Solving the all pairs shortest path problem after minor update of
a large dense graph

Gangli Liu
Tsinghua University
gl-liu13@mails.tsinghua.edu.cn

ABSTRACT

The all pairs shortest path problem is a fundamental optimization
problem in graph theory. We deal with re-calculating the all-pairs
shortest path (APSP) matrix after a minor modification of a weighted
dense graph, e.g., adding a node, removing a node, or updating an
edge. We assume the APSP matrix for the original graph is already
known. The graph can be directed or undirected. A cold-start cal-
culation of the new APSP matrix by traditional algorithms, like the
Floyd-Warshall algorithm or Dijkstra’s algorithm, needs O(n?) time.
We propose two algorithms for warm-start calculation of the new
APSP matrix. The best case complexity for a warm-start calculation
is O(n?), the worst case complexity is O(n>). We implemented the
algorithms and tested their performance with experiments. The
result shows a warm-start calculation can save a great portion of
calculation time, compared with cold-start calculation. In addition,
another algorithm is devised to warm-start calculate of the shortest
path between two nodes. Experiment shows warm-start calcula-
tion can save 99% of calculation time, compared with cold-start
calculation by Dijkstra’s algorithm, on directed complete graphs of
large sizes.

KEYWORDS

All pairs shortest path; Shortest path problem; Minimax path prob-
lem; Widest path problem

ACM Reference format:

Gangli Liu. 0000. Solving the all pairs shortest path problem after minor
update of a large dense graph. In Proceedings of 000, Beijing, China, 0000
(0000), 9 pages.

DOI: 00.000/000-0

1 INTRODUCTION

The Shortest Path Problem is a fundamental optimization problem
in graph theory and computer science. It involves finding the
shortest path between two vertices in a graph such that the sum of
the weights of its constituent edges is minimized.
Let G = (V, E) be a graph where:
e V is the set of vertices (nodes),
e E C V XV is the set of edges (connections between nodes),
e w:E — R*U{0} is a weight function assigning a non-
negative weight to each edge.
For a given source vertex s € V and target vertex t € V, the
Shortest Path Problem seeks to find a path P from s to ¢ such that:

P={vy,09,...,00}, ©v1=s 0=t

0000, Beijing, China
0000. 000-0000-00-000/00/00....$00.00
DOI: 00.000/000_-0

and the total path weight is minimized:

k-1
minimize: W(P) = Z w(0i, 0i+1),
i=1

where (v;,0i41) € Efori=1,2,...,k— 1.

The all-pairs shortest path (APSP) problem compute the shortest
paths between all pairs of vertices u, v € V. A dense graph is a graph
in which the number of edges is close to the maximum possible
number of edges for the given number of vertices.

Let G = (V,E) be a graph, where |V| = n is the number of
vertices and |E| is the number of edges. A dense graph satisfies:

|E| = O(n®)
This means the number of edges grows quadratically with the
number of vertices. For an undirected graph, the maximum possible

number of edges is:
n\ nm-1)
2l 2 7
For a directed graph, the maximum possible number of edges is:

n(n-1).

A graph is considered dense when |E]| is close to these upper
bounds. Dense graphs are common in applications like social net-
works, transportation networks, or communication networks where
most entities are interconnected.

In this paper, we deal with re-calculating the all-pairs shortest
path (APSP) matrix after a minor modification of a weighted dense
graph, e.g., adding a node, removing a node, or updating an edge.
We assume the APSP matrix for the original graph is already known.
The graph can be directed or undirected. A straightforward method
for calculating the APSP matrix of the updated graph is to use the
Floyd-Warshall algorithm to recalculate the updated graph, it needs
O(n®) time. It is a very expensive time cost for a large dense graph.
We are trying to utilize the already calculated APSP matrix to make
calculation of the new APSP matrix less expensive.

2 RELATED WORK

The Shortest Path Problem (SPP) is a foundational topic in graph the-
ory and optimization, with numerous applications in transportation
networks, telecommunications, and logistics [1, 3, 16, 20, 21]. Over
the years, various algorithms and techniques have been developed
to solve different variants of the problem efficiently.

2.1 Classical Algorithms

One of the earliest contributions to SPP dates back to the work
of Dijkstra (1959), who proposed a greedy algorithm to solve the

0000, 0000, Beijing, China

single-source shortest path problem for graphs with non-negative
edge weights in O(|V|?) time, later optimized to O(|E|+|V|log [V])
using priority queues [6]. The idea of this algorithm is also given
in (Leyzorek et al. 1957) [13].

For graphs with negative edge weights, the Bellman-Ford al-
gorithm (1958) provides a reliable solution, albeit with a higher
computational cost of O(|V||E|) [2]. The Floyd-Warshall algorithm
(1962) extends these techniques to compute all-pairs shortest paths
in O(|V|?), leveraging dynamic programming [7].

2.2 Optimizations and Modern Variants

Advances in data structures, such as Fibonacci heaps [8], have fur-
ther improved the efficiency of Dijkstra’s algorithm. More recently,
heuristic-based approaches like A* have been widely adopted for
real-world applications, where an admissible heuristic guides the
search to improve runtime performance [10]. Parallel and dis-
tributed versions of shortest path algorithms have also emerged,
leveraging modern computing architectures for large-scale graphs
[17].

