
Solving the all pairs shortest path problem after minor update of
a large dense graph

Gangli Liu

Tsinghua University

gl-liu13@mails.tsinghua.edu.cn

ABSTRACT
The all pairs shortest path problem is a fundamental optimization

problem in graph theory. We deal with re-calculating the all-pairs

shortest path (APSP) matrix after a minor modification of a weighted

dense graph, e.g., adding a node, removing a node, or updating an

edge. We assume the APSP matrix for the original graph is already

known. The graph can be directed or undirected. A cold-start cal-

culation of the new APSP matrix by traditional algorithms, like the

Floyd-Warshall algorithm or Dijkstra’s algorithm, needs𝑂 (𝑛3) time.

We propose two algorithms for warm-start calculation of the new

APSP matrix. The best case complexity for a warm-start calculation

is 𝑂 (𝑛2), the worst case complexity is 𝑂 (𝑛3). We implemented the

algorithms and tested their performance with experiments. The

result shows a warm-start calculation can save a great portion of

calculation time, compared with cold-start calculation. In addition,

another algorithm is devised to warm-start calculate of the shortest

path between two nodes. Experiment shows warm-start calcula-

tion can save 99% of calculation time, compared with cold-start

calculation by Dijkstra’s algorithm, on directed complete graphs of

large sizes.

KEYWORDS
All pairs shortest path; Shortest path problem; Minimax path prob-

lem; Widest path problem

ACM Reference format:
Gangli Liu. 0000. Solving the all pairs shortest path problem after minor

update of a large dense graph. In Proceedings of 000, Beijing, China, 0000
(0000), 9 pages.

DOI: 00.000/000 0

1 INTRODUCTION
The Shortest Path Problem is a fundamental optimization problem

in graph theory and computer science. It involves finding the

shortest path between two vertices in a graph such that the sum of

the weights of its constituent edges is minimized.

Let 𝐺 = (𝑉 , 𝐸) be a graph where:

• 𝑉 is the set of vertices (nodes),

• 𝐸 ⊆ 𝑉 ×𝑉 is the set of edges (connections between nodes),

• 𝑤 : 𝐸 → R+ ∪ {0} is a weight function assigning a non-

negative weight to each edge.

For a given source vertex 𝑠 ∈ 𝑉 and target vertex 𝑡 ∈ 𝑉 , the

Shortest Path Problem seeks to find a path 𝑃 from 𝑠 to 𝑡 such that:

𝑃 = {𝑣1, 𝑣2, . . . , 𝑣𝑘 }, 𝑣1 = 𝑠, 𝑣𝑘 = 𝑡,

0000, Beijing, China
0000. 000-0000-00-000/00/00. . . $00.00

DOI: 00.000/000 0

and the total path weight is minimized:

minimize:𝑊 (𝑃) =
𝑘−1∑︁
𝑖=1

𝑤 (𝑣𝑖 , 𝑣𝑖+1),

where (𝑣𝑖 , 𝑣𝑖+1) ∈ 𝐸 for 𝑖 = 1, 2, . . . , 𝑘 − 1.

The all-pairs shortest path (APSP) problem compute the shortest

paths between all pairs of vertices𝑢, 𝑣 ∈ 𝑉 . A dense graph is a graph

in which the number of edges is close to the maximum possible

number of edges for the given number of vertices.

Let 𝐺 = (𝑉 , 𝐸) be a graph, where |𝑉 | = 𝑛 is the number of

vertices and |𝐸 | is the number of edges. A dense graph satisfies:

|𝐸 | ≈ 𝑂 (𝑛2)
This means the number of edges grows quadratically with the

number of vertices. For an undirected graph, the maximum possible

number of edges is: (
𝑛

2

)
=
𝑛(𝑛 − 1)

2

.

For a directed graph, the maximum possible number of edges is:

𝑛(𝑛 − 1).
A graph is considered dense when |𝐸 | is close to these upper

bounds. Dense graphs are common in applications like social net-

works, transportation networks, or communication networks where

most entities are interconnected.

In this paper, we deal with re-calculating the all-pairs shortest

path (APSP) matrix after a minor modification of a weighted dense

graph, e.g., adding a node, removing a node, or updating an edge.

We assume the APSP matrix for the original graph is already known.

The graph can be directed or undirected. A straightforward method

for calculating the APSP matrix of the updated graph is to use the

Floyd–Warshall algorithm to recalculate the updated graph, it needs

𝑂 (𝑛3) time. It is a very expensive time cost for a large dense graph.

We are trying to utilize the already calculated APSP matrix to make

calculation of the new APSP matrix less expensive.

2 RELATEDWORK
The Shortest Path Problem (SPP) is a foundational topic in graph the-

ory and optimization, with numerous applications in transportation

networks, telecommunications, and logistics [1, 3, 16, 20, 21]. Over

the years, various algorithms and techniques have been developed

to solve different variants of the problem efficiently.

2.1 Classical Algorithms
One of the earliest contributions to SPP dates back to the work

of Dijkstra (1959), who proposed a greedy algorithm to solve the

0000, 0000, Beijing, China Gangli Liu

single-source shortest path problem for graphs with non-negative

edge weights in𝑂 (|𝑉 |2) time, later optimized to𝑂 (|𝐸 | + |𝑉 | log |𝑉 |)
using priority queues [6]. The idea of this algorithm is also given

in (Leyzorek et al. 1957) [13].

For graphs with negative edge weights, the Bellman-Ford al-

gorithm (1958) provides a reliable solution, albeit with a higher

computational cost of 𝑂 (|𝑉 | |𝐸 |) [2]. The Floyd-Warshall algorithm

(1962) extends these techniques to compute all-pairs shortest paths

in 𝑂 (|𝑉 |3), leveraging dynamic programming [7].

2.2 Optimizations and Modern Variants
Advances in data structures, such as Fibonacci heaps [8], have fur-

ther improved the efficiency of Dijkstra’s algorithm. More recently,

heuristic-based approaches like 𝐴∗ have been widely adopted for

real-world applications, where an admissible heuristic guides the

search to improve runtime performance [10]. Parallel and dis-

tributed versions of shortest path algorithms have also emerged,

leveraging modern computing architectures for large-scale graphs

[17].

2.3 Specialized Applications
The SPP has been extended to address specialized scenarios, such as

the multi-criteria shortest path problem, which considers trade-offs

between multiple objectives, like cost and time [9]. In dynamic

or time-dependent graphs, the edge weights may vary over time,

necessitating new algorithms like the time-expanded shortest path

[5]. Additionally, the rise of massive graphs in social networks and

geographic information systems has spurred the development of

approximate methods, such as graph sparsification and sketching

[4].

2.4 Challenges in Dense and Weighted Graphs
For dense graphs, where the number of edges approaches 𝑂 (|𝑉 |2),
naive algorithms often become computationally expensive. Tech-

niques like matrix-based methods for all-pairs shortest paths [11]

or GPU-accelerated implementations [12] have shown promise in

reducing computational overhead.

2.5 Emerging Trends
Recent research has explored incorporating machine learning into

shortest path computations. These methods predict likely paths

or edge weights, complementing traditional algorithms in scenar-

ios with incomplete or noisy data [19]. Moreover, shortest path

calculations are increasingly being integrated with clustering and

community detection tasks to solve problems in network science

and biology [18].

3 UPDATING A LARGE GRAPH
In a previous paper, we propose Algorithm 1 (MMJ distance by

recursion) for solving the all pairs minimax path problem or widest

path problem [14]. It can also be revised to solve the APSP matrix

of the shortest path problem, which also takes 𝑂 (𝑛3) time.

3.1 APSP after adding a node
As discussed in Section 6.1 (Merit of Algorithm 1) of [15], Algorithm

1 (MMJ distance by recursion) has the advantage of warm-start

capability. Consider the scenario where we have already computed

the APSP matrix M𝐺 for a large graph 𝐺 , and a new point or

node, 𝑝 , which is not part of 𝐺 , is introduced. The updated graph

is referred to as 𝐺 + 𝑝 . When determining the APSP matrix for

𝐺 + 𝑝 , conventional algorithms like Floyd–Warshall algorithm or

Dijkstra’s algorithm might necessitate a computation beginning

from scratch, which takes 𝑂 (𝑛3) time.

