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Abstract

Although neural sequence-to-sequence mod-001
els for sentence simplification achieve some002
progress, they still suffer from the data sparsity003
problem and are lack of controllability.004

This paper proposes a two-stage approach for005
text simplification. First, considering text sim-006
plification is closely related to text summa-007
rization and paraphrase, we fine-tune the pre-008
trained model on the dataset of summarization009
and paraphrase. Further, in order to achieve010
interpretation and controllablity, we design con-011
trollable scorers to evaluate the simplified sen-012
tence from three aspects: adequacy, fluency013
and simplicity, which are applied to sort the014
generated sentences and output the best one.015
Experiments show that our approach improves016
the previous best performance of the unsuper-017
vised model by a considerable margin of 5.53018
points, achieving a new state-of-the-art result.019
Our method even performs competitively with020
supervised models in both automatic metrics021
and human evaluation.022

1 Introduction023

Text simplification aims to reduce the linguistic024

complexity of a sentence while still retains the025

original information and meaning, which can be026

applied to multiple scenarios in real life. For in-027

stance, it can help non-native speakers learn lan-028

guage (Paetzold, 2016), assist people with aphasia029

to read (Carroll et al., 1998). Besides, as Alva-030

Manchego et al. (2020a) note, text simplification031

can serve as a preprocessing step to improve the032

performance of other language processing tasks033

such as parsing (Chandrasekar et al., 1996) and034

machine translation (Hasler et al., 2017).035

With the development of deep learning, neural036

sequence-to-sequence (Seq2Seq) model becomes037

the mainstream paradigm for sentence simplifica-038

tion. However, such models encounter two serious039

problems for text simplification. First, a large num-040

ber of complex-simple aligned sentence pairs are041

essential to train the model, but the existing train- 042

ing data is automatically collected from English 043

Wikipedia and its simple version, and thus the qual- 044

ity of training data is unsatisfactory (Xu et al., 2015; 045

Stajner et al., 2015) that prevent the supervised 046

model from obtaining better performance. Sec- 047

ond, the evaluation of text simplification is multi- 048

dimensional, which can be mainly divided into 049

three dimensions: adequacy, fluency and simplic- 050

ity. But the end-to-end neural network models lack 051

interpretability and controllability, which can not 052

be controllable to pay more attention to a certain 053

dimension for a specific application. 054

Due to the data spasity problem, more and more 055

researchers try to employ unsupervised model for 056

text simplification. Surya et al. (2019) propose 057

a neural auto-encoding framework supported by 058

adversarial loss and diversification loss. Narayan 059

and Gardent (2016) build a pipeline unsupervised 060

framework with lexical simplification, split and 061

deletion. Kumar et al. (2020) propose an itera- 062

tive edit-based simplification strategy including re- 063

moval, extraction, reordering and substitution. 064

The purpose of text simplification is to make 065

sentences simpler, and the simplified ways include 066

paraphrasing, summarization and so on. So para- 067

phrase and summarization are closely related to 068

simplification, and fortunately these two tasks of 069

paraphrase and summarization have large scale and 070

high-quality training data. Arase and Tsujii (2019) 071

show that further training of a pre-trained model on 072

relevant tasks transfers well to similar tasks. In this 073

end, we try to fine-tune the pre-trained model on 074

the data of summarization and paraphrase to help 075

sentence simplification. 076

In this paper, we propose a two-stage approach 077

for text simplification. First, a pre-trained model 078

is fine-tuned on the dataset of summarization and 079

paraphrase, and we use this model to generate can- 080

didate simplified sentences by applying the stochas- 081

tic decoding strategy. Second, in order to achieve 082

1



interpretation and controllablity, we design con-083

trollable scorers to re-rank the candidate sentences084

from three aspects: adequacy, fluency and simplic-085

ity, and finally output the sentence that best meets086

a specific requirement.087

Experimental results show that our approach im-088

proves the previous state-of-the-art SARI score of089