2.3 Specialized Applications

The SPP has been extended to address specialized scenarios, such as
the multi-criteria shortest path problem, which considers trade-offs
between multiple objectives, like cost and time [9]. In dynamic
or time-dependent graphs, the edge weights may vary over time,
necessitating new algorithms like the time-expanded shortest path
[5]. Additionally, the rise of massive graphs in social networks and
geographic information systems has spurred the development of
approximate methods, such as graph sparsification and sketching

[4].

2.4 Challenges in Dense and Weighted Graphs

For dense graphs, where the number of edges approaches O(|V|?),
naive algorithms often become computationally expensive. Tech-
niques like matrix-based methods for all-pairs shortest paths [11]
or GPU-accelerated implementations [12] have shown promise in
reducing computational overhead.

2.5 Emerging Trends

Recent research has explored incorporating machine learning into
shortest path computations. These methods predict likely paths
or edge weights, complementing traditional algorithms in scenar-
ios with incomplete or noisy data [19]. Moreover, shortest path
calculations are increasingly being integrated with clustering and
community detection tasks to solve problems in network science
and biology [18].

3 UPDATING A LARGE GRAPH

In a previous paper, we propose Algorithm 1 (MM]J distance by
recursion) for solving the all pairs minimax path problem or widest
path problem [14]. It can also be revised to solve the APSP matrix
of the shortest path problem, which also takes O(n?) time.

3.1 APSP after adding a node

As discussed in Section 6.1 (Merit of Algorithm 1) of [15], Algorithm
1 (MMJ distance by recursion) has the advantage of warm-start

Gangli Liu

capability. Consider the scenario where we have already computed
the APSP matrix Mg for a large graph G, and a new point or
node, p, which is not part of G, is introduced. The updated graph
is referred to as G + p. When determining the APSP matrix for
G + p, conventional algorithms like Floyd-Warshall algorithm or
Dijkstra’s algorithm might necessitate a computation beginning
from scratch, which takes O(n?) time.

Algorithm 1 leverages the precomputed Mg to facilitate the
calculation of the new APSP matrix of graph G + p, in accordance
with the results of Theorem 3.1, 3.2, 3.5, and Corollary 3.3, 3.4, which
are revised from the theorems and corollary in Section 3.3 (Other
properties of MM]J distance) of [14]. A warm-start of Algorithm
1 requires only O(n?) time, which is much less expensive than a
cold-start of conventional algorithms, which takes O(n?) time.

THEOREM 3.1. Supposer € {1,2,...,n},

f(t) = d(Gn+1,Gt) + SPD(Gt, Gr | G1,n)) (1)
X={ft)|te{r,2,...,n}} (2)

then,
SPD(Gn+1, Gr | G[1,n41]) = min(X) ®3)

For the meaning of G, Gy, G[1 5], and G[1,n41], see Table 1.

Proor. There are n possibilities of the shortest path from Gp41
to Gr, under the context of Gy p41], set X enumerate them all.
Each element of X is the shortest path distance of each possibility.
Therefore, according to the definition of shortest path distance,
SPD(Gn+1, Gr | G[1,p+1]) = min(X). The n possibilities are not mu-
tually exclusive; multiple possibilities can happen simultaneously
if the shortest paths are not unique. O

THEOREM 3.2. Supposer € {1,2,...,n},

f(#) = SPD(Gr, Gt | G1,n)) + d(Gr, Gns1) 4)
X={ft)|te{r,2,...,n}} (5)

then,
SPD(Gy, Gpa1 | G[l,n+l]) = min(X) (6)

Proor. The proof is similar to proof of Theorem 3.1. Since we
are dealing with a directed graph, the order of nodes in a distance
notation matters. O

COROLLARY 3.3. Supposer € {1,2,...,N},p ¢ G,

f(t) =d(p,Gt) + SPD(G,Gr | G) ™)
X={f@)|te{1,2,...,N}} (8)

then,
SPD(p, Gy | G+ p) = min(X) 9)

For the meaning of G + p, see Table 1.
Proor. The proof follows the conclusion of Theorem 3.1. O
COROLLARY 3.4. Supposer € {1,2,...,.N},p ¢ G,

f(t) =SPD(G, Gt | G) +d(Gr. p) (10)

X={f@®)|te{1,2,....,N}} (11)
then,
SPD(Gy,p | G +p) = min(X) (12)

Solving the all pairs shortest path problem after minor update of a large dense graph

Table 1: Table of notations

A weighted dense graph of N nodes, with each node indexed from
1 to N. Graph G is supposed to be directed, an undirected graph
can be considered as a special case of a directed graph;

Glin)

A graph that is composed of the first n nodes of G, the nodes are
indexed from 1 to n;

Gn+1

The (n + 1)th node of G;

G+p

Graph G plus one new node p. Since p ¢ G, if G has N nodes, this
new graph now has N + 1 nodes;

A new graph by removing the kth node from graph G. If G has N
nodes, this new graph now has N — 1 nodes;

A new graph by modifying weight of one edge of graph G, or by
removing a node from G, or by adding a node to G;