Algorithm 1 leverages the precomputed M𝐺 to facilitate the

calculation of the new APSP matrix of graph 𝐺 + 𝑝 , in accordance

with the results of Theorem 3.1, 3.2, 3.5, and Corollary 3.3, 3.4, which

are revised from the theorems and corollary in Section 3.3 (Other

properties of MMJ distance) of [14]. A warm-start of Algorithm

1 requires only 𝑂 (𝑛2) time, which is much less expensive than a

cold-start of conventional algorithms, which takes 𝑂 (𝑛3) time.

Theorem 3.1. Suppose 𝑟 ∈ {1, 2, . . . , 𝑛},

𝑓 (𝑡) = 𝑑 (𝐺𝑛+1,𝐺𝑡) + 𝑆𝑃𝐷 (𝐺𝑡 ,𝐺𝑟 | 𝐺 [1,𝑛]) (1)

X = {𝑓 (𝑡) | 𝑡 ∈ {1, 2, . . . , 𝑛}} (2)

then,
𝑆𝑃𝐷 (𝐺𝑛+1,𝐺𝑟 | 𝐺 [1,𝑛+1]) =𝑚𝑖𝑛(X) (3)

For the meaning of 𝐺𝑡 ,𝐺𝑟 ,𝐺 [1,𝑛] , 𝑎𝑛𝑑 𝐺 [1,𝑛+1] , see Table 1.

Proof. There are 𝑛 possibilities of the shortest path from 𝐺𝑛+1
to 𝐺𝑟 , under the context of 𝐺 [1,𝑛+1] , set X enumerate them all.

Each element of X is the shortest path distance of each possibility.

Therefore, according to the definition of shortest path distance,

𝑆𝑃𝐷 (𝐺𝑛+1,𝐺𝑟 | 𝐺 [1,𝑛+1]) =𝑚𝑖𝑛(X). The 𝑛 possibilities are not mu-

tually exclusive; multiple possibilities can happen simultaneously

if the shortest paths are not unique. □

Theorem 3.2. Suppose 𝑟 ∈ {1, 2, . . . , 𝑛},

𝑓 (𝑡) = 𝑆𝑃𝐷 (𝐺𝑟 ,𝐺𝑡 | 𝐺 [1,𝑛]) + 𝑑 (𝐺𝑡 ,𝐺𝑛+1) (4)

X = {𝑓 (𝑡) | 𝑡 ∈ {1, 2, . . . , 𝑛}} (5)

then,
𝑆𝑃𝐷 (𝐺𝑟 ,𝐺𝑛+1 | 𝐺 [1,𝑛+1]) =𝑚𝑖𝑛(X) (6)

Proof. The proof is similar to proof of Theorem 3.1. Since we

are dealing with a directed graph, the order of nodes in a distance

notation matters. □

Corollary 3.3. Suppose 𝑟 ∈ {1, 2, . . . , 𝑁 }, 𝑝 ∉ 𝐺 ,

𝑓 (𝑡) = 𝑑 (𝑝,𝐺𝑡) + 𝑆𝑃𝐷 (𝐺𝑡 ,𝐺𝑟 | 𝐺) (7)

X = {𝑓 (𝑡) | 𝑡 ∈ {1, 2, . . . , 𝑁 }} (8)

then,
𝑆𝑃𝐷 (𝑝,𝐺𝑟 | 𝐺 + 𝑝) =𝑚𝑖𝑛(X) (9)

For the meaning of 𝐺 + 𝑝 , see Table 1.

Proof. The proof follows the conclusion of Theorem 3.1. □

Corollary 3.4. Suppose 𝑟 ∈ {1, 2, . . . , 𝑁 }, 𝑝 ∉ 𝐺 ,

𝑓 (𝑡) = 𝑆𝑃𝐷 (𝐺𝑟 ,𝐺𝑡 | 𝐺) + 𝑑 (𝐺𝑡 , 𝑝) (10)

X = {𝑓 (𝑡) | 𝑡 ∈ {1, 2, . . . , 𝑁 }} (11)

then,
𝑆𝑃𝐷 (𝐺𝑟 , 𝑝 | 𝐺 + 𝑝) =𝑚𝑖𝑛(X) (12)

Solving the all pairs shortest path problem after minor update of a large dense graph 0000, 0000, Beijing, China

Table 1: Table of notations

𝐺 A weighted dense graph of N nodes, with each node indexed from

1 to N. Graph G is supposed to be directed, an undirected graph

can be considered as a special case of a directed graph;

𝐺 [1,𝑛] A graph that is composed of the first 𝑛 nodes of 𝐺 , the nodes are

indexed from 1 to n;

𝐺𝑛+1 The (𝑛 + 1)th node of 𝐺 ;

𝐺 + p Graph𝐺 plus one new node 𝑝 . Since 𝑝 ∉ 𝐺 , if𝐺 has N nodes, this

new graph now has 𝑁 + 1 nodes;

𝐺 −𝐺𝑘 A new graph by removing the kth node from graph 𝐺 . If𝐺 has N

nodes, this new graph now has 𝑁 − 1 nodes;

𝐺
′

A new graph by modifying weight of one edge of graph 𝐺 , or by

removing a node from 𝐺 , or by adding a node to 𝐺 ;

Ψ(𝑖, 𝑗,𝑛,𝐺) Ψ(𝑖, 𝑗,𝑛,𝐺) is a sequence from node i to node j, which has a total

number of n nodes. All the nodes in the sequence must belong to

graph 𝐺 . That is to say, it is a path starts from i, and ends with

j. The path is not allowed to have loops, unless the start and the

end is the same node;

𝑑 (𝑖, 𝑗) 𝑑 (𝑖, 𝑗) is the adjacency distance from node i to node j on graph G.

Note the graph is directed;

𝑙𝑒𝑛(Ψ(𝑖, 𝑗,𝑛,𝐺)) 𝑙𝑒𝑛(Ψ(𝑖, 𝑗,𝑛,𝐺)) is the length of path Ψ(𝑖, 𝑗,𝑛,𝐺) , which is the sum

of edge weights on the path;

Θ(𝑖, 𝑗,𝐺) Θ(𝑖, 𝑗,𝐺) is the set of all paths from node i to node j. A path in

Θ(𝑖, 𝑗,𝐺) can have arbitrary number of nodes (at least two). All the

nodes in a path must belong to graph 𝐺 ;

𝑆𝑃𝐷 (𝑖, 𝑗 | 𝐺) 𝑆𝑃𝐷 (𝑖, 𝑗 | 𝐺) is the shortest path distance (SPD) from node i to

node j, where𝐺 is the 𝑪𝒐𝒏𝒕𝒆𝒙𝒕 of the shortest path distance. The

𝑪𝒐𝒏𝒕𝒆𝒙𝒕 of a distance is defined in [14]. A node’s shortest path

distance to itself is always 0;

M𝑘,𝐺 [1,𝑘] M𝑘,𝐺 [1,𝑘] is the pairwise shortest path distance matrix of 𝐺 [1,𝑘] ,
which has shape 𝑘 × 𝑘 . The shortest path distances are under the

𝑪𝒐𝒏𝒕𝒆𝒙𝒕 of 𝐺 [1,𝑘] ;

M𝐺 The APSP matrix of 𝐺 ,M𝐺 = M𝑁,𝐺 [1,𝑁] ;

Proof. The proof follows the conclusion of Theorem 3.2. □

Theorem 3.5. Suppose 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑛},

𝑥1 = 𝑆𝑃𝐷 (𝐺𝑖 ,𝐺 𝑗 | 𝐺 [1,𝑛]) (13)

𝑡1 = 𝑆𝑃𝐷 (𝐺𝑖 ,𝐺𝑛+1 | 𝐺 [1,𝑛+1]) (14)

𝑡2 = 𝑆𝑃𝐷 (𝐺𝑛+1,𝐺 𝑗 | 𝐺 [1,𝑛+1]) (15)

𝑥2 = 𝑡1 + 𝑡2 (16)

then,
𝑆𝑃𝐷 (𝐺𝑖 ,𝐺 𝑗 | 𝐺 [1,𝑛+1]) =𝑚𝑖𝑛(𝑥1, 𝑥2) (17)