the unsupervised model by a considerable margin090

of 5.53 points. Our method even performs compet-091

itively with supervised models in both automatic092

metrics and human evaluation. Quantitative anal-093

ysis proves that our model can be controllable to-094

wards different simplification directions via adjust-095

ing the controllable scorers.096

2 Proposed Methods097

2.1 Paraphrase-Pegasus098

The goal of text simplification is to make sentence099

simpler, which can be achieved via various ways100

including text paraphrase, text summarization. Due101

to the poor quality of the data for text simplifica-102

tion, we try to apply models of paraphrase and103

summarization to the task of simplification.104

Pegasus (Zhang et al., 2020) is a transformer105

encoder-decoder model specially designed for the106

task of abstractive text summarization. Pegasus de-107

signs the gap-sentence generation pre-training task108

similar to the summarization task, and achieves109

state-of-the-art performance on many summariza-110

tion datasets.111

Paraphrase is a widely used method for sentence112

simplification(Zhao et al., 2018a). Sentences are113

expressed in a more straightforward way without114

losing information of the original sentence by effec-115

tive paraphrase operations. Traditional paraphrase116

models can achieve effective rewriting of sentences,117

but the length of the sentence generated by the para-118

phrase model is always the same as the original119

sentence. So we fine-tune Pegasus with paraphrase120

dataset to let the model learn the knowledge of121

paraphrase while output the shorter sentence.122

We adopt the Pegasus paraphrase model1 pub-123

lished in the Huggingface hub, which fine-tunes the124

Pegasus model with Google PAWS paraphrasing125

dataset (Zhang et al., 2019).126

We apply the stochastic decoding strategy to127

generate multiple candidate sentences(In our exper-128

iment, the num of candidate sentence is 10). Our129

model then ranks these candidate sentences using130

1https://huggingface.co/tuner007/pegasus_paraphrase

the subsequent controllable scorers and outputs the 131

best one that meets the requirements. 132

2.2 Controllable Ranking Rules 133

Different needs of a simplified sentence can be 134

roughly divided into three dimensions: adequacy 135

(the simplified version should retain the semantics 136

of the original sentence), fluency (the simplified 137

sentence should be fluent and grammatical) and 138

simplicity (the simplified version needs to be sim- 139

pler than the original one). For each dimension, we 140

design a corresponding indicator to quantitatively 141

evaluate it. 142

Adequacy We calculate the semantic similarity 143

of generated sentences and original sentences to 144

measure the adequacy. SimCSE (Gao et al., 2021) 145

proposes a simple contrastive learning framework 146

that achieves state-of-the-art results on semantic 147

textual similarity tasks. We use the SimCSE to get 148

the similarity score of paired sentences, and adopt 149

the min-max normalization on similarity scores. 150

The adequacy score A is calculated as: 151

A =
Vsim −Minsim

Maxsim −Minsim
(1) 152

where Vsim means the similarity score calculated 153

by SimCSE. The Minsim and Maxsim is the min- 154

imum and maximum score of similarity score of 155

all candidate sentences. The following indicator 156

calculations all use this normalization. 157

Fluency We use perplexity to measure the flu- 158

ency of the generated sentences, which is defined as 159

the exponentiated average negative log-likelihood 160

of a sequence. The fluency score F is also normal- 161

ized using min-max function. In our work, we use 162

the GPT-2 model2 to calculate perplexity. 163

Simplicity Evaluating the simplicity of a sen- 164

tence is a difficult task. We break it down into 165

three aspects: length simplicity, lexical simplic- 166

ity, and syntactic simplicity. For length simplic- 167

ity Sf , we use the traditional fkgl indicator to 168

measure it. The lexical complexity score Sl is 169

computed by taking the log-ranks of each word 170

in the frequency table(Martin et al., 2019). For 171

syntactic simplicitySs, we use the average depth 172

of the constituency tree to measure it. In the ex- 173

periment, we use the Benepar (Kitaev and Klein, 174

2018) to construct the constituency tree. The over- 175

all simplicity score S is the average of three values: 176

S = (Sf + Sl + Ss) /3. 177

2https://huggingface.co/gpt2-medium
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The final ranking score is the weighted average178

