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Abstract

Label projection, which involves obtaining
translated labels and texts jointly, is essential
for leveraging machine translation to facilitate
cross-lingual transfer in structured prediction
tasks. Prior research exploring label projection
often compromises translation accuracy in fa-
vor of simplified label identification or suffers
from inaccuracies by relying solely on word
alignment for constructing label phrases. In
this paper, we introduce a novel label projection
approach, CLAP, which translates text to the
target language and performs contextual trans-
lation on the labels using the translated text
as the context, ensuring better accuracy for the
translated labels. We leverage instruction-tuned
language models with multilingual capabilities
as our contextual translator, imposing the con-
straint of the presence of translated labels in the
translated text via instructions. We compare
CLAP with other label projection techniques on
zero-shot cross-lingual transfer across 39 lan-
guages on two representative structured predic-
tion tasks — event argument extraction (EAE)
and named entity recognition (NER). Exper-
iments reveal that CLAP improves by 1.7 F1
points for EAE and by 1.4 F1 points for NER.

1 Introduction

Cross-lingual transfer for structured prediction
tasks such as named entity recognition, relation
extraction, and event extraction, has gained consid-
erable attention recently (Huang et al., 2022; Cao
et al., 2023; Tedeschi and Navigli, 2022; Cabot
et al., 2023; Fincke et al., 2022; Jenkins et al., 2023;
Ahmad et al., 2021b). It generalizes models trained
in a source languages to other target languages,
broadening the scope of these applications to more
languages (Chen and Ritter, 2021; Subburathinam
et al., 2019; Pouran Ben Veyseh et al., 2022).

One effective and simple way to improve cross-
lingual transfer performance is translate-train,
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Figure 1: Illustration of the task of label projection from
English to Chinese. Label projection converts sentences
from a source to a target language while translating the
associated labels jointly. Failures in this process occur
when labels are either inaccurately translated or missing
in the translated sentence in the target language.

which leverages machine translation to generate
pseudo-training data in the target languages by
translating source language training data (Xue et al.,
2021; Ruder et al., 2021; Yu et al., 2023). However,
applying this technique to structured prediction
tasks necessitates a label projection step, which
involves jointly translating input sentences and la-
bels (Chen et al., 2023). Label projection requires
not only accurate translation of the labels but also
maintaining the association between the translated
texts and labels. As illustrated in Figure 1, while
“suits” can have multiple valid translations, only
“JfA” is presented in the translated sentence and
is a proper translation at the same time.

Prior works have dealt with label projection
through two primary frameworks. The first one,
illustrated in Figure 2(a), performs machine trans-
lation on modified source sentences that incorpo-
rate label annotations using special markers (Chen



et al., 2023; Hennig et al., 2023). Translated labels
can be extracted if special markers are retained
in the translations. In this approach, the quality
of the translation is inherently compromised due
to the inclusion of special markers (Chen et al.,
2023). The other framework uses word similarity
to procure word alignments between the source and
translated sentences. Label translations are further
constructed by combining mapped tokens in the
translated sentence (Stengel-Eskin et al., 2019; Ak-
bik et al., 2015; Aminian et al., 2019), as shown in
Figure 2(b). However, it is hard for this framework
to ensure accurate label translation by merely using
word alignments, as we will show in Section 4.4.

In this work, we introduce CLAP (Contextual
Label Projection), which obtains projected label
annotations by utilizing contextual machine trans-
lation for the labels. We first acquire the translation
of the whole input sentence by any plug-and-play
machine translation model. Then, inspried by the
idea of contextual machine translation (Wong et al.,
2020; Voita et al., 2018), we use the translated in-
put text as context to perform label translation, as
shown in Figure 2(c). Exploiting contextual ma-
chine translation strongly enhances the accuracy of
the translated labels while preserving their associa-
tion to the translated sentence. Furthermore, trans-
lating the input sentence in an unmodified manner
better exploits machine translators, and in turn, as-
sures high quality of the translated sentence.

To implement contextual machine translation,
we utilize an instruction-tuned language model
with multilingual capabilities, Llama-2 (Touvron
et al., 2023). We encode the translated input sen-
tence and the constraint for the presence of labels
in the form of instruction prompts. Despite sacri-
ficing some translation ability compared to super-
vised machine translation models (Zhu et al., 2023),
instruction-tuned language models provide better
understanding of contextual constraints.

We experiment on the tasks of event argument ex-
traction (EAE) and named entity recognition (NER)
using the ACE dataset (Doddington et al., 2004)
and the WikiANN dataset (Pan et al., 2017), cover-
ing 39 different languages in total. Our experiments
show that utilizing label-projected data from CLAP
for translate-train yields an average improvement
of 1.7 and 1.4 F1 scores over strong baselines for
EAE and NER respectively. We also perform an
intrinsic evaluation using human study in Chinese,
Arabic, Hindi, and Spanish to assess the projected

labels’ quality which shows how CLAP provides
more accurate label translations while preserving
the label presence in the translated sentence. Fur-
ther analyses also reveal how CLAP generalizes
for different translation models and works effec-
tively for the translate-test paradigm as well. These
evaluations and robust analyses underscore the ef-
fectiveness of CLAP for label projection.

2 Background

2.1 Structure Prediction Tasks

Given an input sentence X, structure prediction
models aim to predict structure output 'y = [X[i1 :
Jil, x[i2 : g2y ..o, X[in ¢ Jn]] (Where x[iy @ ji] is
an input sentence span from token i; to j;) cor-
responding to a set of roles r = [ry,r2,...,7y]
(where r; € R, a pre-defined set of roles). This
vastly differs from standard classification-based
tasks wherein the output prediction y is a singular
value from a fixed set of classes independent of the
input sentence X.

