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ABSTRACT

Many interesting properties emerge in LLMs, including rule extrapolation, in-
context learning, and data-efficient fine-tunability. We demonstrate that good
statistical generalization alone cannot explain these phenomena due to the inherent
non-identifiability of autoregressive (AR) probabilistic models. Indeed, models
zero or near-zero KL divergence apart—thus, equivalent test loss—can exhibit
markedly different behaviours. We illustrate the practical implications for AR
LLMs regarding three types of non-identifiability: (1) the non-identifiability of
zero-shot rule extrapolation; (2) the approximate non-identifiability of in-context
learning; and (3) the non-identifiability of fine-tunability. We hypothesize these
important properties in LLMs are induced by inductive biases.

1 INTRODUCTION

Autoregressive (AR) language models trained on the next-token prediction objective can have
remarkable reasoning (Ouyang et al., 2022; Touvron et al., 2023; Wei et al., 2022), in-context
learning (ICL) (Xie et al., 2022; Zhang et al., 2023; Min et al., 2022), and data-efficient fine-tuning
capabilities (Brown et al., 2020; Liu et al., 2023).
Modern theory of deep learning studies neural networks in the interpolation regime (Zhang et al.,
2016; Masegosa, 2020; Kawaguchi et al., 2022), i.e., when, at the end of training, a model reaches
a (non-unique) global minimum of the training loss. Since Large Language Models (LLMs) are
trained on massive datasets, these models achieve both low training and test loss; thus, they generalize
in the statistical sense. However, statistical generalization cannot guarantee good performance on
downstream tasks (Liu et al., 2023).
We advocate for studying LLMs in the saturation regime (Liu et al., 2023), where models reach the
(non-unique) global minimum of the test loss during training; since the same minimal test loss cannot
distinguish between out-of-distribution (OOD) model performance (Liu et al., 2023), we should
ask what additional properties hold for the minimum found by our algorithms. To formalize such
questions, we need to substitute the black box concept of average risk from statistical learning theory
with more application-specific goals, e.g., rule extrapolation or the data efficiency of fine-tuning.
We can use the lens of identifiability to explain why the test loss has a non-unique minimum. Namely,
unless their support spans the entire space of sequences, autoregressive (AR) probabilistic models are
non-identifiable, i.e. indistinguishable by the likelihood, even in the limit of infinite data. The study
of (non-)identifiability has a vast literature both in statistical inference and causal discovery. These
are well-known results; we only aim to highlight the practical implications of non-identifiability for
AR LLMs. We organize these in three case studies, which provide well-defined starting points to
theoretically study LLMs. Our contributions are:
• We highlight the limitation of statistical generalization for explaining important AR LLMs proper-

ties common in the saturation regime (§ 2), and hypothesize that the right way to study them is
through inductive biases;

• By studying rule extrapolation on zero-probability prompts in a toy example, we show exper-
imentally that LLMs can extrapolate differently despite achieving similar test loss (case study
§ 3.1);

• We introduce an approximate notion of non-identifiability to demonstrate that properties relying on
sets of prompts with vanishing probability are not guaranteed in real-world LLMs. For an LLM
that almost perfectly matches a pre-training distribution given by a mixture of HMMs, we prove
that ICL does not necessarily follow (case study § 3.2).

• We highlight that the data-efficient fine-tunability of LLMs is not explained by the function they
implement, let alone the test loss (case study § 3.3).
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2 BACKGROUND

Statistical generalization measures whether a model’s performance on the training data transfers to
unseen test data, assumed to be sampled from the same distribution (i.e., i.i.d.). Classical results in
statistical learning theory attempt to bound the generalization gap in terms of uniform notions of the
model class’ complexity (Vapnik & Chervonenkis, 1971; Vapnik, 2000; Bartlett & Mendelson, 2002).
More applicable to deep learning are approaches that provide bounds based on the properties of the
learning algorithm or the specific hypothesis learned. These include PAC-Bayes (Dziugaite & Roy,
2017; Pérez-Ortiz et al., 2021; Lotfi et al., 2022; 2023), information-theoretic (Russo & Zou, 2016;
Xu & Raginsky, 2017; Wang et al., 2023a) and algorithmic stability bounds (Bousquet & Elisseeff,
2002; Deng et al., 2021). The appeal of statistical generalization is its “black-box” nature: it can
be applied across many domains without changing the terminology. Slightly more domain-specific
thinking is often introduced when one studies out-of-distribution (OOD) generalization (see Lin et al.,
2022, for a review), since there it is necessary to describe how the test and training distributions differ.

Figure 1: OOD rule extrapolation in
Transformers is better than chance: We
trained a decoder-only Transformer via
maximum likelihood on the anbn Proba-
bilistic Context-Free Grammar (PCFG). We
evaluated it on OOD prompts inconsistent
with anbn, and checked whether the com-
pletions obey rule (R1) (x axis). Two other
models, trained by an adversarial and an
oracle process achieved the same test loss
but displayed very different rule extrapo-
lation accuracies. This demonstrates that
test loss is insensitive to rule extrapolation
behaviour and the 43.7% rule extrapolation
accuracy (averaged over 20 seeds; details
in Appx. D) results from inductive biases.

