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Abstract

Although neural sequence-to-sequence mod-
els for sentence simplification achieve some
progress, they still suffer from the data sparsity
problem and are lack of controllability.

This paper proposes a two-stage approach for
text simplification. First, considering text sim-
plification is closely related to text summa-
rization and paraphrase, we fine-tune the pre-
trained model on the dataset of summarization
and paraphrase. Further, in order to achieve
interpretation and controllablity, we design con-
trollable scorers to evaluate the simplified sen-
tence from three aspects: adequacy, fluency
and simplicity, which are applied to sort the
generated sentences and output the best one.
Experiments show that our approach improves
the previous best performance of the unsuper-
vised model by a considerable margin of 5.53
points, achieving a new state-of-the-art result.
Our method even performs competitively with
supervised models in both automatic metrics
and human evaluation.

1 Introduction

Text simplification aims to reduce the linguistic
complexity of a sentence while still retains the
original information and meaning, which can be
applied to multiple scenarios in real life. For in-
stance, it can help non-native speakers learn lan-
guage (Paetzold, 2016), assist people with aphasia
to read (Carroll et al., 1998). Besides, as Alva-
Manchego et al. (2020a) note, text simplification
can serve as a preprocessing step to improve the
performance of other language processing tasks
such as parsing (Chandrasekar et al., 1996) and
machine translation (Hasler et al., 2017).

With the development of deep learning, neural
sequence-to-sequence (Seq2Seq) model becomes
the mainstream paradigm for sentence simplifica-
tion. However, such models encounter two serious
problems for text simplification. First, a large num-
ber of complex-simple aligned sentence pairs are

essential to train the model, but the existing train-
ing data is automatically collected from English
Wikipedia and its simple version, and thus the qual-
ity of training data is unsatisfactory (Xu et al., 2015;
Stajner et al., 2015) that prevent the supervised
model from obtaining better performance. Sec-
ond, the evaluation of text simplification is multi-
dimensional, which can be mainly divided into
three dimensions: adequacy, fluency and simplic-
ity. But the end-to-end neural network models lack
interpretability and controllability, which can not
be controllable to pay more attention to a certain
dimension for a specific application.

Due to the data spasity problem, more and more
researchers try to employ unsupervised model for
text simplification. Surya et al. (2019) propose
a neural auto-encoding framework supported by
adversarial loss and diversification loss. Narayan
and Gardent (2016) build a pipeline unsupervised
framework with lexical simplification, split and
deletion. Kumar et al. (2020) propose an itera-
tive edit-based simplification strategy including re-
moval, extraction, reordering and substitution.

The purpose of text simplification is to make
sentences simpler, and the simplified ways include
paraphrasing, summarization and so on. So para-
phrase and summarization are closely related to
simplification, and fortunately these two tasks of
paraphrase and summarization have large scale and
high-quality training data. Arase and Tsujii (2019)
show that further training of a pre-trained model on
relevant tasks transfers well to similar tasks. In this
end, we try to fine-tune the pre-trained model on
the data of summarization and paraphrase to help
sentence simplification.

In this paper, we propose a two-stage approach
for text simplification. First, a pre-trained model
is fine-tuned on the dataset of summarization and
paraphrase, and we use this model to generate can-
didate simplified sentences by applying the stochas-
tic decoding strategy. Second, in order to achieve



interpretation and controllablity, we design con-
trollable scorers to re-rank the candidate sentences
from three aspects: adequacy, fluency and simplic-
ity, and finally output the sentence that best meets
a specific requirement.

Experimental results show that our approach im-
proves the previous state-of-the-art SARI score of
the unsupervised model by a considerable margin
of 5.53 points. Our method even performs compet-
itively with supervised models in both automatic
metrics and human evaluation. Quantitative anal-
ysis proves that our model can be controllable to-
wards different simplification directions via adjust-
ing the controllable scorers.

2 Proposed Methods

2.1 Paraphrase-Pegasus

The goal of text simplification is to make sentence
simpler, which can be achieved via various ways
including text paraphrase, text summarization. Due
to the poor quality of the data for text simplifica-
tion, we try to apply models of paraphrase and
summarization to the task of simplification.