¥(i,jn,G) is a sequence from node i to node j, which has a total
number of n nodes. All the nodes in the sequence must belong to
graph G. That is to say, it is a path starts from i, and ends with
j. The path is not allowed to have loops, unless the start and the
end is the same node;

d(i, j)

d(i, j) is the adjacency distance from node i to node j on graph G.
Note the graph is directed;

len(¥ jnac))

len(¥(; jnc)) is the length of path ¥(; ; , G), which is the sum
of edge weights on the path;

0(1,j,6)

0(; j,G) is the set of all paths from node i to node j. A path in
0(;,j,c) can have arbitrary number of nodes (at least two). All the
nodes in a path must belong to graph G;

SPD(i,j | G)

SPD(i, j | G) is the shortest path distance (SPD) from node i to
node j, where G is the Context of the shortest path distance. The
Context of a distance is defined in [14]. A node’s shortest path
distance to itself is always 0;

Mk,Gn,k]

Mk,G[1] is the pairwise shortest path distance matrix of Gy x|,
which has shape k x k. The shortest path distances are under the
Context of Gy x];

Mg

The APSP matrix of G, Mg = MNG a3

Proor. The proof follows the conclusion of Theorem 3.2. O

THEOREM 3.5. Supposei, j € {1,2,...,n},

x1 = SPD(Gi,Gj | G[1,n]) (13)
t1 = SPD(Gi, Gna1 | G1p41]) (14)
ta = SPD(Gn+1, Gj | G[1,n41]) (15)
X =t +1 (16)
then,
SPD(Gi,Gj | G1,n+1]) = min(x1, x2) (17)

Proor. If the shortest paths are not unique, there are two pos-
sibilities for the shortest path from G; to G;, under the context of

Glin+1]:

0000, 0000, Beijing, China

(1) There exists one shortest path from G; to G; which does
not contain node Gp41, which means Gp41 is not necessary
for the shortest path from G; to G;, under the context of
Gl1,n+1]- That is to say:

SPD(G;, Gj | G[l,n+l]) = SPD(G;, Gj | G[l,n])

(2) All the shortest paths from G; to Gj must contain node
Gn+1, which means Gp41 is necessary for the shortest path
from G; to Gj, under the context of Gy ,41]- That is to say:

SPD(G;, Gj | G[1,n+1]) # SPD(Gi, Gj | G1,])

x1 is the SPD of the first possibility; x; is the SPD of the second
possibility. Therefore, according to the definition of shortest path
distance, SPD(G;,Gj | G[y,ps1]) = min(x1, x2). If the shortest
path is unique, the reasoning still holds. The two possibilities are
mutually exclusive; they cannot happen simultaneously. O

0000, 0000, Beijing, China

THEOREM 3.6. Suppose i, j € {1,2,...,n},

t] = SPD(G[,G;H.] | G[l,n+l]) (18)
ty = SPD(G,H_l,Gj | G[I,n+1]) (19)
if,
SPD(G;, Gj | G[l,n+1]) <h+t (20)
then,
SPD(G;, Gj | G[l,n+1]) = SPD(G,',GJ' | G[l,n]) (21)

which means Gn41 is not necessary for the shortest path from G;
to Gj, under the context of Gy n41]-

Proor. As discussed in the proof of Theorem 3.5, there are two
possibilities for the shortest path from G; to Gj, under the con-
text of G| p41]- And the two possibilities are mutually exclusive;
they cannot happen simultaneously. We only need to negate pos-
sibility (2), then we can arrive to the conclusion of Equation 21.
Suppose possibility (2) happens, then Gp4; is necessary for the
shortest path from G; to Gj, under the context of G[y ,41]. Then
SPD(Gi,Gj | G[1,n41]) = t1 + t2, which is contradicted to Equation
20. Therefore, possibility (2) cannot happen; only possibility (1)
can happen. O

COROLLARY 3.7. Supposei, j, k € {1,2,...,Ny, k # i,k # j,

t1 = SPD(G;, Gy | G) (22)
tz = SPD(Gy,Gj | G) (23)
if,
SPD(G;,Gj | G) <ty + 1z (24)
then,
SPD(G;,Gj | G) = SPD(G;,Gj | G - Gy) (25)

which means Gy is not necessary for the shortest path from G; to
Gj, under the context of G.

Proor. The proof follows the conclusion of Theorem 3.6. We
just re-index the nodes in graph G. O

3.2 APSP after removing a node

Sometimes, we need to remove a node from a large graph. Suppose
we removed the kth node from graph G, the new graph is noted G —
Gy (Table 1). A cold-start of conventional algorithms for calculating
the APSP matrix of graph G — Gy will take O(n®) time.

