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a b s t r a c t 

Deep reinforcement learning (DRL) has recently been adopted in a wide range of physics and engineering 

domains for its ability to solve decision-making problems that were previously out of reach due to a 

combination of non-linearity and high dimensionality. In the last few years, it has spread in the field 

of computational mechanics, and particularly in fluid dynamics, with recent applications in flow control 

and shape optimization. In this work, we conduct a detailed review of existing DRL applications to fluid 

mechanics problems. In addition, we present recent results that further illustrate the potential of DRL 

in Fluid Mechanics. The coupling methods used in each case are covered, detailing their advantages and 

limitations. Our review also focuses on the comparison with classical methods for optimal control and 

optimization. Finally, several test cases are described that illustrate recent progress made in this field. 

The goal of this publication is to provide an understanding of DRL capabilities along with state-of-the-art 

applications in fluid dynamics to researchers wishing to address new problems with these methods. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

The process of learning and how the brain understands and 

lassifies information has always been a source of fascination for 

umankind. Since the beginning of research in the field of artifi- 

ial intelligence (AI), an algorithm able to learn to make decisions 

n its own has been one of the ultimate goals. Going back to the 

nd of the 1980s [52] , reinforcement learning (RL) proposed a for- 

al framework in which an agent learns by interacting with an 

nvironment through the gathering of experience [14] . Significant 

esults were obtained during the following decade [55] , although 

hey were limited to low-dimensional problems. 

In recent years, the rise of deep neural networks (DNN) has 

rovided reinforcement learning with new powerful tools [9,17,51] . 

he combination of deep learning with RL, called deep reinforce- 

ent learning (DRL), lifted several major obstacles that hindered 

lassical RL by allowing the use of high-dimensional state spaces 

nd exploiting the feature extraction capabilities of DNNs. Recently, 

RL managed to perform tasks with unprecedented efficiency in 

any domains such as robotics [41] or language processing [4] , 
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nd even achieved superhuman levels in multiple games: Atari 

ames [36] , Go [50] , Dota II [40] , Starcraft II [59] and even Poker

11] . Also in industrial application, DRL has proven itself useful. 

or example, Wayve trains autonomous cars both onboard [25] and 

hrough simulation [8] , and Google uses DRL in order to control 

he cooling of its data centers [26] . 

In the field of fluid mechanics and mechanical engineering, one 

s also confronted with nonlinear problems of high dimensionality. 

or example, using computational simulations to test several differ- 

nt designs or configurations has proven a useful technique. How- 

ver, the number of possibilities to explore can make such search 

ifficult since it is often unfeasible to evaluate all configurations 

xhaustively. Therefore, the assistance of automatic optimization 

rocedures is needed to help find optimal designs. 

Possible applications range from multiphase flows in micro- 

uidics to shape optimization in aerodynamics or conjugate heat 

ransfer in heat exchangers, and many other fields can gain from 

uch techniques such as biomechanics, energy, or marine tech- 

ologies. This is the primary motivation for the combination of 

omputational fluid dynamics (CFD) with numerical optimization 

ethods. Most of the time, the main obstacle is the high compu- 

ational cost of determining the sensitivity of the objective func- 

ion to variations of the design parameters by repeated calcula- 

ions of the flow. Besides, classical optimization techniques, like 

irect gradient-based methods, are known for their lack of robust- 
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Fig. 1. DRL agent and its environment. 
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ess and for their tendency to fall into local optima. Generic and 

obust search methods, such as evolutionary or genetic algorithms, 

ffer several attractive features and have been used widely for de- 

ign shape optimization [1,27,33] . In particular, they can be used 

or multi-objective multi-parameter problems. They have been suc- 

essfully tested for many practical cases, for example for design 

hape optimization in the aerospace [34] and automotive indus- 

ries [38] . However, the use of a fully automatic evolutionary al- 

orithms coupled with CFD for the optimization of multi-objective 

roblems remains limited by the computing burden at stake and is 

till far from providing a practical tool for many engineering appli- 

ations. 

Despite great potential, the literature applying DRL to compu- 

ational or experimental fluid dynamics remains limited. In recent 

ears, only a handful of applications were proposed that take ad- 

antage of such learning methods. These applications include flow 

ontrol problems [18,43] , process optimization [28,39] , shape op- 

imization [3] , and our own results about laminar flows past a 

quare cylinder presented later in this work, among others. 1 

This paper presents an introduction to modern RL for the neo- 

hyte reader to get a grasp of the main concepts and methods ex- 

sting in the domain, including the necessary basics of deep learn- 

ng. Subsequently, the relevant fluid mechanics concepts are reiter- 

ted. We then go through a thorough review of the literature and 

escribe the content of each contribution. In particular, we cover 

he choice of DRL algorithm, the problem complexity, and the con- 

ept of reward shaping. Finally, an outline is given on the future 

ossibilities of DRL coupled with fluid dynamics. 

. Deep reinforcement learning 

In this section, the basic concepts of DRL are introduced. For the 

ake of brevity, some topics are only minimally covered, and the 

eader is referred to more detailed introductions to (D)RL [14,54] . 

irst, RL is presented in its mathematical description as a Markov 

ecision Process. Then, its combination with deep learning is de- 

ailed, and an overview of several DRL algorithms is presented. 

.1. Reinforcement learning 

At its core, reinforcement learning models an agent interacting 

ith an environment and receiving observations and rewards from 

t, as shown in Fig. 1 . The goal of the agent is to determine the

est action in any given state in order to maximize its cumulative 

eward over an episode, i.e. over one instance of the scenario in 

hich the agent takes actions. Taking the illustrative example of a 

oard game: 

1. An episode is equivalent to one game; 

2. A state consists of the summary of all pieces and their posi- 

tions; 

3. Possible actions correspond to moving a piece of the game; 

4. The reward may simply be +1 if the agent wins, −1 if it loses 

and 0 in case of a tie or a non-terminal game state. 