Proof. If the shortest paths are not unique, there are two pos-

sibilities for the shortest path from 𝐺𝑖 to 𝐺 𝑗 , under the context of

𝐺 [1,𝑛+1] :

(1) There exists one shortest path from 𝐺𝑖 to 𝐺 𝑗 which does

not contain node𝐺𝑛+1, which means𝐺𝑛+1 is not necessary

for the shortest path from 𝐺𝑖 to 𝐺 𝑗 , under the context of

𝐺 [1,𝑛+1] . That is to say:

𝑆𝑃𝐷 (𝐺𝑖 ,𝐺 𝑗 | 𝐺 [1,𝑛+1]) = 𝑆𝑃𝐷 (𝐺𝑖 ,𝐺 𝑗 | 𝐺 [1,𝑛])

(2) All the shortest paths from 𝐺𝑖 to 𝐺 𝑗 must contain node

𝐺𝑛+1, which means𝐺𝑛+1 is necessary for the shortest path

from𝐺𝑖 to𝐺 𝑗 , under the context of𝐺 [1,𝑛+1] . That is to say:

𝑆𝑃𝐷 (𝐺𝑖 ,𝐺 𝑗 | 𝐺 [1,𝑛+1]) ≠ 𝑆𝑃𝐷 (𝐺𝑖 ,𝐺 𝑗 | 𝐺 [1,𝑛])

𝑥1 is the SPD of the first possibility; 𝑥2 is the SPD of the second

possibility. Therefore, according to the definition of shortest path

distance, 𝑆𝑃𝐷 (𝐺𝑖 ,𝐺 𝑗 | 𝐺 [1,𝑛+1]) = 𝑚𝑖𝑛(𝑥1, 𝑥2). If the shortest

path is unique, the reasoning still holds. The two possibilities are

mutually exclusive; they cannot happen simultaneously. □

0000, 0000, Beijing, China Gangli Liu

Theorem 3.6. Suppose 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑛},

𝑡1 = 𝑆𝑃𝐷 (𝐺𝑖 ,𝐺𝑛+1 | 𝐺 [1,𝑛+1]) (18)

𝑡2 = 𝑆𝑃𝐷 (𝐺𝑛+1,𝐺 𝑗 | 𝐺 [1,𝑛+1]) (19)

if,

𝑆𝑃𝐷 (𝐺𝑖 ,𝐺 𝑗 | 𝐺 [1,𝑛+1]) < 𝑡1 + 𝑡2 (20)

then,

𝑆𝑃𝐷 (𝐺𝑖 ,𝐺 𝑗 | 𝐺 [1,𝑛+1]) = 𝑆𝑃𝐷 (𝐺𝑖 ,𝐺 𝑗 | 𝐺 [1,𝑛]) (21)

which means 𝐺𝑛+1 is not necessary for the shortest path from 𝐺𝑖

to 𝐺 𝑗 , under the context of 𝐺 [1,𝑛+1] .

Proof. As discussed in the proof of Theorem 3.5, there are two

possibilities for the shortest path from 𝐺𝑖 to 𝐺 𝑗 , under the con-

text of𝐺 [1,𝑛+1] . And the two possibilities are mutually exclusive;

they cannot happen simultaneously. We only need to negate pos-

sibility (2), then we can arrive to the conclusion of Equation 21.

Suppose possibility (2) happens, then 𝐺𝑛+1 is necessary for the

shortest path from 𝐺𝑖 to 𝐺 𝑗 , under the context of 𝐺 [1,𝑛+1] . Then

𝑆𝑃𝐷 (𝐺𝑖 ,𝐺 𝑗 | 𝐺 [1,𝑛+1]) = 𝑡1 + 𝑡2, which is contradicted to Equation

20. Therefore, possibility (2) cannot happen; only possibility (1)
can happen. □

Corollary 3.7. Suppose 𝑖, 𝑗, 𝑘 ∈ {1, 2, . . . , 𝑁 }, 𝑘 ≠ 𝑖 , 𝑘 ≠ 𝑗 ,

𝑡1 = 𝑆𝑃𝐷 (𝐺𝑖 ,𝐺𝑘 | 𝐺) (22)

𝑡2 = 𝑆𝑃𝐷 (𝐺𝑘 ,𝐺 𝑗 | 𝐺) (23)

if,

𝑆𝑃𝐷 (𝐺𝑖 ,𝐺 𝑗 | 𝐺) < 𝑡1 + 𝑡2 (24)

then,

𝑆𝑃𝐷 (𝐺𝑖 ,𝐺 𝑗 | 𝐺) = 𝑆𝑃𝐷 (𝐺𝑖 ,𝐺 𝑗 | 𝐺 −𝐺𝑘) (25)

which means 𝐺𝑘 is not necessary for the shortest path from 𝐺𝑖 to
𝐺 𝑗 , under the context of 𝐺 .

Proof. The proof follows the conclusion of Theorem 3.6. We

just re-index the nodes in graph 𝐺 . □

3.2 APSP after removing a node
Sometimes, we need to remove a node from a large graph. Suppose

we removed the kth node from graph𝐺 , the new graph is noted𝐺 −
𝐺𝑘 (Table 1). A cold-start of conventional algorithms for calculating

the APSP matrix of graph 𝐺 −𝐺𝑘 will take 𝑂 (𝑛3) time.

However, we can take a smarter method to make the computation

less expensive. Firstly, we make a 𝑛𝑒𝑒𝑑 𝑢𝑝𝑑𝑎𝑡𝑒 𝑙𝑖𝑠𝑡 to record which

nodes’ shortest path distance (SPD) to others are affected by the

deletion. E.g., in Figure 1, if we delete Node C, we get Figure 2 (since

the matrices are symmetric, we only show half of them). Removing

a node is equivalent to set the node’s distances (to and from) to

other nodes to infinity. The 𝑛𝑒𝑒𝑑 𝑢𝑝𝑑𝑎𝑡𝑒 𝑙𝑖𝑠𝑡 is totally empty for

Figure 2. Because none of the pair-wise shortest path distances are

affected by removing Node C. Except Node C itself. E.g.,

𝑆𝑃𝐷 (𝐴, 𝐵 | 𝐺) = 𝑆𝑃𝐷 (𝐴, 𝐵 | 𝐺 −𝐶)
𝑆𝑃𝐷 (𝐴, 𝐷 | 𝐺) = 𝑆𝑃𝐷 (𝐴, 𝐷 | 𝐺 −𝐶)
𝑆𝑃𝐷 (𝐵,𝐴 | 𝐺) = 𝑆𝑃𝐷 (𝐵,𝐴 | 𝐺 −𝐶)
𝑆𝑃𝐷 (𝐵, 𝐷 | 𝐺) = 𝑆𝑃𝐷 (𝐵, 𝐷 | 𝐺 −𝐶)
𝑆𝑃𝐷 (𝐷,𝐴 | 𝐺) = 𝑆𝑃𝐷 (𝐷,𝐴 | 𝐺 −𝐶)
𝑆𝑃𝐷 (𝐷, 𝐵 | 𝐺) = 𝑆𝑃𝐷 (𝐷, 𝐵 | 𝐺 −𝐶)

The 𝑛𝑒𝑒𝑑 𝑢𝑝𝑑𝑎𝑡𝑒 𝑙𝑖𝑠𝑡 for Figure 2 looks like this:

