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ABSTRACT

Referring Video Object Segmentation (RVOS) aims to segment the object referred
to by the query sentence in the video. Most existing methods require end-to-end
training with dense mask annotations, which could be computation-consuming
and less scalable. In this work, we rethink the RVOS problem and aim to inves-
tigate the key to this task. Based on existing foundation segmentation models,
we decompose the RVOS task into referring, video, and segmentation factors,
and propose a Temporal Prompt Generation and Selection (Tenet) framework to
address the referring and video factors while leaving the segmentation problem
to foundation models. To efficiently adapt image-based foundation segmentation
models to referring video object segmentation, we leverage off-the-shelf object
detectors and trackers to produce temporal prompts associated with the referring
sentence. While high-quality temporal prompts could be produced, they can not be
easily identified from confidence scores. To tackle this issue, we propose Prompt
Preference Learning to evaluate the quality of the produced temporal prompts. By
taking such prompts to instruct image-based foundation segmentation models, we
would be able to produce high-quality masks for the referred object, enabling ef-
ficient model adaptation to referring video object segmentation. Experiments on
RVOS benchmarks demonstrate the effectiveness of the Tenet framework.

1 INTRODUCTION

Segmentation, as a fundamental task in computer vision, aims to partition images into distinct visual
segments. With segmentation, individual image pixels would be categorized into specific regions
or objects of interest, making it particularly essential for visual understanding in real-world appli-
cations, such as autonomous driving (Zendel et al., 2022), medical imaging (Shin et al., 2023), and
robotics (Goyal et al., 2022). In traditional semantic segmentation (Long et al., 2015; Cheng et al.,
2021), models are generally trained to classify objects within a limited set of pre-defined categories
(e.g., bear, gold fish, zebra, etc.). While promising results have been presented, these methods could
not be easily applied in realistic scenarios, where the target objects are usually specified by free-form
phrases or sentences (e.g., “zebra eating grass with a goose in front of it”) rather than the category
names alone. To advance segmentation to handle such natural language descriptions, referring im-
age segmentation (RIS) (Hu et al., 2016; Yang et al., 2022; Liu et al., 2023b;a) emerges to learn and
understand complex text queries while associating them with the input images to produce segmen-
tation masks for the target objects. Recent RIS works (Yang et al., 2022; Liu et al., 2023b;a) focus
on designing Transformer-based or cross-attention models and employ vision-language learning to
fuse the latent features from both modalities. Despite these advancements, when the visual input is
a sequence of video frames rather than a single image, the time-varying object positions and appear-
ance could result in inconsistent output masks from frame to frame, implying the inherent deficiency
of image-based segmentation approaches.

Referring Video Object Segmentation (RVOS), in response to this, aims to segment the object re-
ferred to by a text query throughout the entire video. In contrast to RIS, RVOS is particularly faced
with dynamic visual challenges, such as position and size variation, object occlusion or exit, pose
deformation, and scene variation. Moreover, the referring sentences may contain long-term motions
or actions (e.g., “a gold fish on the left swimming towards the top right”), which could not be eas-
ily recognized from a single frame. To address such a challenging task, a number of works (Seo
et al., 2020; Wu et al., 2022; 2023a; Miao et al., 2023; Tang et al., 2023; Luo et al., 2024; Wu et al.,
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Tenet

Reference
proposal

Candidate
Tracks

Expression: a bald man with a black belt in the center of the mat

Track yellow better 
matches the expression.

SAM

Output

Figure 1: Given the expression, we first generate temporal prompts as the reference proposal and
candidate tracks. Our proposed Tenet framework then selects the one that best aligns with the
expression to prompt SAM, achieving referring video object segmentation.

2023b; Li et al., 2023a; Cheng et al., 2023a; Yan et al., 2024b; He & Ding, 2024; Yuan et al., 2024)
have been presented. With the rapid development of Transformer (Vaswani et al., 2017), Refer-
Former (Wu et al., 2022) takes the text inputs as queries to perform attention on the referred objects
and links the corresponding queries across frames to achieve object tracking. Recent works like
FS-RVOS (Li et al., 2023a) and OnlineRefer (Wu et al., 2023a) further extend RVOS to the few-shot
setting and online pipeline to handle limited samples and ongoing videos in real-world scenarios,
respectively. Nevertheless, most existing methods require end-to-end training for vision-language
segmentation models, which could be computationally expensive and time-consuming. Moreover,
the requirement of dense mask annotations for training impedes the scalability of these approaches.