Pegasus (Zhang et al., 2020) is a transformer
encoder-decoder model specially designed for the
task of abstractive text summarization. Pegasus de-
signs the gap-sentence generation pre-training task
similar to the summarization task, and achieves
state-of-the-art performance on many summariza-
tion datasets.

Paraphrase is a widely used method for sentence
simplification(Zhao et al., 2018a). Sentences are
expressed in a more straightforward way without
losing information of the original sentence by effec-
tive paraphrase operations. Traditional paraphrase
models can achieve effective rewriting of sentences,
but the length of the sentence generated by the para-
phrase model is always the same as the original
sentence. So we fine-tune Pegasus with paraphrase
dataset to let the model learn the knowledge of
paraphrase while output the shorter sentence.

We adopt the Pegasus paraphrase model! pub-
lished in the Huggingface hub, which fine-tunes the
Pegasus model with Google PAWS paraphrasing
dataset (Zhang et al., 2019).

We apply the stochastic decoding strategy to
generate multiple candidate sentences(In our exper-
iment, the num of candidate sentence is 10). Our
model then ranks these candidate sentences using

"https://huggingface.co/tuner007/pegasus_paraphrase

the subsequent controllable scorers and outputs the
best one that meets the requirements.

2.2 Controllable Ranking Rules

Different needs of a simplified sentence can be
roughly divided into three dimensions: adequacy
(the simplified version should retain the semantics
of the original sentence), fluency (the simplified
sentence should be fluent and grammatical) and
simplicity (the simplified version needs to be sim-
pler than the original one). For each dimension, we
design a corresponding indicator to quantitatively
evaluate it.

Adequacy We calculate the semantic similarity
of generated sentences and original sentences to
measure the adequacy. SimCSE (Gao et al., 2021)
proposes a simple contrastive learning framework
that achieves state-of-the-art results on semantic
textual similarity tasks. We use the SimCSE to get
the similarity score of paired sentences, and adopt
the min-max normalization on similarity scores.
The adequacy score A is calculated as:

_ Vsim — Mingim
Maxgipm — Mingm,

)]

where Vj;,, means the similarity score calculated
by SimCSE. The Ming;y, and M ax g, is the min-
imum and maximum score of similarity score of
all candidate sentences. The following indicator
calculations all use this normalization.

Fluency We use perplexity to measure the flu-
ency of the generated sentences, which is defined as
the exponentiated average negative log-likelihood
of a sequence. The fluency score F' is also normal-
ized using min-max function. In our work, we use
the GPT-2 model? to calculate perplexity.

Simplicity Evaluating the simplicity of a sen-
tence is a difficult task. We break it down into
three aspects: length simplicity, lexical simplic-
ity, and syntactic simplicity. For length simplic-
ity Sy, we use the traditional fkgl indicator to
measure it. The lexical complexity score S is
computed by taking the log-ranks of each word
in the frequency table(Martin et al., 2019). For
syntactic simplicitySs, we use the average depth
of the constituency tree to measure it. In the ex-
periment, we use the Benepar (Kitaev and Klein,
2018) to construct the constituency tree. The over-
all simplicity score S is the average of three values:
S =S+ S+ Ss)/3.

Zhttps://huggingface.co/gpt2-medium



The final ranking score is the weighted average
of the above three aspects:

score =w1 X F+wy xA+wz3 xS ()

In our experiment, wi, wo, w3 are set to 1, 1, 1
respectively.

3 Experimental Setup
3.1 Datasets

Our model is evaluated on two benchmark test
datasets for text simplification: Turkcorpus (Xu
et al., 2016) and Asset (Alva-Manchego et al.,
2020b) with the same 359 source sentences. Both
datasets are created by employing Amazon Me-
chanical Turk workers to simplify sentences.

3.2 Comparing Methods

Our model is totally unsupervised, and so we
mainly compare our model with previous unsuper-
vised methods but also list some supervised meth-
ods for reference.

Unsupervised models (1) UNMT (Artetxe et al.,
2017) is an unsupervised NMT framework that can
be directly applied to sentence simplification. (2)
UNTS (Surya et al., 2019) is the first unsupervised
neural network model specifically for sentence sim-
plification. (3) RM+EX+LS+RO (Kumar et al.,
2020) is an iterative, edit-based approach to unsu-
pervised sentence simplification. According to the
supported operations, the model has many variants:
RM+EX, RM+EX+LS, RM+EX+RO.

