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ABSTRACT

Accurate prediction of protein-ligand binding sites is critical for understanding
molecular interactions and advancing drug discovery. Existing computational ap-
proaches often suffer from limited generality, restricting their applicability to a
small subset of ligands, while data scarcity further impairs performance, particu-
larly for underrepresented ligand types. To address these challenges, we introduce
a unified model that integrates a protein language model with an autoregressive
transformer for protein-ligand binding site prediction. By framing the task as a
language modeling problem and incorporating task-specific tokens, our method
achieves broad ligand coverage while relying solely on protein sequence input. We
systematically analyze ligand-specific task token embeddings, demonstrating that
they capture meaningful biochemical properties through clustering and correlation
analyses. Furthermore, our multi-task learning strategy enables effective knowl-
edge transfer across ligands, significantly improving predictions for those with
limited training data. Experimental evaluations on 41 ligands highlight the model’s
superior generalization and applicability compared to existing methods. This work
establishes a scalable generative AI framework for binding site prediction, laying
the foundation for future extensions incorporating structural information and richer
ligand representations. The code, model, and datasets are available at this link.

1 INTRODUCTION

Accurate prediction of protein-ligand binding residues is crucial for understanding biological pro-
cesses such as gene regulation, signal transduction, and antigen–antibody interactions Zhao et al.
(2020); Dhakal et al. (2022); Xia et al. (2024). Identifying protein-ligand interaction sites is also
critical for drug discovery and design Xia et al. (2020). Despite its importance, identifying potential
binding sites for specific ligands remains a significant challenge, especially in cases where the high-
resolution 3D structure of a protein is unavailable Yu et al. (2013). Experimental methods like nuclear
magnetic resonance and absorption spectroscopy, though reliable, are costly and time-consuming,
underscoring the need for efficient computational solutions Yuan et al. (2022).

Sequence-based and 3D structure-based prediction methods are particularly valuable for addressing
challenges posed by metal ions, which play vital roles in protein structural stability, metabolism,
signal transport, and catalysis Xia et al. (2020); Essien et al. (2023). However, the small size and
high versatility of metal ions introduce additional complexities.
Despite advancements in computational methods for protein-ligand binding residue prediction, several
challenges remain. Current approaches often lack generality, restricting their applicability to a limited
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Figure 1: High-level overview of our approach in protein-ligand binding site prediction. The model gets protein
sequences and task tokens (refer to the type of ligands) to predict the residue indices of positive sites.

number of ligands Zhao et al. (2020); Xia et al. (2022); Fang et al. (2023); Wang et al. (2024). This
limitation is particularly problematic given the vast diversity of ligands encountered in biological
systems. Furthermore, the pervasive issue of data scarcity for certain ligands further hampers the
effectiveness of conventional methods, as they struggle to generalize on most ligands with limited
training samples Abdelkader & Kim (2024); Gangwal et al. (2024); Harren et al. (2024). Recent
deep learning-based techniques also often overlook the potential of considering biochemical features
as an interpretation measurement, which could provide deeper insights into model mechanisms in
correlating different ligands, and to some extent, enhance interpretability in protein-ligand binding
site prediction.

To address these gaps, this work introduces a unified model incorporating an autoregressive trans-
former connected to a pre-trained protein language model, ESM-2 Lin et al. (2023), for predicting
protein-ligand binding sites directly from protein sequences for dozens of ligands (Figure 1). Inspired
by Prot2Token Pourmirzaei et al. (2024; 2025), we incorporate self-supervised pre-training tasks
to provide the initial weights of the autoregressive component of the model, enabling significantly
improving its performance on binding site prediction. Our approach sets an important foundation
for broader and more interpretable protein-ligand binding site prediction, laying the groundwork for
future methods that can extend to even more diverse ligand types and effectively address data scarcity
issues.

Our work introduces several novel contributions which are summarized as follows:

1. By framing binding site prediction as a language modeling task and employing an autore-
gressive transformer model as the predictor, we achieve unprecedented generality compared
to prior research, supporting 41 ligands. This approach significantly extends the applicability
of protein-ligand binding site prediction methods that rely only on protein sequences for
prediction.

2. By comparing biochemical features with model-generated embeddings for each ligand, we
offer a comprehensive perspective on ligand relationships. Clustering and correlation analy-
ses confirm that these embeddings capture meaningful biochemical similarities, providing
deeper insights into protein-ligand interactions and improving predictions for ligands with
limited sample sizes.

3. We utilize a multi-task learning approach with a unified model to enable effective knowledge
transfer between ligand predictions. By leveraging embedding similarities among ligands,
our method significantly enhances performance, addressing challenges posed by data scarcity
and boosting predictions for underrepresented ligands.

2 RELATED WORK

Computational methods for protein binding site prediction are becoming increasingly important, as
the number of unknown protein 3D structures far exceeds the number of known ones Zhang et al.
(2024b). Even when a protein’s 3D structure is known, the identification of all its binding ligands
remains incomplete or uncertain Wang et al. (2024).

We broadly categorize protein binding site prediction methodologies into two main clusters: Stan-
dalone methods, which propose new approaches, and ensemble methods, which combine existing
methods to achieve better performance. We further divide standalone methods into three subcate-
gories: classical, deep learning, and large language methods. For a more detailed discussion of these
categories and related work, refer to Appendix A.1.
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3 METHOD

Our method is based on a modified version of the Prot2Token architecture, where a causal (au-
toregressive) Transformer, referred to as the decoder, is connected to a pre-trained bidirectional
Transformer Vaswani (2017), referred to as the encoder. We initialize the encoder using the ESM-2
650M architecture and its pre-trained weights. The output of the encoder serves as context for the
decoder through cross-attention. Additionally, we employ two distinct tokenizers and embedding
tables for the encoder and decoder components to accommodate their unique roles in the model
(Figure 3).

To guide the decoder’s predictions for specific tasks, we incorporate task tokens as part of its input.
Unlike the original Prot2Token model, which utilized a pre-trained chemical language encoder, we
replace this component by directly converting each ligand type into a corresponding task token
provided to the decoder. This approach informs the model about the ligand type solely through the
task token, eliminating reliance on the chemical language encoder.

To enhance the sequence representation of amino acids positions, we introduce a learnable positional
embedding layer. The embeddings from this layer are summed with the sequence embeddings
produced by the encoder. This addition compensates for the diminished positional information in the
encoder’s sequence embeddings, ensuring the model effectively captures each amino acid positions
during prediction.

The autoregressive transformer factorizes the joint probability of a sequence x = (x1, x2, . . . , xT )
into a product of conditional probabilities, i.e.,

p(x) =

T∏
t=1

pθ (xt | x1, . . . , xt−1)

The model is trained by minimizing the negative log-likelihood of the observed tokens, expressed as

L(θ) = −
T∑

t=1

log pθ (xt | x1, . . . , xt−1)

where θ denotes the model parameters. By using a causal mask, each token xt can only attend to the
tokens x1, . . . , xt−1, thus enforcing the autoregressive property and enabling the model to learn rich
contextual representations of the input sequence.