Recently, several foundation segmentation models (Kirillov et al., 2023; Wang et al., 2023b; Zou
et al., 2024) have been presented. Among them, SAM (Kirillov et al., 2023) is the most prominent
one due to its overwhelming generalizability on various datasets. By employing large-scale model
architectures and leveraging numerous image data for training, SAM can produce high-quality object
masks according to visual prompts such as points or boxes, setting superior benchmarks for segmen-
tation tasks. However, as SAM is trained solely with images and their associated masks, it could
not properly handle natural language descriptions and video data in RVOS. Even though it is pos-
sible to incorporate additional grounding models (e.g., Liu et al. (2024)) to generate text-associated
box prompts and tracking models (e.g., Cheng et al. (2023c)) to capture object movements across
video frames, such naive combinations of off-the-shelf models has shown to be suboptimal (Li et al.,
2023c), as they are individually trained for different tasks. This therefore raises a critical question:
“How to effectively and efficiently exploit foundation segmentation models for RVOS?”

In this paper, we rethink the RVOS problem and aim to investigate the key to this challenging
task. Based on the impressive results presented by foundation segmentation models, we decompose
the RVOS task into the following three factors: referring, video, and segmentation, and focus on
addressing the referring and video factors while leaving the segmentation problem to foundation
models. To achieve this goal, we propose a Temporal Prompt Generation and Selection (Tenet)
framework to efficiently adapt image-based foundation segmentation models to refer and segment
video objects, as shown in Figure 1. Specifically, to generate visual prompts associated with the
referring sentence, we leverage off-the-shelf object detectors and trackers to produce the reference
proposal and candidate tracks. On the one hand, we perform object detection frame-by-frame to
obtain box proposals indicating object positions, and the most confident (Top-1) proposals at each
frame are together considered as reference proposals. On the other hand, to enhance the tempo-
ral consistency across frames, we also apply object tracking to Top-K proposals to form multiple
candidate tracks. Based on our empirical analysis, a portion of these candidate tracks is shown to
be superior to the reference proposal. However, such high-quality candidate tracks could NOT be
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easily identified by the confidence scores of detected boxes. To tackle this problem, we propose
Prompt Preference Learning, which employs a Transformer-based classifier to compare the quality
of each candidate track with the reference proposal. By selecting the most preferred visual prompt
to instruct image-based foundation segmentation models, high-quality masks for the referred object
are produced, enabling efficient model adaptation to referring video object segmentation. Quanti-
tative and qualitative experiments on standard RVOS benchmark datasets (Refer-Youtube-VOS and
Refer-DAVIS17) demonstrate the effectiveness of our proposed Tenet framework.

The contributions of this paper are summarized as follows:

• We rethink the RVOS problem and propose a Temporal Prompt Generation and Selection (Tenet)
framework to efficiently adapt image-based foundation segmentation models to referring video
object segmentation. Experiments on standard RVOS benchmarks demonstrate the effectiveness
of the proposed Tenet framework.

• To generate visual prompts associated with the referring sentence, we leverage off-the-shelf object
detectors and trackers to produce the reference proposal and candidate tracks. Based on our
empirical analysis, a portion of these candidate tracks is shown to be superior to the reference
proposal.

• To identify high-quality candidate tracks, we propose Prompt Preference Learning to compare
the quality of each candidate track with the reference proposal. By selecting the most preferred
visual prompt to instruct image-based foundation segmentation models, we would be able to pro-
duce high-quality masks for the referred object.

2 RELATED WORKS

2.1 REFERRING IMAGE/VIDEO SEGMENTATION

Referring image segmentation (RIS) (Xu et al., 2023; Yang et al., 2022; Yu et al., 2023; Liu et al.,
2023b) learns to segment the corresponding object in an image given a free-form text query. For
example, PolyFormer (Liu et al., 2023b) re-formulates the RIS problem as a sequential polygon
generation and then converts it to a segmentation mask. Also, PolyFormer further performs zero-
shot transfer on the RVOS task to show its generalization ability for the video domain. However, the
challenging issues for RVOS such as position and size variation, pose deformation, object occlusion,
etc., may limit the performance of RIS methods.