Generally, the reward is a signal of how ‘good’ a board situation 

s, which helps the agent to learn distinguish more promising from 

ess attractive decision trajectories. A trajectory is a sequence of 

tates and actions experienced by the agent: 

= 

(
s 0 , a 0 , s 1 , a 1 , . . . 

)
. 

The cumulative reward ( i.e. the quantity to maximize) is ex- 

ressed along a trajectory, and includes a discount factor γ ∈ [ 0 , 1 ]
1 These references and more are addressed in details in the remaining of this 

rticle. 

a

Q

2 
hat smoothes the impact of temporally distant rewards (it is then 

alled discounted cumulative reward): 

 (τ ) = 

T ∑ 

t=0 

γ t r t . 

RL methods are classically divided in two categories, namely 

odel-free and model-based algorithms. Model-based method in- 

orporates a model of the environment they interact with, and will 

ot be considered in this paper (the reader is referred to [54] and 

eferences therein for details about model-based methods). On the 

ontrary, model-free algorithms directly interact with their envi- 

onment, and are currently the most commonly used within the 

RL community, mainly for their ease of application and imple- 

entation. Model-free methods are further distinguished between 

alue-based methods and policy-based methods [53] . Although both 

pproaches aim at maximizing their expected return, policy-based 

ethods do so by directly optimizing the decision policy, while 

alue-based methods learn to estimate the expected value of a 

tate-action pair optimally, which in turn determines the best ac- 

ion to take in each state. Both families inherit from the formula- 

ion of Markov decision processes (MDP), which is detailed in the 

ollowing section. 

.1.1. Markov decision processes 

A MDP can be defined by a tuple (S, A , P , R ) [5,24] , where: 

1. S, A and R are defined in Table 1 , 

2. P : S × A × S + → [0 , 1] , where P (s ′ | s, a ) is the probability of

getting to state s ′ from state s following action a . 

In the formalism of MDP, the goal is to find a policy π(s ) that

aximizes the expected reward. However, in the context of RL, P 

nd R are unknown to the agent, which is expected to come up 

ith an efficient decisional process by interacting with the envi- 

onment. The way the agent induces this decisional process classi- 

es it either in value-based or policy-based methods. 

.1.2. Value-based methods 

In value-based methods, the agent learns to optimally estimate 

 value function , which in turn dictates the policy of the agent by 

electing the action of the highest value. One usually defines the 

tate value function : 

 

π (s ) = E 

τ∼π

[
R (τ ) | s ], 

nd the state-action value function : 

 

π (s, a ) = E 

τ∼π

[
R (τ ) | s, a ], 
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Table 1 

Notations regarding DRL. 

γ discount factor 

λ learning rate 

α, β step-size 

ε probability of random action 

s, s ′ states 

S + set of all states 

S set of non-termination states 

a action 

A set of all actions 

r reward 

R set of all rewards 

t time station 

T final time station 

a t action at time t

s t state at time t

r t reward at time t

R (τ ) discounted cumulative reward following trajectory τ

R (s, a ) reward received for taking action a in state s 

π policy 

θ, θ ′ parameterization vector of a policy 

πθ policy parameterized by θ

π(s ) action probability distribution in state s following π

π(a | s ) probability of taking action a in state s following π

V π (s ) value of state s under policy π

V ∗(s ) value of state s under the optimal policy 

Q π (s, a ) value of taking action a in state s under policy π

Q ∗(s, a ) value of taking action a in state s under the optimal policy 

Q θ (s, a ) estimated value of taking action a in state s with parameterization θ
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hich respectively denote the expected discounted cumulative re- 

ard starting in state s (resp. starting in state s and taking action 

 ) and then follow trajectory τ according to policy π . It is fairly 

traightforward to see that these two concepts are linked as fol- 

ows: 

 

π (s ) = E 

a ∼π

[
Q 

π (s, a ) 
]
, 

eaning that in practice, V π (s ) is the weighted average of Q 

π (s, a )

ver all possible actions by the probability of each action. Finally, 

he state-action advantage function can be defined as A 

π (s, a ) = 

 

π (s, a ) − V π (s ) . One of the main value-based methods in use is

alled Q-learning, as it relies on the learning of the Q-function 

o find an optimal policy. In classical Q-learning, the Q-function 

s stored in a Q-table, which is a simple array representing the 

stimated value of the optimal Q-function Q 

∗(s, a ) for each pair 

s, a ) ∈ S × A . The Q-table is initialized randomly, and its values

re progressively updated as the agent explores the environment, 

ntil the Bellman optimality condition [6] is reached: 

 

∗(s, a ) = R (s, a ) + γ max 
a ′ 

Q 

∗(s ′ , a ′ ) . (1)

The Bellman equation indicates that the Q-table estimate of the 

-value has converged and that systematically taking the action 

ith the highest Q-value leads to the optimal policy. In practice, 

he expression of the Bellman equation [6] is used to update the 

-table estimates. 

.1.3. Policy-based methods 

Another approach consists of directly optimizing a parameter- 

zed policy πθ (a | s ) , instead of resorting to a value function esti-

ate to determine the optimal policy. In contrast with value-based 

ethods, policy-based methods offer three main advantages: 

1. They have better convergence properties, although they tend to 

be trapped in local minima; 

2. They naturally handle high dimensional action spaces; 
3. They can learn stochastic policies. b

3 
To determine how ”good” a policy is, one defines an objective 

unction based on the expected cumulative reward: 

(θ ) = E 

τ∼πθ

[
R (τ ) 

]
, 

nd seeks the optimal parameterization θ ∗ that maximizes J(θ ) : 

∗ = arg max 
θ

E 

[
R (τ ) 

]
. 