We extend the standard autoregressive modeling objective by introducing token-level weights wt to
control the contribution of each token to the loss. In particular, we set w1 = 0 to avoid penalizing
the model for predicting the first token (i.e., the prompt), and we keep wt for t ≥ 2 adjustable so
that non-prompt tokens can have varying degrees of importance. Concretely, the training objective
becomes

L(θ) = −
T∑

t=1

wt log pθ (xt | x1, . . . , xt−1)

where θ are the model parameters and wt ∈ [0,∞) is a user-specified weight for token xt. This setup
allows us to fine-tune the learning process by placing greater or lesser emphasis on specific tokens of
each task, while completely removing the prompt token from the loss by assigning it a zero weight.
More details about the architecture are provided in Appendix A.2.

Self-supervised Pre-training of Decoder. In contrast to using a pre-trained encoder like ESM-
2 weights, the decoder part is always initialized using random weights. However, the original
Prot2Token paper showed that some tasks can benefit from being jointly trained with self-supervised
tasks during the training of phosphorylation post-translation modification task. We speculate the main
reason for this is that the decoder weights must be able to understand the structure of labels (implicit
inductive biases) before making predictions. In some cases (tasks) where the vocab sizes of labels are
larger (like phosphorylation), the number of samples is not sufficient for understanding those implicit
biases and that could severely deteriorate the performance of the model in making predictions. In
this paper, we addressed the issue by presenting a self-supervised pre-training step to provide the
initialization weights of the decoder for the target task. In these self-supervised tasks, we prepared
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the sequences of amino acids as the input, with the labels of pinpointing the positions of specific
amino acid types. For example, in sequences containing the amino acid ’S’, such as ”MSGLSNYT”,
we labeled the locations of ’S’ as the target, resulting in a sequence of indices like {2,5}. Similarly,
we built 20 self-supervised tasks given each amino acid as one task. The important point about these
types of self-supervised tasks is that they are free to create, and consequently, no human labeling
is required. By doing so, we explicitly train the decoder to recognize amino acid types and their
positional indices, enabling it to construct more informative embedding tables for these vocabularies.
This self-supervised learning approach is only effective when the protein encoder remains frozen;
otherwise, it introduces a shortcut learning effect that can cause the model to collapse

Tokenization. We adopted the original Prot2Token tokenization strategy by representing the positions
of positive sites as a single token in ascending order. For instance, consider a protein sequence such
as ’MNSSKYKAPTV’, where the binding sites are indicated by underlined residues. The target
tokenization for protein-ligand site prediction would then be represented as {2, 3, 5, 9}. Similarly,
we follow the same strategy for tokenization of self-supervised pre-training tasks (Figure 2).

M Y K A S T M S S Q D

M N Y D T G V R I T Y

W P S M M F F G P T T

M R M K Q E A S E H M

M I J K N M L O P Q Q

M S V Q S T M K L Q D

5 8 9

5 10

2 9

1 3 11

7

4 6 7

Self-supervised  S

Self-supervised  T

Self-supervised  P

Self-supervised  M

Self-supervised  L

Protein-ligand site

Figure 2: Tokenization of the self-supervised and protein-ligand binding site prediction tasks.

Dataset. In this work, we consider the BioLip2 database Zhang et al. (2024a). We used the non-
redundant dataset, which includes protein receptor sequences clustered at a 90% identity cutoff,
along with annotations for each ligand-protein interaction site. To further enhance model robustness
and increase the difficulty of the prediction task, we applied an additional clustering step at a 40%
identity cutoff using CD-HIT Fu et al. (2012) to separate training, validation and test sets. To ensure
a sufficient data ratio for training, evaluation, and testing, we included all ligands with more than 100
associated protein sequences, resulting in a total of 41 ligands. The details of the data preparation
pipeline are provided in Appendix A.3.

In addition to the mentioned methods, we used a series of methods to interpret the task token
embeddings which are elaborated in Appendix A.4

4 EXPERIMENTS

In this section, we started with preparing the self-supervised pre-training of the decoder part. Then,
we combined different protein-ligands tasks and trained a unified model with different number of
ligands. After that, we scrutinized each ligand to find the correlation of learnable embeddings
versus chemical properties to show global and local relationships between different ligands. For
all our experiments, we considered ESM-2 650m model as the initialization of protein encoder of
Prot2Token. In addition, we employed AdamW optimizer Loshchilov (2017) with weight decay
of 0.1, and β1 = 0.9, β2 = 0.999, and epsilon to 1e-16 as the default hyperparameters of all
experiments. Our learning rate strategy was based on cosine annealing with initial warm-up steps
Loshchilov & Hutter (2016) starting from 1e-6 to 5e-5 for the first 256 steps, otherwise mentioned.
All training experiments were developed using the PyTorch 2 framework Ansel et al. (2024) on one
Nvidia 4×A100 80GB node.

4.1 SELF-SUPERVISED PRE-TRAINING

In the first step, we randomly sampled 4 million protein sequences from the UniRef50 database
Suzek et al. (2015) for training and 4k for validation data. From them, we artificially created 80
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Figure 3: Inference flow of our framework for protein-ligand binding site prediction. (A) The model pipeline
demonstrates the integration of a bidirectional protein encoder and a causal decoder. Protein sequences are
processed into encoder embeddings, which then are combined with learnable positional and project down to be
the context of the decoder via cross attention. Task-specific token embeddings guide the decoder to generate
autoregressive outputs for binding site prediction. (B) The encoder and decoder utilize distinct embedding tables
to represent amino acids in the encoder, and ligand-specific task tokens and position tokens in the decoder sides.

million and 20k self-supervised samples, subsequently, by crafting each amino-acid-type/protein
as one sample. Again, we sampled 1 million and 1k samples from them, respectively, to build the
training and validation sets.

We used input sequence length of 1280, weight decay of 0.01 and batch size of 192 samples, equivalent
to 73,728 tokens. Also, we set the warmup steps to 512. We only froze the encoder weights and made
other parameters trainable. After training for 16 epochs, the model showed perplexity of 2.31 on the
validation set. This indicates that it almost perfectly converted the embeddings out of encoder back to
their original protein sequences.

4.2 PROTEIN-LIGAND BINDING SITE

Based on the order of ligands in the table in Appendix A.4, we grouped the ligands into distinguishable
sets of 10, 20, 30, and all 41 ligands. Each ligand in a set was treated as a separate task defined by a
task token, training together. We selected each of those sets and jointly trained them alongside 20
self-supervised tasks using the latest checkpoint from the self-supervised pre-training phase. For this
fine-tuning phase, the self-supervised tasks were reduced to a total number of 20k samples. Also, we
removed protein samples with lengths greater than 1280 and set batch size to 98,304 tokens. During
all training processes, only the last eight blocks of the encoder (ESM2-650m) were fine-tuned, while
all non-encoder parameters of the supermodel were fully fine-tuned.

