the difference between
GTA and other methods decreases, eventually becoming
comparable at the 100% setting. For instance, The L2-SP
shows comparable results with GTA at the 100% configura-
tion for Cars, Aircraft, and Pet datasets.

The L2-SP is the most explicit and simple method to
take advantage of a well-trained source model. However,
it is uncertain whether the combination of ViT with L2-
SP, a method optimized for CNNs, is the reason for the
relatively lower accuracy improvement. The BSS method
has the advantage of excluding negative features from the
pre-trained model, but it lacks regularization terms to lever-
age transferred knowledge, making it prone to overfitting to
the target task, similar to the baseline. According to [33],
training only attention layers yields better performance than
end-to-end fine-tuning. While it is also observed in our ex-
periments, the method shows lower performance than GTA.
Similarly, the FFN-only method, which freezes the attention
layers from the pre-trained model, shows poor performance
since the frozen attention cannot be adapted to the target
task.

4.2. The Importance of Attention Logits

Table 3 shows the importance of guiding attention logits
compared to using other two outputs, the transformer block
output z′ and MSA output MSA(z) in ViT. We use L2 reg-
ularization to those two outputs following Equation 5. Our
experiments show that GTA outperforms the regularization
of other outputs across all sampling rates and datasets. Such
variants without careful consideration can lead to an accel-
eration of negative transfer. The guidance based on atten-
tion logits may not have a direct impact on training, but
it would provide an appropriate inductive bias conditioned
on well-trained representations, emphasizing only the areas
that the model should attend to.

4.3. Segmentation Performance

In this experiment, we compare the segmentation results
calculated by the GTA model with those of the SSL source
model and fine-tuned model by evaluating segmentation
performance on the PASCAL-VOC12 validation set based
on the Jaccard index [13], following [4, 44, 27]. The vi-

Sampling Rates
Dataset Method 15% 100%
CUB baseline 41.376 84.444

block output guide 46.859 85.077
MSA output guide 46.519 84.904
Attention logits (GTA) 51.525 85.543

Cars baseline 56.100 93.065
block output guide 58.960 93.098
MSA output guide 59.039 93.023
Attention logits (GTA) 59.271 93.239

Aircraft baseline 52.115 86.939
block output guide 54.485 86.999
MSA output guide 54.225 87.039
Attention logits (GTA) 54.635 86.989

Dogs baseline 59.775 83.318
block output guide 65.299 84.755
MSA output guide 65.078 84.740
Attention logits (GTA) 69.196 85.633

Pet baseline 77.342 93.123
block output guide 82.875 93.913
MSA output guide 82.666 93.877
Attention logits (GTA) 83.856 94.022

Table 3. Effectiveness of different features for guidance. The
block output and MSA output guide indicate the guidance between
source and target model with the transformer block output and the
MSA layer output, respectively. Our proposed method, GTA, pro-
vide guidance to target model using attention logits. The proposed
method shows higher accuracy across all dataset and sample rates.
Best results are bold-faced.

Method Jarccard index
baseline 0.367
pre-trained (SSL) 0.386
GTA 0.399

Table 4. Quantitative evaluation of attention map guidance on
segmentation task. Baseline refers to simple fine-tuning, pre-
trained denotes SSL models not yet train for the target task. The
proposed GTA outperformed the others in terms of Jaccard index
on PASCAL-VOC12 validation set. Best results are bold-faced.

sualization results show that the segmentation results from
GTA are more accurate in focusing on the foreground ob-
ject, as shown in Figure 3. Quantitatively, the GTA model
also shows a higher Jaccard index compared to others (see
Table 4). The fine-tuned model focuses on specific parts of
the foreground but also attends to a significant amount of ir-
relevant background information. The SSL model performs
well, but it also places attention on unimportant areas that
are not relevant to the target class. While the segmentation
results generated from GTA model do not perfectly replicate
those of SSL model, it effectively focuses on the target ob-
ject of the current task. Through these experiments, guiding
based on attention logits has been also verified to be an ef-
fective method for focusing on informative areas while en-
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Figure 3. Comparison of segmentation results on PASCAL-
VOC12. Pre-trained refers to the segmentation results obtained
by the attention logits of the upstream SSL. Baseline represents
the results obtained by fine-tuning the pre-trained model to target
task. GTA denotes the results obtained by utilizing the GTA dur-
ing fine-tuning. GTA shows optimized performance compared to
the other results.