To that end, the gradient of the cost function is needed. This 

s not an obvious task at first, as one is looking for the gradient 

ith respect to the policy parameters θ, in a context where the 

ffects of policy changes on the state distribution are unknown. 

ndeed, modifying the policy will most certainly modify the set 

f visited states, which could affect performance in an unknown 

anner. This derivation is a classical exercise that relies on the log- 

robability trick [60] , which allows expressing ∇ θ J(θ ) as an evalu- 

ble expected value: 

 θ J(θ ) = E 

τ∼πθ

[ 

T ∑ 

t=0 

∇ θ log ( πθ (a t | s t ) ) R (τ ) 

] 

. (2) 

This gradient is then used to update the policy parameters: 

← θ + λ∇ θ J(θ ) . (3) 

As ∇ θ J(θ ) takes the form of expected value, in practice, it is 

valuated by averaging its argument over a set of trajectories. In 

uch vanilla policy gradient methods, the actions are evaluated at 

he end of the episode (they belong to Monte-Carlo methods). If 

ome low-quality actions are taken along the trajectory; their neg- 

tive impact will be averaged by the high-quality actions and will 

emain undetected. This problem is overcome by actor-critic meth- 

ds, in which a Q-function evaluation is used in conjunction with 

 policy optimization. 

.2. Deep reinforcement learning 

In RL, the evaluation of value functions such as V π or Q 

π can 

e done in several ways. One possible way, as presented earlier, is 
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Fig. 2. Representation of a single artificial neuron and a basic 3-layer neural network. 
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o use tables that store the values for every state or action-state 

air. However, this strategy does not scale with the sizes of state 

nd action spaces. Another possibility is to use neural networks 

o estimate value functions, or, for policy-based methods, to out- 

ut an action distribution given input states. Artificial neural net- 

orks can be seen as universal function approximators [49] , which 

eans that, if properly trained, they can represent arbitrarily com- 

lex mappings between spaces. This particularly suitable property 

f ANNs gave rise to deep reinforcement learning, i.e. reinforce- 

ent learning algorithms using deep neural networks as functions 

pproximators. Regarding the notions introduced in previous sec- 

ions, it is natural to think of θ as the parameterization of the 

eural network, i.e. as it set of weights and biases. In the follow- 

ng section, a basic introduction to neural networks is given. The 

eader is referred to [17] for additional details. 

.2.1. Artificial neurons and neural networks 

The basic unit of a neural network (NN) is the neuron, which 

epresentation is given in Fig. 2 . An input vector x, associated with 

 set of weights w, is provided to the neuron. The neuron then 

omputes the weighted sum w · x + b, where b is called the bias 

nd applies the activation function σ to this sum. This is the out- 

ut of the neuron, hereafter noted z. In the neuron, the weights 

nd the bias represent the degrees of freedom ( i.e. , the param- 

ters that can be adjusted to approximate the function f ), while 

he activation function is a hyper-parameter, i.e. , it is part of the 

hoices made during the network design. 

In their purest form, neural networks consist of several layers 

f neurons connected to each other, as shown in the primary ex- 

mple of 2 . Such a network is said to be fully connected (FC), in

he sense that each neuron of a layer is connected to all the neu- 

ons of the following layer. As it was said in the last section, each 

onnection is characterized by a weight, and in addition each neu- 

on has a bias, except for the input layer. Indeed, as a convention, 

he input layer is usually drawn as a regular layer, but it does not 

old biases, nor is an activation function applied at its output. The 

earning process in neural networks consists in adjusting all the 

iases and weights of the network in order to reduce the value 

f a well-chosen loss function that represents the quality of the 
4 
etwork prediction. This update is usually performed by a stochas- 

ic gradient method, in which the gradients of the loss function 

ith respect to the weights and biases are estimated using a back- 

ropagation algorithm. 

When working for instance with images as input, it is custom- 

ry to exploit convolutional layers instead of FC ones. Rather than 

ooking for patterns in their entire input space as FC layers, convo- 

utional ones can extract local features. Additionally, they can build 

 hierarchy of increasingly sophisticated features. In such layers, a 

onvolution kernel ( i.e. , a tensor product with a weight matrix) is 

pplied on a small patch of the input image and is used as input 

or a neuron of the next layer. The patch is then moved, and the 

peration repeated until the input image has been entirely covered. 

he size of the patch is usually known as the kernel size. The com- 

lete coverage of the image with this process generates a kernel, 

lso called filter or feature map. In most cases, multiple kernels 

re generated at each layer, each encoding a specific feature of the 

nput image. When used for regression applications, convolutional 

etworks (or convnets ) most often end with a fully connected layer, 

ollowed by the output layer, which size is determined by that of 

he sought quantity of interest. These considerations are discussed 

n details in a large variety of books and articles such as [9,17,51] . 

.3. DRL algorithms 

In this section, the main lines of the major DRL algorithms in 

se today are presented. For the sake of brevity, many details and 

iscussions are absent from the following discussions. The reader 

s referred to the profuse literature on the topic. 

.3.1. Deep Q-networks 

Instead of updating a table holding Q-values for each possi- 

le (s, a ) pair, ANNs can be used to generate a map S + × A −→ R

called deep Q-networks (DQN)) that provides an estimate of the 

-value for each possible action given an input state. As it is usual 

or neural networks, the update of the Q-network requires a loss 

unction for the gradient descent algorithm, that will be used to 

ptimize the network parameters θ . To do so, it is usual to exploit 
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he Bellman optimality Eq. (1) : 

 (θ ) = E 

[
1 

2 

([
R (s, a ) + γ max 

a ′ 
Q θ (s ′ , a ′ ) 

]
︸ ︷︷ ︸ 

Target 

− Q θ (s, a ) 
)

2 

]
. (4) 

n the latter expression, Q θ (s, a ) represents the Q-value estimate 

rovided by the DQN for action s and state a under network pa- 

ameterization θ . It must be noted that the quantity denoted target 

s the same that appears in the Bellman optimality Eq. (1) : when 

he optimal set of parameters θ ∗ is reached, Q θ (s, a ) is equal to the

arget, and L (θ ) is equal to zero. 