𝑁𝑜𝑑𝑒 𝐴 : 𝑒𝑚𝑝𝑡𝑦

𝑁𝑜𝑑𝑒 𝐵 : 𝑒𝑚𝑝𝑡𝑦

𝑁𝑜𝑑𝑒 𝐷 : 𝑒𝑚𝑝𝑡𝑦

In Figure 3, we removed Node B. Some of the remaining pair-wise

shortest path distances are affected, some are not. E.g.,

𝑆𝑃𝐷 (𝐴,𝐶 | 𝐺) ≠ 𝑆𝑃𝐷 (𝐴,𝐶 | 𝐺 − 𝐵)
𝑆𝑃𝐷 (𝐴, 𝐷 | 𝐺) ≠ 𝑆𝑃𝐷 (𝐴, 𝐷 | 𝐺 − 𝐵)
𝑆𝑃𝐷 (𝐶,𝐴 | 𝐺) ≠ 𝑆𝑃𝐷 (𝐶,𝐴 | 𝐺 − 𝐵)
𝑆𝑃𝐷 (𝐶, 𝐷 | 𝐺) = 𝑆𝑃𝐷 (𝐶, 𝐷 | 𝐺 − 𝐵)
𝑆𝑃𝐷 (𝐷,𝐴 | 𝐺) ≠ 𝑆𝑃𝐷 (𝐷,𝐴 | 𝐺 − 𝐵)
𝑆𝑃𝐷 (𝐷,𝐶 | 𝐺) = 𝑆𝑃𝐷 (𝐷,𝐶 | 𝐺 − 𝐵)

The 𝑛𝑒𝑒𝑑 𝑢𝑝𝑑𝑎𝑡𝑒 𝑙𝑖𝑠𝑡 for Figure 3 looks like this:

𝑁𝑜𝑑𝑒 𝐴 : [𝐴, 𝐶], [𝐴, 𝐷]
𝑁𝑜𝑑𝑒 𝐶 : [𝐶, 𝐴]
𝑁𝑜𝑑𝑒 𝐷 : [𝐷, 𝐴]

We use Theorem 3.6 to construct the 𝑛𝑒𝑒𝑑 𝑢𝑝𝑑𝑎𝑡𝑒 𝑙𝑖𝑠𝑡 , by setting

the node to be removed as 𝐺𝑛+1. If

𝑆𝑃𝐷 (𝐺𝑖 ,𝐺 𝑗 | 𝐺 [1,𝑛+1]) < 𝑡1 + 𝑡2
which means𝐺𝑛+1 is not necessary for the shortest path from𝐺𝑖 to

𝐺 𝑗 , under the context of𝐺 [1,𝑛+1] , then𝐺𝑛+1 can be safely removed

from the graph, without affecting the shortest path distance from𝐺𝑖

to𝐺 𝑗 . So, node pair [𝐺𝑖 , 𝐺 𝑗] will not appear in the𝑛𝑒𝑒𝑑 𝑢𝑝𝑑𝑎𝑡𝑒 𝑙𝑖𝑠𝑡 .

Otherwise, if

𝑆𝑃𝐷 (𝐺𝑖 ,𝐺 𝑗 | 𝐺 [1,𝑛+1]) = 𝑡1 + 𝑡2
then we are not sure whether the shortest path distance from 𝐺𝑖

to 𝐺 𝑗 will be affected by removing node 𝐺𝑛+1 from the graph; the

SPD from 𝐺𝑖 to 𝐺 𝑗 needs to be re-calculated after the removing.

So, node pair [𝐺𝑖 , 𝐺 𝑗] will be appended to the 𝑛𝑒𝑒𝑑 𝑢𝑝𝑑𝑎𝑡𝑒 𝑙𝑖𝑠𝑡 of

node 𝐺𝑖 . Corollary 3.7 makes it easier to understand than Theorem

3.6. Constructing the 𝑛𝑒𝑒𝑑 𝑢𝑝𝑑𝑎𝑡𝑒 𝑙𝑖𝑠𝑡 only needs 𝑂 (𝑛2) time.

Definition 3.8. Cost for calculating the new APSP matrix after

removing node 𝐺𝑘 from 𝐺 .

𝐶 (𝐺,M𝐺 ,𝐺𝑘) =
Φ(M𝐺 ,𝐺𝑘)
𝑁 − 1

(26)

Where M𝐺 is the APSP matrix of graph 𝐺 ; 𝐺𝑘 is the node to be

removed; Φ(M𝐺 ,𝐺𝑘) is the number of non-empty items in the

𝑛𝑒𝑒𝑑 𝑢𝑝𝑑𝑎𝑡𝑒 𝑙𝑖𝑠𝑡 , after removing node𝐺𝑘 from𝐺 ; 𝑁 is the number

of vertices in graph 𝐺 . The range of 𝐶 (𝐺,M𝐺 ,𝐺𝑘) is [0, 1].

Solving the all pairs shortest path problem after minor update of a large dense graph 0000, 0000, Beijing, China

A

B

C

D

1

8 9

10

5
20

(a) Graph (b) adjacency matrix (c) APSP matrix

Figure 1: Graph, adjacency matrix, and APSP matrix.

A

B

C

D

1

8
5

(a) Graph (b) adjacency matrix (c) APSP matrix

Figure 2: Graph, adjacency matrix, and APSP matrix, after removing node C.

A

B

C

D

8 9

20

(a) Graph (b) adjacency matrix (c) APSP matrix

Figure 3: Graph, adjacency matrix, and APSP matrix, after removing node B.

We devise an algorithm for solving the APSP matrix after remov-

ing a node. In Algorithm 5, we first construct the 𝑛𝑒𝑒𝑑 𝑢𝑝𝑑𝑎𝑡𝑒 𝑙𝑖𝑠𝑡

after removing node 𝐺𝑘 , then use the 𝑛𝑒𝑒𝑑 𝑢𝑝𝑑𝑎𝑡𝑒 𝑙𝑖𝑠𝑡 to calcu-

late the 𝐶𝑜𝑠𝑡 defined in Definition 3.8. If the 𝐶𝑜𝑠𝑡 is larger than

hyper-parameter 𝛿 , we just use the Floyd-Warshall algorithm to

re-calculate the APSP matrix of the new graph 𝐺 −𝐺𝑘 . If the 𝐶𝑜𝑠𝑡

is small, we use Dijkstra’s algorithm to calculate a node’s distance

to other nodes in the new graph 𝐺 − 𝐺𝑘 . Hopefully, only a few

nodes will be affected by removing node 𝐺𝑘 , therefore, saved time

for calculating the new APSP matrix.

So, removing a node from a graph is harder than adding a node

to the graph, for calculating the APSP matrix. Adding a node only

needs𝑂 (𝑛2) time even for the worst case. For removing a node, the

best case complexity is 𝑂 (𝑛2), the worst case complexity is 𝑂 (𝑛3).
E.g., in the 𝑛𝑒𝑒𝑑 𝑢𝑝𝑑𝑎𝑡𝑒 𝑙𝑖𝑠𝑡 for Figure 2, all the items are empty,

the complexity for solving the new APSP matrix is 𝑂 (𝑛2), which is

used for calculating the 𝑛𝑒𝑒𝑑 𝑢𝑝𝑑𝑎𝑡𝑒 𝑙𝑖𝑠𝑡 . In the 𝑛𝑒𝑒𝑑 𝑢𝑝𝑑𝑎𝑡𝑒 𝑙𝑖𝑠𝑡

for Figure 3, all the items are non-empty, the complexity is𝑂 (𝑛3).

3.3 APSP after modifying an edge
Modifying an edge can be accomplished by removing one of the

edge’s vertices, then add the node back, with the edge being updated.

So, the best case complexity for modifying an edge is 𝑂 (𝑛2), the

worst case complexity is 𝑂 (𝑛3); the same complexity as removing

a node.