Supervised models (1) NTS-SARI (Nisioi et al.,
2017) is a vanilla RNN-based neural text simplifi-
cation model. (2) Dress and Dress-Ls (Zhang and
Lapata, 2017) adopt deep reinforcement learning
method. (3)DMASS-DCSS (Zhao et al., 2018b) is
a transformer based model with integration of the
Simple PPDB. (4) EditNTS (Dong et al., 2019) is a
neural sequence tagging model that learns explicit
edit operations. (5) ACCESS (Martin et al., 2020)
is a controllable model which can control certain
attributes of generated sentences.

3.3 Evaluation Metrics

For automatic evaluation of our method and com-
paring methods, we use three metrics: SARI,
BLEU, FKGL. BLEU (Papineni et al., 2002) is
widely used for measuring sentence simplification
before SARI is proposed. SARI (Xu et al., 2016)
is the most commonly used and effective metric for
sentence simplification. FKGL (Flesch, 1948) is

a classical metric for measuring the readability of
sentences. We calculate these three evaluation met-
rics by the EASSE (Alva-Manchego et al., 2019).

4 Results And Analysis

4.1 Automatic Evaluation Results

Table 1 shows the experimental results. Consid-
ering the SARI metric, our method achieves new
state-of-the-art results on both datasets among un-
supervised models. On Asset, our method improves
the previous state-of-the-art unsupervised model by
a considerable margin of 5.53 points, and even out-
performs all supervised models. On Turkcorpus,
we also obtain an obvious improvement of 1.14
points.

We also report three operations in SARI: Keep,
Add and Delete. Our scores on Add and Delete
are generally higher than other models while K eep
is lower. Our model is more willing to change
and simplify sentences while the previous mod-
els are conservative and tend to retain the original
sentence.

In terms of BLEU, the score of our model is gen-
erally lower than other models. This is because the
BLEU indicator reflects the token overlap between
the generated sentence and the original sentence.
The previous models tend to perform keep opera-
tion, so they get better BLEU scores.

4.2 Controllability of Ranking Scorer

An advantage of our method is that, by changing
the weight of each scoring item, we can guide our
model to generate sentences towards different sim-
plification directions, and thus to meet specific re-
quirements. Table 2 analyzes the effect of relative
weights of scorers. Here besides BLUE, SARI and
FKGL, we also utilize Compression Ratio (CR),
which represents the compression ratio of gener-
ated sentences with respect to its source sentence.
As the weight of adequacy increases, the BLEU
score increases from 67.41 to 71.81 and the SARI-
Keep score increases from 52.27 to 55.01. It means
the model becomes more conservative and tends
to keep more the original content. As the weight
of simplicity increases, the SARI-Delete increases
from 61.97 to 74.00 and the Compression Ratio de-
creases from 0.79 to 0.74, which means the model
tends to delete unimportant information in the sen-
tence to make it simpler. As the weight of fluency
increases, the SARI increases from 41.68 to 42.20,



Model Asset Turkcorpus
BLEU SARI SA SK SD FKGL | BLEU SARI SA SK SD FKGL

NTS-SARI 84.19 34.02 284 5948 39.74 8.18 84.06 36.11 289 71.52 3390 8.18
3 Dress 84.24 37.07 252 56.54 5215 753 78.16 36.84 250 65.65 4236 7.53
§ Dress-Ls 86.39 36.59 238 57.30 50.10 7.66 81.08 3697 235 67.23 4133 7.66
§ DMASS-DCSS 7144 38.68 436 6029 5137 7.73 7329 3992 494 70.15 44.67 1.73
2] EditNTS 86.20 3494 241 5973 42.69  8.38 86.57 37.66 271 72.08 38.18 8.38
ACCESS 7599 40.13 6.54 6299 50.85 7.29 7636 41.38 6.58 7279 4478  7.29
UNMT 6841 3278 142 5645 4047 897 7255 3484 143 6848 3460 897
bt UNTS 76.14  35.19 0.83 5875 4598  7.60 7644 3629 0.83 69.44 38.61 7.60
= UNTS_I10K 76.28 3520 098 59.89 4471 8.02 78.03 37.15 1.12 7134 3899 8.02
E RM+EX 89.55 3261 0.61 5991 3730 743 90.24 3588 0.84 73.14 33.65 743
2 RM+EX+LS 75.55 36.56 1.18 58.16 50.34 7.25 74.84 3748 159 6820 4265 7.25
- RM+EX+RO 84.75 33.05 0.78 59.40 3898 753 86.31 36.07 099 7236 3486 7.53
RM+EX+LS+RO 70.63 36.67 129 5740 5133 733 71.24 3727 1.68 67.00 43.12 7.33
§ Paraphrase-Pegasus 73775 41.74 6.76 5531 63.14 7.60 67.16 38.62 6.53 5942 4990 7.60
O | Paraphrase-Pegasus-C | 71.81 42.20 7.60 55.01 64.00 7.30 6425 3855 6.67 58.63 5036 7.30