The effect of increasing the number of tasks for the first top 10 ligands is shown in Table 1. The
detailed performance of all ligands is reported in Appendix A.4.

It is worth noting that while we could have excluded the self-supervised tasks entirely from fine-tuning
stage, retaining a portion of these samples resulted in a measurable improvement in the model’s
performance on the supervised protein-ligand tasks.

Direct comparison of our method with other available methods was not easy and straightforward due
to several technical issues and potential overlap between their training data and our test sets; however,
results of the comparison are provided in Appendix A.4.
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Table 1: F1 scores for the top 10 ligands across different training configurations on the test sets, with varying
numbers of auxiliary ligands. The table summarizes the impact of jointly training with 10, 20, 30, and 41
ligands on binding site prediction. * indicates that pre-trained decoder weights were not used, and † indicates
that self-supervised tasks were excluded during supervised training.

Ligand 10 ligands †* 10 ligands* 10 ligands 20 ligands 30 ligands 41 ligands
Zn2+ 0.0678 0.0657 0.7434 0.7498 0.7594 0.7575
CA2+ 0.1022 0.0888 0.6566 0.6493 0.6472 0.6474
CLA 0.2749 0.2519 0.477 0.3763 0.4936 0.4762
FAD 0.1744 0.1476 0.6882 0.6565 0.6473 0.6537
HEM 0.243 0.232 0.6554 0.6698 0.6871 0.6796
NAD 0.1662 0.1248 0.6862 0.6851 0.6862 0.6952
ADP 0.1105 0.1053 0.6057 0.5779 0.5897 0.5834
MG2+ 0.482 0.0326 0.4466 0.4603 0.4522 0.4575
NAP 0.1559 0.1417 0.6629 0.6813 0.6861 0.6746
ATP 0.1059 0.0927 0.4538 0.4355 0.5317 0.505
Average 0.1883 0.1283 0.6076 0.5942 0.6181 0.6132
Weighted Average 0.1849 0.0900 0.6297 0.6277 0.6368 0.6353

4.3 FINDING RELATIONSHIPS BETWEEN LIGANDS

In this section, we scrutinized the task token embeddings of the decoder that pre-trained on all 41
ligands in the previous section to find the sign of chemical properties of ligands and their relationships
together.

Empirically, based on the F1 scores of the ligands that the model was trained and evaluated on, the
task token embeddings successfully captured meaningful representations of the ligands. However, to
solidify this framework as a foundation for future research, we aimed to validate these embeddings
from an additional perspective. Our goal is to create a robust infrastructure that can incorporate
more ligands into a single model, thereby addressing the scarcity of data for certain ligands through
knowledge transfer between ligands. To achieve this, first, from all 41 ligands, we selected top 28
ligands based on F1 score and filtered the rest and then, we analyzed the task token embeddings of
remaining ligands by clustering them to explore ligand similarities in the embedding space.

Simultaneously, we clustered the ligands based on their biochemical features in the real world and in
the last step, we investigated the correlation between these two clustering approaches. The purpose of
this comparison was to determine whether the learned task token embeddings genuinely reflect real-
world relationships between ligands or if they merely memorize specific patterns without capturing
meaningful biochemical similarities. Figure 4 highlights the intersection between the two spaces of
ligand representations: the embedding space and the biochemical feature space. It illustrates which
ligands or sets of ligands have their relationships successfully captured by the generated task token
embeddings, as reflected by their agreement with relationships derived from biochemical features,
and which embeddings failed to capture such relationships. More details including feature selection,
methods and the interpretation algorithm are placed in Appendix A.4.

4.4 MULTI-TASK LEARNING EFFECT

In this section, we tried to investigate the effect of multi-task learning on three ligands that have low
number of samples but share similar semanticity in the embedding space of task tokens (Figure 4).
Therefore, we selected GSH, CO, AGS as our target ligands because (1) they belong to the same
cluster, (2) showed global or local relationships and, (3) have less than 200 or lower number of protein
sequences in total. We considered three groups to measure the performance of three ligands. There
groups are defined as follow:

Group 1. Combination of the target ligands, GSH, CO and AGS (Equivalent to 1,819 tokens).

Group 2. Combination of CLA, FAD, HEM and NAD as ligands that did not share a close semantic
representation in Figure 4 (Equivalent to ∼ 43k tokens).

Group 3. Combination of Zn, Ca, ADP, members from cluster 4 (Equivalent to ∼ 37k tokens).
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Figure 4: Global Relationships indicate that general biochemical features shared among many ligands have
been captured. Local Relationships reflect the successful capture of biochemical properties between specific
ligands and their closely related counterparts. No Relationships indicate that the biochemical properties were not
captured at all.

Need to point out, in order to make the comparison of group 2 and 3 fair, we considered the total
number of tokens in these groups close to each other. Table 2 shows that group 3 which shares a
similar cluster with the target ligands, improves F1 score more than other groups.

Table 2: The effect of jointly training under representative ligands based on different auxiliary groups with
respect to F1 score. ”-” means no auxiliary task is used during training the target task.

Target Task - Group 1 Group 2 Group 3
GSH 66.53 70.27 69.18 68.74
CO 35.87 32.65 29.26 58.48
AGS 31.63 22.94 43.18 49.09
Average 44.68 41.95 (-2.73) 47.21 (+2.53) 58.77 (+14.09)

4.5 DISCUSSION

In this section, we describe our results in multiple parts, highlighting key findings and their implica-
tions. Each one addresses specific aspects of our unified framework for protein-ligand binding site
prediction, including our approach’s generality, interpretability, and future improvements.

4.5.1 A UNIFIED PROTEIN-LIGAND BINDING SITES PREDICTION

Our method demonstrates strong predictive performance across various ligands, achieving competitive
F1 scores, particularly for those with sufficient training samples. Self-supervised pre-training on a
large corpus of protein sequences addresses an important challenge of the Prot2Token architecture
by equipping the decoder with implicit inductive biases, injecting effective knowledge for learning
for binding site prediction. Additionally, multi-task learning with a lot of tokens plays a crucial role
in addressing data scarcity and improving the average performance. Training on multiple ligands
simultaneously allows the model to leverage shared information, creating a synergistic effect where
learning one ligand enhances predictions for others (Table 1).