2.2 Zero-shot Cross-Lingual Transfer

Zero-shot cross-lingual transfer (Hu et al., 2020;
Ahmad et al., 2019; Huang et al., 2021; Hsu et al.,
2023b) aims to train a downstream model for the
target language l;4; using supervised data Dg,.
from a source language [ without using any
data in the target language (i.e. D;;; = ¢). The
paradigm has effectively advanced language tech-
nologies for under-resourced languages.

2.3 Translate-Train

Translate-train (Hu et al., 2020; Ruder et al., 2021)
is a popular and powerful zero-shot cross-lingual
transfer technique that leverages machine transla-
tors 7 to boost downstream model performance.
Specifically, in translate-train, Dg,. is translated
into the target language as pseudo training data
Di‘% and the downstream model is trained using a
combination of { Dy, D,

Utilizing translate-train for structured prediction
tasks requires Label Projection, which includes

two sets of translations: (1) Sentence translation

(x57¢ N x9%), where we use 7, to denote the

translation from ;.. to l;4; using 7; and (2) Label
translation (y*"¢ — y'9%), such that the translated la-
bel y'9¢ is appropriately associated with x9¢. This
demand makes translate-train for structure predic-
tion tasks more complex than that for classification
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Figure 2: Illustration of the various techniques to conduct label projection: (a) Marker-based Translation use
markers to transform the sentence and translate the transformed sentence with label markers jointly, (b) Word
Alignment methods use external word alignment tools to locate the translated labels in the translated sentence, and
(c) CLAP performs contextual translation on labels using M (here we show instruction-tuned language model as

M) to locate translated label in the translated sentence.

tasks, as the latter only requires sentence transla-
tion (since y is a value independent of x). !

Translate-Test Besides translate-train, translate-
test is another commonly used technique in zero-
shot cross-lingual transfer. During testing time, it
uses models solely trained on Ds,. to make pre-

dictions on translated test sentences (x'9¢ 15 x°7¢),
and then uses label projection to map predictions
on x*"¢ back to predictions on x'9¢. Since it will
cause additional error propagation issues during in-
ference time, we mainly focus on translate-train in
this paper. However, we discuss CLAP’s utilization
and effectiveness on translate-test in Section 5.4.

2.4 Label Projection

We hereby technically define the problem of label
projection (Akbik et al., 2015; Chen et al., 2023):

x5Te L tht
& ym =y Yym© €Y
st ytat ¢ x'9t Vylat ¢ ytot,

This problem requires optimizing two properties
of accuracy and faithfulness on the translations.

Accuracy ensures that [x*9%, 49" 9% 4i9"] are

"For certain structure prediction tasks like relation classifi-
cation (determining the relationship between two entities in
x), even if the output y is scalar, translate-train necessitates
label projection step due to the required projection of the two
given entities into the translated sentence.

accurate translations of [x57¢, y§™¢, y3"¢, ..., y5 ]

On the other hand, faithfulness ensures that each
Y9! is associated with X9 (the constraint of y'd’ €
x%9%). Standard translation models 7 trained on
supervised sentence translation pairs cannot sim-
ply impose the additional faithfulness constraint,
such as the failure cases shown in Figure 1. This

demonstrates the challenges of the label projection.

3 Methodology

In this section, we first formally define the previ-
ous attempts at label projection and later introduce
CLAP, which provides a new perspective of using
contextual machine translation for label projection.

3.1 Baseline Methods

As stated in Section 1, two primary frameworks,
Marker-based translations and word-alignment-
based methods, are primarily used in prior works.

Marker-based Translations solve the label pro-
jection by first marking labels to the input sentence
x°7¢, forming x°"¢, and then use the translation
model to obtain the potential translation of input
sentence and labels jointly (Lewis et al., 2020; Hu
et al., 2020; Chen et al., 2023). For example, in Fig-
ure 2(a), “South Florida” is delineated by markers
[0] and [\0]. Assuming the preservation of mark-
ers after translation of X", a post-processing step,
Prark, s performed to retain the translated labels



y'9% and translated sentence x'9¢. Putting every step
together, we have

isrc — f(XSTC,ySTC), itgt — T(}ESTC)
tgt tgt <tgt
x9 Y = Pmark(x g 7)"%)7

where f denotes the marker addition step and X'
is the translation of X" using translator 7 .

Despite their simplicity, these methods suffer
from poor translation quality and reduced robust-
ness to different translation models owing to their
input sentence transformations and strong assump-
tions about the retention of markers in X*9¢.

Word Alignment approaches (Akbik et al., 2015;
Yarmohammadi et al., 2021) first translate the in-
put sentence and acquire word alignments (Dyer
et al., 2013; Dou and Neubig, 2021) between the
translation pairs. Each translated label yﬁ;‘{t is then
procured by merging the aligned words of y;7¢ in
the translated sentence using the word mappings w.
For example, in Figure 2(b), the translated label for
“South Florida” is obtained by merging two aligned
words, which is done by a heuristic post-processing
algorithm Pg;4,,. Formally, we have

tht :T(Xsr0)7 w = W(XSTC, tht)

tgt __ . src src tgt src src
Ym = alzgn(ym , W, X 7, X ) vy ey

m
Although these approaches provide high-quality
sentence translations, their translated labels can
be error-prone as they use simple word alignment
modules for capturing word-level translation rela-
tions without considering the entire label for trans-
lation (Akbik et al., 2015; Chen et al., 2023).