In vanilla deep Q-learning (and more generally in Q-learning), 

n exploration/exploitation trade-off must be implemented, to en- 

ure a sufficient exploration of the environment. To do so, a param- 

ter ε ∈ [0 , 1] is defined, and a random value is drawn in the same

ange before each action. If this value is below ε, a random action 

s taken. Otherwise, the algorithm follows the action prescribed by 

ax a Q θ (s, a ) . Most often, ε follows a schedule, starting with high 

alues at the beginning of learning, and progressively decreasing. 

he vanilla algorithm using DQN is shown below: 

lgorithm 1 Vanilla deep Q-learning. 

1: Initialize action-value function parameters θ0 

2: for k = 0, M do � Loop over episodes 

3: for t = 0, T do � Loop over time stations 

4: Draw random value ω ∈ [0 , 1] � ε-greedy strategy 

5: if ( ω < ε) then 

6: Choose action a t randomly 

7: else 

8: Choose action a t = max a Q θ (s t , a ) 

9: end if 

0: Execute action a t and observe reward r t and state s t+1 

11: Form target y t = r t + max a Q θ (s t+1 , a ) 

2: Perform gradient descent using (y t − Q θ (s t , a t )) 
2 

3: Update θ and s t 
14: end for 

5: end for 

Still, the basic deep Q-learning algorithm presents several flaws, 

nd many improvements can be added to it: 

1. Experience replay : To avoid forgetting about its past learning, a 

replay buffer can be created that contains random previous ex- 

periences. This buffer is regularly fed to the network as learn- 

ing material, so previously acquired behaviors are not erased by 

new ones. This improvement also reduces the correlation be- 

tween experiences: as the replay buffer is randomly shuffled, 

the network experiences past (s t , a t , r t , s t+1 ) tuples in a differ-

ent order, and is therefore less prone to learn correlation be- 

tween these [30,56] ; 

2. Fixed Q-targets : When computing the loss (4) , the same net- 

work is used to evaluate the target and Q θ (s t , a t ) . Hence, at ev-

ery learning step, both the Q-value and the target move, i.e. the 

gradient descent algorithm is chasing a moving target, imply- 

ing big oscillations in the training. To overcome this, a separate 

network is used to evaluate the target (target network), and its 

weight parameters θ− are updated less frequently than that of 

the Q-network. This way, the target remains fixed for several 

Q-network updates, making the learning easier; 

3. Double DQN : The risk of using a single Q-network is that it 

may over-estimate the Q-values, leading to sub-optimal poli- 

cies, as πθ is derived by systematically choosing the actions of 

highest Q-values. In [57] , two networks are used jointly: a DQN 

is used to select the best action, while the other one is used to 

estimate the target value; 
5 
4. Prioritized replay buffer : In the exploration of the environ- 

ment by the agent, some experiences might occur rarely while 

being of high importance. As the memory replay batch is sam- 

pled uniformly, these experiences may never be selected. In 

[46] , the authors propose to sample the replay buffer accord- 

ing to the training loss value, in order to fill the buffer in pri- 

ority with experiences where the Q-value evaluation was poor, 

meaning that the network will have better training on ”unex- 

pected events”. To avoid overfitting on these events, the filling 

of the prioritized buffer follows a stochastic rule. 

.3.2. Deep policy gradient 

When the policy πθ is represented by a deep neural network 

ith parameters θ, the evaluation of ∇ θ J(θ ) can be delegated to 

he back-propagation algorithm (see Section 2.2.1 ), as long as the 

radient of the loss function equals the policy gradient (2) . The loss 

an be expressed as: 

 (θ ) = E 

τ∼πθ

[ 

T ∑ 

t=0 

log ( πθ (a t | s t ) ) R (τ ) 

] 

. 

owever, it can be shown that using the full history of discounted 

eward along trajectory τ is not necessary, as a given action a t has 

o influence on the rewards obtained at previous time-stations. 

everal expressions are possible to use instead of R (τ ) , that do 

ot modify the value of the computed policy gradient, while re- 

ucing its variance (and therefore the required amount of trajec- 

ories to correctly approximate the expected value) [47] . Among 

hose, the advantage function A (s, a ) is commonly chosen for its 

ow variance: 

 (s, a ) = Q(s, a ) − V (s ) . 

he advantage function A (s, a ) , represents the improvement ob- 

ained in the expected cumulative reward when taking action a 

n state s, compared to the average of all possible actions taken in 

tate s . In practice, it is not readily available and must be estimated 

sing the value function. In practice, this estimate is provided by 

 separately learned value function. As a result, the loss function 

rites as: 

 (θ ) = E 

τ∼πθ

[ 

T ∑ 

t=0 

log ( πθ (a t | s t ) ) A 

πθ (s t , a t ) 

] 

. 

he vanilla deep policy gradient algorithm is presented below: 

lgorithm 2 Vanilla deep policy gradient. 

1: Initialize policy parameters θ0 

2: for k = 0, M do � Loop over batches of trajectories 

3: for i = 0, m do � Loop over trajectories in batch k 

4: Execute policy πθk 

5: Collect advantage estimates A 

πθk (s t , a t ) 

6: end for 

7: Estimate L (θk ) over current batch of trajectories 

8: Update policy parameters θk using stochastic gradient as- 

cent 

9: end for 

.3.3. Advantage actor-critic 

As mentioned in Section 2.1.3 , actor-critic methods propose to 

imultaneously exploit two networks to improve the learning per- 

ormance. One of them is policy-based, while the other one is 

alue-based: 

1. The actor πθ (s, a ) , controls the actions taken by the agent; 
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2. The critic Q w 

(s, a ) , evaluates the quality of the action taken by

the actor. 

oth these networks are updated in parallel, in a time-difference 

TD) fashion (one update at each time station) instead of the usual 

onte-Carlo configuration (one update at the end of the episode). 

n practice, the advantage function A (s, a ) is preferred to the Q- 

alue for its lower variability. In order to avoid having to evalu- 

te two value functions, the advantage function is usually approx- 

mated, using the reward obtained by the actor after action a t and 

he value evaluated by the critic in state s t+1 : 

 w 

(s t , a t ) ∼ R (s t , a t ) + γV w 

(s t+1 ) − V w 

(s t ) . 

he actor-critic process then goes as follows: 

lgorithm 3 Advantage actor-critic. 