4.5.2 INTERPRETATION

The interpretation of task token embeddings highlights the model’s ability to capture meaningful
relationships among ligands, revealing global and local similarities that align with their biochemical
properties. By classifying relationships into global, local, and no relationships (Figure 4), we
identified both the strengths and limitations of these embeddings. While the embeddings effectively
captured true relationships for many ligands, they struggled for others, indicating areas for further
refinement. To validate the utility of these embeddings, we correlated biochemical feature-based
clusters with embedding-based clusters, demonstrating a strong alignment for most ligands. This
validation underscores the capacity of the embeddings to encode biologically relevant information and
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supports their extension to new ligands. Moreover, leveraging these relationships through auxiliary
tasks in multi-task learning significantly improved predictions for underrepresented ligands (Table 2).
Our results correlate this to the existence of a high number of auxiliary tokens plus the similarity of
embeddings. However, the presence of no relationships suggests either limitations in the embeddings
themselves or gaps in the biochemical features used, pointing to opportunities for better interpretation.
These findings illustrate how interpretation-driven insights can guide multi-task learning strategies,
ultimately enhancing predictions for heavily underrepresented ligands.

4.5.3 FUTURE WORK

While the proposed framework demonstrates strong predictive performance and generality across
diverse ligands, several avenues remain for future exploration to enhance its robustness and appli-
cability. One promising direction is the use of pre-trained chemical encoders to represent ligands,
replacing the current learnable task token approach. This could allow the model to leverage rich,
pre-existing knowledge about chemical properties, potentially improving predictions for ligands with
limited training data. Another critical extension involves incorporating 3D structural information
of proteins as contextual input. The inclusion of spatial features could enable the model to better
capture the intricate relationships between protein residues and ligands.

Additionally, performance variability across ligands highlights persistent challenges, including
prediction complexity and data scarcity, particularly for underrepresented ligands. While our approach
significantly improves performance through techniques like multi-task learning, the model’s accuracy
remains dependent on the availability of larger and more diverse datasets. Expanding our framework to
include more comprehensive datasets and advanced ligand representations holds significant potential
for further advancements in protein-ligand binding site prediction.

MEANINGFULNESS STATEMENT

Understanding life at a molecular level requires identifying how proteins interact with various ligands,
a fundamental process in biological functions such as metabolism, signaling, and disease progression.
A meaningful representation of life should capture these interactions with accuracy, enabling deeper
insights into cellular mechanisms and facilitating drug discovery. Our work contributes to this
direction by leveraging autoregressive transformer models to predict protein-ligand binding sites
directly from protein sequences. This approach enhances interpretability and generality in protein-
ligand interaction prediction, paving the way for more effective computational tools that aid in
biomedical research and therapeutic development.
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A APPENDIX

A.1 RELATED WORK

We categorized the development of diverse methodologies for protein binding site prediction into
two main clusters. Standalone models, which propose entirely new methods, and ensemble models,
which integrate existing techniques to enhance performance.

A.1.1 STANDALONE MODELS

These approaches introduce novel methods to address the binding site prediction problem and can be
further divided into three subcategories based on their approaches to feature extraction and processing:

1. Classical Approaches, which rely on traditional feature extraction techniques such as
sequence-based and structure-based features.

2. Deep Learning Approaches, which utilize advanced architectures like graph neural networks
(GNNs), ResNet, and BiLSTM to automatically extract high-level features from protein
data.
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3. Large Language Model-Based Approaches, which employ state-of-the-art language models
trained on massive protein sequence datasets to capture complex patterns and long-range
dependencies.

Classical Approaches. Yu et al. (2013) developed TargetS, a tool designed to predict binding sites
for twelve ligand types. TargetS combines protein evolutionary information, predicted secondary
structure, and ligand-specific binding propensities of residues to construct discriminative features. To
address the imbalance between binding and non-binding residues, it employs random undersampling
and classifier ensembles. Additionally, TargetS uses MODELLER, a software package for predicting
3D structures from protein sequences, to perform spatial clustering of the predicted binding residues
and identify the final binding sites. Yang et al. (2013) introduced the COACH method, which combines
TM-SITE and S-SITE to provide accurate predictions of binding sites. TM-SITE utilizes the query
protein structure to identify relevant templates through structural alignment. These alignments are
then used to identify potential binding sites, which are further refined by clustering the ligand centers
of the templates to predict the final binding sites. S-SITE, on the other hand, uses the query sequence
to generate a frequency profile that captures evolutionary information by aligning the query sequence
with similar sequences from a database. Relevant templates are then identified, and aggregation with
a voting scheme is applied to determine the binding residues.

Deep Learning Approaches. Xia et al. (2020) presented DELIA, a deep-learning-based method for
predicting protein–ligand interactions across five ligand types. The method concatenates extracted
sequence-based features and combines them with a 2D structure-based distance map. This distance
map is generated by calculating the distances between each pair of residues in the protein structure,
after which ResNet is used to extract spatial features from the map. A fully connected layer is then
applied to merge both feature types into a single vector representation. To address the issue of data
imbalance, DELIA employs random undersampling by selecting 20% of the negative samples along
with all positive samples in each subset. Additionally, oversampling is applied in mini-batches to
ensure adequate representation of samples during training. Essien et al. (2019) introduce ZinCaps,
which utilize Capsule Networks to predict zinc ion binding sites using only protein sequence data. The
Capsule Networks dynamically adjust and refine the contributions of lower-level features, resulting
in better high-level feature representations. ZinCaps employs a sliding window of 25 residues around
each target residue to extract features. Xia et al. (2021) utilize Hierarchical Graph Neural Networks
(HGNNs) to represent protein structures by modeling residues as nodes within a graph. The HGNN
framework consists of three key modules: a GNN-Encoder, which encodes raw feature vectors into
high-level representations; GNN-Blocks, which extract hierarchical features by updating node, edge,
and graph-level information; and a multi-layer perceptron (MLP) classifier, which predicts nucleic-
acid-binding residues, specifically targeting DNA- and RNA-binding residues. Cui et al. (2019)
utilize a deep convolutional neural network for binding site prediction involving fourteen ligands
of metal ions and small molecules. Seven residue-level features are extracted, forming a matrix
based on sequence length and features, which is then passed to the encoder. The encoder extracts
high-level feature representations from this input matrix. During training, the decoder leverages
the initial predictions, combines them with the encoded features, and feeds them back into the
decoder to generate the final predictions. Essien et al. (2025) proposed GPred, a method that utilizes
geometry-aware GNNs to predict binding sites for seven small metal ion ligands. Protein structures
are converted into 3D point clouds, where each point represents an atom, which is associated with a
59-dimensional feature vector comprising physicochemical properties and evolutionary information.
A ball query strategy is applied to define a local graph for each atom, which is then processed by
a Point Transformer to learn structural and biochemical features of the protein. Finally, a fully
connected layer is used for classification.

Large Language Models. Yuan et al. (2022) introduced LMetalSite, a framework that uses ProtTrans,
a pretrained transformer model, to extract protein sequence embeddings. The model leverages multi-
task learning to improve predictive performance by utilizing shared information across different
tasks. It employs a stack of transformer encoder layers as a shared network to capture common
characteristics, such as long-range dependencies. Finally, four ion-specific MLPs are used to learn
the binding patterns of individual metal ions. Essien et al. (2023) proposed IonPred, a model based
on ELECTRA, a transformer architecture with two components: a generator, which is considered
successful when it generates replacements that are difficult for the discriminator to identify, and
a discriminator, which is considered successful when it accurately identifies the replaced tokens
generated by the generator. ELECTRA creates embeddings by converting tokens into dense vectors,
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which are subsequently refined using transformer-based generator and discriminator networks to
produce contextualized embeddings. These embeddings serve as the foundation for IonPred’s
predictions.