3.2 CLAP

We tackle the task of label projection through a
new perspective — performing actual translation
on labels instead of recovering them from trans-
lated text x'9¢. This better ensures the accuracy of
the translated labels y*9!. To accomplish this, we
leverage the idea of contextual machine translation
on the label translation with x*9! as context.
Contextual machine translation, which aims to
perform phrase-level translations conditional on the
context of the translated sentence, is tangentially
explored for applications like anaphora resolution
(Voita et al., 2018) and pronoun translations (Wong
et al., 2020). The main goal of this task is to main-
tain the consistency of phrasal translations in the
given context. In our work, we develop a novel

model CLAP to extend the idea of contextual trans-
lation to the application of label projection.

As illustrated in Figure 2(c), CLAP first utilizes
machine translation model 7 to translate input sen-
tence x*7¢ to x'9'. Treating x'9¢ as the context, the
contextual translation model M translates the la-
bels y*"¢ to y*9!. Contextual translation implicitly
imposes the faithfulness constraint which requires
y#{t € xt9t Vyfﬁt € y'"¢, hence, slackly satisfy-
ing the requirement of label projection. These two
steps can be formally described as

tht — T(XSTC)

' = My ") Vym© € ¥

where 313" is generated from M (y57¢|x9"), draw-
ing the significant difference from the previous
works.

Compared to word alignment approaches using
simple word-similarity aligners YV, we use mod-
els with translation capabilities M, to improve the
accuracy of translated labels. Furthermore, the in-
dependence of 7 and M for translating x*"¢ and
y*"¢ respectively assures that CLAP has better trans-
lation quality for x*9* and is more robust than the
marker-based baselines. We empirically back these
intuitions in § 4.4.

3.3 Implementing CLAP

Putting our idea into practice, we configure 7 to
be a modular component that can be replaced by
any third-party translation model. For M, we use
an instruction-tuned language model with multi-
lingual capabilities. Instruction-tuned language
models can accept conditional information in their
natural language prompt. Specifically, we encode
the translated target sentence x'9 as well as the
faithfulness constraint y/J' € x'9* implicitly in
the form of natural language instructions (high-
lighted as “Contextual Translation Instruction” in
Figure 2(c)). Following Brown et al. (2020), we
also provide n randomly chosen in-context exam-
ples (highlighted as “In-context examples” in Fig-
ure 2(c)) to improve the instruction-understanding
capability of the model. > Lastly, we use simple
string-matching algorithms to get the exact span
index of ¥ in x'9'. Although this may not be
the optimal solution when duplicated strings exist
in x9, it works well in practice as stated in prior
word-alignment methods (Dou and Neubig, 2021).

>The in-context examples are generated using Google

translation and initial prediction from instruction-tuned LMs.
The label predictions are further verified by back-translation.



ACE WikiANN
# Train Instances 4,202 20,000
# Dev Instances 450 10,000
# Avg. Test Instances 194 6,469
# Test Languages 2 39

Table 1: High-level data statistics for ACE and
WikiANN datasets for EAE and NER tasks respectively.
# = ‘number of” and Avg. = average.

4 Experiments and Results

This section describes our experimental setup com-
prising the datasets, baselines, and implementation
details. Later, we present both intrinsic and extrin-
sic evaluations of CLAP.

4.1 Task and Dataset

We choose two structure prediction tasks, event
argument extraction (EAE) (Sundheim, 1992; Hsu
et al., 2023a) and named entity recognition (NER)
(Tjong Kim Sang, 2002; Tjong Kim Sang and
De Meulder, 2003) for evaluating our label pro-
jection method. EAE requires the extraction of
text segments serving as arguments correspond-
ing to an event and mapping them to their corre-
sponding argument roles. NER aims to identify and
categorize named entities from the input sentence.
We use the multilingual ACE dataset (Doddington
et al., 2004) and the WikiANN (Pan et al., 2017;
Rahimi et al., 2019) for benchmarking EAE and
NER, respectively. We consider the zero-shot cross-
lingual transfer using English (en) as the source
language for both tasks. For ACE, we follow the
pre-processing by Huang et al. (2022) to retain 33
event types and 22 argument roles. For WikiANN,
we utilize pre-processing by Hu et al. (2020). We
provide the high-level statistics for these datasets
in Table 1. More details can be found in § A.

4.2 Baselines

We select two label projection models as baselines,
each representing the two baseline frameworks we
covered in Section 3.1, respectively: (1) EasyPro-
ject (Chen et al., 2023), a recent marker-based
translation technique, utilizes numbered square
braces (e.g. [0] and [/0]) to mark the labels in
the input sentence. (2) Awesome-Align (Dou and
Neubig, 2021), a neural bilingual word alignment
model, uses multilingual language models to find
word similarities to derive word alignments, which
are later used for label projection.
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Figure 3: Reporting faithfulness and accuracy (in %)
for the different label projection models on EAE and
NER datasets. The closer the model is to the top-right,
the better it is.

mBART mT5 |mT5+Copy | Avg

ar zh | ar zh | ar zh
Zero-shot™ ‘36.3 47.3136.7 51.0|40.3 51.9 |43.9
Awesome-align |45.2 49.4146.8 53.7|48.6 54.5 [49.7
EasyProject 37.9 523|345 54.6|38.5 563 |45.7
CLAP (ours) 46.0 53.4|44.3 56.5|49.3 58.6 |51.4

Table 2: Extrinsic evaluation of the different label pro-
jection techniques regarding downstream model perfor-
mance using translate-train for EAE. Avg = Average. *
indicates the reproduced results of our base zero-shot
cross-lingual EAE model, X-Gear (Huang et al., 2022).