Interpolation regime. Overparametrized models gave
rise to the interpolation regime, where a model has
enough parameters to (almost) perfectly fit the training
data (Zhang et al., 2016; Masegosa & Ortega, 2023;
Kawaguchi et al., 2022). In this case, the training loss
alone cannot distinguish whether a model will general-
ize, yet models that we find by minimizing the training
loss typically generalize well. This observation led to
a paradigm shift in the community, inviting researchers
to consider training dynamics and the inductive biases
enabling statistical generalization instead of only rely-
ing on the model class, loss, and dataset structure. We
advocate for a second paradigm shift: to focus on the
inductive biases enabling OOD generalization.

Identifiability of Probabilistic Models. Identifia-
bility is an important property of a class of statistical
models, determining whether a model can always be
uniquely recovered from observed data. In parametric
statistical models, it asks whether the parameters of a
model are uniquely determined by the data distribution
they define (see e.g. Comon, 1994). In machine learn-
ing, identifiability can be interpreted as a guarantee that
the test loss has a unique minimizer, a unique Bayes
optimal model. This is a highly desirable quality: it
allows us to reason about properties of this possibly
unreachable but unique minimum, e.g. predict OOD ex-
trapolation or the effect of interventions (Pearl, 2009).

3 THREE TYPES OF NON-IDENTIFIABILITY IN AR LLMS

In this section, we discuss the (non-)identifiability of AR probabilistic models. By an AR probabilistic
model we mean (for some fixed T ∈ N) a collection {p(xi|x1:i−1);T ≥ i ≥ 1} of conditional
distributions, which also define a collection of joint distributions {p(x1:i);T ≥ i ≥ 1} over sequences.
This collection of conditional distributions usually shares a set of parameters θ. We study three
notions of non-identifiability that one might be interested in when studying such models: functional
non-identifiability (§ 3.1), ε−non-identifiability (§ 3.2), and parameter non-identifiability (§ 3.3).
AR probabilistic models are inherently non-identifiable: multiple models with perfect generalization
may exist and may behave differently. Here we showcase what this means for AR LLMs via three
case studies, matching the three notions of non-identifiability from above. Our case studies provide
clearly defined, relevant scenarios, which can be used as starting points to study LLMs theoretically.

3.1 FUNCTIONAL NON-IDENTIFIABILITY OF RULE EXTRAPOLATION

Functional non-identifiability means that the collection of conditionals is not uniquely determined
by the collection of joint distributions they define. Consider training an AR language model q to fit
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samples from the PCFG p over sequences of the form anbn where n is random. Such a distribution
has limited support since there are ungrammatical sequences that occur with probability 0. Moreover,
there exist finite length prefixes x1:l which cannot be completed grammatically, whose marginal
probability p(x1:l) is thus 0. We refer to such prefixes as OOD prompts. We say that q generalizes
perfectly (in the statistical sense) if KL [p(x1:k)||q(x1:k)] = 0, for some length k, i.e., it achieves
maximal likelihood both in training and test. If x1:l has zero probability under p, the completion
distribution p(xl+1:k|x1:l) is undefined. However, q still defines a distribution over completions
q(xl+1:k|x1:l). Since the Kullback-Leibler Divergence (KL) divergence is insensitive to the choice
of q(xl+1:k|x1:l), the completion distribution is functionally non-identifiable. This means that any
property of q that depends only on completions of OOD prompts is non-identifiable. The anbn

grammar is the intersection of two rules:
(R1) the number of as and bs match; and
(R2) a never follows a b.

Unless a prompt can be completed consistently with both rules, the behaviour of q is non-identifiable.
It is meaningful to ask whether a trained model q still respects rule (R1) when completing OOD
prompts that break rule (R2), such as abaa. We call this rule extrapolation, illustrated in Fig. 4.

Experiment. We train a decoder-only Transformer (Vaswani et al., 2017; Radford et al., 2018)
on the anbn PCFG in a maximum likelihood estimation (MLE), adversarial and oracle setting and
evaluate zero-shot rule extrapolation (Fig. 1). All models reach the same minimal test loss, but display
widely varying rule extrapolation performance, with the MLE model reaching 43.7% on average.
This demonstrates that statistical generalization alone does not explain rule extrapolation in LLMs.

3.2 ε−NON-IDENTIFIABILITY AND IN-CONTEXT LEARNING (ICL)

KL = 0KL ≤ ε ICL

q p

Figure 2: Vanishingly small KL cannot cap-
ture in-context learning (ICL): illustration of
Prop. 1, showing that when p displays ICL, there
exists a distribution q that is at least ε−close in
KL divergence and has no ICL ability.

In § 3.1, we assumed that there are OOD sequences
with exactly 0 probability under the pre-training
distribution. A more realistic scenario is where
some prompts have a non-zero but vanishingly
small probability under the pre-training distribu-
tion. With full support, when non-zero probabil-
ity is placed on all sequences, AR probability dis-
tributions are identifiable. However, relaxing the
strict definition of identifiability and considering
models near-equivalent if their test performance is
barely distinguishable with the KL, we still find
near-equivalent models that may behave radically
differently on low-probability sequences, despite
having access to infinite data. We call this ε−non-
identifiability (for some small ε > 0) and define it
informally (cf. Appx. C):

Definition 1 (ε−non-identifiability of distributional properties (informal)). A distributional property
of p is ε−non-identifiable if there is a distribution q such that KL [p||q] ≤ ε, but q does not have the
property of p.

