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Figure 1: HiFi-123 is capable of generating high-fidelity 3D content from a single reference image.
The presented novel views and normal maps of the generated 3D content demonstrate that our ap-
proach maintains consistency with the reference image, even in views significantly deviating from
the reference view.

ABSTRACT

Recent advances in text-to-image diffusion models have enabled 3D generation
from a single image. However, current image-to-3D methods often produce sub-
optimal results for novel views, with blurred textures and deviations from the ref-
erence image, limiting their practical applications. In this paper, we introduce
HiFi-123, a method designed for high-fidelity and multi-view consistent 3D gen-
eration. Our contributions are twofold: First, we propose a reference-guided novel
view enhancement technique that substantially reduces the quality gap between
synthesized and reference views. Second, capitalizing on the novel view enhance-
ment, we present a novel reference-guided state distillation loss. When incorpo-
rated into the optimization-based image-to-3D pipeline, our method significantly
improves 3D generation quality, achieving state-of-the-art performance. Compre-
hensive evaluations demonstrate the effectiveness of our approach over existing
methods, both qualitatively and quantitatively. Video comparisons are available
on the supplementary project page. We will release our code to the public.

1 INTRODUCTION

The generation of 3D digital content is a fundamental task in computer vision and computer graphics
with applications in robotics, virtual reality, and augmented reality. Producing such 3D content often
demands proficiency in specialized software tools, setting a high threshold in terms of skill and cost.
An alternative approach is through 3D digitization, which often relies on a large set of multi-view
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images and their corresponding camera poses; However, acquiring such data is challenging. A more
ambitious approach is to construct 3D content from only a single image, whether obtained from
the web or generated. While humans can intuitively infer 3D shapes and textures from 2D images,
creating 3D assets from a single image using computer vision techniques is difficult due to the
limited 3D cues and ambiguities of a single viewpoint.

Recent advances in diffusion models, trained on web-scale 2D image datasets, have led to significant
improvements in image generation (Ramesh et al., 2021; Rombach et al., 2022; Balaji et al., 2022;
Nichol et al., 2021) and have been extended to video synthesis (Khachatryan et al., 2023; Zhang
et al., 2023). These models, capable of generating high-quality and diverse content, offer control-
lability (Zhang & Agrawala, 2023; Mou et al., 2023) and cross-modal generation capabilities, such
as text-to-image synthesis (Ramesh et al., 2021; Rombach et al., 2022; Balaji et al., 2022) (T2I). By
leveraging the 3D priors inherent in T2I models, methods such as (Poole et al., 2022; Wang et al.,
2023b) have utilized score distillation sampling (SDS) to achieve notable results in text-to-3D cre-
ation. This progress has also influenced the image-to-3D domain, with works such as (Melas-Kyriazi
et al., 2023; Xu et al., 2023; Tang et al., 2023a) employing SDS loss combined with reference-view
pixel losses to optimize neural representations from a single image. While these methods can pro-
duce reasonable 3D structures from a single viewpoint, the visual quality in novel views often lacks
fidelity, exhibiting inconsistencies with the reference view as shown in Fig. 5. These challenges
not only compromise the realism of the generated content but also limit its potential for broader
applications.

The primary challenge arises when, for novel views outside the reference view, the optimization
becomes overly reliant on, and thus closely tied to, the (inferred) text prompt. These text prompts,
even those derived through textual inversion (Gal et al., 2022a; Burgess et al., 2023), often fail to
capture the full visual details of the reference view, leading to inconsistent optimization results. The
strong CFG guidance present in the SDS loss further amplifies this issue. Recently, Zero-1-to-3 (Liu
et al., 2023b) introduced an approach that demonstrated the efficacy of large-scale diffusion models
for zero-shot novel view synthesis, highlighting their ability to produce views consistent with the
input. Following this direction, subsequent studies (Qian et al., 2023; Shi et al., 2023) integrated
this “multi-view-aware” capability into the SDS optimization framework, achieving improved con-
sistency in image-to-3D. However, models like Zero-1-to-3 require fine-tuning on (synthetic) multi-
view datasets, which can lead to a noticeable degradation in model performance, particularly in
generating unnatural and low-quality images in novel views.

