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Abstract—Soft sensors are increasingly used in wearable de-
vices as well as soft robotics. This paper introduces a novel,
lightweight soft-sensing unit and a new data collection method,
aimed at enabling the implementation of soft sensors in robotics.
These advancements are designed to replace traditional sen-
sors, providing precise data capture and comfortable wearing
experience. Through machine learning, soft stretchable sensors
originally used for displacement detection have been endowed
with the capability to precisely detect tension. The research first
involves six participants and two scenarios (manual assistance,
motor assistance on treadmill walking), providing high-quality
data with different variability for model training. The results
demonstrate that the Gated Recurrent Unit (GRU) model out-
performs others under comparison in this study, achieving a
root mean square error of 2.92 N. Transfer learning is then
used to improve the performance of our model under another
condition (manual assistance on level ground walking), which
achieves 271% improvement in R?> and maintains consistent
performance with data collected from another participant. Our
flexible exoskeleton has been tried by a new subject and achieved
comfortable assistance without the use of a load cell. Our unit,
along with its calibration method presented in this paper, holds
great promise for the actual deployment of soft sensors in soft
robotics.

Index Terms—Soft sensor, Recurrent neural networks, Transfer
learning, Flexible exoskeleton

I. INTRODUCTION

Soft stretchable sensors are receiving growing attention and
are now being extensively implemented in wearable devices
[1]-[4], such as smart sleeves [5], serving as alternatives to
traditional rigid inertial measurement units (IMUs). Further-
more, their application to monitor real-time stress and strain
is also expanding [6]. However, soft sensors often exhibit
hysteresis and are sensitive to temperature and humidity [7].
In addition, they are affected by high manufacturing tolerances
and experience signal drift from long-term usage [3], which
limits their applications.
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Machine learning techniques, which have a strong ability to
address non-linear challenges [8], have significantly advanced
the use of soft sensors across various domains. Han et al. im-
plemented a hierarchical recurrent sensing network, which can
estimate the magnitude and the location of a contact pressure
on the soft sensor simultaneously [9]. Transfer learning has
emerged as a powerful strategy to enhance the capabilities of
soft sensors, enabling them to adapt to varying environmental
conditions and address challenges such as sensor wear and
drift. This approach leverages pre-trained models, adapting
them to new but related tasks, which mitigates the need for
extensive recalibration and extends the operational lifespan
of the sensors. Kim et al. experimentally validated Optimal
Transportation Transfer Learning using actual soft sensors,
demonstrating its effectiveness in maintaining sensor accuracy
and reliability over time [3].
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Fig. 1. Diagrams and physical examples of Flexible Exoskeletons. (a)

Diagram and physical example of a Bowden cable driven flexible exoskeleton
[10], (b) Diagram and physical example of SSEA flexible exoskeleton, (c)
Diagram and physical example of a novel SSEA flexible exoskeleton without
load cell (based on soft-sensing unit).

In our previous study [11], we proposed a soft series elastic
actuator (SSEA), as shown in figure 1 (b). Comparing to the
research of Conor J. Walsh’s group [10] shown in figure 1
(a), our SSEA exhibits physical compliance for exoskeleton.
In our another previous study [12], based on above SSEA,
we developed a novel sensing-actuation integrated unit for
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elastic tension transmission and force estimation, as shown
in figure 1 (c). Then we developed a data collection platform
that uses motors to stretch sensors according to sine curves of
different frequencies and amplitudes for data collection. Both
long short-term memory (LSTM) and Informer models we
selected demonstrated good performance. While LSTM may
be slightly inferior in terms of accuracy, it compensates with
faster computational speed. Despite these advancements, our
previous study identified several limitations:

o The data was collected on a simulation test platform. De-
spite the addition of random factors, the motor stretched
the unit following a sine function-based curve.

o The unit incorporates clamps, which render it somewhat
inflexible, as well as noticeably thick and heavy.

In this study, we redesigned the soft-sensing unit to enhance
its flexibility, and to make it lighter and thinner. The data col-
lection method has also been improved, making the collected
data more random and realistic. Data was collected in three
scenarios. In the first scenario, five participants independently
pulled the soft-sensing unit attached to their thigh while
walking on a treadmill at various speeds to achieve self-
assistance. In the second scenario, five participants wore an
exoskeleton equipped with a soft-sensing unit on a treadmill to
conduct assisted movement experiments, with the exoskeleton
providing the assistance. In the third scenario, two participants
wore thigh bands equipped with a soft-sensing unit while
walking on level ground at self-perceived slow, medium, and
fast paces to achieve self-assistance. To our best knowledge,
this is the first study to employ soft sensors as a force sensor
in exoskeleton assistance experiments for data collection and
this research is significant as it advances the application of
soft sensors in exoskeletons, enhancing their functionality and
usability.