Contrary to traditional definitions, ours relaxes the distributional equivalence by admitting a non-zero
KL, and is formulated about having a property (e.g., ICL). This distinction might seem subtle, yet is
important since in practice, the goal is to have a well-performing model; minimizing a loss can be
insufficient (Liu et al., 2023; Saunshi et al., 2022; Rusak et al., 2022; Tay et al., 2022).

Example: ε−non-identifiability of ICL. We use our definition to show that in-context learning
(ICL) is ε−non-identifiable in some AR LLMs. ICL refers to the model’s capacity to deduce novel
concepts from a prompt and generate appropriate completions, and is studied theoretically both from
an LVM (Wang et al., 2023b) and a Hidden Markov Model (HMM) (Xie et al., 2022) perspective.
Xie et al. (2022) demonstrates that for a mixture of HMMs pre-training distribution p, the LLM is an
in-context learner in the limit of infinite examples in the prompt. This means it produces completions
aligning with the predictions of the prompt distribution.
We prove that ICL is ε−non-identifiable under the setting of (Xie et al., 2022), due to the low
probability of OOD prompts. Hence the emergence of ICL is not a direct consequence of minimizing
the negative log-likelihood. We detail the implications for the saturation regime in Appx. A.
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We follow the notation and assumptions of Xie et al. (2022). Let p(θ) be a prior distribution on the
latent concepts θ ∈ Θ, and let each θ define a distribution p(o1, . . . , oT |θ) over sequences of tokens
o1, . . . , oT ∈ O of fixed pre-training document length T . Furthermore, assume that p(o1, . . . , oT |θ)
is defined by a HMM with a hidden state set H, therefore the pre-training distribution is a mixture
of HMMs parametrized by θ. Xie et al. (2022) proved that under some additional assumptions
(Appx. B.2), ICL occurs. However, as we show, matching the pre-training distribution up to ε > 0
KL cannot guarantee ICL, even with increasing prompt size:

Proposition 1 (ε−non-identifiability of ICL, informal). For all ε > 0, there exists n1 ≥ n0, such
that for all n ≥ n1, there exists a distribution qn close to a mixture of HMMs in KL divergence

KL [p(o1, . . . , oN )||qn(o1, . . . , oN )] ≤ ε, s.t. ICL does not occur.

Proof (Sketch). We construct a distribution qn that matches p everywhere, except for a few sequences
that end similarly to elements of the prompt distribution. There, we define qn to guarantee different
ICL behaviour. Then we bound KL [p||qn] and exploit that almost all conditionals are the same
(except those we changed). Since the probability of prompts goes to zero as their length n → ∞, we
conclude that the KL converges to zero. The proof and details on notation are in Appx. B.2.

3.3 PARAMETER NON-IDENTIFIABILITY AND FINE-TUNING

θ1

θ′1

θ2
θ′2

P

P ′
1

P ′
2

parameter space distribution space

good downstream
performance

Figure 3: Illustration of parameter non-
identifiability: Two sets of parameters (θ1, θ2)
may describe the same AR LLM and thus
achieve the same test loss and perform iden-
tically in benchmarks. When fine-tuned on the
same data, parameter-dependent inductive bi-
ases may push the two models apart, and it is
possible that, say, θ1 enables significantly more
data-efficient fine-tuning than θ2.

A neural network’s parametrization affects its learn-
ing dynamics (Saxe et al., 2014; Jacot et al., 2020;
Dinh et al., 2017), which implies parameter non-
identifiability (Fig. 3), i.e., functionally equivalent
models can behave differently during fine-tuning
and transfer. Parameter non-identifiability is rele-
vant in LLMs, since large pre-trained models are
often fine-tuned on new data sets to solve special-
ized tasks (see Tay et al., 2022, for a demonstration
with Transformers). Liu et al. (2023) demonstrates
parameter non-identifiability in a clever experiment:
they “embed” a small Transformer into a larger one
by maintaining functional equivalence and demon-
strate that the different architectural constraints of
the larger model interact differently with the op-
timization method: despite having the same pre-
training loss, optimization will not prefer the em-
bedded Transformer, but one with flatter minima,
yielding a 10% difference in downstream accuracy
after fine-tuning. This example highlights the need
to understand what parametrizations are useful for
improving fine-tuning and transfer in LLMs.

4 LESSONS FROM NON-IDENTIFIABILITY: THE ROLE OF INDUCTIVE BIASES

Our case studies (§ 2) highlight that statistical generalization does not explain important observed
properties of real-world AR LLMs. We hypothesize that these properties emerge (at least in part) due
to inductive biases, and hence the study of inductive biases is inescapable in understanding LLMs.
Relevant inductive biases may result from, among others, (i) the complexity and structure of natural
languages, (ii) the Transformer architecture (cf. Appx. E for a review). Studying these in formal
languages such as PCFGs provides a valuable starting point as they have a controllable notion of
complexity and structure.