4.3 Implementation Details

For the translation model 7, we experiment with
the Google Machine Translation (GMT). 3 For
CLAP, we use the text-completion version of
Llama-2 (Touvron et al., 2023) with 13B parame-
ters as M. We use n = 2 in-context examples for
CLAP prompts. For Awesome-align, we use the
unsupervised version of their model utilizing mul-
tilingual BERT (Devlin et al., 2019) as it provides
better results (Chen et al., 2023).

4.4 Intrinsic Evaluation

We first evaluate CLAP by directly evaluating the
label projection quality, mainly focusing on evalu-
ating the accuracy and faithfulness of the translated
labels, with the definition stated in Section 2.4.
Accuracy is measured in terms of translation
quality by comparing the source labels with the
translated labels (y*"¢ <+ y'9%). We hire native
human speakers to rank the translated labels by the

3https: //cloud.google.com/translate
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Lang \af ar bg bn de el e et e fa fi fr he hi hu id it ja jv ka

Zero-shot ‘77.4 48.1 82.8 77.0 78.8 80.6 74.5 78.7 61.4 69.2 79.3 79.4 57.3 70.6 80.8 53.1 79.4 19.1 58.5 72.3
Awesome-align |77.9 46.0 81.0 81.2 78.8 71.7 65.3 78.0 66.8 46.4 77.4 78.2 55.3 73.9 77.4 52.8 79.3 20.3 56.3 70.4
EasyProject 76.1 34.4 81.0 78.6 78.8 69.3 70.5 73.9 54.8 49.1 77.8 78.8 61.1 73.0 75.6 51.0 79.0 41.3 62.4 66.4
CLAP 74.4 48.7 81.0 78.1 78.4 75.9 74.7 77.4 68.8 59.0 75.9 79.4 58.4 73.1 72.4 56.1 80.1 45.3 64.8 70.5

|kk ko ml mr ms my nl pt sw ta te th tl tr ur vi yo zh |Avg
Zero-shot ‘51.9 57.5 66.4 65.3 53.4 65.8 83.0 80.0 74.2 68.4 60.3 62.1 0.4 74.5 65.6 62.2 75.0 34.1 24.6‘64.2

Awesome-align
EasyProject
CLAP

47.7 57.7 63.4 62.4 70.7 54.1 83.0 75.8 64.8 70.1 62.4 55.4 2.4 80.9 62.8 53.7 66.4 61.5 45.4|63.5
31.7 48.2 56.5 59.8 71.7 60.3 81.9 79.6 66.3 71.5 53.2 54.2 11.4 78.2 66.8 63.8 65.6 68.8 42.0{63.2
42.8 60.1 60.3 61.4 73.5 61.5 82.2 78.2 68.3 70.6 59.6 53.1 13.2 74.6 62.9 32.9 75.8 59.6 49.7|64.9

Table 3: Extrinsic evaluation of the different label projection techniques in terms of downstream model performance

using translate-train for NER. Avg = Average.

different models based on their translation quality.
We conduct this evaluation on 50 data samples
for four languages - Chinese, Arabic, Hindi, and
Spanish, respectively. The final accuracy score for
each model is the average percentage when the
given methods provided the best quality translation
for the labels among the other competitors.
Faithfulness measures the fulfillment of the la-
bel projection constraint. It is measured as a per-
centage of projected data points when all the trans-
lated labels are present in the translated input sen-
tence (yfgt exiot Wyt ¢ y'9'). The statistics
use the complete test set on ACE and WikiANN.

4.4.1 Results

The accuracy and faithfulness of the models are
plotted together in Figure 3. An ideal model should
optimize both these metrics and thus, the closer
the models are to the top-right, the better they are
deemed. Overall, this figure shows how CLAP per-
forms the best intrinsically as it is the closest to
the top-right for both the tasks. For EAE, CLAP is
better than all models in both the metrics, while for
NER, CLAP compromises faithfulness slightly for
stronger accuracy. Awesome-align and EasyPro-
ject are both great at attaining higher projection
rates but produce more inaccurate label translations.
Overall, intrinsic evaluation reveals how CLAP pro-
vides the best balance of accuracy and faithfulness.

4.5 Extrinsic Evaluation

Extrinsic evaluation implicitly evaluates the label
projection techniques’ ability to generate good-
quality data for downstream tasks. The projected
data is utilized to train downstream models using
the translate-train paradigm together with the origi-
nal training data in English. For translate-train, we
only retain the projected datapoints that satisfy the

faithfulness constraint as part of the target pseudo-
tgt

training data Dgyc.

EAE For EAE downstream model, we use the
state-of-the-art model for zero-shot cross-lingual
EAE: X-Gear (Huang et al., 2022). We explore
three versions of the X-Gear model: mBART with-
out copy (mBART), mT5 without copy (mT5),
and mT5 with copy mechanism (mT5+Copy). We
present the results in terms of argument classifica-
tion F1 scores * in Table 2. For reference, we also
include the zero-shot baseline (training only on
Dsrc). Evidently, CLAP performs the best provid-
ing an average gain of 1.7 F1 points over the next
best baseline of Awesome-align and a net gain of
7.5 F1 points over the zero-shot baseline. This re-
sult is in sync with our intrinsic evaluation wherein
CLAP performed the best for EAE.