Sampling Rates
Dataset Method 15% 100%
CUB baseline 41.376 84.444

baseline + TransMix 42.032 84.703
GTA 51.525 85.543
GTA + TransMix 54.361 85.755

Cars baseline 56.100 93.065
baseline + TransMix 56.117 93.139
GTA 59.271 93.239
GTA + TransMix 59.943 93.218

Aircraft baseline 52.115 86.939
baseline + TransMix 52.455 86.819
GTA 54.635 86.989
GTA + TransMix 55.166 87.369

Dogs baseline 59.775 83.318
baseline + TransMix 60.229 83.551
GTA 69.196 85.633
GTA + TransMix 70.004 85.793

Pet baseline 77.342 93.123
baseline + TransMix 77.396 93.268
GTA 83.856 94.022
GTA + TransMix 84.937 94.067

Table 5. Quantitative evaluation of the boosting effect. Base-
line refers to the fine-tuned model without TransMix or GTA.
+TransMix denote add TransMix augmentation on tranining. The
combination of GTA and TransMix outperformed both the base-
line and GTA alone. Best results are bold-faced.

suring the model to be optimized to the current target task.

4.4. Boosting Effect of Attention Guidance

As demonstrated in our previous experiment, we show
that GTA improves the localization quality of the self-
attention logits on the target object. To capitalize on this ad-
vantage, we investigate whether a boosting effect could be
achieved by combining GTA with TransMix [5]. TransMix
involves mixing images in a similar manner to CutMix [40],
but without using the size ratio of the cropped box as a new
label. Instead, a new label is calculated based on the self-
attention ratio between the mixed images. Therefore, the
effectiveness of TransMix relies on the ability of the target
model to generate proper attention that is accurately focused
on the foreground object. However, the authors argue that
an attention map that accurately localizes objects cannot im-
prove the performance of TransMix. It is based on the find-
ing from the experiment using DINO as a parameter-frozen
external model. The parameter-frozen external model has
a limitation in that it can only generate mixing labels in a
static manner, regardless of the training. In contrast, our
proposed method allows for dynamic mixing labels while
incorporating improved attention from an external model.
This is because the parameter-frozen external model guides
only the attention logit of the target model.

According to Table 5, TransMix shows better perfor-
mance when it is combined with GTA rather than when it
is used with the baseline. The gap between baseline and
baseline+TransMix and between GTA and GTA+TransMix
is significantly increased when the sampling rate is small.
When trained with a small dataset, the background attention
issue, as visualized in Figure 1, can hinder TransMix from
generating the proper labels. However, as the amount of
training data increases, the effect of attention improvement
by GTA decreases, and consequently the boosting effect is
also reduced. Since the combination of TransMix and GTA
shows better results compared GTA alone, it demonstrates
that GTA can be combined with other regularization meth-
ods to further improve the results.

4.5. Ablation Study

The performance of GTA can be influenced by two main
factors: the selection of the pre-trained weight used as the
source model and the appropriate regularization coefficient
λ. In this section, we analyze these factors in detail.