0000, 0000, Beijing, China Gangli Liu

Algorithm 5 APSP after removing a node

Input: 𝐺 , APSP of G: M𝐺 , node to be removed: 𝐺𝑘 , hyper-

parameter: 𝛿

Output: 𝐴𝑃𝑆𝑃 𝑜 𝑓 𝐺 −𝐺𝑘 : M𝐺−𝐺𝑘

1: function APSP remove node(𝐺 ,M𝐺 , 𝐺𝑘 , 𝛿)

2: 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑛𝑜𝑑𝑒 𝑙𝑖𝑠𝑡 ← 𝐺 −𝐺𝑘

3: 𝑛𝑒𝑒𝑑 𝑢𝑝𝑑𝑎𝑡𝑒 𝑙𝑖𝑠𝑡 ← 𝑐𝑎𝑙 𝑛𝑒𝑒𝑑 𝑢𝑝𝑑𝑎𝑡𝑒 𝑙𝑖𝑠𝑡 (𝐺𝑘 ,M𝐺)
4: 𝐶𝑜𝑠𝑡 ← 𝑐𝑎𝑙 𝑐𝑜𝑠𝑡 𝑜 𝑓 𝑟𝑒𝑚𝑜𝑣𝑒 (𝑛𝑒𝑒𝑑 𝑢𝑝𝑑𝑎𝑡𝑒 𝑙𝑖𝑠𝑡)
5: if 𝐶𝑜𝑠𝑡 > 𝛿 then
6: M𝐺−𝐺𝑘

← 𝐹𝑙𝑜𝑦𝑑 𝑊𝑎𝑟𝑠ℎ𝑎𝑙𝑙 (𝐺 −𝐺𝑘)
7: returnM𝐺−𝐺𝑘

8: end if
9: M𝐺−𝐺𝑘

← 𝑐𝑜𝑝𝑦 (M𝐺)
10: for 𝑖 𝑖𝑛 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑛𝑜𝑑𝑒 𝑙𝑖𝑠𝑡 do
11: if 𝑙𝑒𝑛(𝑛𝑒𝑒𝑑 𝑢𝑝𝑑𝑎𝑡𝑒 𝑙𝑖𝑠𝑡 [𝑖]) > 0 then
12: //We can stop early if the shortest path tree has

covered all the nodes in 𝑛𝑒𝑒𝑑 𝑢𝑝𝑑𝑎𝑡𝑒 𝑙𝑖𝑠𝑡 [𝑖].
13: 𝑡𝑒𝑚𝑝 ← 𝑑𝑖 𝑗𝑘𝑠𝑡𝑟𝑎 𝑜𝑛𝑒 𝑡𝑜 𝑎𝑙𝑙 𝑜𝑡ℎ𝑒𝑟𝑠 (𝐺 −𝐺𝑘 , 𝑖)
14: for 𝑗 𝑖𝑛 𝑛𝑒𝑒𝑑 𝑢𝑝𝑑𝑎𝑡𝑒 𝑙𝑖𝑠𝑡 [𝑖] do
15: M𝐺−𝐺𝑘

[𝑖, 𝑗] ← 𝑡𝑒𝑚𝑝 [𝑗]
16: end for
17: else
18: 𝑝𝑎𝑠𝑠

19: end if
20: end for
21: returnM𝐺−𝐺𝑘

22: end function

Algorithm 6 is devised to calculate the APSP matrix after modify-

ing an edge. It firstly remove a node associated with the edge from

the graph, then add the node back, with the edge being updated.

An edge is associated with two nodes. So, before removing a node,

it calculates which node is cheaper to remove, then remove the

cheaper one.

4 WARM-START CALCULATION OF
SHORTEST PATH

We can carry out a warm-start calculation of the shortest path

between two nodes, based on the already known APSP matrix and

the conclusion of Theorem 3.6.

Algorithm 7 is devised for warm-start calculation of the shortest

path between two nodes, based on the APSP matrix. It use the

conclusion of Theorem 3.6 to exclude unnecessary nodes from node

𝑖 to node 𝑗 , generate the 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑛𝑜𝑑𝑒 𝑙𝑖𝑠𝑡 ; then form a small

graph which is composed of nodes in 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑛𝑜𝑑𝑒 𝑙𝑖𝑠𝑡 ; then use

Dijkstra’s algorithm to calculate the shortest path from node 𝑖 to

node 𝑗 , on the small graph; then translate the path into original

node index.

Since the 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑛𝑜𝑑𝑒 𝑙𝑖𝑠𝑡 is usually very small, calculating

the shortest path from node 𝑖 to 𝑗 on the small graph usually needs

only 𝑂 (1) time. So the average case complexity of Algorithm 7 is

𝑂 (𝑛).

Algorithm 6 APSP after modifying an edge

Input: 𝐺 , APSP of G:M𝐺 , edge nodes: 𝑒𝑛 , edge weight: 𝑒𝑤 , hyper-

parameter: 𝛿

Output: APSP of new graph 𝐺
′
: M𝐺

′

1: function APSP modify edge(𝐺 ,M𝐺 , 𝑒𝑛 , 𝑒𝑤 , 𝛿)

2: 𝑖 ← 𝑒𝑛 [0]
3: 𝑗 ← 𝑒𝑛 [1]
4: 𝐶𝑜𝑠𝑡 𝑖 ← 𝑐𝑎𝑙 𝑐𝑜𝑠𝑡 𝑜 𝑓 𝑟𝑒𝑚𝑜𝑣𝑒 (𝐺, 𝑖)
5: 𝐶𝑜𝑠𝑡 𝑗 ← 𝑐𝑎𝑙 𝑐𝑜𝑠𝑡 𝑜 𝑓 𝑟𝑒𝑚𝑜𝑣𝑒 (𝐺, 𝑗)
6: if 𝐶𝑜𝑠𝑡 𝑖 < 𝐶𝑜𝑠𝑡 𝑗 then
7: 𝐺𝑘 ← 𝑖

8: else
9: 𝐺𝑘 ← 𝑗

10: end if
11: //Calculate APSP matrix after removing node.

12: M𝐺−𝐺𝑘
← 𝐴𝑃𝑆𝑃 𝑟𝑒𝑚𝑜𝑣𝑒 𝑛𝑜𝑑𝑒 (𝐺,M𝐺 ,𝐺𝑘 , 𝛿)

13: //Add the node back, update the edge, then use warm-start

of Algorithm 1 (MMJ distance by recursion) to calculate the

new APSP matrix.

14: 𝐺
′ ← 𝑐𝑎𝑙 𝑢𝑝𝑑𝑎𝑡𝑒𝑑 𝑔𝑟𝑎𝑝ℎ(𝐺, 𝑒𝑛, 𝑒𝑤)

15: M𝐺
′ ← 𝐴𝑃𝑆𝑃 𝑎𝑑𝑑 𝑛𝑜𝑑𝑒 (𝐺 ′ ,M𝐺−𝐺𝑘

)
16: returnM𝐺

′

17: end function

4.1 Correctness proof of Algorithm 7
The correctness of Algorithm 7 follows the conclusion of Theorem

4.1.

Theorem 4.1. The small graph which is composed of nodes in
𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑛𝑜𝑑𝑒 𝑙𝑖𝑠𝑡 in Algorithm 7 contains all the shortest paths
from node 𝑖 to 𝑗 on graph 𝐺 .

Proof. We can divide nodes in graph 𝐺 into two sets: nodes

in 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑛𝑜𝑑𝑒 𝑙𝑖𝑠𝑡 , noted𝐺𝑐 ; nodes not in 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑛𝑜𝑑𝑒 𝑙𝑖𝑠𝑡 ,

noted 𝐺𝑟 . Suppose there exists a shortest path from node 𝑖 to 𝑗

on graph 𝐺 involves a node in 𝐺𝑟 , the involved node is noted 𝜉 .

The path is noted 𝑝 (𝑖, 𝜉) + 𝑝 (𝜉, 𝑗). The APSP matrix of G is M𝐺 .

Since the length of path 𝑝 (𝑖, 𝜉) + 𝑝 (𝜉, 𝑗) is great than or equal to

M𝐺 [𝑖, 𝜉] +M𝐺 [𝜉, 𝑗], which is contradict to Step 9 of Algorithm

7, which says the shortest path distance from node 𝑖 to 𝑗 on graph

𝐺 is less thanM𝐺 [𝑖, 𝜉] +M𝐺 [𝜉, 𝑗]. So, a shortest path from node

𝑖 to 𝑗 on graph 𝐺 cannot involve a node in 𝐺𝑟 , the correctness of

Theorem 4.1 is proved. □

4.2 All shortest paths between two nodes
The generated 𝑠𝑚𝑎𝑙𝑙 𝑚𝑎𝑡𝑟𝑖𝑥 and 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑛𝑜𝑑𝑒 𝑙𝑖𝑠𝑡 in Algorithm

7 can be used to calculate all the shortest paths between two nodes

on graph𝐺 . Algorithm 8 is devised for warm-start calculation of all

the shortest paths between two nodes, based on the APSP matrix

and conclusion of Theorem 4.1.

We can even enumerate all the paths from node 𝑖 to 𝑗 to check

if it is a shortest path, since the graph decided by 𝑠𝑚𝑎𝑙𝑙 𝑚𝑎𝑡𝑟𝑖𝑥 is

small.