1: Initialize policy parameters θ0 � Actor 

2: Initialize action-value function parameters w 0 � Critic 

3: for k = 0, M do � Loop over episodes 

4: for t = 0, T do � Loop over time stations 

5: Execute action a t following πθ , get reward r t and state 

s t+1 � Actor 

6: Evaluate target R (s t , a t ) + γV w 

(s t+1 ) � Critic 

7: Update w to w 

′ using target � Critic 

8: Evaluate advantage A w 

′ (s t , a t ) = R (s t , a t ) + γV w 

′ (s t+1 ) −
V w 

′ (s t ) � Critic 

9: Update θ to θ ′ using A w 

′ (s t , a t ) � Actor 

0: end for 

11: end for 

In the latter algorithm, the actor and critic parameter updates 

ollow the methods described in sections 2.3.1 and 2.3.2 . The ad- 

antage actor critic algorithm has been developed in asynchronous 

A3C [37] ) and synchronous (A2C) versions. The version of the al- 

orithm presented here corresponds to a time-difference A2C, al- 

hough many possible variants exist, such as the n-step A2C. 

.3.4. Trust-region and proximal policy optimization 

Trust region policy optimization (TRPO) was introduced in 2015 

s a major improvement of vanilla policy gradient [47] . In this 

ethod, the network update exploits a surrogate advantage func- 

ional: 

k +1 = arg max 
θ

L (θk , θ ) , 

ith 

 (θk , θ ) = E 

(s,a ) ∼πθk 

[
�(s, a, θ, θk ) A 

πθk (s, a ) 
]
, 

nd 

(s, a, θ, θk ) = 

πθ (a | s ) 
πθk 

(a | s ) . 
n latter expression, L (θk , θ ) measures how much better (or worse) 

he policy πθ performs compared to the previous policy πθk 
. In or- 

er to avoid too large policy updates that could collapse the pol- 

cy performance, TRPO leverages second-order natural gradient op- 

imization to update parameters within a trust-region of a fixed 

aximum Kullback-Leibler divergence between old and updated 

olicy distribution. This relatively complex approach was replaced 

n the PPO method by simply clipping the maximized expression: 

 (θk , θ ) = E 

(s,a ) ∼πθk 

[
min 

(
�(s, a, θ, θk ) A 

πθk (s, a ) , g 
(
ε, A 

πθk (s, a ) 
))]

,

here 

(ε, A ) = 

{
(1 + ε) A A ≥ 0 , 

(1 − ε) A A < 0 , 

m

6 
here ε is a small, user-defined parameter. When A 

πθk (s, a ) is pos- 

tive, taking action a in state s is preferable to the average of all ac-

ions that could be taken in that state, and it is natural to update 

he policy to favor this action. Still, if the ratio �(s, a, θ, θk ) is very

arge, stepping too far from the previous policy πθk 
could damage 

erformance. For that reason, �(s, a, θ, θk ) is clipped to 1 + ε to 

void too large updates of the policy. If A 

πθk (s, a ) is negative, tak-

ng action a in state s represents a poorer choice than the average 

f all actions that could be taken in that state, and it is natural to

pdate the policy to decrease the probability of taking this action. 

n the same fashion, �(s, a, θ, θk ) is clipped to 1 − ε if it happens

o be lower than that value. 

Many refinements can be added to these methods that are out 

f reach of this introduction, such as the use of generalized advan- 

age estimator [48] , the introduction of evolution strategies in the 

earning process [23] , or the combination of DQN with PG methods 

or continuous action spaces [29] . 

.4. A conclusion on DRL 

Since the first edition of the book of Sutton [53] , RL has be-

ome a particularly active field of research. However, the domain 

eally started striving after the paper from Mnih et al. [36] and its 

roundbreaking results using DQN to play Atari games. As of today, 

he domain holds countless major achievements, and the ability of 

RL to learn to achieve complex tasks is well established. It is now 

xploited in multiple fields of research, and is featured in an ever- 

ncreasing amount of publications, as shown in Fig. 3 . 

A major advantage of DRL is that it can be used as an agnos- 

ic tool for control and optimization tasks, both in continuous and 

iscrete contexts. Its only requirement is a well-defined (s t , a t , r t )

nterface from the environment, which can consist in a numerical 

imulation or a real-life experiment. As seen earlier, both DQN and 

PG ensure a good exploration of the states space, making them 

ble to unveil new optimal behaviors. Moreover, DRL is also robust 

o transfer learning, meaning that an agent trained on one problem 

ill train much faster on a similar environment. This represents a 

reat strength, especially for domains like fluid mechanics, where 

omputational time represents a limiting factor ( Section 3.7 illus- 

rates this point). Transfer learning also introduces a large contrast 

etween DRL and regular optimization techniques, such as adjoint 

ethods, where the product of optimization in a given case cannot 

http://www.scholar.google.com
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Fig. 4. Leader and follower swimmer, reproduced from [39] , with the displacements �x and �y as well as the orientation θ between the leader and the follower. 

Table 2 

Classification of the papers scanned in this review . ADQN 

and DDPG respectively stand for asynchronous DQN and 

deep deterministic PG. 

Main topic Algorithm References 

Flow Control QL [18] 

DQN [16,39] 

ADQN [58] 

TRPO [32] 

A3C [15] 

PPO [43,44] 

Homogeneity optimization QL [13,19] 

QL [22,42] 

Shape Optimization QL [3] 

Chaotic Systems DDPG [12] 

b

n

l

H

r

v

3

m

c

t

a

a

3

fi

a

l

t

e

e

i

l

c

k

w

i

T

c

T

t

k

 

n

t

n

t

a

e

c

3

d

g

fl

o

[

r

[

i

f

T

o

m

t

a

t

3

l

fl

p

S

t

p

i

l

o  

n

e re-used to speed up optimization in a similar configuration. Fi- 

ally, as illustrated in Section 3.6 , DRL libraries can exploit parallel 

earning with a close-to-perfect scaling on the available resources. 

ence, for its ease of use and its numerous capabilities, DRL rep- 

esents a promising tool for optimization and design processes in- 

olving computational or experimental environments. 