5 CONCLUSION

Our work highlighted that due to the non-identifiability of probabilistic AR models, good statistical
generalization cannot explain the desirable properties of LLMs. We studied three types of non-
identifiability, demonstrated the limits of current theoretical frameworks in understanding LLM
behavior, and highlighted how inductive biases could potentially explain emergent properties such as
OOD rule extrapolation (§ 3.1), in-context learning (§ 3.2), and data-efficient fine-tunability (§ 3.3).
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A DETAILS ON ε−IDENTIFIABILITY AND THE SATURATION REGIME

Mathematical formalizations of in-context learning often assume perfect (statistical) generalization
(Xie et al., 2022; Wang et al., 2023b), that is, KL [p(x1:k)||q(x1:k)] = 0. In this context, the
saturation regime is understood as the regime of perfect generalization. However, in experimental
demonstrations, the term “saturation regime” is used more leniently to mean near perfect test loss.
We argue that a refinement of the concept is required in order to align theory with practice. As we
demonstrate in [ref], by relaxing perfect generalization only to KL [p(x1:k)||q(x1:k)] ≤ ε, we may
observe qualitatively different behaviours in models, for example, the existence and non-existence
of in-context learning ability. Hence for the theory, it does matter whether we are truly or only
approximately in the saturation regime. Yet in practice, in-context learning properties hold even for
smaller transformers, where the test loss is only near-optimal at best (Figure 6 in Liu et al. (2023)).
We argue that this discrepancy between theory and practice may be explained by inductive biases: in
the near-optimal loss regime, where multiple models of varying quality exist, inductive biases select
a solution that satisfies additional important properties, such as in-context learning.

B PROOF OF PROPOSITION 1

B.1 DETAILS ON NOTATION

We follow the notation and assumptions of Xie et al. (2022). Let p(θ) be a prior distribution on the
latent concepts θ ∈ Θ, and let each θ define a distribution p(o1, . . . , oT |θ) over sequences of tokens
o1, . . . , oT ∈ O of fixed pre-training document length T . Furthermore, assume that p(o1, . . . , oT |θ)
is defined by a HMM with a hidden state set H, therefore the pre-training distribution is a mixture of
HMMs:

p(o1, . . . , oT ) =

∫
θ∈Θ

p(o1, . . . , oT |θ)p(θ) dθ. (1)

The prompt for ICL is a concatenation of n independent training examples Sn, and a test input xtest
generated by the prompt distribution pprompt and all are conditioned on the concept θ⋆.

(Sn, xtest) = (x1, y1, o
delim, x2, y2, o

delim, . . . , xn, yn, o
delim, xtest) ∼ pprompt, (2)

where the i-th training example is (xi, yi), xi has length (k−1) for some fixed k, and odelim is a
special delimiter token. Moreover, PN = {(Sn, xtest, y)} denotes the set of prompts with the output
target y, where N=(k+1)(n+1)−1 is the length of the prompts, which are in a form of (Sn, xtest, y).
In ICL, the goal is to predict the test output ytest by predicting the next token. ytest is sampled from
pprompt(y|xtest). We say that the model is an in-context learner if, as n→∞,

argmax
y

p(y|Sn, xtest) → argmax
y

pprompt(y|xtest). (3)

Xie et al. (2022) proved that if certain assumptions hold (Appx. B.2) and the pre-training distribution
is a mixture of HMMss, then ICL occurs. That is, since y is discrete, it follows from (3) that there
exists n0 ∈ Z+ such that for n ≥ n0, the two sides of (3) become equal:

∀n > n0 : argmax
y

p(y|Sn, xtest) = argmax
y

pprompt(y|xtest).

In other words, for n large enough, ICL emerges in the model with prompt (Sn, xtest). However, as
we show, matching the pre-training distribution up to ε > 0 KL cannot guarantee ICL, even with
increasing prompt size.

B.2 PROOF

Proposition 2 (ε−non-identifiability of ICL, formal version). For all ε > 0, there exists n1 ≥ n0,
such that for all n ≥ n1, there exists a distribution qn close to a mixture of HMMs in KL divergence

KL [p(o1, . . . , oN )||qn(o1, . . . , oN )] ≤ ε, s.t. argmax
y

qn(y|Sn, xtest) ̸= argmax
y

pprompt(y|xtest).

First we recall from § 3.2 that n0 is defined as the threshold example sequence length after which p
satisfies in-context learning, i.e.,

∀n > n0 : argmax
y

p(y|Sn, xtest) = argmax
y

pprompt(y|xtest).

Next, we recall two assumptions from Xie et al. (2022) that we make use of throughout the proof.
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Assumption 1 (Delimiter hidden states). Let the delimiter hidden states D be a subset of H. For any
hdelim ∈ D and θ ∈ Θ, p

(
odelim | hdelim , θ

)
= 1 and for any h /∈ D, p

(
odelim | h, θ

)
= 0.

Assumption 2 (Bound on delimiter transitions). For any delimiter state hdelim ∈ D and any hidden
state h ∈ H, the probability of transitioning to a delimiter hidden state under θ is upper bounded
p
(
hdelim | h, θ

)
< c2 for any θ ∈ Θ\ {θ∗}, and is lower bounded p

(
hdelim | h, θ∗

)
> c1 > 0

for θ∗. Additionally, the start hidden state distribution for delimiter hidden states is bounded as
p
(
hdelim | θ

)
∈ [c3, c4].

The above assumptions allow us to simplify our analysis and avoid degenerate cases such as a
deterministic (hidden) Markov chain.