II. SYSTEM DESIGN

Building on our previous foundation [12], this study intro-
duces several significant improvements. As shown in figure 2
(a, ¢), the original plastic elastic band has been replaced with
a 90-pound textile elastic band, and the previous paper-cut
shielding layer has been upgraded to a stretchable conductive
fabric. Additionally, the clamping method used for fixing the
unit has been replaced by sewing, reducing the weight of the
soft sensing units. When stretched to 150% of its original
length, the unit can provide a pulling force greater than 90N,
which can offer approximately up to 14Nm of equivalent
hip flexion/extension torque, which is approximately 30%
of the human walking torque. So, the redesigned unit is
reasonable and meeting the necessary assistance requirements.
Furthermore, this study upgraded the previous capacitance
reading device by adding a shield cover, as shown in figure 2
(b, d).

The overall diagram of the exoskeleton system in this study
is shown in figure 3. The shoulder straps effectively prevent the
waist belt from sagging during walking and reduce pressure
on the anterior superior iliac spine. The connection buckles at
the thigh straps facilitate easy assembly and disassembly of
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Fig. 2. Redesign of soft-sensing unit and capactive reading device. (a) old
soft-sensing unit, (b) old capactive reading device, (c) updated soft-sensing
unit, (d) updated capactive reading device.

the soft-sensing units. Reinforcement ribs at the thigh straps,
made of two tough plastic pieces sewn inside the thigh bands,
effectively prevent the soft thigh straps from lifting due to
stretching during assistance while maintaining flexibility. The
yellow box indicates the location of the force sensor. The
force sensor is used in conjunction with flexible sensors to
synchronously collect force data, which aids in model training
for later stages. The motor is fixed to the soft waist belt
via a motor mount. Due to the softness of the belt, the bolt
heads used for mounting the motor are recessed, ensuring
comfort during wear. The motor shaft is connected to a spool,
driving the flexible ropes through fixed pulleys to stretch the
thighs. The structural design of the four fixed pulleys ensures
alignment with the motor pulleys and reduces friction during
force transmission. The smart knee pads can predict knee joint
angles with an average MAE of 4.910° and hip joint moments
with an average MAE of 0.085 Nm/kg.

This newly designed exoskeleton system weighs only 2.3
kg (including batteries and smart knee pads), demonstrating
a significant weight advantage compared to other unilateral
flexible exoskeletons. To control robots, various methods are
employed in different research [13], including position control,
impedance control, hybrid control [14], force control, etc. In
addition, assistance strategies are usually planned through two
types of signals: joint angles [15] or joint moments [16]. Here,
we use force control and plan assistance through real-time hip
joint moment.

III. DATA COLLECTION AND PREPOSSESSING
A. Data Collection

This study involved five participants in Scenario 1 and five
participants in Scenario 2 for data collection, as depicted in
figure 3. Additionally, two participants (one from the initial
group and one new participant) were involved in another sce-
nario for transfer learning and model testing. For the final test,
a new participant wore the SSEA flexible exoskeleton without
a load cell and conducted assisted movement experiments on
a treadmill. Participant information is shown in table 1.

In the first scenario, five participants (NO1-NO5) wore thigh
bands equipped with a soft-sensing unit while walking on a
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Fig. 4. Data collection scenarios. (a) Participants independently pulled a
soft-sensing unit attached to their thigh, (b) Participants wore an exoskeleton
equipped with a soft-sensing unit, with the exoskeleton providing assistance.

TABLE I
SUBJECT INFORMATION

No. Age Gender Height (cm) Weight (kg)
NO1 24 Male 178 62
NO2 23 Male 180 66
NO3 22 Male 168 65
NO4 28 Male 172 75
NO5 24 Female 152 49
NO06 35 Male 169 75
NO7 24 Male 175 72
NO8 23 Male 173 65

treadmill at speeds of 0.5, 1.0, 1.5 m/s, and a self-selected
speed. During the walking process, participants were able
to pull on the other end of the soft-sensing unit at will,
providing self-assistance in walking. All data for Scenario 1
was collected on December 22, 2023. In the second scenario,
five participants (NO1-NO4, N06) wore the exoskeleton shown
in figure 4 and walked freely on a treadmill. Data from NO1
and NO2 was collected on January 23, 2024, while data from
NO03, NO4, and NO6 was collected on January 30, 2024. Due
to viscoelastic effects, sensor will experience drift over time.
Therefore, all collected capacitance data are subtracted by the
initial value when the sensor is not stretched. The data from
the force sensor and the soft-sensing unit were collected at
a frequency of 100 Hz. All collected data included start-stop
information, and the second scenario also encompassed data
from partial debugging sessions.