However, we can take a smarter method to make the computation
less expensive. Firstly, we make a need_update_list to record which
nodes’ shortest path distance (SPD) to others are affected by the
deletion. E.g., in Figure 1, if we delete Node C, we get Figure 2 (since
the matrices are symmetric, we only show half of them). Removing
a node is equivalent to set the node’s distances (to and from) to
other nodes to infinity. The need_update_list is totally empty for
Figure 2. Because none of the pair-wise shortest path distances are

Gangli Liu

affected by removing Node C. Except Node C itself. E.g.,

SPD(A,B| G) =SPD(A,B|G-0C)
SPD(A,D | G) =SPD(A,D|G-0C)
SPD(B,A | G) =SPD(B,A|G-C)
SPD(B,D | G) = SPD(B,D | G - C)
SPD(D,A | G) = SPD(D,A | G - C)
SPD(D,B| G) =SPD(D,B|G-C)

The need_update_list for Figure 2 looks like this:

Node A : empty
Node B : empty
Node D : empty

In Figure 3, we removed Node B. Some of the remaining pair-wise
shortest path distances are affected, some are not. E.g.,

SPD(A,C | G) # SPD(A,C | G - B)
SPD(A,D | G) # SPD(A,D | G — B)
SPD(C,A | G) # SPD(C,A |G - B)
SPD(C,D | G) =SPD(C,D | G - B)
SPD(D,A | G) # SPD(D,A | G — B)
SPD(D,C | G) =SPD(D,C | G - B)
The need_update_list for Figure 3 looks like this:

Node A: [A, C], [A, D]
Node C: [C, A]
Node D : [D, A]

We use Theorem 3.6 to construct the need_update_list, by setting
the node to be removed as Gp41. If

SPD(G;,Gj | G[l,n+1]) <t +1t

which means Gp41 is not necessary for the shortest path from G; to
Gj, under the context of G|y 41], then Gn+1 can be safely removed
from the graph, without affecting the shortest path distance from G;
to G;. So, node pair [G;, G;] will not appear in the need_update _list.
Otherwise, if

SPD(G[, Gj | G[l,n+1]) =1 +1

then we are not sure whether the shortest path distance from G;
to G; will be affected by removing node Gy+1 from the graph; the
SPD from G; to G; needs to be re-calculated after the removing.
So, node pair [G;, G;] will be appended to the need_update_list of
node G;. Corollary 3.7 makes it easier to understand than Theorem
3.6. Constructing the need_update_list only needs O(n?) time.

Definition 3.8. Cost for calculating the new APSP matrix after
removing node G from G.

(Mg, G)
N-1
Where Mg is the APSP matrix of graph G; Gy, is the node to be
removed; ®(Mg, G) is the number of non-empty items in the
need_update_list, after removing node Gy from G; N is the number

of vertices in graph G. The range of C(G,Mg, G) is [0, 1].

C(G, Mg, Gg) = (26)

Solving the all pairs shortest path problem after minor update of a large dense graph 0000, 0000, Beijing, China

A B C D A B C D
A 0 1 20 8 A 0 1 11 6
B 0 10 5 B 0 10 5
C 0 9 C 0 9
D 0 D 0
(a) Graph (b) adjacency matrix (c) APSP matrix
Figure 1: Graph, adjacency matrix, and APSP matrix.
A B C D A B C D
A 0 1 oo 38 A 0 1 o 6
@ B © 5 B © 5
D 0 D 0
(a) Graph (b) adjacency matrix (c) APSP matrix
Figure 2: Graph, adjacency matrix, and APSP matrix, after removing node C.
A B C D A B C D
A 0 o0 20 8 A 0 oo 17 8
B 0 o0 o0 B 0 o0 o
C 0 9 C 0 9
D : D :
(a) Graph (b) adjacency matrix (c) APSP matrix
Figure 3: Graph, adjacency matrix, and APSP matrix, after removing node B.

We devise an algorithm for solving the APSP matrix after remov- best case complexity is O(n?), the worst case complexity is O(n?).
ing a node. In Algorithm 5, we first construct the need_update_list E.g., in the need_update_list for Figure 2, all the items are empty,
after removing node Gy, then use the need_update_list to calcu- the complexity for solving the new APSP matrix is O(n?), which is
late the Cost defined in Definition 3.8. If the Cost is larger than used for calculating the need_update_list. In the need_update_list
hyper-parameter §, we just use the Floyd-Warshall algorithm to for Figure 3, all the items are non-empty, the complexity is O(n?).
re-calculate the APSP matrix of the new graph G — Gy. If the Cost
is small, we use Dijkstra’s algorithm to calculate a node’s distance L
to other nodes in the new graph G — Gi.. Hopefully, only a few 3.3 APSP after modifying an edge
nodes will be affected by removing node Gy, therefore, saved time Modifying an edge can be accomplished by removing one of the
for calculating the new APSP matrix. edge’s vertices, then add the node back, with the edge being updated.

So, removing a node from a graph is harder than adding a node So, the best case complexity for modifying an edge is O(n?), the
to the graph, for calculating the APSP matrix. Adding a node only worst case complexity is O(n®); the same complexity as removing

needs O(n?) time even for the worst case. For removing a node, the a node.