Referring Video Object Segmentation (RVOS) (Wu et al., 2022; Han et al., 2023; Wu et al., 2023a;
Miao et al., 2023; Tang et al., 2023; Luo et al., 2024; Wu et al., 2023b) strives to segment the
object described by a free-form sentence query across the entire video duration. Recently, Refer-
Former (Wu et al., 2022) views language as queries to pay attention to the referred object by adopt-
ing an encoder-decoder style in the transformer. However, this work only supports offline training
and inference, limiting its usage in real-world scenarios. More recently, OnlineRefer (Wu et al.,
2023a) further proposes an online RVOS setting to deal with the issues about offline limits, which
makes it more possible to adapt to real-world scenarios. Nevertheless, most existing methods re-
quire end-to-end training for vision-language models, which could be computationally expensive
and time-consuming. Moreover, the requirement of dense mask annotations for training impedes
the scalability of those approaches. Instead, we propose to exploit foundation segmentation models
without text- and temporal-aware prompting, which is trained without mask annotations and sup-
ports online settings. Very recently, several methods (Zhu et al., 2023; Lai et al., 2024; Yan et al.,
2024a; Bai et al., 2024) are proposed to leverage the knowledge learned in large language models to
address RVOS. Nevertheless, the results of these LLM-based methods are still inferior to traditional
ones.

2.2 FOUNDATION SEGMENTATION MODELS

In recent years, foundation vision models have gained massive attention given their remarkable gen-
eralization capabilities on various downstream tasks. More recently, SAM (Kirillov et al., 2023) has
introduced a foundation model specifically tailored for segmentation tasks. SAM allows specific
position prompts (e.g., points, boxes, etc.) to demonstrate the zero-shot ability on the open vocab-
ulary segmentation tasks with novel image distributions. Several works have studied the versatility
of SAM, including remote sensing images (Chen et al., 2024; Wang et al., 2024), medical image
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analysis (Ma et al., 2024; Chen et al., 2023; Wu et al., 2023c; Cheng et al., 2023b), and adaptation
to video-based tracking task (Cheng et al., 2023c; Yang et al., 2023; Rajič et al., 2023), etc.

In addition to SAM, SegGPT (Wang et al., 2023b) and SEEM (Zou et al., 2024) have also emerged
as generalized foundation segmentation models, showcasing comparable concepts. SegGPT ex-
ploits the concept of an in-context learning scheme to treat the classic segmentation problems as an
in-context coloring problem. With this design, SegGPT is able to focus on more contextual informa-
tion when training. On the other hand, SEEM extends the versatility of a single segmentation model
by broadening the range of tasks. Similar to SAM, SEEM also supports various prompts including
points, boxes, masks, etc. Specifically, SEEM proposes to align visual-semantic space to accommo-
date flexible multi-prompt input. However, both SegGPT and SEEM are not directly feasible for our
RVOS task due to no specific adaptation to the video domain or enhancement of tracking ability.

For adaptation to tracking tasks with SAM, SAM-PT (Rajič et al., 2023) designs a point-based
prompt enhancement for the original SAM point prompt to support classic video object segmen-
tation tasks, while neglecting the importance of text prompt for advanced referring video object
segmentation. Another example SAM-Track (Cheng et al., 2023c) attempts to utilize SAM for seg-
mentation and detection of objects while the DeAOT (Yang & Yang, 2022) module captures the
motion across frames for tracking the objects. On the other hand, SAM 2 (Ravi et al., 2024) intro-
duces a memory attention mechanism on SAM to produce masklets for videos. Though it is possible
to combine text-grounding detection models (e.g., Grounding DINO (Liu et al., 2024)) with SAM-
Track to tackle RVOS, RefSAM (Li et al., 2023c) has studied the possible concerns and indicates
the unsatisfactory performance compared with current SOTAs in RVOS tasks. Different from the
above, we propose temporal-aware prompting with foundation segmentation models (e.g., SAM) to
tackle RVOS problems.