Proof. Our proof follows the below steps.
• Step 1: for every n ≥ n0, we define a qn by equating it with p everywhere except on

sequences that end with a prompt structure. We construct qn such that the prompt completion
will be different than in p, i.e.

argmax
y

qn(y|Sn, xtest) ̸= argmax
y

p(y|Sn, xtest).

We do this by making sure that

argmax
y ̸=y∗

qn(y|Sn, xtest) ≥ qn(y
∗|Sn, xtest) +

δ

2
.

• Step 2: we bound KL (p||qn) as

KL (p||qn) ≤ [constant] × [the probability of prompts].

• Step 3: we show that the latter converges to 0 as n → ∞ and is controlled by a function of
δ.

Step 1 Let us denote the length N prompt by O = (o1, ..., oN ). Consider the fixed distribution
p(o1, . . . , oN ) defined by a (mixture of) HMMs. For any fixed n ∈ Z+, we define a distribution
qn(o1, . . . , oN ) as a modification of p.
We consider those sequences which end with a prompt structure, that is, in which the last k tokens,
namely ON−k+1:N satisfy ON−k+1:N ∈ P , with P = {(x, y)|x has length k − 1, y has length 1}.
We construct qn such that it is different only on these sequences and equal to p(o1, . . . , oN ) every-
where else.
We expand qn via the chain rule

qn(Sn, xtest, y) =

n+1∑
j=1

qn(yj |Sj−1, xj)qn(xj |Sj−1)qn(dj−1|Sj−2, xj−1, yj−1) (4)

= qn(y|Sn, xtest)qn(xtest|Sn)qn(dn|Sn−1, xn, yn)

+

n∑
j=1

qn(yj |Sj−1, xj)qn(xj |Sj−1)qn(dj−1|Sj−2, xj−1, yj−1), (5)

with notation xn+1 = xtest, yn+1 = y and x0 = y0 = d0 = S0 = S−1 = ∅.
For j = 1, . . . , n let

qn(xj |Sj−1) := p(xj |Sj−1)

and
qn(dj−1|Sj−2, xj−1, yj−1) := p(dj−1|Sj−2, xj−1, yj−1),

we are only modifying p(y|Sn, xtest), but only at its largest and second largest values. Let a1 =
maxy p(y|Sn, xtest), y∗1 = argmaxy p(y|Sn, xtest) and a2 = maxy ̸=y∗

1
p(y = y|Sn, xtest), y∗2 =

argmaxy ̸=y∗
1
p(y = y|Sn, xtest), then for all y ̸= y∗1 and y ̸= y∗2 let qn be the same as p,

qn(y|Sn, xtest) := p(y|Sn, xtest) ∀y∗1 ̸= y ̸= y∗2 ,

but on the largest and second largest values we change p as the following

qn(y
∗
1 |Sn, xtest) :=

a1 + a2
2

− δ

2
and
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qn(y
∗
2 |Sn, xtest) :=

a1 + a2
2

+
δ

2
,

where δ is arbitrarily small. Since qn(y|Sn, xtest) has its maximum at y∗2 ,

argmax
y

p(y|Sn, xtest)) ̸= argmax
y

qn(y|Sn, xtest).

Due to (4), qn is well-defined. Since n > n0, from Xie et al. (2022) we have

argmax
y

p(y|Sn, xtest) = argmax
y

pprompt(y|xtest).

Hence
argmax

y
qn(y|Sn, xtest) ̸= argmax

y
pprompt(y|xtest)

Note that

log

(
p(y|Sn, xtest)

qn(y|Sn, xtest)

)
≤ log

(
2

1− δ

)
, (6)

since if qn(y|Sn, xtest) = p(y|Sn, xtest), then the log equals to 0, otherwise

log

(
p(y∗1 |Sn, xtest)

qn(y∗1 |Sn, xtest)

)
= log

(
2a1

a1 + a2 − δ

)
≤ log

(
2

1− δ

)
and

log

(
p(y∗2 |Sn, xtest)

qn(y∗2 |Sn, xtest)

)
= log

(
2a2

a1 + a2 + δ

)
≤ log

(
2

1− δ

)
,

since 2a2

a1+a2+δ < 2a1

a1+a2−δ ≤ 2
1−δ with equality if a2 = 0.

Step 2 Now we bound the KL divergence between p(o1, . . . , oN ) and qn(o1, . . . , oN ).

KL(p(o1, . . . , oN )||qn(o1, . . . , oN )) =
∑
t∈ON

p(t) log

(
p(t)

qn(t)
)

)
=

∑
{t|tN−k+1:N∈P}

p(t) log

(
p(t)

qn(t)

)
+

+
∑

{t|tN−k+1:N /∈P}

p(t) log

(
p(t)

qn(t)

)
=

∑
(Sn,xtest,y)

p(Sn, xtest, y) log

(
p(Sn, xtest, y)

qn(Sn, xtest, y)

)
=

expanding p(Sn, xtest, y) and qn(Sn, xtest, y) via the chain rule, we get

=
∑

(Sn,xtest,y)

p(Sn, xtest, y) log

n+1∏
j=1

p(yj |Sj−1, xj)p(xj |Sj−1)p(dj−1|Sj−2, xj−1, yj−1)

qn(yj |Sj−1, xj)qn(xj |Sj−1)qn(dj−1|Sj−2, xj−1, yj−1)

 =

=
∑

(Sn,xtest,y)

p(Sn, xtest, y) log

(
p(y|Sn, xtest)

qn(y|Sn, xtest)

)
≤

since by the definition of qn, all the terms inside the log vanish excluding p(y|Sn, xtest) and
qn(y|Sn, xtest). Now we use the bound in Eq (6).