0000, 0000, Beijing, China

Gangli Liu

Algorithm 5 APSP after removing a node

Algorithm 6 APSP after modifying an edge

Input: G, APSP of G: Mg, node to be removed: Gg, hyper-
parameter: §
Output: APSPof G -Gy : Mg_g,

1: function APSP_REMOVE_NODE(G, Mg, Gy, 9)

2 remaining_node_list «— G — Gy

3 need_update_list « cal_need_update_list(Gr, Mg)
4 Cost « cal_cost_of _remove(need_update_list)

5: if Cost > ¢ then

6 Mg-_g, < Floyd Warshall(G — Gy)

7 return Mg_g,

8

9

end if
Mg-g, < copy(Mg)
10: for i in remaining_node_list do
11 if len(need_update_list[i]) > 0 then
12: //We can stop early if the shortest path tree has
covered all the nodes in need_update_list[i].
13: temp « dijkstra_one_to_all_others(G — Gy, i)
14: for j in need_update_list[i] do
15: MG—Gk [l’ J] — temp []]
16: end for
17: else
18: pass
19: end if
20: end for
21: return Mg_g,

22: end function

Algorithm 6 is devised to calculate the APSP matrix after modify-
ing an edge. It firstly remove a node associated with the edge from
the graph, then add the node back, with the edge being updated.
An edge is associated with two nodes. So, before removing a node,
it calculates which node is cheaper to remove, then remove the
cheaper one.

4 WARM-START CALCULATION OF
SHORTEST PATH

We can carry out a warm-start calculation of the shortest path
between two nodes, based on the already known APSP matrix and
the conclusion of Theorem 3.6.

Algorithm 7 is devised for warm-start calculation of the shortest
path between two nodes, based on the APSP matrix. It use the
conclusion of Theorem 3.6 to exclude unnecessary nodes from node
i to node j, generate the candidate_node_list; then form a small
graph which is composed of nodes in candidate_node_list; then use
Dijkstra’s algorithm to calculate the shortest path from node i to
node j, on the small graph; then translate the path into original
node index.

Since the candidate_node _list is usually very small, calculating
the shortest path from node i to j on the small graph usually needs
only O(1) time. So the average case complexity of Algorithm 7 is
O(n).

Input: G, APSP of G: Mg, edge nodes: e,, edge weight: e,,, hyper-
parameter: §
Output: APSP of new graph G: Mg

1: function APSP_MoDIFY_EDGE(G, Mg, ey, €4y, 0)
2 i — ey[0]

3 j < en[1]

4 Cost_i «— cal_cost_of _remove(G, i)

5: Cost_j « cal_cost_of _remove(G, j)

6 if Cost_i < Cost_j then

7 Gk — i

8 else

9 G —J
10: end if

11: //Calculate APSP matrix after removing node.

12: Mg_g, < APSP_remove_node(G, Mg, G, 6)

13: //Add the node back, update the edge, then use warm-start
of Algorithm 1 (MM]J distance by recursion) to calculate the
new APSP matrix.

14: G« cal_updated_graph(G, e,, ery)

15 Mg < APSP_add_node(G,Mg_g,)

16: return M

17: end function

4.1 Correctness proof of Algorithm 7

The correctness of Algorithm 7 follows the conclusion of Theorem
4.1.

THEOREM 4.1. The small graph which is composed of nodes in
candidate_node_list in Algorithm 7 contains all the shortest paths
from node i to j on graph G.

ProOOF. We can divide nodes in graph G into two sets: nodes
in candidate_node_list, noted G¢; nodes not in candidate_node_list,
noted G,. Suppose there exists a shortest path from node i to j
on graph G involves a node in G, the involved node is noted £.
The path is noted p(i, &) + p(¢, j). The APSP matrix of G is Mg.
Since the length of path p(i, &) + p(&, Jj) is great than or equal to
Mgli, €] + Mg (¢, j], which is contradict to Step 9 of Algorithm
7, which says the shortest path distance from node i to j on graph
G is less than Mg[i, €] + Mg[¢&, j]. So, a shortest path from node
i to j on graph G cannot involve a node in Gy, the correctness of
Theorem 4.1 is proved. O

4.2 All shortest paths between two nodes

The generated small_matrix and candidate_node_list in Algorithm
7 can be used to calculate all the shortest paths between two nodes
on graph G. Algorithm 8 is devised for warm-start calculation of all
the shortest paths between two nodes, based on the APSP matrix
and conclusion of Theorem 4.1.

We can even enumerate all the paths from node i to j to check
if it is a shortest path, since the graph decided by small_matrix is
small.

Solving the all pairs shortest path problem after minor update of a large dense graph

0000, 0000, Beijing, China

Algorithm 7 warm-start calculation of shortest path

Algorithm 8 warm-start calculation of all shortest paths

Input: APSP of G: Mg, Adjacency matrix: Ag, start node: i, end
node: j
Output: Shortest path from i to j: path(i, j)

1: function WARM_CAL_SHORTEST_PATH(MG, Ag, i, j)
2 if i == j then

3 return [i]

4 end if

5 remaining_node_list — G —i— j

6 candidate_node_list « empty_list

7 candidate_node_list.append(i)

8 for t in remaining_node_list do

9 if Mg[i, j] < Mgli, t] + Mg[t, j] then
10: pass

11 else

12: candidate_node_list.append(t)

13: end if

14: end for

15: candidate_node_list.append ()

16: K « len(candidate_node_list)

17: small_matrix «— zeros((K,K))

18: for i, m in enumerate(candidate_node_list) do
19: for j, n in enumerate(candidate_node_list) do
20: small_matrix[i, j] < Ag[m, n]
21: end for
22: end for

23: //Use Dijkstra’s algorithm to calculate the path from node
0 to node K — 1, on the graph defined by small_matrix.

24: path « cal_path_by_dijkstra(small_matrix,0,K — 1)

25: //Translate the path into original node index.