3 PROPOSED FRAMEWORK: TENET

3.1 PROBLEM DEFINITION AND METHOD OVERVIEW

Problem Definition. For the sake of completeness, we first define the problem setting and no-
tations used in this paper. In Referring Video Object Segmentation (RVOS), we assume that the
training data contain a set of videos, where each video V = {It}Tt=1 is a sequence of T frames and
the target object is associated with a referring sentence S. The goal of RVOS is to produce seg-
mentation masks M = {Mt}Tt=1 for the referred object from the video V and referring sentence S.
Since our goal is to prompt foundation segmentation models to achieve RVOS instead of training an
end-to-end segmentation network as previous works (Wu et al., 2022; 2023a; Miao et al., 2023) did,
we assume that we only have access to box-level annotations GT = {B̂t}Tt=1 corresponding to the
referred object as the ground truth, where each bounding box B̂t = (x̂t, ŷt, ĥt, ŵt) is represented
by the coordinate of the center point and the height and width. Such box-level annotations could be
considered as a type of weak supervision for segmentation tasks (Khoreva et al., 2017).

Method Overview. With the impressive performance of foundation segmentation models such as
SAM (Kirillov et al., 2023), we decompose the Referring Video Object Segmentation (RVOS) task
into three core components: referring, video, and segmentation. We specifically address the chal-
lenges of the referring and video aspects, leveraging foundation models to handle segmentation.
To this end, we propose a Temporal Prompt Generation and Selection (Tenet) framework to effi-
ciently adapt image-based foundation segmentation models to referring video object segmentation.
Specifically, our approach begins by utilizing off-the-shelf detectors and trackers to generate visual
prompts corresponding to the referred object. We perform object detection frame-by-frame to obtain
box proposals indicating object positions, and the most confident (Top-1) proposals at each frame
are together considered as the reference proposal. On the other hand, to enhance the temporal con-
sistency across frames, we also form multiple candidate tracks by applying object tracking to Top-K
proposals. To identify high-quality candidate tracks, we further propose Prompt Preference Learn-
ing, which employs a Transformer-based classifier to compare the quality of each candidate track
with the reference proposal. By selecting the most preferred visual prompt to instruct image-based
foundation segmentation models, we would be able to produce high-quality masks for the referred
object, enabling efficient model adaptation to referring video object segmentation. In the following
subsections, we first introduce the generation process of temporal prompts and provide empirical
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analysis in Section 3.2, and then detail the proposed Prompt Preference Learning to select temporal
prompts in 3.3.

3.2 TEMPORAL PROMPT GENERATION AND ANALYSIS

Based on foundation segmentation models, we decompose the RVOS task into the following three
factors: referring, video, and segmentation. To focus on the referring and video factors, we first
investigate how to generate high-quality temporal prompts to benefit RVOS.

Temporal Prompt Generation. To obtain object positions, we consider Grounding DINO (Liu
et al., 2024) as our detector to produce box proposals from the input video V and the referring sen-
tence S. Specifically, given the box annotations GT = {B̂t}Tt=1 of the RVOS training data, we
first finetune Grounding-DINO with the common regression loss and generalized IoU loss. Since
there is typically only one target object in referring segmentation tasks, we simply select the out-
put proposal with the highest confidence score at each frame to compute the loss instead of using
the Hungarian algorithm (Carion et al., 2020) for box matching. We then use the pretrained and
finetuned Grounding DINO for producing the reference proposal and candidate tracks, as described
below:

• Reference Proposal: With the finetuned Grounding DINO, intuitively, we can simply take the
most confident (Top-1) proposal at each frame t.

• Candidate Tracks: The above Top-1 proposals could be sensitive to prediction error and also
inconsistent across frames. To achieve better temporal consistency, we consider the Top-K pro-
posals and take an off-the-shelf motion-based tracker, OC-SORT (Cao et al., 2023), to perform
object tracking. Here, the Top-K proposals are derived from the pretrained Grounding DINO
since the finetuned one would lose generalizability and diversity and result in K repetitive boxes.
As a result, we take the Top-K proposals from the pretrained Grounding DINO plus the Top-1
proposal from the finetuned one to produce candidate tracks from OC-SORT. Note that for the
missed frames in each track, we use the Top-1 boxes to fill those untracked frames.