. Applications 

In this section, several applications combining DRL and fluid 

echanics found in the literature are presented in details. For each 

ase, the numerical experiments and the obtained results are de- 

ailed. The choice of DRL algorithm and the problem complexity 

re also considered. Table 2 presents an overview of the reviewed 

rticles and their corresponding references. 

.1. Synchronised swimming of two fish - [39] 

In [39] , the authors study the swimming kinematics of two 

sh in a viscous incompressible flow. The first fish is the leader, 

nd is affected a prescribed gait, while the second fish is a fol- 

ower, which dynamics are unknown. An objective of the paper is 

o exploit DRL to derive a swimming strategy that reduces the en- 

rgy expenditure of the follower. A two-dimensional Navier-Stokes 

quation is solved to simulate the viscous incompressible flow us- 

ng a remeshed vortex method. To represent the fish and its undu- 

ation, a simplified physical model is used that describes the body 

urvature k (s, t) of the fish: 

 (s, t) = A (s ) sin 

[ 
2 π

( t 

T p 
− s 

L 

)
+ φ

] 
, (5) 

here L is the length of the fish, T p is the tail-beat frequency, φ
s a phase-difference, t is the time variable, and s is the abscissa. 

he observation of the environment provided to the DRL agent is 

omposed of: 

1. The displacements �x and �y (cf Fig. 4 ), 
7 
2. The orientation θ between the follower and the leader (cf 

Fig. 4 ), 

3. The moment where the action is going to take place (during 

one period of a tail-beat undulation), 

4. The last two actions taken by the agent. 

he agent provides actions that correspond to an additive curva- 

ure term for expression (5) : 

 

′ (s, t) = A (s ) M( 
t 

T p 
− s 

L 
) . 

The reward to maximize is defined as r t = 1 − 2 | �y | 
L , which pe-

alizes the follower when it laterally strays away from the path of 

he leader. Finally, the state space is artificially restricted by termi- 

ating the current episode with an arbitrary reward r t = −1 when 

he two fish get too far away from each other. In this application, 

 DQN algorithm is used to control the follower. For the best strat- 

gy found by the agent, swimming efficiency was increased by 20% 

ompared to baseline of multiple solitary swimmers. 

.2. Efficient collective swimming by harnessing vortices through 

eep reinforcement learning [58] 

The authors in [58] further investigated the swimming strate- 

ies of multiple fishes. They work with two and three-dimensional 

ows (see Fig. 5 ), and analyze with many details the movement 

f trained fishes. The DRL model is identical to what is used in 

39] , but the neural network used was improved by using recur- 

ent neural networks with Long-Short Term Memory (LSTM) layers 

21] . The authors underline the importance of this feature, argu- 

ng that here, past observations hold informations that are relevant 

or future transitions ( i.e. the process is not Markovian anymore). 

wo different rewards are used: the first one is identical to that 

f last section, while the second one is simply equal to the swim- 

ing efficiency of the follower (see [58] ). The result obtained show 

hat collective energy-savings could be achieved with an appropri- 

te use of the wake generated by other swimmers, when compared 

o the case of multiple solitary swimmers. 

.3. Fluid directed rigid body control using deep reinforcement 

earning [32] 

The control of complex environments that include two fluid 

ows interacting with multiple rigid bodies (cf Fig. 6 ) was first pro- 

osed by Ma et al. [32] . In this contribution, a multiphase Navier- 

tokes solver is used to simulate the full characteristics of the in- 

eractions between fluids and rigid bodies at different scales. To 

rovide a rich set of observations to the agent while limiting its 

nput dimension, a convolutional autoencoder is used to extract 

ow-dimensional features from the high-dimensional velocity field 

f the fluid [31] . This technique allows the use of a smaller neural

etwork with faster convergence. The autoencoder is trained using 
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Fig. 5. Leader and follower swimmer, reproduced from Verma et al. [58] . 

Fig. 6. Fluid jets to control rigid body, reproduced from Ma et al. [32] . 
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 TRPO agent, which received two different observations: (i) ex- 

racted features from the fluid velocity field, and (ii) features from 

he rigid body. 

In the environment, the agent is given control over several fluid 

ets (see Fig. 6 ), each of them described by 3 parameters: (i) the

et lateral acceleration ẍ jet , (ii) the jet angular acceleration β̈ jet , 

nd (iii) the use of the jet δ jet . Using lateral and angular accel- 

rations instead of lateral and angular positions allows the jet to 

ove smoothly even with a noisy policy. Different rewards were 

esigned depending on the environment goals. A possible example 

onsists in having a rigid body balanced at a fixed position. In this 

ase the designed reward is: 

 t = w c exp (−|| c − c ∗|| 2 ) + w v exp (−|| v || 2 ) + w e (1 − δ jet ) , (6)

here the first term penalizes a position mismatch according to 

he goal c ∗, the second penalizes the presence of a residual ve- 

ocity, and the last one encourages the agent to use the smallest 

mount of control forces. w c , w v and w e are user-defined parame- 

ers used to weight the three contributions. 

Overall, impressive results were obtained on complex experi- 

ents, including playing music with the system or keeping a ro- 

ating object at a given position. An important feature of this con- 

ribution is the use of the autoencoder to extract features from the 

igh-dimensional velocity fluid fields. Of particular interest is the 

imultaneous training of the two networks (autoencoder and policy 

etwork), leading to a high convergence rate of the overall method. 