Selection of guidance model. GTA is the method that
guides the training of the target model using the source
model. Therefore, the choice of which weights to use as
the source model can affect the performance of GTA. In
this experiment, we compare the performance of using SSL
models and the commonly used SL model as the source
model. Our results show that GTA consistently improves
accuracy across all datasets, whether applied to SL or SSL
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Sampling Rates
Dataset Method 15% 100%
CUB baseline (SL) 51.519 85.548

GTA (SL) 62.047 85.663
baseline (SSL) 41.376 84.444
GTA (SSL) 51.525 85.543

Cars baseline (SL) 45.894 91.382
GTA (SL) 47.822 90.930
baseline (SSL) 56.100 93.065
GTA (SSL) 59.271 93.239

Aircraft baseline (SL) 48.355 82.638
GTA (SL) 49.635 82.558
baseline (SSL) 52.115 86.939
GTA (SSL) 54.635 86.989

Dogs baseline (SL) 74.872 87.945
GTA (SL) 88.897 91.682
baseline (SSL) 59.775 83.318
GTA (SSL) 69.196 85.633

Pet baseline (SL) 81.466 93.123
GTA (SL) 91.524 94.967
baseline (SSL) 77.342 93.123
GTA (SSL) 83.856 94.022

Table 6. Comparison of GTA performance using different
source model weights. GTA consistently improved accuracy on
all datasets using both SSL and SL weights as the source model.
Best results are bold-faced.

(see Table 6). This suggests that GTA is not dependent on
specific SSL weights, but rather can be applied to a vari-
ety of pre-trained models. However, there are performance
differences depending on which weights are used. When
using SL weights, we observe better performance on CUB,
Dogs, and Pet datasets, whereas when using SSL weights,
we observe better results on Cars and Aircraft compared to
SL. These differences can be attributed to domain discrep-
ancies between upstream and downstream data. Since the
SL model is trained on ImageNet for classification, CUB,
Dogs, and Pet are semantically close to the upstream do-
main, while Car and Aircraft are farther away, resulting in
lower baseline performance. In contrast, SSL models show
better generalization performance, leading to better results
on Cars and Aircraft despite the fact that SSL is also trained
on ImageNet.

Influence of lambda. We test four different λ values (0.1,
1.0, 10.0, 100.0) to find an optimal value for each dataset
(see Figure 4). Our findings reveal that the optimal λ is
varied depending on the amount of and characteristics of
the dataset. Similar to the weight experiments above, we
observe that the results of λ are also heavily influenced by
the characteristics of the data domain. Specifically, datasets
such as CUB, Dogs, and Pet that belong to the near-domain
to upstream data show good performance with high λ val-
ues. In contrast, datasets such as Cars and Aircraft, be-

Figure 4. The effect of different values of λ on GTA. The optimal
lambda value varies depending on the characteristics and amount
of the target data.

longing to the out-domain, show better results with low λ
values. The difference could be attributed to the quality
of the self-attention logits used for guidance. In the case
of near-domain, even with high λ, the target task can be
fitted well with minimal changes in the self-attention log-
its. However, in the out-domain, a considerable change
in the self-attention logits is necessary to learn the target
task. Therefore, as the target data are far from the upstream
data domain, smaller λ values should be used, but too small
λ values might result in overfitting similar to the baseline
fine-tuning. As a result, our experiments show that for out-
domain datasets, the optimal value of λ is consistently 1.0
regardless of the amount of training data. In contrast, a
higher value of λ yields better accuracy as the amount of
data decreases for near-domain datasets. At the 15% condi-
tion, 100.0 λ is appropriate, but for higher conditions, near
10.0 is found to be the optimal value. Hence, when apply-
ing GTA, it is necessary to set a parameter λ based on the
characteristics and the amount of target data.

5. Conclusion

In this paper, we propose a novel transfer learning
method called GTA, which effectively utilizes SSL pre-
trained knowledge to improve TL performance, specifically
for ViT architecture. By applying explicit L2 regulariza-
tion between the attention logits of the target and source
models, GTA can achieve significant performance improve-
ments across various fine-grained datasets and sampling
rates. Through extensive experiments, we show that impos-
ing regularization on the attention logits in ViT is essential,
and that GTA outperforms other comparison methods es-
pecially when the number of target training data is small.
These results demonstrate that GTA is a simple and effec-
tive approach for improving the TL performance of ViT.
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