Temporal Prompt Analysis. For quantitative and quantitative analysis, we consider the afore-
mentioned reference proposal, candidate tracks, and several of their variants and baselines. By
taking them as visual prompts to SAM (Kirillov et al., 2023), we present the quantitative results in
Table 1 and the associated visualization in Figure 2. Here, we use Refer-Youtube-VOS (Seo et al.,
2020) as the training dataset, and since its validation set does not provide ground truth boxes, we use
the Refer-DAVIS17 (Khoreva et al., 2018) dataset for evaluation instead. For evaluation metrics, we
consider mIoU for the box proposals, and we adopt the commonly used region similarity J (average
IoU), contour accuracy F (average boundary similarity), and their mean J&F for the segmentation
masks.

We detail each row in Table 1 as below: (a) Framewise Top-1 proposals from the pretrained Ground-
ing DINO. (b) Framewise Top-1 proposals from the finetuned Grounding DINO. (c) The candidate
track with the highest averaged confidence score produced by the Top-K proposals from the pre-
trained Grounding DINO plus the Top-1 proposal from the finetuned one. (d) The candidate track
with the highest mIoU produced by the Top-K proposals from the pretrained Grounding DINO plus
the Top-1 proposal from the finetuned one.

We list our important findings point-by-point as follows:

• Prompting foundation segmentation models is a promising direction for RVOS. By taking the
ground-truth boxes to prompt SAM, we see that the resulting J&F is 83.6%, which is 15.6%
higher than the state-of-the-art RVOS method, MUTR (Yan et al., 2024b).

• The Top-1 proposals (reference proposal) from the finetuned detector outperforms the pretrained
one. Unsurprisingly, for the Top-1 proposals, the finetuned Grounding DINO (b) better fits the
RVOS data and therefore surpasses the pretrained one (a) by 4.9% in J&F .

• The best candidate track produced from object tracking outperforms the reference proposal. In (d),
we present the result of the best-produced candidate track with the highest averaged box mIoU,
and we see that the J&F is 5.6% higher than the reference proposal (b), showing that at least one
of the candidate is of high quality.
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Expression: a gold fish in the middle swimming towards down-right

(a)
9.0%

(b)
54.1%

(c)
54.2%

(d)
85.2%

GT
100%

Figure 2: Qualitative results when taking visual prompts derived from different methods to
prompt SAM on the Refer-DAVIS17 dataset. Note that the score in the left is the box mIoU.

Table 1: Quantitative results when taking visual prompts derived from different methods to
prompt SAM on the Refer-DAVIS17 dataset.

Method Box mIoU Ref-DAVIS17
J&F J F

(a) Reference Proposal (pretrained) 71.2 65.2 62.3 68.0
(b) Reference Proposal (finetuned) 75.7 70.1 67.4 72.7
(c) Candidate Track (highest conf.) 72.7 68.9 66.0 71.7
(d) Candidate Track (highest mIoU) 81.8 76.2 73.0 79.5

Ground-Truth Boxes 100.0 83.6 80.1 87.2

• High-quality candidate tracks could not be easily identified. In (c), we present the result of the
candidate track with the highest averaged confidence score, and we see that the J&F is signifi-
cantly (7.3%) lower than the one with the highest box mIoU (d). This is because the frame-level
confidence scores of detected boxes are not reliable for ranking video-level candidate tracks.

Remarks. In this section, we verify that prompting SAM is able to achieve superior performance
and is a promising direction for referring video object segmentation. By performing object tracking
to produce candidate tracks, we see that the best candidate would outperform the reference proposal
from framewise detection. Nevertheless, high-quality candidate tracks could not be easily identified
from confidence scores. As a result, we would like to learn a model that is able to properly evaluate
the quality of candidate tracks.