NER For NER, we utilize XLM-RoBERTaj;,e
(Conneau et al., 2020) as our downstream model
and use the XTREME (Hu et al., 2020) setup for
implementation. The main results for entity clas-
sification F1 scores are presented in Table 3 along
with the zero-shot baseline. Overall, CLAP per-
forms the best with an absolute improvement of
0.7 F1 points over the zero-shot baseline and 1.4-
1.7 F1 points over the previous works. The strong
downstream model performance using CLAP com-
bined with our learnings from intrinsic evaluation
underscores the importance of prioritizing accuracy
over faithfulness for NER.

S Analysis

5.1 Qualitative Analysis

Diving deeper, we qualitatively study typical error
cases for the translated labels in four languages

*Averaged over five model runs



Source Source

Target

Translated

Sentence Label Lang Technique Label Explanation
Born in Castelvetrano , Trapani and raised Awesome-align %‘@F@'{Fﬁ' <9 T Extra word

in Catania , he moved to Madrid to keep  Castelvetrano hi EasyProject Castelvetrano No translation
up his busy career . CLAP HECAd I Perfect
Unilaterally leading a coalition featuring Awesome-align 7 Incomplete
tyrannies, effect such change remains a  Iraq zh EasyProject REFR T Extra word
bad idea, Iraq’s elections notwithstanding. CLAP FHw Perfect

Table 4: Qualitative examples highlighting the error-cases of the baseline models along with explanations for Hindi
(hi) and Chinese (zh). We also show how CLAP performs better and fixes the errors.

by different label projection techniques. In 200
examples of our study, we found that 18% of the
time, EasyProject predicts nothing due to mark-
ers dropped in the translated sentence, and for
19%, EasyProject simply copies the English la-
bel failing to translate it to the target language.
For Awesome-align, the majority of errors are due
to additional words or incomplete label transla-
tions, similar to the observation presented in (Chen
et al., 2023). This could be because it is hard for
the word-alignment module to decide alignments
between sub-words, leading to over-alignment or
under-alignment. We show two selected examples
of our study from Hindi (hi) and Chinese (zh) in
Table 4, where we show how Awesome-align pre-
dicts extra words or incomplete words owing to
misalignments, and EasyProject fails to translate
the word for Hindi while producing extra tokens
for Chinese. In both cases, we show how CLAP
makes accurate predictions and is more robust in
maintaining accurate label translations.

5.2 Generalization to other translation models

To verify the generalizability of our approach to
other translation models, we perform an extrinsic
evaluation of the label projection techniques on
the EAE task using the mBART-50 many-to-many
(MMT) (Kong et al., 2021) translation model. We
show the results for this evaluation in Table 5. We
see that CLAP performs the best with an average
improvement of 2 F1 points over the next best base-
line of Awesome-align and 6.5 F1 points over the
zero-shot baseline. This result shows our CLAP
is a generalizable label projection technique and
agnostic to the underlying translation model.

5.3 Ablation Study for CLAP

To study the impact of using instruction-tuned
models for contextual translation, we conduct an
ablation study comparing CLAP with the follow-

mBART mT5 |mT5+Copy | Avg
ar zh | ar zh | ar zh

Zero-shot ‘36.3 47.3136.7 51.0{40.3 51.9 |43.9
Awesome-align | 45.7 48.6[43.1 52.1|47.1 53.8 [48.4
EasyProject 37.3 53.6|35.3 54.0(36.5 55.6 |45.4
CLAP (ours)  |45.5 52.0|44.8 54.7|48.2 56.9 [50.4

Table 5: Extrinsic evaluation of the different label pro-
jection techniques using translate-train for EAE using
the mBART-50 many-to-many translation model.

mBART mTS5 |mT5+Copy | Avg

ar zh | ar zh | ar zh
Zero-shot ‘36.3 47.3136.7 51.0{40.3 51.9 |43.9
Independent |44.8 49.5(41.3 50.6|44.8 54.3 |47.6
Constrained [44.5 51.2(42.3 53.5|45.6 55.6 |48.8
CLAP (ours) [45.5 52.0|44.8 54.7|48.2 56.9 |50.4
Supervised ‘60.7 66.4|161.4 68.6/63.2 69.7 [65.0

Table 6: Ablation study comparing different contextual
translation techniques for label projection. Performance
is measured by downstream EAE performance.

ing strong baselines: (1) Independent transla-
tion uses the translation model 7 to independently
(without any context of the input sentence) trans-
late the source text labels to the target language
(i.e. y9¢ = T(y*™°)), (2) Constrained translation
which uses a decoding constraint to carry out the
faithfulness requirements. More specifically, dur-
ing translation, it limits the generation vocabulary
to the tokens in the translated sentence z'9¢. We
follow De Cao et al. (2022); Lu et al. (2022) for
implementing these constraints.

We extrinsically evaluate the model perfor-
mances of the techniques on the task of EAE using
the MMT translation model > and show the results

SSince decoding-time constraints for the Constrained
model can’t be applied to GMT



EAE NER Avg
ar zh | it es id

Zero-shot ‘36.3 47.3|79.4 74.5 53.1|58.1

Awesome-align | 32.8 30.1|77.5 69.6 51.4|52.3
EasyProject 17.0 11.5/65.9 62.6 51.8|41.8
CLAP (ours) | 34.3 39.5|73.4 75.0 57.4|55.9

Table 7: Extrinsic evaluation of the different label pro-
jection techniques in terms of downstream model per-
formance using translate-test using GMT for EAE and
NER. Avg = Average

in Table 6. We notice how simple independent
translations can provide strong gains over the zero-
shot model, but contextual translation can provide
higher gains. The improvement of 1.6 F1 points of
CLAP over the Constrained model highlights the
significance of using an instruction-tuned model
for contextual translation.