26: path(i, j) « [candidate_node_list[i] for i in path]

27: return path(i, j)

28: end function

4.3 All shortest paths on undirected graph

When the graph is undirected and the APSP matrix is unknown,
Algorithm 9 can be used to calculate all shortest paths between
two nodes. Since the APSP matrix is unknown, the calculation is
cold-start. The average case complexity of Algorithm 9 is O(n?).
When the graph is directed, the complexity is O(n3), because we
need O(n?) time to calculate the APSP matrix firstly.

4.4 Maintaining a key_node _list

When all shortest paths from node i to j is known, we can calculate
a key_node_list for node pair (i, j), which collects all the essential
nodes to form a shortest path from node i to j. When needing to
remove a node, we can just check each pair of nodes’ key_node_list
to decide if the shortest path is affected. Algorithm 10 is a variant
of Algorithm 5, which calculates the new APSP matrix by utilizing
the key_node_list. Since the key_node_list for each pair of nodes is
usually small, the average case space complexity is O(n?).

Step 2 to 8 of Algorithm 10 can be calculated in advance of
knowing which node is about to be removed. Algorithm 10 works

Input: small_matrix: M, candidate_node_list: C;, start node: i,
end node: j
Output: All shortest paths from i to j on graph G: P(i, j)

1: function WARM_CAL_ALL_SHORTEST_PATHS(Mj, Cy, i, j)

2 if i == j then

3 return [[i]]

4 end if

5 P(i, j) « empty_list

6 Use Dijkstra’s algorithm to calculate a shortest path from

node i to j, on the graph defined by M, noted ¥(; j;

7 Append ¥(; j) to P(i, j);

8: Divide nodes in C; into two sets: nodes in {i, j}, noted ®»;
nodes not in {i, j}, noted ®,;

9: for t in ®, do

10: Calculate the shortest path from node i to ¢, and ¢ to j,
link the two paths into a new path P_new;

11: Check if P_new is already in P(i, j), if yes, continue;

12: Append P_new to P(i, j);

13: end for

14: return P(i, j)

15: end function

Algorithm 9 Cold-start calculation of all shortest paths on undi-
rected graph

Input: Adjacency matrix: Ag, start node: i, end node: j
Output: All shortest paths from i to j on graph G: P(i, j)

function ALL_SHORTEST_PATHS_UNDIRECTED_GRAPH(AG, i, j)

if i == j then

return [[i]]

end if

remaining_node_list «— G —i — j

candidate_node_list « empty_list

candidate_node_list.append (i)

Use Dijkstra’s algorithm to calculate shortest path distances
from node i to all nodes on graph G, noted V;;

1:
2
3
4:
5:
6
7
8

9: Use Dijkstra’s algorithm to calculate shortest path distances

from node j to all nodes on graph G, noted V;

10: for t in remaining_node_list do

11: if V;[j] < Vi[t] +V;[t] then

12: pass

13: else

14: candidate_node_list.append(t)

15: end if

16: end for

17: candidate_node_list.append(j)

18: Calculate small_matrix M with candidate_node_list and
Ag;

-
b

Use Algorithm 8 to calculate all shortest paths between i
and j on graph G, noted P(i, j);
20: return P(i, j)
21: end function

0000, 0000, Beijing, China

even when all shortest paths calculated in Step 4 is not complete
(e.g., we have missed some shortest paths during Step 4).

Algorithm 10 warm-start calculation of APSP by key_node_list

Input: G, APSP of G: Mg, node to be removed: Gy, hyper-
parameter: §
Output: APSPof G -Gy : Mg_g,

1: function APSP_BY_KEY_NODE_LIST(G, Mg, Gy, §)
2 key_node_list_all «— empty_list
3 for Each pair of node (i, j) do
4 Use Algorithm 8 to calculate all the shortest paths from
node i to j on graph G;
5 Calculate the intersection of all shortest paths, noted
L, L collects all the essential nodes to form a shortest path
from node i to j;
Remove node i and j from L;
key_node_list_all.append(Ly)
end for
Calculate the need_update_list of Algorithm 5 with
key_node_list_all, by checking each pair of nodes’ L to de-
cide if the shortest path is affected when removing Gg;
10: Use Step 4 to 20 of Algorithm 5 to calculate Mg_g, ;
11: return Mg_g,
12: end function

R

4.5 Another variant of Algorithm 5

Although it can be calculated in advance of knowing which node is
to be removed, the key_node_list_all in Algorithm 10 is very expen-
sive to calculate, the time complexity is at least O(n3). Therefore,
we devise another variant of Algorithm 5, which uses the conclu-
sion of Corollary 3.7 and the technique used in Algorithm 10 to
calculate the key_node_list, for one pair of nodes. Then check if the
being removed node is in the key_node_list from node i to j. To
save some time, we replace {i, j} with ¥; ;) in Step 8 of Algorithm
8.

The new algorithm is referred to as Algorithm 11. Further ex-
periment in Section 5 shows Algorithm 11 performs better than
Algorithm 5.

5 TESTING OF THE ALGORITHMS

We tested the algorithms for warm-start calculation of the new
APSP matrix after a minor update of a dense graph, e.g., removing
a node, or modifying an edge. All the code in the experiments
is implemented with Python. To compare the algorithms more
reliably, we convert the Python code into C++ code.