3.3 PROMPT PREFERENCE LEARNING

As discussed in Section 3.2, high-quality candidate tracks could not be easily identified from con-
fidence scores. To identify the visual prompts that best describe the referred object, we propose
Prompt Preference Learning to compare the quality of each candidate track with the reference pro-
posal, as shown in Figure 3. Specifically, to derive the visual representations for the objects indicated
by the visual prompts, we adopt an image encoder to extract the latent features conditioned on the
box proposals, resulting in fr and f c

i for the reference proposal and the ith candidate track, re-
spectively. Along with the text feature f t derived by inputting the referring sentence into the text

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

“a largest orange goldfish.”
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0 (reference)
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1 (candidate)
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𝑧
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𝑐

Temporal Prompt Generation (Section 3.2) Temporal Prompt Selection (Section 3.3)

Figure 3: Overview of the proposed Tenet framework. We first produce the reference proposal
and candidate tracks as described in Section 3.2, and then perform Prompt Preference Learning as
detailed in Section 3.3.

encoder, we employ a Transformer-based binary classifier by taking visual features fr and f c
i , the

text features f t, and an additional learnable classification token z as input. Then, a standard binary
cross entropy loss Lbce is calculated as:

Lbce = −
∑
i

[yi log σ(si) + (1− yi) log(1− σ(si)] ,

where si = Transformer([z, fc
i , f

r, f t]).

(1)

Here, σ(·) denotes the sigmoid function and yi = 1 if the ith candidate track is of higher mIoU than
the reference proposal, otherwise 0. During inference, if there is at least one of the candidate track
scores σ(si) is over than 0.5, we select the candidate with the highest score. Otherwise, we select
the reference proposal as the visual prompt.

Expression: the eyeglasses are being worn by a person wearing a yellow shirt and tan coat

ReferFormer

Input

OnlineRefer

Ours

Grounded-SAM2

Figure 4: Qualitative results on Ref-YouTube-VOS.
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Table 2: Quantitative results on the validation split of Ref-YouTube-VOS and Ref-DAVIS17.
RefYT: Ref-YouTube-VOS, RefD: Ref-DAVIS, MeV: MeViS Ding et al. (2023), RefC: Ref-
COCO (Mao et al., 2016; Yu et al., 2016), ReS: ReasonSeg (Lai et al., 2024), ReV: ReVOS (Yan
et al., 2024a), YT: YouTube-VOS 2019 (Xu et al., 2018), D: DAVIS17 (Perazzi et al., 2016), O:
Occluded VIS (Qi et al., 2022), LV: Long-term VOS (Hong et al., 2023), G: GOT-10K (Huang et al.,
2019), La: LaSOT (Fan et al., 2019), T: TrackingNet (Muller et al., 2018), B: BDD100K (Yu et al.,
2020), V: VIS19 (Yang et al., 2019), InT: InsTrack (Zhu et al., 2023), VC: Video-ChatGPT (Maaz
et al., 2024), VD: large-scale video diffusion model (Wang et al., 2023a).

Method Publication Referring & Video Training Data Ref-YouTube-VOS Ref-DAVIS17
J&F J F J&F J F

Standard RVOS approaches

MTTR CVPR’22 RefYT 55.3 54.0 56.6 - - -
ReferFormer CVPR’22 RefC, RefYT 62.9 61.3 64.6 61.1 58.1 64.1
R2-VOS ICCV’23 RefC, RefYT 61.3 59.6 63.1 - - -
HTML ICCV’23 RefC, RefYT 63.4 61.5 65.2 62.1 59.2 65.1
OnlineRefer ICCV’23 RefC, RefYT 63.5 61.6 65.5 64.8 61.6 67.7
SgMg ICCV’23 RefC, RefYT 65.7 63.9 67.4 63.3 60.6 66.0
TempCD ICCV’23 RefC, RefYT 65.8 63.6 68.0 64.6 61.6 67.6
RefSAM arXiv’23 RefC, RefYT 62.1 60.9 63.3 69.5 65.9 73.2