KL(p(o1, . . . , oN )||qn(o1, . . . , oN )) ≤ log

(
2

1− δ

) ∑
(Sn,xtest,y)

p(Sn, xtest, y).

Step 3 We now show that
∑

(Sn,xtest,y)
p(Sn, xtest, y) → 0 as n → ∞ exponentially fast.∑

(Sn,xtest,y)

p(Sn, xtest, y) =
∑

(Sn,xtest,y)

∫
θ∈Θ

p(Sn, xtest, y|θ)p(θ) (7)

=

∫
θ∈Θ

∑
(Sn,xtest,y)

p(Sn, xtest, y|θ)p(θ). (8)

Let us fix θ ∈ Θ. Consider the HMM with output distribution p, conditioned on θ. We wish to focus
on bounding the probability of delimiter output states occurring as every kth token.
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From Assumption 1 of Xie et al. (2022), we know that a delimiter hidden state generates a delimiter
output state with probability 1, and non-delimiter hidden states don’t generate delimiter output states.
Hence our question is equivalent to bounding the probability of the hidden Markov chain being at
delimiter hidden states exactly at every kth step.
Without loss of generality, assume that our HMM hidden state Markov chain is at a state in D,
otherwise, we reach D in some steps. For two, possibly equal hdelim,i, hdelim,j ∈ D, define

pk,θij =
∑

h1,...,hk−1∈H\D

p(hdelim,i, hk−1, hk−2, ..., h1, h
delim,j |θ). (9)

Let p∗ = supθ∈Θ maxi,j p
k,θ
ij , where the maximum is under all delimiter hidden states in D. We

show that p∗ < 1. Fixing θ ∈ Θ \ θ∗, by Assumption 2 of Xie et al. (2022), for all hdelim ∈ D and
h ∈ H, p(hdelim|h, θ) < c2 < 1. Hence for all i, j,

pk,θij =
∑

h1,...,hk−1∈H\D

p(hdelim,i, hk−1, hk−2, ..., h1, h
delim,j |θ) (10)

=
∑

h1,...,hk−1∈H\D

p(hdelim,i|hk−1, θ)p(hk−1|hk−2, ..., h1, h
delim,j , θ)p(hk−2, ..., h1, h

delim,j |θ)

(11)

≤ c2
∑

h1,...,hk−1∈H\D

p(hk−1|hk−2, ..., h1, h
delim,j , θ)p(hk−2, ..., h1, h

delim,j |θ) (12)

≤ c2. (13)

Thus, p∗ ≤ c2, and the probability of generating a prompt in Pn, for all θ, is upper bounded by cn2 .
Hence∫

θ∈Θ

∑
(Sn,xtest,y)

p(Sn, xtest, y|θ)p(θ) ≤
∫
θ∈Θ

(max
i,j

pk,θij )np(θ) ≤ (sup
θ∈Θ

max
i,j

pk,θij )n = (p∗)n ≤ cn2 .

(14)
This decays exponentially. Hence

KL(p(o1, . . . , oN )||qn(o1, . . . , oN )) ≤ log

(
2

1− δ

)
cn2

From this, we obtain that defining n1 = logc2

(
ϵ

log 2

)
+ 1 and δ = min

{
a1 + a2, 1− 2e

− ϵ
cn2

}
ensures KL(p(o1, . . . , oN )||qn(o1, . . . , oN )) ≤ ϵ for all n ≥ n1.

C IDENTIFIABILITY

Definition 2 (Set of probability measures). We denote the set of probability measures on domain X
as M(X ).

Definition 3 (Property). Let M(X ) be the set of distibutions on X and let p ∈ M(X ). A property A
is a binary function M(X ) → {0; 1}. We say that p has property A, if A(p) = 1 and that it does not
if A(p) = 0

Definition 4 (Property equivalence classes). A property A partitions a set of distributions M(X )
into two equivalence classes, MA and MA such that

∀i ̸= j, pi, pj ∈ MA : A(pi) = A(pj) = 1 (15)
∀i ̸= j, pi, pj ∈ MA : A(pi) = A(pj) = 0 (16)

such that M(X ) = MA ∪MA and MA ∩MA = ∅.
Definition 5 (ε−non-identifiability of distributional properties). Let M(X ) be a set of distributions
with an equivalence class structure, given by property A and denoted as MA,MA. We say that
property A of a distribution is ε−non-identifiable if there exists a distribution p ∈ MA such that
∃q ∈ MA such that KL [p||q] ≤ ε.
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Figure 4: Illustration of case study 3.1: We train a Transformer on a PCFG generating sequences
of the form anbn. Left: This language can be represented as an intersection of two rules: (R1) the
number of as and bs match; and (R2) a never follows a b. Right: We consider different models (M1,
M2, M3) which achieve perfect test loss. On prompts consistent with the anbn grammar (e.g., aa) all
three models produce the same completions. However, on prompts that are inconsistent with anbn,
and thus have probability zero under the pre-training distribution, the models may produce different
completions. For these OOD prompts, we can ask if completions still satisfy rule (R1), which we call
rule extrapolation. Rule extrapolation behaviour is not implied by minimal test loss, but may arise
due to inductive biases.