A.1.2 ENSEMBLE METHODS

These approaches integrate pre-existing models and ensemble their predictions to achieve improved
performance. Xia et al. (2020) developed BindWeb, a web server that uses the GraphBind and DELIA
models to predict potential binding residues and clusters them spatially to identify distinct binding
pockets on the protein surface. BindWeb supports predictions for DNA, RNA, and five other ligands,
integrating results from both models and applying mean shift clustering to determine binding pockets.
Hu et al. (2016) introduced two methods, IonSeq and IonCom, for predicting binding sites of 13 metal
ions and acid radical ion ligands. IonSeq is a sequence-based method that uses sequence profiles and
a modified AdaBoost algorithm to balance predictions between binding and non-binding residues.
IonCom Hu et al. (2016) is a ensemble method that integrates IonSeq with multiple template-based
approaches (e.g., COFACTOR, TM-SITE, S-SITE, and COACH) to enhance prediction accuracy and
robustness. ATPbind Hu et al. (2018) integrated the outputs of two template-based predictors (S-SITE
and TM-SITE) and employs an undersampling technique to address data imbalance. Multiple SVM
models are trained, and their outputs are combined using the mean ensemble method to produce the
final predictions. Lin et al. (2016) developed the MIB web server, which predicts binding sites for 12
types of metal ions by aligning the query protein with templates and assigning binding scores based
on sequence and structural similarity without relying on machine learning models or training.

A.2 ARCHITECTURE

The proposed architecture integrates an encoder-decoder framework, where each component plays a
distinct role in processing and generating sequences. The encoder, denoted as fenc(·), processes the
input sequence of tokens x = (x1, x2, . . . , xN ) to produce contextual embeddings henc:

henc = fenc(x)

where henc ∈ RN×denc , N is the sequence length, and denc is the encoder’s hidden dimension. To en-
hance the contextual embeddings from the encoder, a learnable embedding layer gpos(·) is introduced,
which adds positional information to the encoder’s output. The final encoder representation haug is
obtained by summing the positional embeddings p with the encoder output:

haug = henc + gpos(p)

where p ∈ RN×denc is the learnable positional embedding. Since the decoder operates at a potentially
different hidden dimension ddec a linear projection layer Wproj ∈ Rdenc×ddec is applied to align the
encoder’s output to the decoder’s dimensionality:

hproj = haugWproj

where hproj ∈ RN×ddec . The decoder, fdec(·), receives two inputs: the projected encoder output
hprojand a sequence of task tokens t = (T1, T2, . . . , Tm). Task tokens are mapped to their respective
embeddings via a learnable embedding layer:

etask = gtask(t)

where etask ∈ Rm×ddec . Finally, the decoder attends to both the encoder’s projected output
using cross-attention and, the task token embeddings, producing the sequence of predictions
y = (y1, y2, . . . , yN−M ). The decoder is formulated as:

y = fdec(hproj, etask)

where the decoder predicts all non-task tokens conditioned on the projected encoder output and task
token embeddings.
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The encoder portion of the model follows the exact architecture of the ESM-2 650.m model. Its
output is first combined with a learnable embedding, then projected from 1280 to 640 dimensions
using a learnable linear projector. The decoder is a standard causal (autoregressive) Transformer with
a hidden size of 640, a feed-forward dimension of 2560, GeLU activations and 16 attention heads,
which iterated over 16 blocks. Additionally, FlashAttention.2 Dao (2023) is employed to improve
both training speed and memory efficiency.

A.3 DATASETS

BioLip2 is one of the most comprehensive databases for ligand-protein interactions, primarily derived
from the Protein Data Bank (PDB). Each entry in BioLip2 includes detailed annotations on ligand-
binding residues, ligand-binding affinities, catalytic site residues, enzyme commission (EC) numbers
and gene ontology (GO) terms. The database is also cross-linked with external resources, including
RCSB PDB, UniProt, and PubMed. To obtain protein sequences, we used receptor sequences clustered
at a 90% identity cutoff. For annotations, we retrieved data for each ligand-protein interaction site. To
increase the complexity of binding site prediction and enhance model robustness, we further clustered
the data at a 40% identity cutoff. This additional clustering step helps prevent data leakage between
training, evaluation, and testing datasets. We first removed DNA and RNA sequences and excluded
any sequences with fewer than 50 residues. Next, we generated FASTA files containing residues
and annotations for all 5,717 ligands. We then applied a threshold cutoff, selecting ligands that bind
with over 100 sequences, resulting in 41 ligands. We aimed to balance selecting the most significant
ligands based on a literature review while ensuring a sufficient number of samples for training and
testing the model. We used CD-HIT to cluster the data with a 40% identity cutoff before splitting the
data into training, evaluation, and testing datasets. Because of the limited number of samples and
to ensure sufficient data for testing, we used two splitting ratios: 70%, 10%, and 20% for training,
evaluation, and testing, respectively, for the first 30 ligands in Table 3, and also, 50%, 20%, and 30%
for training, evaluation, and testing, respectively, for the remaining ligands.

Table 3: Dataset statistics of all ligands.
Ligand No Chemical Formula Name BioLip Fasta Name Num Sequences Binding Sites

1 Zn2+ Zinc Ion ZN.fasta 4665 23310
2 CA2+ Calcium Ion CA.fasta 3043 22161
3 CLA Chlorophyll A CLA.fasta 342 17690
4 FAD Flavin-Adenine Dinucleotide FAD.fasta 825 16583
5 HEM Heme HEM.fasta 845 13118
6 NAD Nicotinamide Adenine Dinucleotide NAD.fasta 658 10615
7 ADP Adenosine Diphosphate ADP.fasta 941 9899
8 MG2+ Magnesium Ion MG.fasta 2951 9494
9 NAP Nicotinamide Adenine Dinucleotide Phosphate NAP.fasta 462 8108

10 ATP Adenosine Triphosphate ATP.fasta 680 7635
11 HEC Heme C HEC.fasta 264 7296
12 SF4 Iron/Sulfur Cluster SF4.fasta 509 5834
13 FMN Flavin Mononucleotide FMN.fasta 437 5789
14 SAH S-Adenosyl-L-Homocysteine SAH.fasta 392 4675
15 NDP Nucleotide Diphosphate NDP.fasta 243 4301
16 ANP Adenylyl-imidodiphosphate ANP.fasta 354 3861
17 GDP Guanosine Diphosphate GDP.fasta 339 3792
18 GLC Glucose GLC.fasta 454 3674
19 PLP Pyridoxal-5’-Phosphate PLP.fasta 377 3608
20 MN2+ Manganese Ion MN.fasta 789 3315
21 COA Coenzyme A COA.fasta 259 2870
22 SAM S-Adenosylmethionine SAM.fasta 214 2540
23 AMP Adenosine Monophosphate AMP.fasta 275 2430
24 BGC Beta-D-Glucose BGC.fasta 331 2375
25 FE3+ Ferric Ion FE.fasta 532 2268
26 MAN Mannose MAN.fasta 446 2047
27 FES Iron-Sulfur Cluster FES.fasta 272 1986
28 PO3−