of the above three aspects:179

score = ω1 × F + ω2 ×A+ ω3 × S (2)180

In our experiment, ω1, ω2, ω3 are set to 1, 1, 1181

respectively.182

3 Experimental Setup183

3.1 Datasets184

Our model is evaluated on two benchmark test185

datasets for text simplification: Turkcorpus (Xu186

et al., 2016) and Asset (Alva-Manchego et al.,187

2020b) with the same 359 source sentences. Both188

datasets are created by employing Amazon Me-189

chanical Turk workers to simplify sentences.190

3.2 Comparing Methods191

Our model is totally unsupervised, and so we192

mainly compare our model with previous unsuper-193

vised methods but also list some supervised meth-194

ods for reference.195

Unsupervised models (1) UNMT (Artetxe et al.,196

2017) is an unsupervised NMT framework that can197

be directly applied to sentence simplification. (2)198

UNTS (Surya et al., 2019) is the first unsupervised199

neural network model specifically for sentence sim-200

plification. (3) RM+EX+LS+RO (Kumar et al.,201

2020) is an iterative, edit-based approach to unsu-202

pervised sentence simplification. According to the203

supported operations, the model has many variants:204

RM+EX, RM+EX+LS, RM+EX+RO.205

Supervised models (1) NTS-SARI (Nisioi et al.,206

2017) is a vanilla RNN-based neural text simplifi-207

cation model. (2) Dress and Dress-Ls (Zhang and208

Lapata, 2017) adopt deep reinforcement learning209

method. (3)DMASS-DCSS (Zhao et al., 2018b) is210

a transformer based model with integration of the211

Simple PPDB. (4) EditNTS (Dong et al., 2019) is a212

neural sequence tagging model that learns explicit213

edit operations. (5) ACCESS (Martin et al., 2020)214

is a controllable model which can control certain215

attributes of generated sentences.216

3.3 Evaluation Metrics217

For automatic evaluation of our method and com-218

paring methods, we use three metrics: SARI,219

BLEU, FKGL. BLEU (Papineni et al., 2002) is220

widely used for measuring sentence simplification221

before SARI is proposed. SARI (Xu et al., 2016)222

is the most commonly used and effective metric for223

sentence simplification. FKGL (Flesch, 1948) is224

a classical metric for measuring the readability of 225

sentences. We calculate these three evaluation met- 226

rics by the EASSE (Alva-Manchego et al., 2019). 227

4 Results And Analysis 228

4.1 Automatic Evaluation Results 229

Table 1 shows the experimental results. Consid- 230

ering the SARI metric, our method achieves new 231

state-of-the-art results on both datasets among un- 232

supervised models. On Asset, our method improves 233

the previous state-of-the-art unsupervised model by 234

a considerable margin of 5.53 points, and even out- 235

performs all supervised models. On Turkcorpus, 236

we also obtain an obvious improvement of 1.14 237

points. 238

We also report three operations in SARI: Keep, 239

Add and Delete. Our scores on Add and Delete 240

are generally higher than other models while Keep 241

is lower. Our model is more willing to change 242

and simplify sentences while the previous mod- 243

els are conservative and tend to retain the original 244

sentence. 245

In terms of BLEU, the score of our model is gen- 246

erally lower than other models. This is because the 247

BLEU indicator reflects the token overlap between 248

the generated sentence and the original sentence. 249

The previous models tend to perform keep opera- 250

tion, so they get better BLEU scores. 251

4.2 Controllability of Ranking Scorer 252

An advantage of our method is that, by changing 253

the weight of each scoring item, we can guide our 254

model to generate sentences towards different sim- 255

plification directions, and thus to meet specific re- 256

quirements. Table 2 analyzes the effect of relative 257

weights of scorers. Here besides BLUE, SARI and 258

FKGL, we also utilize Compression Ratio (CR), 259

which represents the compression ratio of gener- 260

ated sentences with respect to its source sentence. 261

As the weight of adequacy increases, the BLEU 262

score increases from 67.41 to 71.81 and the SARI- 263

Keep score increases from 52.27 to 55.01. It means 264

the model becomes more conservative and tends 265

to keep more the original content. As the weight 266

of simplicity increases, the SARI-Delete increases 267

from 61.97 to 74.00 and the Compression Ratio de- 268

creases from 0.79 to 0.74, which means the model 269

tends to delete unimportant information in the sen- 270

tence to make it simpler. As the weight of fluency 271

increases, the SARI increases from 41.68 to 42.20, 272
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Model Asset Turkcorpus
BLEU SARI SA SK SD FKGL BLEU SARI SA SK SD FKGL

Su
pe

rv
is

ed

NTS-SARI 84.19 34.02 2.84 59.48 39.74 8.18 84.06 36.11 2.89 71.52 33.90 8.18
Dress 84.24 37.07 2.52 56.54 52.15 7.53 78.16 36.84 2.50 65.65 42.36 7.53

Dress-Ls 86.39 36.59 2.38 57.30 50.10 7.66 81.08 36.97 2.35 67.23 41.33 7.66
DMASS-DCSS 71.44 38.68 4.36 60.29 51.37 7.73 73.29 39.92 4.94 70.15 44.67 7.73

EditNTS 86.20 34.94 2.41 59.73 42.69 8.38 86.57 37.66 2.71 72.08 38.18 8.38
ACCESS 75.99 40.13 6.54 62.99 50.85 7.29 76.36 41.38 6.58 72.79 44.78 7.29

U
ns

up
er

vi
se

d

UNMT 68.41 32.78 1.42 56.45 40.47 8.97 72.55 34.84 1.43 68.48 34.60 8.97
UNTS 76.14 35.19 0.83 58.75 45.98 7.60 76.44 36.29 0.83 69.44 38.61 7.60