B. Data Prepossessing

After data collection, rows containing NaN values were
removed, followed by the exclusion of the first and last two
data points from each data file. Outliers were then eliminated.
Prior to training, the mean and variance of the training set
were calculated, and all data were standardized.

To enhance the model’s generalization ability, this study
employed four-fold cross-validation as shown in figure 5. The
data from participants NO1 to NO4 were used as the training
set, with data from one participant selected as the validation
set in each fold. The data from participants NO5 and NO6
were used as the test set. The data from both scenarios will
be combined for training. We first used the LSTM model to
observe the impact of different lengths of feature sequences
on the validation set error, with the mean squared error (MSE)
and the average inference time shown in figure 6. To balance
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Fig. 6. Results of MSE errors on validation set (before destandardization)
and the average time on predicting via different sequence length.

error and time consumption, a sequence length of 45 (i.e., 0.45
seconds) was selected a feature, with the force sensor data at
the 45th time point used as the label.

IV. RESULTS
A. Model Selection

In our previous research, we came to the following con-
clusions. The Informer model [17] performed better than the
LSTM model but were computationally intensive and took
more than twice as long on calculating [12]. Given that
the model from this study is intended for use in a portable
exoskeleton with an embedded system in future research, it
is essential to minimize inference time while maintaining
accuracy. Therefore, in this section, we will select the most
suitable model for our time-related data from several basic
regression models.

o Linear Regression (LR) is a basic and widely used
statistical method for modeling the relationship between a
dependent variable and one or more independent variables
by fitting a linear equation to observed data.

e Recurrent Neural Networks (RNNs) are a class of artifi-
cial neural networks designed for sequential data process-
ing. They feature connections that form directed cycles,
which allow them to retain memory of previous inputs.
This capability is particularly beneficial for applications
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such as time series analysis and natural language process-
ing [18].

e LSTM is a type of RNN model first presented in [19],
it can learn to identify important inputs, store them in
a long-term state, and extract them when needed. Com-
pared to the traditional RNN models, LSTM seems to be
much more suitable for predicting long sequences. The
LSTM model has been used in many related researches
[20]-[22], solving the non-liner problems of soft sensors.

e GRU is another type of RNN architecture similar to
LSTM but with a simpler structure. GRU use gating
mechanisms to control the flow of information, which
helps in learning long-term dependencies in sequences
[23].

TABLE 11
ESTIMATION RESULTS OF DIFFERENT MODELS
Models MAE RMSE R?
LR 2.7393 3.6112 0.8956
RNN 2.5582 3.3486 0.9103
LSTM 2.1256 2.9262 0.9315
GRU 2.1449 2.9227 0.9316

We trained the models on a PC equipped with a 13th Gen
Intel (R) Core (TM) i9-13980HX 2.20 GHz CPU and an
NVIDIA GeForce RTX 4070 laptop GPU. The grid search
method was utilized to optimize the hyperparameters, and the
models were subsequently evaluated on the test set. table 2
presents MAE, RMSE and R2 of LR, RNN, LSTM and GRU,
and figure 7 details the performance on certain part of test set.
LR is used as a baseline model, providing a simple reference
point to compare the performance of more complex models.

TABLE III
GRU NETWORK ARCHITECTURE

Layer index = Model Parameters
1 Hidden:256, Dropout:0.4,
return_sequences=True
2 GRU Hidden:128,, Dropout:0.2,
return_sequences=True
3 Hidden:64
4 DENSE 1

The results demonstrate that both the GRU and LSTM
models outperform the others, with similar performance on the
test set. Given the computational efficiency, we selected GRU
as our final model (M1). The network architecture of the GRU
is illustrated in table 3. The model processes data in batches of
1024 and in step size of 5. The initial learning rate was set at
0.001 and was adjusted to 0.9 times its original value if there
was no decrease in validation set error for three consecutive
epochs during training. The basic training consists of 100
epochs, with early stopping implemented if the validation set
error does not decrease for 15 consecutive epochs, helping to
prevent overfitting.
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Fig. 7. Performance of different models on Scenarios 1 and Scenarios 2.

B. Transfer Learning

To verify the model’s generalization ability, we applied it to
data collected from Subject NO3 in scenario 3: NO3 wore thigh
bands equipped with a soft-sensing unit while walking on level
ground at self-perceived slow, medium, and fast paces for 2
minutes, respectively, two sets of data were collected. During
the walking process, participant was able to pull on the other
end of the soft-sensing unit at will, providing self-assistance
in level ground walking (including turning). The data were
collected on December 5, 2023, and unlike other collected
data, it was not from the same day or the same scenario.