.4. Flow shape design for microfluidic devices using deep 

einforcement learning [28] 

In [28] , the authors explore the capabilities of DRL for microflu- 

dic flow sculpting using pillar-shaped obstacles to deform an input 

ow. Given a target flow, a double DQN is used to generate the cor- 

esponding optimal sequence of pillars. The observations provided 

o the agent consist in the current flow shape, represented as a 

atrix of black and white pixels. In return, the actions correspond 

o pillar configurations: the agent can add up to 32 pillars in or- 
8 
er to reshape the input flow. A pixel match rate (PMR) function 

s used to evaluate the similarity between the target flow and the 

urrent flow. The reward is then defined using that PMR as: 

 t = −(1 − PMR − b 

b 
) , 

here b is the PMR of the worst-case scenario performed. PMR 

ver 90% were obtained for different target flows, showing that 

RL represents a viable alternative to other optimization processes 

uch as genetic algorithms (see Fig. 7 ). Transfer learning is also 

xploited, showing that an agent trained on a first flow could be 

etrained much more efficiently on a different flow than an un- 

rained one, thus saving a lot of computational time. 

.5. Artificial neural networks trained through deep reinforcement 

earning discover control strategies for active flow control [43] 

In [43] , the authors present the first application of DRL for per- 

orming active flow control in a simple CFD simulation. For this, 

 simple benchmark is used. More specifically, the flow configura- 

ion is based on the one presented in [45] and features a cylin- 

er immersed in a 2D incompressible flow injected following a 

arabolic velocity profile. The Reynolds number based on the cylin- 

er diameter is moderate to keep the CFD affordable, and following 

45] , Re = 100 is used. The incremental pressure correction scheme 

s used together with a finite element approach to solve the dis- 

retized problem. A periodic Karman vortex street is then obtained, 

s visible in Fig. 8 . Besides, small jets are added on the sides of

he cylinder in order to allow controlling the separation of the 

ake. Therefore, the action performed by the DRL agent is to de- 

ide the instantaneous mass flow rate of the small jets, while the 

eward is chosen to encourage drag reduction. Finally, probes re- 

orting the characteristics of the flow at several fixed points in 

he computational domain (either pressure or velocity can be used, 

oth providing equivalent results) are added in the vicinity of the 

ylinder and are used as the observation provided as input to the 

etwork. 
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Fig. 7. Targets flow and results obtained from DRL agent , reproduced from Lee et al. [28] . 

Fig. 8. Comparison of the velocity magnitude without (top) and with (bottom) active flow control , reproduced from Rabault et al. [43] . A clear modification of the 

cylinder wake, similar to what would be obtained with boat-tailing, is visible. 
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Good results are obtained, with training performed in around 

300 vortex shedding periods. The control strategy is more compli- 

ated than traditional harmonic forcing that had been performed 

n previous works [7] , which illustrates the value of using an ANN 

s the controller. Typically, around 93% of the drag induced by the 

ortex shedding effect [7] is suppressed by the control law found, 

nd the strength of the jets needed to reduce the drag is minimal. 

n the established regime, the magnitude of the mass flow rate in- 

ected by the jets normalized by the mass flow rate of the base 

ow intersecting the cylinder is only of typically 0.6%. The result- 

ng flow, visible in Fig. 8 , is similar to what would be obtained

ith boat tailing; more specifically, an apparent increase in the re- 

irculation bubble is observed. 

The work of [43] shows that active flow control is, at least on 

 simple flow configuration, achievable with small actuations if 

n adapted control law is used. While there are still many unan- 

wered questions at the moment, such as the robustness of the 

ontrol law, the application of the methodology to higher, more 

ealistic (from an industrial point of view) Reynolds numbers, or 

he possibility to control 3D flows, this work establishes DRL as a 

ew methodology that should be further investigated for the task 

f performing active flow control. 

.6. Accelerating deep reinforcement learning of active flow control 

trategies through a multi environment approach [44] 

One of the main practical limitations of [43] lies within the 

ime needed to perform the learning - around 24 h on a mod- 

rn CPU. This comes from the inherent cost of the CFD, and the 
9 
act that it is challenging to obtain computational speedups on 

mall tasks. In particular, increasing the number of cores used for 

olving the CFD problem of [43] provides very little speedup, as 

he communication between the cores negates other speed gains. 

hile this is particularly true on such a small computational prob- 

em, any CFD simulation will only speed up to a maximum point 

ndependently of the number of cores used. Therefore, a solution 

s needed to provide the data necessary for the ANN to perform 

earning in a reasonable amount of time. 

In [44] , the collection of data used for filling the memory re- 

lay buffer is parallelized by using an ensemble of simulations all 

unning in parallel, independently of each other. In practice, this 

eans that the knowledge obtained from several CFD simulations 

unning in an embarrassingly parallel fashion can be focused on 

he same ANN to speed up its learning. 

This technique results in large speedups for the learning pro- 

ess, as visible in Fig. 9 . In particular, for a number of simulations

hat are a divider of the learning frequency of the ANN, perfect 

caling is obtained, and the training is formally equivalent to the 

ne obtained in serial ( i.e. , with one single simulation). However, 

ven more simulations can be used, and it is found empirically that 

he resulting off-policy data sampling does not sensibly reduce the 

earning ability, as visible in Fig. 9 . This means in practice that the 

uthors achieve a training speedup factor of up to around 60. 

This natural parallelism of the learning process of ANNs trained 

hrough DRL represents a significant advantage for this methodol- 

gy, and a promising technical result that opens the way to the 

ontrol of much more sophisticated situations. It is worth noting 
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Fig. 9. Illustration of the acceleration of ANN training through DRL using a multi environment approach (reproduced from Rabault and Kuhnle [44] ). Both plots illustrate 

the convergence of the ANN learning as a function of UTC time, depending on the number of environments used in parallel. In both cases, 3 repetitions are performed for 

each number of environments. Thin lines indicate individual learnings. The average of all three learnings in each case is indicated by a thick line. In the case when the 

number of environments is a divider of the learning frequency of the ANN, the learning is formally equivalent to the serial case and perfect scaling is observed (left). If a 

larger number of environments is used, some stepping is observed in the learning process, but this does not affect the ability to perform learning, nor the general speedup 

of the process (right). 

Table 3 

Summary of the six trained DRL agents from Garnier and Viquerat [15] . 