UNTS_10K 76.28 35.20 0.98 59.89 44.71 8.02 78.03 37.15 1.12 71.34 38.99 8.02
RM+EX 89.55 32.61 0.61 59.91 37.30 7.43 90.24 35.88 0.84 73.14 33.65 7.43

RM+EX+LS 75.55 36.56 1.18 58.16 50.34 7.25 74.84 37.48 1.59 68.20 42.65 7.25
RM+EX+RO 84.75 33.05 0.78 59.40 38.98 7.53 86.31 36.07 0.99 72.36 34.86 7.53

RM+EX+LS+RO 70.63 36.67 1.29 57.40 51.33 7.33 71.24 37.27 1.68 67.00 43.12 7.33

O
ur

s Paraphrase-Pegasus 73.75 41.74 6.76 55.31 63.14 7.60 67.16 38.62 6.53 59.42 49.90 7.60
Paraphrase-Pegasus-C 71.81 42.20 7.60 55.01 64.00 7.30 64.25 38.55 6.67 58.63 50.36 7.30

Table 1: Experimental results on the Asset and Turkcorpus datasets comparing with previous methods, where
Paraphrase-Pegasus-C denotes adding our controllable ranking rules on the pre-trained models. SA denotes SARI-
Add, SK denotes SARI-Keep, SD denotes SARI-Delete.

Weight BLEU SARI SA SK SD CR
weight of Adequacy

0 67.41 41.76 7.25 52.27 65.75 0.68
0.25 68.26 41.87 7.33 52.94 65.33 0.69
0.5 69.52 42.14 7.44 54.01 64.97 0.71

0.75 70.90 42.20 7.53 54.57 64.50 0.73
1 71.81 42.20 7.60 55.01 64.00 0.74

weight of simplicity
0 72.45 41.68 7.20 55.87 61.97 0.79

0.25 72.23 41.78 7.22 55.84 62.29 0.79
0.5 72.61 42.07 7.54 55.73 62.94 0.77

0.75 72.28 42.14 7.65 55.34 63.41 0.76
1 71.81 42.20 7.60 55.01 64.00 0.74

weight of fluency
0 71.72 41.68 6.54 54.97 63.52 0.73

0.25 72.17 41.89 6.80 55.18 63.69 0.74
0.5 72.26 41.94 7.11 55.00 63.71 0.74

0.75 71.87 42.12 7.32 55.04 64.01 0.74
1 71.81 42.20 7.60 55.01 64.00 0.74

Table 2: Results on the controllability of scorer. SA de-
notes SARI-Add, SK denotes SARI-Keep, SD denotes
SARI-Delete, CR denotes Compression Ratio.

which proves the fluency of generated sentence273

has positive impact on the effect of simplification.274

These results prove that by changing the weight275

of each scoring item in the ranking rules, we can276

control the output sentences to pay more attention277

to a specific aspect.278

4.3 Human Evaluation279

We also conduct human evaluation to compare our280

system outputs with the best unsupervised model,281

using a five-point Likert scale. We randomly chose282

30 sentences from the Asset test set, and three vol-283

Model Fluency Adequacy Simplicity Avg
RM+EX+LS+RO 3.87 3.40 2.16 3.14

Paraphrase-Pegasus 4.89 3.62 3.07 3.86
Paraphrase-Pegasus-C 4.81 3.92 3.00 3.91

Spearman 0.55 0.70 0.77 0.67

Table 3: Human Evaluation Results.

unteers were given different model outputs in a 284

randomized order. They were asked to evaluate 285

generated sentences from three aspects: adequacy, 286

simplicity, and fluency. The Spearman correlation 287

coefficients between annotators are high. Table 3 288

shows that our model’s score surpasses the best un- 289

supervised model by a large margin on all metrics. 290

Although Paraphrase-Pegaus-C is slightly worse 291

than Paraphrase-Pegaus in Fluency and Simplicity, 292

it greatly improves Adequacy which is the weakest 293

aspect of Paraphrase-Pegasus. 294

5 Conclusion 295

In this paper, we propose an unsupervised sentence 296

simplification approach combining pre-trained 297

models and controllable ranking rules. To alle- 298

viate the data sparsity problem for sentence simpli- 299

fication, we borrow the dataset of summarization 300

and paraphrase to fine tune the pre-trained model, 301

and experiments show our method achieves a new 302

state-of-the-art performance among unsupervied 303

methods, and even performs competitively with su- 304

pervised models. In future work, we will employ 305

linguistic knowledge for sentence simplification, 306

and we will explore how to comprehensively and 307

accurately evaluate the task of text simplification. 308
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