4 Phosphate Ion PO4.fasta 378 1908
29 GTP Guanosine Triphosphate GTP.fasta 150 1724
30 UDP Uridine Diphosphate UDP.fasta 154 1601
31 CU2+ Copper Ion CU.fasta 331 1530
32 GSH Glutathione GSH.fasta 200 1516
33 AGS Agmatine Sulfate AGS.fasta 136 1512
34 ACO Aconitase ACO.fasta 108 1482
35 GAL Galactose GAL.fasta 233 1188
36 SO2−

4 Sulfate Ion SO4.fasta 218 1177
37 CLR Cholesterol CLR.fasta 176 1112
38 Y01 Cholesterol Hemisuccinate Y01.fasta 106 991
39 BMA Beta-Mannose BMA.fasta 158 696
40 FE2+ Ferrous Ion FE2.fasta 186 675
41 CO2+ Cobalt Ion CO.fasta 160 660
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A.4 EXPERIMENTS

For fine-tuning on the protein-ligand datasets, the model was trained on a combined training set of
selected ligands. During training, validation was performed for each ligand individually, and the
best checkpoint for each ligand was saved based on its validation set performance. At the end of
training, these best checkpoints were evaluated on their respective test sets. Figure 5 shows the
average validation F1 score across epochs, with the highest average performance observed at epoch
30. However, this checkpoint showed slightly lower average test performance compared to using
individual best checkpoints for each ligand.

Table 4: F1 scores of positive labels for all ligands across different training configurations, with
varying numbers of auxiliary ligands on the test sets. The table summarizes the impact of jointly
training with 10, 20, 30, and 41 ligands on binding site prediction. * indicates that pre-trained decoder
weights were not used, and † indicates that self-supervised tasks were excluded during supervised
training.

Ligands 10 tasks †* 10 tasks* 10 tasks 20 tasks 30 tasks 41 tasks
ZN2+ 0.0678 0.0657 0.7434 0.7498 0.7594 0.7575
CO2+ 0.1022 0.0888 0.6566 0.6493 0.6472 0.6474
CLA 0.2749 0.2519 0.477 0.3763 0.4936 0.4762
FAD 0.1744 0.1476 0.6882 0.6565 0.6473 0.6537
HEM 0.243 0.232 0.6554 0.6698 0.6871 0.6796
NAD 0.1662 0.1248 0.6862 0.6851 0.6862 0.6952
ADP 0.1105 0.1053 0.6057 0.5779 0.5897 0.5834
MG2+ 0.482 0.0326 0.4466 0.4603 0.4522 0.4575
NAP 0.1559 0.1417 0.6629 0.6813 0.6861 0.6746
ATP 0.1059 0.0927 0.4538 0.4355 0.5317 0.505
Average (top 10) 0.1883 0.1283 0.6076 0.5942 0.6181 0.6130
HEC - - - 0.6438 0.6511 0.6537
SF4 - - - 0.6508 0.584 0.5685
FMN - - - 0.6921 0.6983 0.6945
SAH - - - 0.6385 0.6473 0.6503
NDP - - - 0.7122 0.7085 0.6979
ANP - - - 0.6153 0.6214 0.6217
GDP - - - 0.5948 0.6335 0.6465
GLC - - - 0.2091 0.2237 0.2214
PLP - - - 0.777 0.778 0.762
MN2+ - - - 0.7278 0.7245 0.7376
Average (top 20) - - - 0.6102 0.6172 0.6130
COA - - - - 0.3978 0.4011
SAM - - - - 0.6355 0.6252
AMP - - - - 0.4316 0.4432
BGC - - - - 0.2165 0.1932
FE3+ - - - - 0.6756 0.6606
MAN - - - - 0.1407 0.1216
FES - - - - 0.7162 0.7018
PO3−

4 - - - - 0.2288 0.2278
GTP - - - - 0.5332 0.5461
UDP - - - - 0.5522 0.5391
Average (top 30) - - - - 0.566 0.5615
CU2+ - - - - - 0.5607
GSH - - - - - 0.6924
AGS - - - - - 0.5301
ACO - - - - - 0.5026
GAL - - - - - 0.2762
SO2−

4 - - - - - 0.1386
CLR - - - - - 0.0373
Y01 - - - - - 0.0419
BMA - - - - - 0.2273
FE2+ - - - - - 0.6033
CO2+ - - - - - 0.517
Average (all) - - - - - 0.5115

The results for all ligands are presented in Table 4. To compute the metric for the autoregressive
model’s output, each amino acid in a protein was treated as an individual positive or negative sample.
Predicted binding residues from the decoder were considered positive samples, while all other amino
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Figure 5: Average of F1 values for all 41 ligands during the training based on the validation sets. The
performance peaked at epoch 30.

acids were treated as negative (zero) samples. The metrics were then calculated based on this
classification.

To provide a comparison of our model’s performance with other available methods, we present the
results in Table 5. However, the comparison process faced several challenges: some web servers were
not operational during testing, while others only allowed predictions on individual samples, making
bulk evaluation difficult and very slow to response. We attempted to evaluate IonCom, and MIB2
[33] server tools, but encountered several issues: MIB2 had extremely slow response times, and
IonCom imposed strict sample limitations for evaluation. Additionally, a potential overlap between
the training data of these methods and our crafted test sets further made a fair evaluation complicated.
This was particularly evident for LMetalSite, where their reported performance on their own test sets
was significantly lower compared to their results on our test sets, indicating the sign of data leaking
in this comparison.

Table 5: Comparison of our method’s best performance for each ligand with other available methods on selected
ligands based on F1 score. The main values are based on their reported test set performance as described in their
respective papers. * Indicates they are reported on our test sets.