5.1 ExperimentI

In Experiment I, we test warm-start calculation of the new APSP
matrix after removing a node, and compare with cold-start calcula-
tion of the Floyd-Warshall algorithm. In the experiment, a random
node is removed from a complete graph, then record the time spent
for calculating the new APSP matrix, by warm-start calculation of
Algorithm 5 and cold-start of Floyd-Warshall algorithm. The ratio
of the used time is calculate with Equation 27. Different sizes of

Gangli Liu

Algorithm 11 APSP by key_node_list and Corollary 3.7

Input: Adjacency matrix: Ag, APSP of G: M, node to be removed:
G, hyper-parameter: §
Output: APSPof G — Gy : Mg-g,

1: function APSP_BY KEY_NODE_LIST(G, Mg, Gy, d)

2 remaining_node_list < G — Gy

3 for i in remaining_node_list do

4 for j in remaining_node_list do

5 if Mg[i, j] >=Mgli, k] + Mglk, j] then

6 Calculate the key_node_list from i to j with the
technique used in Algorithm 10;

7 if Gy in key_node_list then
8: need_update_list[i].append(j)
9: end if
10: end if
11: end for
12: end for
13: Use Step 4 to 20 of Algorithm 5 to calculate Mg_g, ;
14: return Mg_g,

15: end function

Table 2: Warm-start vs. cold-start calculation of the APSP
matrix, after removing a node.

N=1000 N=2000 N=3000 N=5000 Avg
Ratio 0.58+0.32 0.48+0.22 0.61+0.19 0.6+0.13 0.57

Table 3: Warm-start vs. cold-start calculation of the APSP
matrix, after modifying an edge.

N=1000 N=2000 N=3000 N=5000 Avg
Ratio 0.46+0.24 0.46+0.21 0.58+0.23 0.51+0.11 0.5

complete graphs are tested, from 1,000 nodes to 5,000 nodes. For
each size of graph less than 5,000 nodes, we repeat the experiment
20 times and calculate the average and standard deviation (SD)
of the ratios; for graph of size of 5,000 nodes, the experiment is
repeated five times.

_ APSPyarm(G)

= ; (27)
APSPcold(G)

As shown in Table 2, a warm-start calculation only needs 0.57
of the time, to a cold-start calculation with the Floyd-Warshall
algorithm on average. That means we can save 43% of calculation
time if using warm-start calculation.

5.2 Experiment II

The setting of Experiment II is similar to Experiment I, except that
we are testing modifying an edge, not removing a node. As shown
in Table 3, we can save 50% of calculation time if using warm-start
calculation, when compared with the Floyd-Warshall algorithm.

Solving the all pairs shortest path problem after minor update of a large dense graph

Table 4: Warm-start vs. cold-start calculation of shortest
path.

N=1000 N=2000 N=3000 N =5000 Avg
Ratio 0.02+0.00 0.02+0.01 0.01+£0.00 0.007+0.00 0.01

Table 5: Warm-start vs. cold-start calculation of the APSP
matrix, after removing a node, by Algorithm 11.

N=1000 N=2000 N=3000 N=5000 Avg
Ratio 0.45+0.31 0.34+0.22 0.24+0.13 0.33+0.16 0.34

5.3 Experiment III

In Experiment III, we test warm-start calculation of the shortest path
between two nodes, based on the known APSP matrix and Theorem
3.6. And compared with cold-start calculation of the shortest path
by Dijkstra’s algorithm.

Other settings of the experiment are similar to Experiment I and
II. In the experiment, we test calculating the shortest path between
two nodes, on complete graphs of different sizes, by warm-start
and cold-start calculation separately. Each method is repeated 1,000
times. The result shows a warm-start calculation only needs 0.01 of
the time of a cold-start calculation on average. That means we can
save 99% of calculation time if using warm-start calculation.

5.4 Experiment IV

The setting of Experiment IV is similar to Experiment I, except that
we are using Algorithm 11, instead of Algorithm 5. By comparing
Table 5 with Table 2, we can see that Algorithm 11 performs better
than Algorithm 5.

6 DISCUSSION

The algorithms can be revised for warm-start calculation of the
minimax path problem or widest path problem, on a large dense
graph.

7 CONCLUSION

We propose two algorithms for warm-start calculation of the all-
pairs shortest path (APSP) matrix after a minor modification of a
weighted dense graph, e.g., adding a node, removing a node, or
updating an edge. We assume the APSP matrix for the original
graph is already known, and try to warm-start from the known
APSP matrix to reach the new APSP matrix. A cold-start calculation
of the APSP matrix for the updated graph needs O(n?) time. It is
a very expensive time cost for a large dense graph. We are trying
to utilize the already calculated APSP matrix to make calculation
of the new APSP matrix less expensive. The best case complexity
for a warm-start calculation is O(n?), the worst case complexity is
o(nd).

We implemented the algorithms and tested their performance
with experiments. The result shows a warm-start calculation can
save a large portion of calculation time when compared with the
Floyd-Warshall algorithm. Moreover, we proposed another algo-
rithm for warm-start computing of the shortest path between two

0000, 0000, Beijing, China

nodes, and tested it. Result shows warm-start computing can save
99% of time, compared with cold-start computing of the shortest
path by Dijkstra’s algorithm.