Large-scale training approaches

UniNEXT CVPR’23 RefC, RefYT, G, La, T, YT, B, V, O 66.2 64.0 68.4 66.7 62.3 71.1
DEVA ICCV’23 RefC, RefYT, YT, D, O 66.0 - - 66.3 - -
UniRef ICCV’23 RefC, RefYT, RefD, YT, O, LV 67.4 65.5 69.2 66.3 62.9 69.7
TrackGPT-7B arXiv’23 RefC, RefYT, ReS, InT 56.4 55.3 57.4 63.2 59.4 67.0
LISA-7B CVPR’24 RefC, ReS 50.2 49.7 50.6 58.4 54.9 61.9
VISA-7B ECCV’24 RefC, ReS, ReV, RefVY, RefD, MeV, VC 61.5 59.8 63.2 69.4 66.3 72.5
VD-IT-2B ECCV’24 RefC, RefYT, VD 66.5 64.4 68.5 69.4 66.2 72.6
VideoLISA-7B NeurIPS’24 RefC, ReS, RefYT, MeV, YT 61.7 60.2 63.3 67.7 63.8 71.5

Efficient tuning approaches

WRVOS arXiv’23 RefYT (box + 1st-frame mask) 46.6 45.6 47.6 47.3 44.6 50.0
Grounded-SAM arXiv’24 RefC (box) 62.3 61.0 63.6 65.2 62.3 68.0
Grounded-SAM2 - RefC (box) 64.8 62.5 67.0 66.2 62.6 69.7

Tenet (Ours) - RefC (box), RefYT (box) 65.5 64.1 66.9 71.0 68.2 73.8

4 EXPERIMENTS

4.1 DATASETS AND IMPLEMENTATION DETAILS

Datasets. We conduct experiments on RVOS benchmark datasets: Refer-Youtube-VOS (Seo et al.,
2020) and Refer-DAVIS17 (Khoreva et al., 2018). Refer-Youtube-VOS is a large-scale dataset for
RVOS, with 3, 975 videos, 7, 451 objects, and 27, 899 expressions. Refer-DAVIS17 is augmented
from the popular video object segmentation dataset, DAVIS17 (Caelles et al., 2018). It contains 90
videos (60 for training and 30 for testing) with more than 1, 500 expressions. Since the annotations
of the Ref-Youtube-VOS validation set are not publicly released, we evaluate the results on the
official server. As for Ref-DAVIS17, we use the official code for evaluation.

Implementation Details. For the image encoder, we use the CLIP image encoder pretrained
from Guo et al. (2024) followed by a two-layer MLP. As for the text encoder, we use the pretrained
CLIP text encoder with a two-layer MLP. As for the Transformer, we use a one-layer Transformer
encoder layer. We only train the MLP’s and Transformer’s parameters. We use the learning rate of
0.0001 and train for 50 epochs with the Adam optimizer. All models are implemented in PyTorch
and trained on NVIDIA H100 GPUs.

4.2 QUANTITATIVE AND QUALITATIVE RESULTS

We compare our Tenet framework with the following three types of methods for the RVOS task:

• Standard RVOS approaches: MTTR (Botach et al., 2022), ReferFormer (Wu et al., 2022),
R2-VOS (Li et al., 2023b), HTML (Han et al., 2023), OnlineRefer (Wu et al., 2023a), SgMg (Miao
et al., 2023), TempCD (Tang et al., 2023), and RefSAM (Li et al., 2023c).
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Expression: A man in the middle wearing a blue belt teaching judo

ReferFormer

Input

OnlineRefer

GT bbox +
SAM

Grounded-SAM2

Ours

Figure 5: Qualitative results on Ref-DAVIS17.

• Large-scale training approaches: UniNEXT (Yan et al., 2023), DEVA (Cheng et al., 2023a),
UniRef (Wu et al., 2023b), TrackGPT (Zhu et al., 2023), LISA (Lai et al., 2024), VISA (Yan
et al., 2024a), VD-IT (Zhu et al., 2024), and VideoLISA (Bai et al., 2024).

• Efficient tuning approaches: WRVOS (Zhao et al., 2023), Grounded-SAM (Ren et al., 2024a), and
Grounded-SAM2 (Ren et al., 2024b).