Solving the all pairs shortest path problem after minor update of a large dense graph 0000, 0000, Beijing, China

Algorithm 7 warm-start calculation of shortest path

Input: APSP of G:M𝐺 , Adjacency matrix: A𝐺 , start node: 𝑖 , end

node: 𝑗

Output: Shortest path from 𝑖 to 𝑗 : 𝑝𝑎𝑡ℎ(𝑖, 𝑗)

1: function warm cal shortest path(M𝐺 , A𝐺 , 𝑖 , 𝑗)

2: if 𝑖 == 𝑗 then
3: return [𝑖]
4: end if
5: 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑛𝑜𝑑𝑒 𝑙𝑖𝑠𝑡 ← 𝐺 − 𝑖 − 𝑗
6: 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑛𝑜𝑑𝑒 𝑙𝑖𝑠𝑡 ← 𝑒𝑚𝑝𝑡𝑦 𝑙𝑖𝑠𝑡

7: 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑛𝑜𝑑𝑒 𝑙𝑖𝑠𝑡 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑖)
8: for 𝑡 𝑖𝑛 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑛𝑜𝑑𝑒 𝑙𝑖𝑠𝑡 do
9: if M𝐺 [𝑖, 𝑗] < M𝐺 [𝑖, 𝑡] +M𝐺 [𝑡, 𝑗] then

10: 𝑝𝑎𝑠𝑠

11: else
12: 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑛𝑜𝑑𝑒 𝑙𝑖𝑠𝑡 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑡)
13: end if
14: end for
15: 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑛𝑜𝑑𝑒 𝑙𝑖𝑠𝑡 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑗)
16: 𝐾 ← 𝑙𝑒𝑛(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑛𝑜𝑑𝑒 𝑙𝑖𝑠𝑡)
17: 𝑠𝑚𝑎𝑙𝑙 𝑚𝑎𝑡𝑟𝑖𝑥 ← 𝑧𝑒𝑟𝑜𝑠 ((𝐾,𝐾))
18: for 𝑖, 𝑚 𝑖𝑛 𝑒𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑒 (𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑛𝑜𝑑𝑒 𝑙𝑖𝑠𝑡) do
19: for 𝑗, 𝑛 𝑖𝑛 𝑒𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑒 (𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑛𝑜𝑑𝑒 𝑙𝑖𝑠𝑡) do
20: 𝑠𝑚𝑎𝑙𝑙 𝑚𝑎𝑡𝑟𝑖𝑥 [𝑖, 𝑗] ← A𝐺 [𝑚, 𝑛]
21: end for
22: end for
23: //Use Dijkstra’s algorithm to calculate the path from node

0 to node 𝐾 − 1, on the graph defined by 𝑠𝑚𝑎𝑙𝑙 𝑚𝑎𝑡𝑟𝑖𝑥 .

24: 𝑝𝑎𝑡ℎ← 𝑐𝑎𝑙 𝑝𝑎𝑡ℎ 𝑏𝑦 𝑑𝑖 𝑗𝑘𝑠𝑡𝑟𝑎(𝑠𝑚𝑎𝑙𝑙 𝑚𝑎𝑡𝑟𝑖𝑥, 0, 𝐾 − 1)
25: //Translate the path into original node index.

26: 𝑝𝑎𝑡ℎ(𝑖, 𝑗) ← [𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑛𝑜𝑑𝑒 𝑙𝑖𝑠𝑡 [𝑖] 𝑓 𝑜𝑟 𝑖 𝑖𝑛 𝑝𝑎𝑡ℎ]
27: return 𝑝𝑎𝑡ℎ(𝑖, 𝑗)
28: end function

4.3 All shortest paths on undirected graph
When the graph is undirected and the APSP matrix is unknown,

Algorithm 9 can be used to calculate all shortest paths between

two nodes. Since the APSP matrix is unknown, the calculation is

cold-start. The average case complexity of Algorithm 9 is 𝑂 (𝑛2).
When the graph is directed, the complexity is 𝑂 (𝑛3), because we

need 𝑂 (𝑛3) time to calculate the APSP matrix firstly.

4.4 Maintaining a key node list
When all shortest paths from node 𝑖 to 𝑗 is known, we can calculate

a 𝑘𝑒𝑦 𝑛𝑜𝑑𝑒 𝑙𝑖𝑠𝑡 for node pair (𝑖, 𝑗), which collects all the essential

nodes to form a shortest path from node 𝑖 to 𝑗 . When needing to

remove a node, we can just check each pair of nodes’ 𝑘𝑒𝑦 𝑛𝑜𝑑𝑒 𝑙𝑖𝑠𝑡

to decide if the shortest path is affected. Algorithm 10 is a variant

of Algorithm 5, which calculates the new APSP matrix by utilizing

the 𝑘𝑒𝑦 𝑛𝑜𝑑𝑒 𝑙𝑖𝑠𝑡 . Since the 𝑘𝑒𝑦 𝑛𝑜𝑑𝑒 𝑙𝑖𝑠𝑡 for each pair of nodes is

usually small, the average case space complexity is 𝑂 (𝑛2).
Step 2 to 8 of Algorithm 10 can be calculated in advance of

knowing which node is about to be removed. Algorithm 10 works

Algorithm 8 warm-start calculation of all shortest paths

Input: 𝑠𝑚𝑎𝑙𝑙 𝑚𝑎𝑡𝑟𝑖𝑥 : M𝑠 , 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑛𝑜𝑑𝑒 𝑙𝑖𝑠𝑡 : C𝑙 , start node: 𝑖 ,

end node: 𝑗

Output: All shortest paths from 𝑖 to 𝑗 on graph 𝐺 : P(𝑖, 𝑗)

1: function warm cal all shortest paths(M𝑠 , C𝑙 , 𝑖 , 𝑗)
2: if 𝑖 == 𝑗 then
3: return [[𝑖]]
4: end if
5: P(𝑖, 𝑗) ← 𝑒𝑚𝑝𝑡𝑦 𝑙𝑖𝑠𝑡

6: Use Dijkstra’s algorithm to calculate a shortest path from

node 𝑖 to 𝑗 , on the graph defined byM𝑠 , noted Ψ(𝑖, 𝑗) ;
7: Append Ψ(𝑖, 𝑗) to P(𝑖, 𝑗);
8: Divide nodes in C𝑙 into two sets: nodes in {𝑖, 𝑗}, noted Φ𝑝 ;

nodes not in {𝑖, 𝑗}, noted Φ𝑟 ;

9: for 𝑡 𝑖𝑛 Φ𝑟 do
10: Calculate the shortest path from node 𝑖 to 𝑡 , and 𝑡 to 𝑗 ,

link the two paths into a new path 𝑃 𝑛𝑒𝑤 ;

11: Check if 𝑃 𝑛𝑒𝑤 is already in P(𝑖, 𝑗), if yes, 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒 ;

12: Append 𝑃 𝑛𝑒𝑤 to P(𝑖, 𝑗);
13: end for
14: return P(𝑖, 𝑗)
15: end function

Algorithm 9 Cold-start calculation of all shortest paths on undi-

rected graph

Input: Adjacency matrix: A𝐺 , start node: 𝑖 , end node: 𝑗

Output: All shortest paths from 𝑖 to 𝑗 on graph 𝐺 : P(𝑖, 𝑗)

1: function all shortest paths undirected graph(A𝐺 , 𝑖 , 𝑗)

2: if 𝑖 == 𝑗 then
3: return [[𝑖]]
4: end if
5: 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑛𝑜𝑑𝑒 𝑙𝑖𝑠𝑡 ← 𝐺 − 𝑖 − 𝑗
6: 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑛𝑜𝑑𝑒 𝑙𝑖𝑠𝑡 ← 𝑒𝑚𝑝𝑡𝑦 𝑙𝑖𝑠𝑡

7: 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑛𝑜𝑑𝑒 𝑙𝑖𝑠𝑡 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑖)
8: Use Dijkstra’s algorithm to calculate shortest path distances

from node 𝑖 to all nodes on graph 𝐺 , noted V𝑖 ;
9: Use Dijkstra’s algorithm to calculate shortest path distances

from node 𝑗 to all nodes on graph 𝐺 , noted V𝑗 ;