5.4 Using CLAP for Translate-Test

Another popular technique for cross-lingual trans-
fer is translate-test (Hu et al., 2020; Ruder et al.,
2021) which was discussed in Section 2.3. As part
of this analysis, we study the applicability of CLAP
for translate-test using extrinsic evaluation on Ara-
bic (ar) and Chinese (zh) for EAE and Italian (it),
Spanish (es), and Indonesian (id) for NER. We
show the results in Table 7. Overall, we see how
CLAP outperforms both the other methods signif-
icantly achieving the best scores for 4 out of the
5 languages. EasyProject performs the worst as
it uses the translation model twice causing higher
error propagation. We also note how translate-test
doesn’t yield improvements over the zero-shot base-
line, especially for EAE as it requires using label
projection twice (once for trigger and once for ar-
guments), thus leading to error propagation.

6 Related Works

Zero-shot Cross-lingual Structure Extraction
Since the emergence of strong multilingual models
(Devlin et al., 2019; Conneau et al., 2020), vari-
ous works have focused on zero-shot cross-lingual
learning (Hu et al., 2020; Ruder et al., 2021) for
various structure extraction tasks like named en-
tity recognition (Li et al., 2021; Yang et al., 2022),
relation extraction (Ni and Florian, 2019; Subbu-
rathinam et al., 2019), slot filling (Krishnan et al.,
2021), and semantic parsing (Nicosia et al., 2021;
Sherborne and Lapata, 2022). Recent works have

focussed on building datasets (Pouran Ben Vey-
seh et al., 2022; Parekh et al., 2023) as well as
developing novel modeling designs exploring the
usage of parse trees (Subburathinam et al., 2019;
Ahmad et al., 2021a; Hsu et al., 2023c), data projec-
tion (Yarmohammadi et al., 2021), pooling strate-
gies (Agarwal et al., 2023) and generative models
(Hsu et al., 2022; Huang et al., 2022) to improve
cross-lingual transfer. We utilize the state-of-the-
art model X-Gear (Huang et al., 2022) and XLM-R
(Conneau et al., 2020) as the downstream models
for EAE and NER respectively, and improve them
further using CLAP-guided translate-train.

Label Projection Techniques Several works
have attempted to solve label projection for vari-
ous structure extraction tasks such as semantic role
labeling (Aminian et al., 2017; Fei et al., 2020),
slot filling (Xu et al., 2020), semantic parsing
(Moradshahi et al., 2020; Awasthi et al., 2023),
NER (Ni et al., 2017; Stengel-Eskin et al., 2019),
and question-answering (Lee et al., 2018; Lewis
et al., 2020; Bornea et al., 2021). The earliest
works (Yarowsky et al., 2001; Akbik et al., 2015)
utilized statistical word-alignment techniques like
GIZA++ (Och and Ney, 2003) or fast-align (Dyer
et al., 2013) for locating the labels in the translated
sentence. Recent works (Chen et al., 2023) have
also explored the usage of neural word aligners like
QA-align (Nagata et al., 2020) and Awesome-align
(Dou and Neubig, 2021). Another set of works has
explored the paradigm of mark-then-translate using
special markers like quote characters ("") (Lewis
et al., 2020), XML tags (<a>) (Hu et al., 2020), and
square braces ([0]) (Chen et al., 2023) to locate the
translated labels. Overall, both these techniques
can be error-prone and have poorer translation qual-
ity (Akbik et al., 2015), as shown in § 4.4 and 5.1.

7 Conclusion and Future Work

In our work, we propose a novel approach CLAP
for label projection, which utilizes contextual ma-
chine translation using instruction-tuned language
models. Experiments on two structure prediction
tasks of EAE and NER demonstrate the effective-
ness of CLAP compared to other label projection
techniques. Furthermore, intrinsic evaluation pro-
vides insights to justify our model improvements.
Overall, we lay the foundation for exploring the uti-
lization of contextual translation and future works
can use it for various other applications as well.



Limitations

In our work, we show the effectiveness of our
model CLAP on two representative structure pre-
diction tasks of EAE and NER. Its effectiveness for
other structure prediction tasks remains unknown
and can be extended in future works. For CLAP,
we utilized the 13B version of the Llama-2 model
as the base instruction-tuned language model as a
proof-of-concept for the effectiveness of CLAP. Fu-
ture works can explore the usage of other stronger
LLMs to enhance the model performance. Lastly,
we would like to point out that our model doesn’t
improve over the zero-shot model for several lan-
guages, mainly owing to the limited language un-
derstanding and poor translation quality. However,
the focus of our work has been to show the effec-
tiveness of our model with other used label pro-
jection techniques. With growing model sizes and
enhanced coverage of languages, we posit that our
model will eventually be able to provide significant
improvements for all languages.