D EXPERIMENTAL DETAILS

Reproducibility and codebase. We use PyTorch (Paszke et al., 2019), PyTorch Lightning (Falcon
& The PyTorch Lightning team, 2019), and HuggingFace Transformers (Wolf et al., 2020). We make
our code and experimental logs publicly available upon acceptance.

PCFG. We generate data from the anbn PCFGs up to length 256. Besides the tokens a (0) and
b (1), we use SOS (2), EOS (3), and padding (4) tokens. We define our test prompts as all possible
sequences of length 8 (prepended with SOS), which we split into in-distribution, and OOD test
prompts, based on whether they can be completed in the form of anbn. The training set includes all
unique sequences up to length 256. We illustrate rule extraplation in Fig. 4.

Table 1: PCFG parameters

PARAMETER VALUES

NUMBER OF TOKENS 5 (SOS, EOS, PAD, 0,1)
MAXIMUM SEQUENCE LENGTH 256
TRAINING DATA MAXIMUM LENGTH 256
TEST PROMPT LENGTH 8
BATCH SIZE 128

Model. We use a Transformer decoder (Vaswani et al., 2017) in flavor of the decoder-only GPT
models (Radford et al.; 2018; OpenAI et al., 2023). We apply standard positional encoding, layer
normalization, ReLU activations, the AdamW optimizer (Loshchilov & Hutter, 2019) with inverse
square root learning rate schedule (Xiong et al., 2020). For prompt prediction, the model can predict
up to length 300. We train for 50, 000 epochs with the standard cross entropy (CE) loss for the next
token prediction task. For the adversarial and oracle training versions, we add an additional loss term
which we detail below.
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Table 2: Transformer parameters

PARAMETER VALUE (NORMAL)

MODEL TRANSFORMER DECODER
NUMBER OF LAYERS 5
DROPOUT PROBABILITY 0.1
MODEL DIMENSION 10
FEEDFORWARD DIMENSION 1024
NUMBER OF ATTENTION HEADS 5
LAYER NORM ϵ 6e−3
ACTIVATION RELU
OPTIMIZER ADAMW
LEARNING RATE SCHEDULER INVERSE SQUARE ROOT
BATCH SIZE 128
LEARNING RATE 2e−3
PROMPT PREDICTION CUTOFF LENGTH 300
NUMBER OF EPOCHS 50, 000

Metrics. We monitor training and validation loss, and the adherence to the grammar’s two rules
(R1),(R2). We measure the accuracy of each separately and simultaneously (i.e., to check whether
the generated sequence is grammatical). For a deeper understanding, we calculate these metrics for
different scenarios:

1. For the in- and out-of-distribution test prompts and
2. For a batch of SOS tokens.

For each of the above, we re-calculate the accuracies for the subset of prompt completions which
have an EOS token to avoid false conclusions (e.g., if the model wants to finish aaa as a longer
sequence than the cutoff length, the unfinished sequence would lower the accuracy). Since for the
OOD prompts, it is by definition impossible to fulfil (R2) (that a′s are before b′s), we separately
calculate this rule on the completion: e.g., if the OOD abbb is completed as abbbaa, then it is
considered correct for this metric, but abbbabaa is not, as it has an a after a b in the completion. We
also monitor the accuracy of next token prediction via greedy decoding (i.e., using the token with the
largest probability). We report additional numerical values in Tab. 3, supplementing Fig. 1.

Adversarial training. For adversarial training, we generate OOD sequences such that the number
of a′s and b′s is not equal, there is one more from one symbol. Then, we treat the first 8 a and b
tokens (i.e., the same as the test prompt length) as the prompt, and the rest as the completion. During
training, we add a CE loss on the OOD prompt completions. The rationale of only optimizing on the
OOD completions is to keep the prompts OOD, since our claim in § 3.1 is about different behavior
for OOD prompts.

Oracle training: enforcing rule extrapolation. This scenario is very similar to adversarial training,
with the difference, that we generate additional OOD training samples, where the prompt is still OOD,
but here the completion is generated such that the number of a′s and b′s is equal over the whole
sequence. Then we add a CE loss on the OOD prompt completions.

Table 3: Comparison of the extrapolation performance of MLE, adversarial, and oracle training for
OOD prompts. For (approximately) the same validation loss, the extrapolation of (R1) for OOD
prompts differs enormously, showing that the loss alone cannot distinguish the extrapolation property

NAME VALIDATION LOSS
ACCURACY OF (R1)

MEAN+STD. RANGE

MLE 0.0215±0.0011 0.437±0.047 [0.339; 0.629]
ADVERSARIAL 0.0223±0.00094 0. [0.; 0.]
ORACLE 0.0199±0.00025 0.83±0.122 [0.634; 1.]
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E INDUCTIVE BIASES FOR UNDERSTANDING LLMS

In contrast to relying solely on inductive biases enabling statistical generalization, we advocate for
studying inductive biases that are not problem- or loss-specific. These qualitative characteristics
remain insightful even in the saturation regime, as they enable us to reason about performance on
new tasks. We encourage investigations that intertwine statistical generalization with these LLM-
relevant inductive biases, e.g., by characterizing extrapolation performance in terms of statistical
generalization ability and the presence of an inductive bias. To motivate the need for LLM-relevant
inductive biases, we showcase (sometimes toy) examples of qualitative properties relevant to specific
DNN models and tasks. We then outline some promising directions for LLMs.