10: for 𝑡 𝑖𝑛 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑛𝑜𝑑𝑒 𝑙𝑖𝑠𝑡 do
11: if V𝑖 [𝑗] < V𝑖 [𝑡] + V𝑗 [𝑡] then
12: 𝑝𝑎𝑠𝑠

13: else
14: 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑛𝑜𝑑𝑒 𝑙𝑖𝑠𝑡 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑡)
15: end if
16: end for
17: 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑛𝑜𝑑𝑒 𝑙𝑖𝑠𝑡 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑗)
18: Calculate 𝑠𝑚𝑎𝑙𝑙 𝑚𝑎𝑡𝑟𝑖𝑥 M𝑠 with 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑛𝑜𝑑𝑒 𝑙𝑖𝑠𝑡 and

A𝐺 ;

19: Use Algorithm 8 to calculate all shortest paths between 𝑖

and 𝑗 on graph 𝐺 , noted P(𝑖, 𝑗);
20: return P(𝑖, 𝑗)
21: end function

0000, 0000, Beijing, China Gangli Liu

even when all shortest paths calculated in Step 4 is not complete

(e.g., we have missed some shortest paths during Step 4).

Algorithm 10 warm-start calculation of APSP by 𝑘𝑒𝑦 𝑛𝑜𝑑𝑒 𝑙𝑖𝑠𝑡

Input: 𝐺 , APSP of G: M𝐺 , node to be removed: 𝐺𝑘 , hyper-

parameter: 𝛿

Output: 𝐴𝑃𝑆𝑃 𝑜 𝑓 𝐺 −𝐺𝑘 : M𝐺−𝐺𝑘

1: function APSP by key node list(𝐺 ,M𝐺 , 𝐺𝑘 , 𝛿)

2: 𝑘𝑒𝑦 𝑛𝑜𝑑𝑒 𝑙𝑖𝑠𝑡 𝑎𝑙𝑙 ← 𝑒𝑚𝑝𝑡𝑦 𝑙𝑖𝑠𝑡

3: for Each pair of node (𝑖, 𝑗) do
4: Use Algorithm 8 to calculate all the shortest paths from

node 𝑖 to 𝑗 on graph 𝐺 ;

5: Calculate the intersection of all shortest paths, noted

L𝑘 , L𝑘 collects all the essential nodes to form a shortest path

from node 𝑖 to 𝑗 ;

6: Remove node 𝑖 and 𝑗 from L𝑘 ;

7: 𝑘𝑒𝑦 𝑛𝑜𝑑𝑒 𝑙𝑖𝑠𝑡 𝑎𝑙𝑙 .𝑎𝑝𝑝𝑒𝑛𝑑 (L𝑘)
8: end for
9: Calculate the 𝑛𝑒𝑒𝑑 𝑢𝑝𝑑𝑎𝑡𝑒 𝑙𝑖𝑠𝑡 of Algorithm 5 with

𝑘𝑒𝑦 𝑛𝑜𝑑𝑒 𝑙𝑖𝑠𝑡 𝑎𝑙𝑙 , by checking each pair of nodes’ L𝑘 to de-

cide if the shortest path is affected when removing 𝐺𝑘 ;

10: Use Step 4 to 20 of Algorithm 5 to calculateM𝐺−𝐺𝑘
;

11: returnM𝐺−𝐺𝑘

12: end function

4.5 Another variant of Algorithm 5
Although it can be calculated in advance of knowing which node is

to be removed, the 𝑘𝑒𝑦 𝑛𝑜𝑑𝑒 𝑙𝑖𝑠𝑡 𝑎𝑙𝑙 in Algorithm 10 is very expen-

sive to calculate, the time complexity is at least 𝑂 (𝑛3). Therefore,

we devise another variant of Algorithm 5, which uses the conclu-

sion of Corollary 3.7 and the technique used in Algorithm 10 to

calculate the 𝑘𝑒𝑦 𝑛𝑜𝑑𝑒 𝑙𝑖𝑠𝑡 , for one pair of nodes. Then check if the

being removed node is in the 𝑘𝑒𝑦 𝑛𝑜𝑑𝑒 𝑙𝑖𝑠𝑡 from node 𝑖 to 𝑗 . To

save some time, we replace {𝑖, 𝑗} with Ψ(𝑖, 𝑗) in Step 8 of Algorithm

8.

The new algorithm is referred to as Algorithm 11. Further ex-

periment in Section 5 shows Algorithm 11 performs better than

Algorithm 5.

5 TESTING OF THE ALGORITHMS
We tested the algorithms for warm-start calculation of the new

APSP matrix after a minor update of a dense graph, e.g., removing

a node, or modifying an edge. All the code in the experiments

is implemented with Python. To compare the algorithms more

reliably, we convert the Python code into C++ code.

5.1 Experiment I
In Experiment I, we test warm-start calculation of the new APSP

matrix after removing a node, and compare with cold-start calcula-

tion of the Floyd-Warshall algorithm. In the experiment, a random

node is removed from a complete graph, then record the time spent

for calculating the new APSP matrix, by warm-start calculation of

Algorithm 5 and cold-start of Floyd-Warshall algorithm. The ratio

of the used time is calculate with Equation 27. Different sizes of

Algorithm 11 APSP by 𝑘𝑒𝑦 𝑛𝑜𝑑𝑒 𝑙𝑖𝑠𝑡 and Corollary 3.7

Input: Adjacency matrix: A𝐺 , APSP of G:M𝐺 , node to be removed:

𝐺𝑘 , hyper-parameter: 𝛿

Output: 𝐴𝑃𝑆𝑃 𝑜 𝑓 𝐺 −𝐺𝑘 : M𝐺−𝐺𝑘

1: function APSP by key node list(𝐺 ,M𝐺 , 𝐺𝑘 , 𝛿)

2: 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑛𝑜𝑑𝑒 𝑙𝑖𝑠𝑡 ← 𝐺 −𝐺𝑘

3: for 𝑖 𝑖𝑛 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑛𝑜𝑑𝑒 𝑙𝑖𝑠𝑡 do
4: for 𝑗 𝑖𝑛 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑛𝑜𝑑𝑒 𝑙𝑖𝑠𝑡 do
5: if M𝐺 [𝑖, 𝑗] >= M𝐺 [𝑖, 𝑘] +M𝐺 [𝑘, 𝑗] then
6: Calculate the 𝑘𝑒𝑦 𝑛𝑜𝑑𝑒 𝑙𝑖𝑠𝑡 from 𝑖 to 𝑗 with the

technique used in Algorithm 10;

7: if 𝐺𝑘 in 𝑘𝑒𝑦 𝑛𝑜𝑑𝑒 𝑙𝑖𝑠𝑡 then
8: 𝑛𝑒𝑒𝑑 𝑢𝑝𝑑𝑎𝑡𝑒 𝑙𝑖𝑠𝑡 [𝑖] .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑗)
9: end if

10: end if
11: end for
12: end for
13: Use Step 4 to 20 of Algorithm 5 to calculateM𝐺−𝐺𝑘

;

14: returnM𝐺−𝐺𝑘

15: end function

Table 2: Warm-start vs. cold-start calculation of the APSP
matrix, after removing a node.

N = 1000 N = 2000 N = 3000 N = 5000 Avg

Ratio 0.58±0.32 0.48±0.22 0.61±0.19 0.6±0.13 0.57

Table 3: Warm-start vs. cold-start calculation of the APSP
matrix, after modifying an edge.

N = 1000 N = 2000 N = 3000 N = 5000 Avg

Ratio 0.46±0.24 0.46±0.21 0.58±0.23 0.51±0.11 0.5

complete graphs are tested, from 1,000 nodes to 5,000 nodes. For

each size of graph less than 5,000 nodes, we repeat the experiment

20 times and calculate the average and standard deviation (SD)

of the ratios; for graph of size of 5,000 nodes, the experiment is

repeated five times.