Ethical Concerns

We use an instruction-tuned language model
(specifically LLama-2) as the base model for
CLAP. Since these instruction-tuned models are
not trained equitably in all languages, the model
generation quality may vary drastically for each
language. Furthermore, since these models are not
trained on filtered safe content data, the model may
potentially generate harmful content.
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A Data Statistics

We present the extensive data statistics for the ACE
and WikiANN datasets used for downstream model
evaluation on EAE and NER respectively. For ACE,
Table 8 provides details about the number of events
and arguments for each language. For WikiANN,
we present the statistics in Table 9

Train Dev Test
Language English English | Arabic Chinese
# Events 4,202 450 198 190
# Arguments 4,859 605 287 336

Table 8: Data Statistics in terms of events and arguments
of the ACE dataset for the downstream task of EAE. #
indicates ‘number of .

B Complete Results for Intrinsic
Evaluation

B.1 Accuracy Evaluation

Accuracy evaluation is done by 5 native bilingual
speakers for Chinese, Arabic, Hindi, and Spanish
by ranking the translation quality of the translated
labels. The native speakers were undergraduate and
graduate students who were well-versed in their re-
spective native languages. We present the interface
of the google sheets along with the instructions
shown to the annotators for Chinese in Figure 4.
Similarly, annotation was performed for the other
languages as well. We present the complete re-
sults as an A/B comparison of the different tech-
niques in terms of their win rates (i.e. percentage
when A is better than B) in Table 10. We note how
CLAP is more accurate than previous baselines of
Awesome-align and EasyProject while at par with
the Independent baseline.

B.2 Faithfulness Evaluation

We present the complete results for the faithfulness
evaluation per language in Tables 11 and 12 for
EAE and NER tasks respectively. For EAE, CLAP
has the best faithfulness followed by Awesome-
align. For NER, Awesome-align and EasyProject
have the highest faithfulness.

C Additional Implementation Details
C.1 X-Gear

X-Gear is used as the downstream model for EAE
for extrinsic evaluation of the label projection

14

Split Language # Sentences  # Entities
Train  English (en) 20,000 27931
Dev English (en) 10,000 14,146
Afrikaans (af) 1,000 1,487
Arabic (ar) 10,000 11,259
Bulgarian (bg) 10,000 14,060
Bengali (bn) 1,000 1,089
German (de) 10,000 13,868
Greek (el) 10,000 12,163
Spanish (es) 10,000 12,260
Estonian (et) 10,000 13,892
Basque (eu) 10,000 13,459
Farsi (fa) 10,000 10,742
Finnish (fi) 10,000 14,554
French (fr) 10,000 13,369
Hebrew (he) 10,000 13,698
Hindi (hi) 1,000 1,228
Hungarian (hu) 10,000 14,163
Indonesian (id) 10,000 11,447
Italian (it) 10,000 13,749
Japanese (ja) 10,000 13,446
Javanese (jv) 100 117
Test Georgian (ka) 10,000 13,057
Kazakh (kk) 1,000 1,115
Korean (ko) 10,000 14,423
Malayalam (ml) 1,000 1,204
Marathi (mr) 1,000 1,264
Malay (ms) 1,000 1,115
Burmese (my) 100 119
Dutch (nl) 10,000 13,725
Portuguese (pt) 10,000 12,823
Russian (ru) 10,000 12,177
Swabhili (sw) 1,000 1,194
Tamil (ta) 1,000 1,241
Telugu (te) 1,000 1,171
Thai (th) 10,000 16,970
Tagalog (tl) 1,000 1,034
Turkish (tr) 10,000 13,587
Urdu (ur) 1,000 1,020
Vietnamese (vi) 10,000 11,305
Yoruba (yo) 100 111
Chinese (zh) 10,000 12,049

Table 9: Data Statistics in terms of sentences and entities
of the WikiANN dataset for the downstream task of
NER. # indicates ‘number of .

techniques. The original X-Gear work (Huang
et al., 2022) explored two base multilingual mod-
els: mBART-50-large (mBART) (Kong et al., 2021)
and the mT5-base (mT5) (Xue et al., 2021). They
also explored the usage of copy mechanism (See
et al., 2017) to prompt the models to predict strings
from the input sentence. In our work, we uti-
lized mBART without copy (mBART), mT5 with-
out copy (mT5), and mTS5 with copy mechanism
(mT5+Copy) as the downstream models. We
present details about the hyperparameter settings
for these models in Table 13. We run experiments
for CLAP on a NVIDIA GeForce RTX 2080 Ti
machine with support for 8 GPUs.



System 1 vis System 2 Arabic Chinese Hindi Spanish
S1 Tie S2 S1  Tie S2 S1 Tie S2 S1  Tie S2

CLAP Awesome-align | 36% 58% 6% |45% 50% 5% |20% 74% 6% |12% 84% 4%
CLAP EasyProject 52% 32% 16% |56% 39% 5% |42% 48% 10% |30% 66% 4%
CLAP Independent 18% 60% 22% | 12% 71% 17% |18% 64% 18% |24% 68% 8%
Independent Awesome-align | 44% 42% 14% |39% 57% 4% |28% 60% 12% |20% 64% 16%
Independent EasyProject 50% 44% 6% |50% 46% 4% |52% 36% 12% |32% 52% 16%
Awesome-align EasyProject 2% 26% 32% |34% 50% 16% |42% 42% 16% |26% 64% 10%

Table 10: A/B comparison of the various label projection techniques for accuracy evaluation for the Google
Translation model. Accuracy is measured as the label translation quality by native human speakers. Here, S1 =
System 1 is better, S2 = System 2 is better, and Tie = similar quality. The better systems are highlighted in bold.