Agent Re Objective Details 

1.1 10 Control over 17 time steps Trained from sratch 

1.2 10 Direct optimization Trained from sratch 

2.1 40 Control over 17 time steps Transfer learning from 1.1 

2.2 40 Direct optimization Transfer learning from 1.2 

3.1 100 Control over 17 time steps Transfer learning from 1.1 

3.2 100 Direct optimization Transfer learning from 1.2 
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Fig. 10. Architecture for agents 1.1, 2.1 and 3.1. 
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hat even larger speedups can be obtained by making use of sur- 

ogate or reduced-order models, either pre-trained or trained on- 

he-fly, although specific care must be taken regarding the validity 

ange of these models (as the agent could end up providing inputs 

o the surrogate model that would not match its training range). 

.7. Sensitivity of aerodynamic forces in laminar flows past a square 

ylinder 

In this section, we propose an original comparison between a 

lassical optimization approach and DRL. The test case is inspired 

y Meliga et al. [35] , where two cylinders are immersed in a mod-

rate Reynolds flow. One is a square main cylinder, which position 

s fixed, while the other is a cylindrical control cylinder, which po- 

ition can vary, and which radius is considered much smaller than 

hat of the main cylinder. The goal of this application is to opti- 

ize the position of the small cylinder, such that the total drag 

f the two cylinders is inferior to that of the main cylinder alone. 

n incompressible Navier-Stokes solver [2] is used to simulate the 

ow at different Reynolds number past the square cylinder. More- 

ver, the flow conditions are identical to that described in [43] . Six 

ifferent agents are trained in different conditions, as detailed in 

able 3 . 

Two different architectures are proposed. The first one is a clas- 

ical DRL architecture, similar to what is shown in Fig. 10 , but 

ith a difference that episodes were reduced to a single action. In 

hat case, the agent directly attempts to propose an optimal (x, y ) 

osition from the same initial state, using a PPO algorithm. On 

he contrary, in the second architecture, successive displacements 

�x, �y ) of the control cylinder are provided by an A3C agent, 

tarting from a random initial position. The observations provided 

o the agent are made of the last two positions of the control cylin-

f

10 
er, the Reynolds number and encoded features from the velocity 

elds. To that end, an autoencoder was trained simultaneously to 

he agent to reduce the state dimensionality (with a dimension re- 

uction from around 80 0 0 to 70), in a similar fashion to [32] (see

ig. 10 ). The same reward function is used for both architectures: 

 t = C 0 D − C D , 

here C 0 
D 

is the drag of the main cylinder alone, C D is the total

rag of the main and the control cylinders, and the drag coeffi- 

ients are counted positively. With this simple expression, a posi- 

ive reward is obtained when the combined drag of the cylinders 

s inferior to the reference drag value. 

We compare the results obtained with those from Meliga et al. 

35] , where a classical adjoint method is used. Overall, the same 

ptimal positions were found for the control cylinder, at Re = 40 

nd Re = 100 . Although the case Re = 10 was not present in the

riginal paper, coherent results were obtained for the configura- 

ion too. For the first agents at Re = 10 , training took approxi- 

ately 5 h using parallel learning with 17 CPUs. Regarding the last 

our agents, the transfer learning allowed them to learn at a much 



P. Garnier, J. Viquerat, J. Rabault et al. Computers and Fluids 225 (2021) 104973 

Fig. 11. Results obtained by the trained agents . The environment consists of a square of unit lateral size centered in (0,0), immersed in a rectangular domain of dimension 

[ −5 , 20 ] × [ −5 , 5 ] . 
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aster pace: only 10 h were necessary on a single CPU. An overview 

f the results is shown in Fig. 11 . 

With this experiment, we showed that not only DRL could 

erform both control and direct optimization tasks, but also that 

ransfer learning between different configurations represents a 

owerful feature to save computational time. We also confirmed 

hat the use of an autoencoder is a safe and robust way to ex- 

ract essential features from complex and high dimensional fluid 

elds. Details about this test case and the code used to repro- 

uce these results can be found on the GitHub repository: https: 

/github.com/DonsetPG/fenics-DRL . We recall that this code uses 

ifferent library: 

1. FEniCS [2] for the CFD solver, 

2. Gym [10] for the DRL environment, 

3. Stable-baselines [20] for the DRL algorithms. 

Future work on this library will focus on generalizing the cou- 

ling of DRL with different open source CFD code. 
11 
. Conclusion 

Although DRL has already been applied to several cases of op- 

imization and control in the context of fluid dynamics, the litera- 

ure on the topic remains particularly shallow. In the present arti- 

le, we reviewed the available contributions on the topic to provide 

he reader with a comprehensive state of play of the possibilities 

f DRL in fluid mechanics. In each of them, details were provided 

n the numerical context and the problem complexity. The choices 

f the DRL algorithm and the reward shaping were also described. 

Given the high-level interfaces of existing libraries, the cou- 

ling of DRL algorithms with existing numerical CFD solvers can be 

chieved with a minimal investment, while opening a wide range 

f possibilities in terms of optimization and control tasks. The al- 

orithms presented in this review proved to be robust when ex- 

osed to possible numerical noise, although high Re applications 

emain to be achieved. Additionally, the parallel capabilities of the 

ain DRL libraries represent a major asset in the context of time- 

https://github.com/DonsetPG/fenics-DRL
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xpensive CFD computations. Transfer learning also proved to be 

 key feature in saving computational time, as re-training agents 

lready exploited in similar situations led to a fast convergence 

f the agent policy. The use of autoencoders to feed the agent 

ith both a compact and rich observation of the environment also 

howed to be beneficial, as it allows for a reduced size of the agent

etwork, thus implying a faster convergence. 

As of now, the capabilities and robustness of DRL algorithms in 

ighly turbulent and non-linear flows remain to be explored. Also, 

heir behavior and convergence speed in action spaces of high di- 

ensionalities is unknown. It makes no doubt that the upcoming 

ears will see the mastering of these obstacles, supported by the 

onstant progress made in the DRL field and driven by the numer- 

us industrial challenges that could benefit from it. 
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