𝑟 =
𝐴𝑃𝑆𝑃𝑤𝑎𝑟𝑚 (𝐺

′)
𝐴𝑃𝑆𝑃𝑐𝑜𝑙𝑑 (𝐺

′)
(27)

As shown in Table 2, a warm-start calculation only needs 0.57

of the time, to a cold-start calculation with the Floyd-Warshall

algorithm on average. That means we can save 43% of calculation

time if using warm-start calculation.

5.2 Experiment II
The setting of Experiment II is similar to Experiment I, except that

we are testing modifying an edge, not removing a node. As shown

in Table 3, we can save 50% of calculation time if using warm-start

calculation, when compared with the Floyd-Warshall algorithm.

Solving the all pairs shortest path problem after minor update of a large dense graph 0000, 0000, Beijing, China

Table 4: Warm-start vs. cold-start calculation of shortest
path.

N = 1000 N = 2000 N = 3000 N = 5000 Avg

Ratio 0.02±0.00 0.02±0.01 0.01±0.00 0.007±0.00 0.01

Table 5: Warm-start vs. cold-start calculation of the APSP
matrix, after removing a node, by Algorithm 11.

N = 1000 N = 2000 N = 3000 N = 5000 Avg

Ratio 0.45±0.31 0.34±0.22 0.24±0.13 0.33±0.16 0.34

5.3 Experiment III
In Experiment III, we test warm-start calculation of the shortest path

between two nodes, based on the known APSP matrix and Theorem

3.6. And compared with cold-start calculation of the shortest path

by Dijkstra’s algorithm.

Other settings of the experiment are similar to Experiment I and

II. In the experiment, we test calculating the shortest path between

two nodes, on complete graphs of different sizes, by warm-start

and cold-start calculation separately. Each method is repeated 1,000

times. The result shows a warm-start calculation only needs 0.01 of

the time of a cold-start calculation on average. That means we can

save 99% of calculation time if using warm-start calculation.

5.4 Experiment IV
The setting of Experiment IV is similar to Experiment I, except that

we are using Algorithm 11, instead of Algorithm 5. By comparing

Table 5 with Table 2, we can see that Algorithm 11 performs better

than Algorithm 5.

6 DISCUSSION
The algorithms can be revised for warm-start calculation of the

minimax path problem or widest path problem, on a large dense

graph.

7 CONCLUSION
We propose two algorithms for warm-start calculation of the all-

pairs shortest path (APSP) matrix after a minor modification of a

weighted dense graph, e.g., adding a node, removing a node, or

updating an edge. We assume the APSP matrix for the original

graph is already known, and try to warm-start from the known

APSP matrix to reach the new APSP matrix. A cold-start calculation

of the APSP matrix for the updated graph needs 𝑂 (𝑛3) time. It is

a very expensive time cost for a large dense graph. We are trying

to utilize the already calculated APSP matrix to make calculation

of the new APSP matrix less expensive. The best case complexity

for a warm-start calculation is 𝑂 (𝑛2), the worst case complexity is

𝑂 (𝑛3).
We implemented the algorithms and tested their performance

with experiments. The result shows a warm-start calculation can

save a large portion of calculation time when compared with the

Floyd-Warshall algorithm. Moreover, we proposed another algo-

rithm for warm-start computing of the shortest path between two

nodes, and tested it. Result shows warm-start computing can save

99% of time, compared with cold-start computing of the shortest

path by Dijkstra’s algorithm.

REFERENCES
[1] Ravindra K Ahuja, Kurt Mehlhorn, James Orlin, and Robert E Tarjan. 1990. Faster

algorithms for the shortest path problem. Journal of the ACM (JACM) 37, 2 (1990),

213–223.

[2] Richard Bellman. 1958. On a routing problem. Quarterly of applied mathematics
16, 1 (1958), 87–90.

[3] Quan Chen, Lei Yang, Yong Zhao, Yi Wang, Haibo Zhou, and Xiaoqian Chen.

2024. Shortest path in LEO satellite constellation networks: An explicit analytic

approach. IEEE Journal on Selected Areas in Communications (2024).

[4] Edith Cohen. 1997. Size-estimation framework with applications to transitive

closure and reachability. J. Comput. System Sci. 55, 3 (1997), 441–453.

[5] Kenneth L Cooke and Eric Halsey. 1966. The shortest route through a network

with time-dependent internodal transit times. Journal of mathematical analysis
and applications 14, 3 (1966), 493–498.

[6] EW DIJKSTRA. 1959. A Note on Two Problems in Connexion with Graphs.

Numer. Math. 1 (1959), 269–271.

[7] Robert W Floyd. 1962. Algorithm 97: shortest path. Commun. ACM 5, 6 (1962),

345–345.

[8] Michael L Fredman and Robert Endre Tarjan. 1987. Fibonacci heaps and their

uses in improved network optimization algorithms. Journal of the ACM (JACM)
34, 3 (1987), 596–615.

[9] Pierre Hansen. 1980. Bicriterion path problems. In Multiple Criteria Deci-
sion Making Theory and Application: Proceedings of the Third Conference Ha-
gen/Königswinter, West Germany, August 20–24, 1979. Springer, 109–127.

[10] Peter E Hart, Nils J Nilsson, and Bertram Raphael. 1968. A formal basis for the

heuristic determination of minimum cost paths. IEEE transactions on Systems
Science and Cybernetics 4, 2 (1968), 100–107.

[11] Donald B Johnson. 1977. Efficient algorithms for shortest paths in sparse net-

works. Journal of the ACM (JACM) 24, 1 (1977), 1–13.

[12] Gary J Katz and Joseph T Kider Jr. 2008. All-pairs shortest-paths for large

graphs on the GPU. In Proceedings of the 23rd ACM SIGGRAPH/EUROGRAPHICS
symposium on Graphics hardware. 47–55.

[13] M Leyzorek, RS Gray, AA Johnson, WC Ladew, SR Meaker Jr, RM Petry, and

RN Seitz. 1957. Investigation of model techniques–first annual report–6 june

1956–1 july 1957–a study of model techniques for communication systems. Case
Institute of Technology, Cleveland, Ohio (1957).

[14] Gangli Liu. 2023. Min-Max-Jump distance and its applications. arXiv preprint
arXiv:2301.05994 (2023).

[15] Gangli Liu. 2024. An efficient implementation for solving the all pairs minimax

path problem in an undirected dense graph. arXiv preprint arXiv:2407.07058
(2024).

[16] Tobia Marcucci, Jack Umenberger, Pablo Parrilo, and Russ Tedrake. 2024. Shortest

paths in graphs of convex sets. SIAM Journal on Optimization 34, 1 (2024), 507–

532.

[17] Ulrich Meyer and Peter Sanders. 1998. 𝛿-stepping: A parallel single source

shortest path algorithm. In European symposium on algorithms. Springer, 393–

404.

[18] Mark EJ Newman. 2003. The structure and function of complex networks. SIAM
review 45, 2 (2003), 167–256.

[19] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

[20] Dongbo Zhang, Yanfang Shou, and Jianmin Xu. 2024. A mapreduce-based ap-

proach for shortest path problem in road networks. Journal of Ambient Intelligence
and Humanized Computing (2024), 1–9.

[21] Zhaocheng Zhu, Xinyu Yuan, Michael Galkin, Louis-Pascal Xhonneux, Ming

Zhang, Maxime Gazeau, and Jian Tang. 2024. A* net: A scalable path-based

reasoning approach for knowledge graphs. Advances in Neural Information
Processing Systems 36 (2024).

	Abstract
	1 Introduction
	2 RELATED WORK
	2.1 Classical Algorithms
	2.2 Optimizations and Modern Variants
	2.3 Specialized Applications
	2.4 Challenges in Dense and Weighted Graphs
	2.5 Emerging Trends

	3 Updating a large graph
	3.1 APSP after adding a node
	3.2 APSP after removing a node
	3.3 APSP after modifying an edge

	4 warm-start calculation of shortest path
	4.1 Correctness proof of Algorithm 7
	4.2 All shortest paths between two nodes
	4.3 All shortest paths on undirected graph
	4.4 Maintaining a key_node_list
	4.5 Another variant of Algorithm 5

	5 Testing of the algorithms
	5.1 Experiment i
	5.2 Experiment ii
	5.3 Experiment iii
	5.4 Experiment iv

	6 Discussion
	7 Conclusion
	References