REFERENCES

[1] Ravindra K Ahuja, Kurt Mehlhorn, James Orlin, and Robert E Tarjan. 1990. Faster
algorithms for the shortest path problem. Journal of the ACM (JACM) 37, 2 (1990),
213-223.

[2] Richard Bellman. 1958. On a routing problem. Quarterly of applied mathematics
16, 1 (1958), 87-90.

[3] Quan Chen, Lei Yang, Yong Zhao, Yi Wang, Haibo Zhou, and Xiaogian Chen.
2024. Shortest path in LEO satellite constellation networks: An explicit analytic
approach. IEEE Journal on Selected Areas in Communications (2024).

[4] Edith Cohen. 1997. Size-estimation framework with applications to transitive
closure and reachability. J. Comput. System Sci. 55, 3 (1997), 441-453.

[5] Kenneth L Cooke and Eric Halsey. 1966. The shortest route through a network
with time-dependent internodal transit times. Journal of mathematical analysis
and applications 14, 3 (1966), 493-498.

[6] EW DIJKSTRA. 1959. A Note on Two Problems in Connexion with Graphs.
Numer. Math. 1 (1959), 269-271.

[7] Robert W Floyd. 1962. Algorithm 97: shortest path. Commun. ACM 5, 6 (1962),
345-345.

[8] Michael L Fredman and Robert Endre Tarjan. 1987. Fibonacci heaps and their
uses in improved network optimization algorithms. Journal of the ACM (JACM)
34, 3 (1987), 596-615.

[9] Pierre Hansen. 1980. Bicriterion path problems. In Multiple Criteria Deci-
sion Making Theory and Application: Proceedings of the Third Conference Ha-
gen/Konigswinter, West Germany, August 20-24, 1979. Springer, 109-127.

[10] Peter E Hart, Nils J Nilsson, and Bertram Raphael. 1968. A formal basis for the
heuristic determination of minimum cost paths. IEEE transactions on Systems
Science and Cybernetics 4, 2 (1968), 100-107.

[11] Donald B Johnson. 1977. Efficient algorithms for shortest paths in sparse net-
works. Journal of the ACM (JACM) 24, 1 (1977), 1-13.

[12] Gary J Katz and Joseph T Kider Jr. 2008. All-pairs shortest-paths for large
graphs on the GPU. In Proceedings of the 23rd ACM SIGGRAPH/EUROGRAPHICS
symposium on Graphics hardware. 47-55.

[13] M Leyzorek, RS Gray, AA Johnson, WC Ladew, SR Meaker Jr, RM Petry, and
RN Seitz. 1957. Investigation of model techniques—first annual report-6 june
1956~1 july 1957-a study of model techniques for communication systems. Case
Institute of Technology, Cleveland, Ohio (1957).

[14] Gangli Liu. 2023. Min-Max-Jump distance and its applications. arXiv preprint
arXiv:2301.05994 (2023).

[15] Gangli Liu. 2024. An efficient implementation for solving the all pairs minimax
path problem in an undirected dense graph. arXiv preprint arXiv:2407.07058
(2024).

[16] Tobia Marcucci, Jack Umenberger, Pablo Parrilo, and Russ Tedrake. 2024. Shortest
paths in graphs of convex sets. SIAM Journal on Optimization 34, 1 (2024), 507
532.

[17] Ulrich Meyer and Peter Sanders. 1998. &-stepping: A parallel single source
shortest path algorithm. In European symposium on algorithms. Springer, 393—
404.

[18] Mark EJ Newman. 2003. The structure and function of complex networks. SIAM
review 45, 2 (2003), 167-256.

[19] Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

[20] Dongbo Zhang, Yanfang Shou, and Jianmin Xu. 2024. A mapreduce-based ap-
proach for shortest path problem in road networks. Journal of Ambient Intelligence
and Humanized Computing (2024), 1-9.

[21] Zhaocheng Zhu, Xinyu Yuan, Michael Galkin, Louis-Pascal Xhonneux, Ming
Zhang, Maxime Gazeau, and Jian Tang. 2024. A” net: A scalable path-based
reasoning approach for knowledge graphs. Advances in Neural Information
Processing Systems 36 (2024).

	Abstract
	1 Introduction
	2 RELATED WORK
	2.1 Classical Algorithms
	2.2 Optimizations and Modern Variants
	2.3 Specialized Applications
	2.4 Challenges in Dense and Weighted Graphs
	2.5 Emerging Trends

	3 Updating a large graph
	3.1 APSP after adding a node
	3.2 APSP after removing a node
	3.3 APSP after modifying an edge

	4 warm-start calculation of shortest path
	4.1 Correctness proof of Algorithm 7
	4.2 All shortest paths between two nodes
	4.3 All shortest paths on undirected graph
	4.4 Maintaining a key_node_list
	4.5 Another variant of Algorithm 5

	5 Testing of the algorithms
	5.1 Experiment i
	5.2 Experiment ii
	5.3 Experiment iii
	5.4 Experiment iv

	6 Discussion
	7 Conclusion
	References