Ligand Metrics Prot2Token
(Our method)

TargetS
Yu et al. (2013)

LMetalSite
Yuan et al. (2022)

ZinCap
Essien et al. (2019)

MIB2
Lu et al. (2022)

CA2+ F1 0.6566* 0.392* 0.526 (0.7370*) - -
MCC - 0.320 (0.431*) 0.542 (0.7342*) - -
Acc - 0.984 (0.977*) 0.9884* - 0.941

MG2+ F1 0.4603* 0.433* 0.367 (0.5560*) - -
MCC - 0.383 (0.450*) 0.419 (0.5773*) - -
Acc - 0.990 (0.992*) 0.9949* - 0.946

ZN2+ F1 0.7594* 0.660* 0.76 (0.8299*) 0.451* -
MCC - 0.557 (0.660*) 0.761 (0.8275*) 0.54 (0.48*) -
Acc - 0.989 (0.989*) 0.9953* 0.870 (0.97*) 0.948

MN2+ F1 0.7376* 0.579* 0.662 (0.8048*) - -
MCC - 0.445 (0.574*) 0.661 (0.8024*) - -
Acc - 0.987 (0.989*) 0.995* - 0.950

A.4.1 INTERPRETATION

In this study, we developed a protein binding site prediction model using a multi-task learning frame-
work, where each task represents a specific ligand. A 640-dimensional task token was incorporated
for each ligand alongside the protein sequences. During training, the model learned meaningful task
token embeddings that effectively represent ligands and their unique characteristics.

To validate the task token embeddings, we employed two clustering approaches: one based on the
trained task token embeddings and the other on biochemical ligand features. For precise clustering
and clearer analysis, ligands with an F1 score below 0.5 were excluded to minimize noise, leaving
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28 out of 41 ligands for analysis. Task token embeddings were reduced to 27 principal components
using PCA, preserving 99% of the variance, and clustered with k-means to generate target clusters.
For validating all ligands, the full set of 41 ligands was included. In this case, task token embeddings
were reduced to 40 components to preserve 99% of the variance, and the same clustering method
was applied. For the ligand features, 26 biochemical descriptors were collected, covering physical,
chemical, electronic, hydrophilic, lipophilic, and geometric properties.

A systematic feature selection process evaluated all possible combinations of up to 13 features
selected from these 26 descriptors (approximately 39 million combinations) to optimize clustering
quality against the target clusters. The Adjusted Rand Index (ARI) was used as the selection metric,
while Normalized Mutual Information (NMI) and Pairwise Accuracy metrics were later employed to
evaluate the final selection.

The clustering results demonstrate that the learned task token embeddings are meaningful, as their
clustering aligns closely with that based on ligand-specific biochemical features. Moderate-to-
high agreement metrics (ARI = 0.447, NMI = 0.614, and pairwise accuracy = 0.783) highlight the
embeddings’ ability to capture key biochemical characteristics of ligands. Chemically significant
features, such as ’MolecularWeight,’ ’NetCharge,’ and ’RotatableBonds,’ identified as part of the
optimal feature set, further reinforce the relevance of the embeddings. The overlap and similarity
in ligand grouping across both clustering approaches validate the hypothesis that the task token
embeddings effectively encode biologically and chemically meaningful information.

However, reducing task token embeddings or biochemical features to 2D for visualization causes
significant information loss, making 2D clustering plots less informative (Figures 11 and 12). These
findings emphasize the importance of preserving higher-dimensional information for accurate in-
terpretation and highlight the value of task token embeddings in ligand characterization for protein
binding site prediction. Figure 6 shows the embeddings-based clustering, while Figure 7 shows the
features-based clustering, and Figure 4 illustrates the global, local, and no relationships between the
two approaches of embeddings-based clustering and features-based clustering.

Global relationships. Figure 4 highlights the ligands that have been clustered correctly across
and within both clustering approaches. For instance, in Cluster 3, the solid circles for ACO, ATP,
FAD, GTP, NAD, and SAM ligands represent ligands that have been consistently clustered across
and within the same clusters in both approaches. This indicates that the task token embeddings
successfully capture their similarity with each other and with the rest of the ligands.

Local relationships. Figure 4 also depicts ligands that have been clustered correctly only within
clusters in both clustering approaches. For example, the stars in cluster 3 for FE2+ and MN2+

indicate that these ligands are grouped but appear in different clusters across the two approaches.
Nevertheless, the task token embeddings still manage to capture their similarity with each other, even
if they fail to capture their similarity with other ligands.

No relationships. For some ligands, the task token embeddings fail to accurately capture their
global or local relationships. This may be due to the ligand features collected not being entirely
representative and requiring further refinement, or because the task token embeddings themselves
need improvement. Figure 4 illustrates these ”no relationships” using triangles; for instance, the
HEM ligand has been grouped with different ligands across different clusters in both approaches.

For further investigation of the task token embeddings, we incorporated all 41 ligands into the
clustering analysis. The metrics showed a notable drop: ARI = 0.259, NMI = 0.333, and
PairwiseAccuracy = 0.733. This decrease was expected, as including task token embeddings for
ligands with low F1 scores introduced some misaligned clusters. However, a closer examination
reveals that the embeddings still effectively capture the global and local relationships between most
ligands. Figures 8 and 9 depict the embeddings-based clustering and features-based clustering,
respectively, while Figure 10 illustrates the global, local, and no relationships across all 41 ligands.
Notably, out of the 41 ligands, the task token embeddings successfully represented 21 ligands globally,
13 ligands locally, and misrepresented 7 ligands. These results indicate that the task token embeddings
consistently demonstrate strong global and local relationships, effectively capturing biochemical
similarities among ligands. This reinforces the conclusion that the model has learned meaningful
representations, even for ligands with low F1 scores.
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A.4.2 FEATURES POOL CREATION

The feature pool of 26 descriptors was carefully designed to capture the physical, chemical, and
structural properties of ligands, making them particularly suitable for describing protein-ligand
interactions. These features were selected using domain knowledge of protein-ligand interactions
and their ability to explain binding phenomena effectively. Two primary sources were used to collect
these features:

• PubChem, a free online database maintained by the National Center for Biotechnology
Information (NCBI), which provides precomputed chemical information for small molecules,
drugs, and bioactive compounds. Features were retrieved using Compound IDs (CIDs) and
SMILES (Simplified Molecular Input Line Entry System), a text-based representation of
molecular structures.

• The second source was RDKit, an open-source cheminformatics toolkit, where SMILES
strings were converted into molecular objects and processed using various descriptors to
compute additional features.

Table 6 shows the set of 26 features, categorized into seven groups, captures the properties of metal
ions and molecules from multiple perspectives, providing a comprehensive description of their
binding potential with proteins.