Examples of qualitative model properties. Sparsity is a prevalent concept in machine learning
often enforced through explicit regularisation (see Vidaurre et al., 2013, for a review). Intriguingly,
inductive biases alone can give rise to sparsity in gradient descent: L−layer linear diagonal networks
trained on binary classification converge to the ℓ 2

L
large margin classifier, yielding a sparse solution

(Gunasekar et al., 2019), whereas deep matrix factorization is known to lead to low-rank solutions
(Gunasekar et al., 2017; Arora et al., 2019). For models where the Neural Tangent Kernel (NTK)
assumptions hold, gradient descent solves kernel ridge (ℓ1-regularized) regression (Jacot et al., 2020).
For DNNs implementing Boolean functions, the resulting parameter to function map is simple1 in
terms of Lempel-Ziv complexity (Valle-Perez et al., 2019; Dingle et al., 2018) and converges towards
low-entropy functions (Mingard et al., 2020). Binary classifiers of bitstrings are biased towards
low sensitivity to changes in the input De Palma et al. (2019). Rahaman et al. (2019) highlights a
bias towards low-frequency functions. There is also work that looks at the dynamics of qualitative
properties during training: neural networks appear to learn increasingly complex functions, starting
with linear functions (Arpit et al., 2017; Nakkiran et al., 2019) making use of higher-order statistics
only in later stages (Refinetti et al., 2023). Although many of these findings rely on simplified
mathematical models they nevertheless provide good insights into qualitative properties one should
expect trained neural networks to possess, which in turn can be connected to properties of interest
such as OOD extrapolation.

Insights from algorithmic information theory. The Kolmogorov complexity K(x) of a bitstring
x is defined as the length of the shortest program under a fixed programming language that produces
x (Kolmogorov, 1998). For LLMs, an intriguing direction is connecting model properties to the
Kolmogorov complexity of its generated text: a bias towards low Kolmogorov complexity might
imply improved (compositional) generalization. Though Kolmogorov complexity is incomputable,
insights from algorithmic information theory remain pertinent for understanding LLMs and building
general-purpose models (Schmidhuber, 1997; Hutter, 2000). Goldblum et al. (2023) argues that
real-world data has low complexity in the Kolmogorov sense (Goldblum et al., 2023). This simplicity
bias in data is shared with (even randomly initialized) neural networks and is more general than
what the architecture would suggest: CNNs can effectively learn tabular data despite their lack of
spatial structure. Via the connection between prediction and compression (Vitányi & Li, 1997), we
may interpret a DNN as a compressor of the training data, where the best possible compressor has
the lowest Kolmogorov complexity. Delétang et al. (2023) shows that successful LLMs are good
general-purpose compressors, e.g., Chinchilla 70B compresses ImageNet patches to 43.4% despite
having been trained primarily on text. In addition, Grau-Moya et al. (2024) develop a meta-learning
method to train LLMs to approximate Solomonoff Induction (Solomonoff, 1964), which also provides
interesting connections to algoritmic information theory. To study the effects of data complexity on
LLMs, we advocate for the use of simple formal languages, such as PCFGs (Liu et al., 2023; Favre,
2020; Merrill, 2023; Ackerman & Cybenko, 2020), as they have a controllable notion of complexity
and structure.

Insights from the Transformer architecture The underlying Transformer architecture may shape
the inductive biases in LLMs. Recently, Weiss et al. (2021) showed that a new programming language,
RASP, describes a computational model for Transformers, which can explain how reordering fully
connected and attention layers changes performance (Press et al., 2020). In terms of RASP, these
reorderings constrain information flow, acting as an architectural inductive bias. Thus,RASP (Weiss

1The study of this object is motivated by the observation that SGD approximates Bayesian inference
sufficiently well, where the prior p(f) is taken as the probability of a randomly initialized neural network
implementing a specific function
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et al., 2021) as a computational model for Transformers offers a framework for characterizing the
algorithms LLMs can implement. Specifically, the efficiency and compactness with which these
algorithms can be expressed in RASP might serve as a novel, LLM-specific complexity metric. A
related direction for finding inductive biases based on the Transformer architecture is mechanistic
interpretability (Olah, 2022), which aims to understand the internal mechanisms of a model.

F ACRONYMS

CE cross entropy

AR autoregressive

DNN Deep Neural Network

EOS end-of-sequence

HMM Hidden Markov Model

i.i.d. independent and identically distributed
ICL in-context learning

KL Kullback-Leibler Divergence

LLM Large Language Model
LVM latent variable model

MLE maximum likelihood estimation

NTK Neural Tangent Kernel

OOD out-of-distribution

PCFG Probabilistic Context-Free Grammar

RASP Restricted-Access Sequence Processing
Language

SOS start-of-sequence
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