As illustrated in table 4, the model M1’s error on NO3’s data
increased dramatically. figure 8 (a) presents the performance
of model (M1) before transfer learning, we find that the
orange curve (performance of M1 on NO3’s data collected in
scenario 3) generally follows the shape of the ground truth, yet
discrepancies are evident, particularly in the force amplitude,
which sometimes overshoots or undershoots the actual values.
Different times and scenarios result in the collected data
distribution being very inconsistent with the data previously
used for training, especially since subjects in scenario 3 were
willing to use greater force to pull the unit. Therefore, the
upper end of the prediction results becomes flattened.

To further enhance the model’s performance in real-world
scenarios and mitigate the impact of drift, this study introduces
transfer learning. Transfer learning is a powerful technique in
machine learning that involves taking a model developed for
one task and reusing it as a starting point for a different but
related problem. This approach leverages pre-learned knowl-
edge, which can lead to significant improvements in learning
efficiency and prediction accuracy for the new task, especially
when the available data is limited [24].

We used another set of the NO3 data for transfer learning and
again predicted the data of NO3. Without altering the original
model M1’s architecture, we froze the parameters of the first

TABLE IV
ESTIMATION RESULTS BEFORE AND AFTER TRANSFER LEARNING
Models Data Source MAE RMSE RZ
Ml NO03, Scenario 3 12.8589 14.5352  0.2663
M2 NO3, Scenario 3 1.2776 1.8036 0.9887
M2 NO7, Scenario 3 1.3388 1.9241 0.9843

layer and fine-tuned the remaining layers. The first 80% of the
data was used as the training set, and the latter 20% served
as the validation set. figure 8 (a) presents the performance
of model (M2) after transfer learning, comparing it with the
ground truth data over a period of 16 seconds. The red curve
(after transfer learning) aligns closely with the ground truth,
demonstrating significant improvements in accurately tracking
oscillations and matching peak values more precisely than the
orange curve, achieving 271% improvement in RZ.

Data from Subject NO7 (a totally new subject) in scenario
3 was also collected on December 5, 2023 and was used to
test model M2 again. Performance2? illustrates the prediction
results and figure 8 (b) presents the performance of M?2.
We can find that the model has well maintained its original
performance, with only a 0.45% decrease in R2.

V. DISCUSSION AND CONCLUSION

The primary objective of this research was to improve the
functionality of the soft-sensing unit and utilize machine learn-
ing techniques to accurately estimate the tension derived from
the sensor’s capacitance data in scenarios that more closely
mimic real-world conditions. This study successfully addresses
several limitations identified in prior research, notably in the
areas of the soft-sensing unit and data acquisition methods.
The redesigned soft-sensing unit introduced in this research is
innovative, and the data collection methodology employed is
unprecedented in related studies, offering substantial reference
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Fig. 8. Model Performance. (a) Force prediction performance before and
after transfer learning on NO3’s data, (b) Force prediction performance after
transfer learning on NO7’s data.

value for the integration of soft sensors in exoskeleton appli-
cations. For the final test, NO8, a new participant, wore the
SSEA flexible exoskeleton without the load cell and conducted
assisted movement experiments on treadmill, with the force
required for closed-loop force tracking control provided solely
through the soft-sensing unit. The related trial video can be
found in the appendix, which also includes demonstration of
the data collection process. This research reflects our ongoing
efforts to enhance the usability and effectiveness of wearable
technology, aspiring to contribute to future developments in
the field.

The results of this paper indicate that when the actual forces
exceed the range of the training data, the error significantly
increases. Therefore, to enhance the prediction accuracy of the
sensor in actual use, it is necessary to consider all possibilities
within the range of the sensor during the training process. In
conclusion, combining the data collection platform mentioned
in our previous work and the data collection method described
in this paper is a more rational and practical data collection
scheme. The data collection plan based on the data collection
platform can collect data near the full scale within the sensor’s
range without exceeding it, while the data collection scheme
based on this study can provide more diverse and realistic data.

Looking ahead, we plan to collect data from more subjects
in diverse and complex environments, not limited to walking
at different speeds, and at various times. And we also plan
to use data collection platform to gather a broader range of
data within the sensor’s capacity. By employing these methods
and subtracting the initial value in the relaxed state to address
sensor drift, the frequency of transfer learning will be reduced
or potentially eliminated. Additionally, as observed in figure
7, there are indentations at the peaks of curves in Scenario
2. This is due to the subject actively lifting their leg during
assistance, which increases the force tracking error. Future
work will focus on enhancing the force tracking performance
of the exoskeleton system through iterative optimization or
other intelligent optimization algorithms.
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