Table 6: All 26 features we used in the interpretation step.
No. Name Description Source
1 MolecularWeight Total molecular mass PubChem
2 ExactMass High-precision mass of the molecule PubChem
3 MolecularVolume Estimated molecular volume RDKit
4 HeavyAtomCount Count of non-hydrogen atoms RDKit
5 RingCount Total number of rings in the molecule RDKit
6 CarbonCount Number of carbon atoms RDKit
7 OxygenCount Number of oxygen atoms RDKit

Polarity and Hydrophobicity Features
8 LogP Partition coefficient (hydrophobicity) PubChem
9 MolLogP Alternative measure of hydrophobicity RDKit
10 HydrophobicSurfaceArea Hydrophobic interaction area (TPSA) RDKit
11 TPSA Topological Polar Surface Area (polarity) PubChem
12 Hydrophilicity Difference between molecular weight and hydrophobicity RDKit
13 Polarizability Molecular refractivity RDKit
14 Refractivity A measure of a molecule’s polarizability RDKit

Charge and Electrostatics Features
15 NetCharge Net electrical charge of the molecule PubChem
16 ElectrostaticPotential Approximate measure of electrostatic potential RDKit

Flexibility and Rotational Features
17 RotatableBonds Number of rotatable bonds PubChem
18 RotatableBondFraction Fraction of single bonds that are rotatable RDKit

Bond and Connectivity Features
19 SingleBonds Count of single bonds RDKit
20 DoubleBonds Count of double bonds RDKit
21 BalabanJ Balaban index (topological descriptor) RDKit

Hydrogen Bonding Features
22 HBondDonors Number of hydrogen bond donors PubChem
23 HBondAcceptors Number of hydrogen bond acceptors PubChem
24 HydrogenBondingPotential Difference between molecular weight and TPSA RDKit

Aromaticity and - Interactions
25 AromaticRings Number of aromatic rings RDKit
26 PiPiInteractionSites Number of - interaction sites RDKit

A.4.3 OPTIMIZING FEATURE SELECTION

Our approach leverages clustered embeddings as a reference to evaluate clustered features from
various feature combinations, identifying the best set of features to describe ligands based on the
highest Adjusted Rand Index (ARI) score. We began with task token embeddings of ligands that
achieved high F1 scores to ensure noise reduction and high-quality clustering. These embeddings,
initially 640-dimensional, were reduced to 27 principal components using PCA while retaining 99%
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of the variance. The reduced embeddings were then clustered using k-means, with the optimal number
of clusters determined via the Elbow method, serving as the target clusters.

To identify the most informative ligand features, we implemented a search algorithm (Algorithm 1)
that evaluates all possible combinations of up to 13 features from a pool of 26. In the first iteration, the
algorithm selects a single feature (26 possible options). In the second iteration, it selects two features
(325 possible combinations). This process continues up to 13 features, yielding approximately 39
million combinations. For each combination, the ligand-based feature clustering is performed, and
the ARI score is computed. The feature combination that achieves the highest ARI score is selected
as the best set.

Algorithm 1 Ligand interpretation clustering
Input (features pool (26 features), task token embeddings (640D), ligands (41), threshold (e.g., F1 > 0.5))
Output (best features combination, best ari)
Step 1. Preprocessing:

(a) Filter Ligands:
high quality ligands← {ligand | F1(ligand) > threshold}
(b) Reduce Embeddings:
pca embeddings← PCA(task token embeddings, n components, 99% variance)
(c) Find Clusters:
koptimal ← ElbowMethod(pca embeddings)
target clusters← KMeans(pca embeddings, koptimal)

Step 2. Feature Combination Evaluation:
Initialization:
best ari← −∞

for nfeatures = 1 to 13 do
combinations← Combinations(features pool, nfeatures)

for each combination ∈ combinations do
feature clusters← KMeans(combinations, koptimal)

ari← ComputeARI(feature clusters, target clusters)
if ari > best ari then

best ari← ari
best features combination← combination

end if
end for

end for

Next, we removed the threshold constraint and extended the algorithm to all 41 ligands, examining
whether task token embeddings captured meaningful representations for ligands with F1 scores
below 0.5. This analysis demonstrated that the embeddings retained significant information even for
lower-performing ligands.

Table 7 presents the output of our searching algorithm, showing the top three feature combinations
based on the ARI metric for the top 28 ligands. Table 8 displays the top three feature combinations
for the entire set of 41 ligands.

Table 7: Top three feature combinations for the 28 ligands.
No. Features Features ARI NMI Pairwise Accuracy

7 MolecularWeight, NetCharge, RotatableBonds, HydrogenBondingPotential, Carbon-
Count, SingleBonds, BalabanJ

0.447 0.614 0.783

12 LogP, NetCharge, RotatableBonds, ExactMass, Polarizability, AromaticRings, Mol-
LogP, MolecularVolume, HydrogenBondingPotential, CarbonCount, SingleBonds,
BalabanJ

0.423 0.573 0.772

13 MolecularWeight, LogP, NetCharge, RotatableBonds, ExactMass, Polarizability, Mol-
LogP, MolecularVolume, RingCount, HydrogenBondingPotential, CarbonCount, Bala-
banJ, Hydrophilicity

0.434 0.577 0.778
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Figure 6: Clustering results of embeddings on top 28 ligands based on F1 score.

Figure 7: Clustering results of features on the 28 selected ligands.

A.4.4 VISUALIZATION

To analyze the structural relationships within the high-dimensional ligand embeddings, we applied
dimensionality reduction techniques to project the representation of 41 ligands from the 640 dimen-
sional into a two-dimensional space for visualization. The methods explored included t-distributed
stochastic neighbor encoding (t-SNE) (Figure 11) and uniform manifold approximation and projection
(UMAP) (Figure 12).

Figure 8: Clustering results of embeddings on all 41 ligands based on F1 score.
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Figure 9: Clustering results of features on the 41 selected ligands.

Figure 10: Global Relationships indicate that general biochemical features shared among many ligands have
been captured. Local Relationships reflect the successful capture of biochemical properties between specific
ligands and their closely related counterparts. No Relationships indicate that the biochemical properties were not
captured at all.
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Table 8: Top three feature combinations for the entire set of 41 ligands.
No. Features Features ARI NMI Pairwise Accuracy

8 NetCharge, HBondDonors, HBondAcceptors, ExactMass, Refractivity, Hydrogen-
BondingPotential, SingleBonds, PiPiInteractionSites

0.248 0.317 0.728

10 MolecularWeight, LogP, RotatableBonds, TPSA, MolLogP, MolecularVolume, Single-
Bonds, Hydrophilicity, ElectrostaticPotential, PiPiInteractionSites

0.206 0.319 0.709

13 LogP, NetCharge, HBondDonors, HBondAcceptors, TPSA, ExactMass, Polarizability,
AromaticRings, Refractivity, DoubleBonds, BalabanJ, Hydrophilicity, PiPiInteraction-
Sites

0.259 0.333 0.733

For the implementation of t-SNE and UMAP, we ensured reproducibility by setting a random state.
The perplexity parameter for t-SNE was set to 3, and the number of neighbors (n neighbors) for
UMAP was also set to 3. These parameters were chosen to focus on capturing local relationships
among ligand embeddings and to preserve some global structural details. Additionally, the dimen-
sionality of the output was set to two (n components = 2) because the visualizations are in two
dimensions. All other parameters were kept at their default settings. Also, we visualized the trained
index token embeddings associated with the decoder using t-SNE (Figure 13). We could not see any
interpretable patterns in those embeddings.

Figure 11: Visualization of task token embeddings using t-SNE.

Figure 12: Visualization of task token embeddings using UMAP.
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Figure 13: Visualization of index token embeddings using t-SNE.
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