In Table 2, we first provide quantitative results on Ref-YouTube-VOS and Ref-DAVIS17. We see
that our Tenet framework employs Prompt Preference Learning to select the track for prompting
SAM, resulting in 65.5% and 71.0% in J&F on the two datasets, respectively. For the judo case
in Figure 5, we see that Prompt Preference Learning is able to select the reference proposal for the
referred object and produces similar results with the ground truth. As for the difficult eyeglasses
case in Figure 4, our framework also performs better than Grounded-SAM2, demonstrating the
effectiveness of our method.

Table 3: Quantitative results of candidate track variants. Note that ⋆ denotes that the candidate
tracks are produced from top-5 proposals from the finetuned Grounding DINO.

Method Box mIoU Ref-DAVIS17
J&F J F

Candidate Track⋆ (highest mIoU) 75.8 70.7 67.9 73.4
Candidate Track (highest mIoU) 81.8 76.2 73.0 79.5
Candidate Track (merged) 82.1 77.4 74.2 80.6

9
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Table 4: Hyper-parameter analysis when varying the number of proposals K. Here, the candi-
date tracks are produced from the top-K proposals from the pretrained Grounding DINO plus the
top-1 proposal from the finetuned one, and the result is the best candidate with the highest mIoU.

Method Box mIoU Ref-DAVIS17
J&F J F

Candidate Track (Top-2 (pretrained)) 79.1 73.0 70.0 76.0
Candidate Track (Top-3 (pretrained)) 80.6 74.9 71.8 78.0
Candidate Track (Top-5 (pretrained)) 81.8 76.2 73.0 79.5
Candidate Track (Top-10 (pretrained)) 81.5 76.7 73.7 79.7

4.3 ABLATION STUDIES

Candidate Track Variants. In Table 3, we additionally provide the results of candidate track
variants. By comparing the first and second rows, we see that if we instead use Top-5 proposals from
the finetuned detector to produce tracks, a 5.5% performance drop in J&F would be observed. This
is because the finetuned detector would lose diversity and produce repetitive box proposals, making
the subsequent tracking meaningless. As a result, we take the Top-5 proposals from the pretrained
Grounding DINO plus the Top-1 proposal from the finetuned one to produce candidate tracks from
OC-SORT. Instead of simply selecting one best candidate track, another alternative is to greedily
select and merge the tracks according to the mIoUs. Nevertheless, the resulting J&F is only 1.2%
higher in the third row. Hence, we simply consider the candidates individually.

Number of Proposals. In Table 4, we additionally provide the results when varying the number of
proposals K from the pretrained Grounding DINO, and we see that the J&F saturates when K≥5.
Therefore, we simply set K to 5 for efficiency.

Table 5: Efficiency comparisons with recent RVOS methods, along with the J&F scores on Ref-
YouTube-VOS and Ref-DAVIS17.

Method # of trainable parameters Ref-YTVOS Ref-DAVIS

ReferFormer (Wu et al., 2022) ∼112M 62.9 61.1
OnlineRefer (Wu et al., 2023a) ∼221M 63.5 64.8
DEVA (Cheng et al., 2023a) ∼112M 66.0 66.3
Tenet (Ours) ∼45M 65.5 71.0

Efficiency Comparisons. In Table 5, we also provide efficiency comparisons with recent works.
We see that the number of trainable parameters of our method is over 2 times fewer than DEVA.
This is because our proposed Tenet framework learns to prompt foundation models for efficient
adaptation instead of training a vision-language model end-to-end. Together with the quantitative
comparisons in Table 2, we validate that our proposed Tenet framework is preferable in terms of
performance, setting, and efficiency.

5 CONCLUSION

In this paper, we rethink the RVOS problem and decompose the RVOS task into the following three
factors: referring, video, and segmentation, and propose the Tenet framework to address the referring
and video factors while leave the segmentation problem to foundation models. To efficiently adapt
image-based foundation segmentation models to referring video object segmentation, we leverage
off-the-shelf object detectors and trackers to produce the reference proposal and candidate tracks,
which would serve as temporal prompts to instruct foundation segmentation models to produce
object masks. With the proposed Prompt Preference Learning, we would be able to identify temporal
prompts sutiable for prompting SAM, enabling efficient model adaptation to referring video object
segmentation. Experiments on standard RVOS benchmarks demonstrate the effectiveness of the
proposed Tenet framework.
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