Table 1: Experimental results on the Asset and Turkcorpus datasets comparing with previous methods, where
Paraphrase-Pegasus-C denotes adding our controllable ranking rules on the pre-trained models. SA denotes SARI-

Add, SK denotes SARI-Keep, SD denotes SARI-Delete.

Weight ‘ BLEU SARI SA  SK SD CR
weight of Adequacy
0 6741 4176 7.25 5227 6575 0.68
0.25 68.26 41.87 7.33 5294 6533 0.69
0.5 69.52 4214 744 5401 6497 0.71
0.75 7090 4220 7.53 5457 6450 0.73
1 71.81 4220 7.60 55.01 64.00 0.74
weight of simplicity
0 7245 41.68 7.20 5587 6197 0.79
0.25 7223 41778 7.22 5584 6229 0.79
0.5 72.61 42.07 7.54 5573 6294 0.77
0.75 7228 4214 7.65 5534 6341 0.76
1 71.81 4220 7.60 55.01 64.00 0.74
weight of fluency
0 71.72  41.68 6.54 5497 6352 0.73
0.25 72.17 4189 6.80 55.18 63.69 0.74
0.5 7226 4194 7.1 5500 63.71 0.74
0.75 71.87 4212 732 55.04 64.01 0.74
1 71.81 4220 7.60 55.01 64.00 0.74

Table 2: Results on the controllability of scorer. SA de-
notes SARI-Add, SK denotes SARI-Keep, SD denotes
SARI-Delete, CR denotes Compression Ratio.

which proves the fluency of generated sentence
has positive impact on the effect of simplification.
These results prove that by changing the weight
of each scoring item in the ranking rules, we can
control the output sentences to pay more attention
to a specific aspect.

4.3 Human Evaluation

We also conduct human evaluation to compare our
system outputs with the best unsupervised model,
using a five-point Likert scale. We randomly chose
30 sentences from the Asset test set, and three vol-

Model Fluency Adequacy Simplicity Avg
RM+EX+LS+RO 3.87 3.40 2.16 3.14
Paraphrase-Pegasus 4.89 3.62 3.07 3.86
Paraphrase-Pegasus-C 4.81 3.92 3.00 3.91
Spearman 0.55 0.70 0.77 0.67

Table 3: Human Evaluation Results.

unteers were given different model outputs in a
randomized order. They were asked to evaluate
generated sentences from three aspects: adequacy,
simplicity, and fluency. The Spearman correlation
coefficients between annotators are high. Table 3
shows that our model’s score surpasses the best un-
supervised model by a large margin on all metrics.
Although Paraphrase-Pegaus-C is slightly worse
than Paraphrase-Pegaus in Fluency and Simplicity,
it greatly improves Adequacy which is the weakest
aspect of Paraphrase-Pegasus.

5 Conclusion

In this paper, we propose an unsupervised sentence
simplification approach combining pre-trained
models and controllable ranking rules. To alle-
viate the data sparsity problem for sentence simpli-
fication, we borrow the dataset of summarization
and paraphrase to fine tune the pre-trained model,
and experiments show our method achieves a new
state-of-the-art performance among unsupervied
methods, and even performs competitively with su-
pervised models. In future work, we will employ
linguistic knowledge for sentence simplification,
and we will explore how to comprehensively and
accurately evaluate the task of text simplification.
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