Guidelines:
Looking at the English word in context of the English sentence, evaluate the word translations by System 1, 2 and 3 by giving them rankings - i.e. 1/2/3 /4 (1= best and 4 = worst)

SPECIAL NOTES

1. If two systems deserve the same rank, mark them with the same rank (e.g.1/1/3/40R1/2/212)

2. If a system transation has "-", that means the system was not able to translate the phrase at all. This is the worst kind of translation and should be ranked the worst

3. If the word is ot translated and in English itself, it would be considered a poorer translation than phonetic translation of the word in the target language. But the English translation should be considered better than random gibberish in the target language

Translations Rankings

English Sentence English word System 1 System 2 System 3 System 4 System 1 System 2 System 3 System 4
happily watching tom and jerry on his mini television , his transformation from the pain

- racked boy who left baghdad . baghdad IS B =85 =55

reporter : the kramers must wait and travel to another town for abby . on the next flight

. passengers wear masks and their temperatures are taken for signs of sars kramers kramers TRBRI TRBRIF SHERT

Allegations have come to light that several OSU players received illegal benefits

including cash , access to cars, etc . players R BR BR BR

The first one was on Saturday and triggered intense gun battles , which according to

some U.S. accounts, left at least 2,000 Iragi fighters dead gun EIAH i® i 104

Now that armored columns of U.S .- led troops have reached the outskirts of Baghdad

, eyewitnesses report fighting and shelling around Saddam Hussein International Saddam Hussein R EFREERRNG

Airport International Airport  El%% AN A A A A o)
we have eyewitnesses to his orders of execution of hundreds of people in 1991 during

the shiite muslim uprising people - A A EEN

1'm reminded of when | lived in another state and the local cop charged the town

drunk in his driveway after following him home from the pub drunk - 3 B o8

Figure 4: Annotation Interface for conducting the intrinsic evaluation for Accuracy. The shown examples are for
Chinese, while the study was done for Hindi, Spanish, and Arabic as well.

Techniques ar zh Avg. on a NVIDIA GeForce RTX 2080 Ti machine with
Independent 33 38 35 support for 8 GPUs.

Awesome-align 66 83 74

EasyProject 31 66 48

CLAP 74 8 79

Table 11: Faithfulness evaluation of the various label
projection techniques for EAE as a percentage of the
times the translated labels were present in the translated
input sentence. Numbers are in percentage (%). Higher
faithfulness is better and the best techniques are high-
lighted in bold.

C.2 XLM-R

XLM-R (Conneau et al., 2020) is used as the down-
stream model for NER for extrinsic evaluation of
the label projection techniques. We mainly follow
the XTREME (Hu et al., 2020) framework for set-
ting up the task and model. We present details
about the hyperparameter settings for this model
in Table 14. We run experiments for CLAP on
a NVIDIA GeForce RTX 2080 Ti machine with
support for 8 GPUs.

C3 CLApP

We report the hyperparameter settings for our
model in Table 15. We run experiments for CLAP
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Techniques af ar bg bn de el es

Independent 78 66 67 74 79 57 70
Awesome-align 99 95 98 92 99 98 99
EasyProject 100 98 83 98 97 89 99
CLAP 94 75 63 93 79 46 84

Independent 70 64 61 71 71 71 65
Awesome-align 98 97 96 99 98 95 93
EasyProject 97 94 99 98 99 94 36
CLAP 92 91 72 92 74 80 90

Independent 68 77 74 68 66 64 56
Awesome-align 98 99 99 58 98 95 94
EasyProject 97 99 98 95 94 99 77
CLAP 93 84 78 67 53 70 85

Independent 63 57 73 80 53 76 76
Awesome-align 96 88 92 99 90 99 97
EasyProject 93 87 73 98 62 100 99
CLAP 64 88 95 82 55 8 &9

ru sw ta te th tl  tr

Independent 59 79 72 76 66 81 76
Awesome-align 97 96 91 91 51 99 098
EasyProject 99 97 91 87 99 99 98
CLAP 66 94 96 90 57 58 94

vi ur yo zh Avg.

Independent 74 74 45 66 69
Awesome-align 83 97 92 92 93
EasyProject 98 94 77 92 92
CLAP 89 91 88 60 79

Table 12: Faithfulness evaluation of the various label
projection techniques for NER as a percentage of the
times the translated labels were present in the translated
input sentence. Numbers are in percentage (%). Higher
faithfulness is better and the best techniques are high-
lighted in bold.
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mBART mT5 mT5+Copy
Base Model multilingual BART-Large = multilingual T5-Large = multilingual T5-Large
Usage of copy No No Yes
Training Batch Size 16 16 16
Eval Batch Size 32 32 32
Learning Rate 2x107° 1x107* 2x107°
Weight Decay 1x1075 1x107° 1x107°
# Warmup Epochs 5 5 5
Gradient Clipping 5 5 5
Max Training Epochs 60 60 60
# Accumulation Steps 1 1 1
Beam Size 4 4 4
Max Sequence Length 350 350 350
Max Output Length 100 100 100

Table 13: Hyperparameter details for the EAE downstream X-Gear model.

Base Model XLM - Roberta - Large
# Training Epochs 5

Training Batch Size 32
Evaluation Batch Size 32
Learning Rate 2x107°
Weight Decay 0
Max Sequence Length 128
# Accumulation Steps 1
# Saving Steps 1000

Table 14: Hyperparameter details for the NER down-
stream XLM-R model.

Base Model LLAMA-2-13B
Temperature 0.6
Top-p 0.9
Maximum Generation Length 64-132
# In-context examples 2

Table 15: Hyperparameter details for the CLAP model.
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