In this work, we aim to devise a method that simultaneously generates consistent novel views from
a single image while maintaining high image quality. Our primary insight lies in the application of
the image inversion technique (Song et al., 2020) to retain the detailed structure and content of a
specific image, enabling the generation of novel views and the subsequent 3D representation of the
object. We observe that by integrating depth information into the DDIM inversion (Song et al., 2020)
and the sampling process, based on a depth-conditioned diffusion model (SDD), the reconstruction
quality is significantly improved. Leveraging this observation, we introduce HiFi-123, a method
that, while intuitive, effectively generates high-fidelity 3D content from a single input image. We
design a dual-branch inversion scheme in which both the reference image and a “coarse” estimation
of the target view are inverted and reconstructed concurrently. A key feature of our approach is the
use of the attention injection technique (Wu et al., 2022; Qi et al., 2023; Cao et al., 2023) during
the generation phase to transfer the appearance of the target object from the reference view to the
coarse novel view, a process we term “novel view enhancement.” This enhancement mechanism can
be seamlessly integrated into the recent coarse-to-fine 3D generation framework (Lin et al., 2023).
Moreover, the inversion process’s unique properties enable us to re-formulate and re-derive the SDS
loss, resulting in a Reference-Guided State Distillation loss that is intuitive and easy to implement.
As a result, we can achieve high-fidelity image-to-3D generation that significantly exceeds prior
techniques.

We comprehensively evaluated HiFi-123 on both zero-shot novel view synthesis and image-to-3D
generation tasks. Both qualitative and quantitative results indicate that our approach excels in gen-
erating high-fidelity and consistent novel views from a single input image and further produces
high-quality 3D content. Compared to state-of-the-art approaches, our method shows significant
improvements in visual quality, contextual distance, and CLIP-similarity, marking an important step
towards more accessible and democratized 3D content creation.
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In summary, the main contributions of our work are two-fold:

• We introduce a reference-guided novel view enhancement method grounded in the inver-
sion process. This approach can function as a plug-and-play module to improve the fidelity
of results derived from diffusion-based novel view synthesis methods.

• Leveraging the aforementioned novel view enhancement, we present a new Reference-
Guided State Distillation loss. When incorporated into the optimization-based image-to-3D
framework, it significantly enhances the quality of 3D generation, achieving state-of-the-art
performance.

2 RELATED WORK

2.1 DIFFUSION MODELS

Recently, diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) have drawn lots of attention
due to their high-quality generation results that are comparable to previous generative adversarial
networks (Goodfellow et al., 2014), which usually require specific optimization strategies to stabi-
lize training. However, diffusion models usually need many iterations of denoising to produce a
sample. To accelerate this process, denoising diffusion implicit models (DDIMs) (Song et al., 2020)
propose to use non-Markovian diffusion processes which lead to short generative Markov chains
with small generation steps. (Dhariwal & Nichol, 2021) propose classifier guidance to improve the
sample quality of a diffusion model using an additional trained classifier that could trade off diversity
for fidelity. While (Ho & Salimans, 2022) shows that the guidance can be performed by a pure gen-
erative model without the classifier by mixing the score estimates of a conditional diffusion model
and a jointly trained unconditional diffusion model. Based on the diffusion models and large-scale
image-text datasets, image synthesis conditioned on text prompt has achieved impressive results
such as Glide (Nichol et al., 2021), DALL-E 2 (Ramesh et al., 2022), Imagen (Saharia et al., 2022)
and StableDiffusion (Rombach et al., 2022). Recently, these pre-trained 2D text-to-image diffusion
models have been taken as the image prior for other tasks like image editing and 3D generation and
achieved high-quality results.

2.2 3D GENERATION USING 2D DIFFUSION

Based on the powerful text-to-image diffusion models in recent years, text-to-3D generation has
also made great progress. DreamField (Jain et al., 2022) uses aligned image and text models to
optimize NeRF (Mildenhall et al., 2021) without 3D shape or multi-view data. DreamFusion (Poole
et al., 2022) proposes a Score Distillation Sampling (SDS) method that replaces CLIP loss from
DreamField with a loss derived from the distillation of a 2D diffusion model to optimize a parametric
NeRF model, which becomes a paradigm for 3D generation using 2D diffusion. A similar idea has
also been presented in Score Jacobian Chaining (Wang et al., 2023a), which is a concurrent work
of DreamFusion. Magic3D (Lin et al., 2023) builds upon DreamFusion that introduces several
design choices like coarse-to-fine optimization, using Instant NGP representation in the coarse stage
and 3D mesh representation in the fine stage. While Latent-NeRF Metzer et al. (2023) uses NeRF
representation in latent space as the 3D model and Stable Diffusion as the 2D diffusion prior. To
improve the text-to-3D generation results, Fantasia3D Chen et al. (2023a) disentangles the modeling
of geometry and appearance, and ProlificDreamer (Wang et al., 2023b) proposes to modify score
distillation sampling to variational score distillation which models the 3D parameters as a random
variable instead of a constant. Most recently, many other works like HiFA (Zhu & Zhuang, 2023),
IT3D (Chen et al., 2023b), HD-Fusion (Wu et al., 2023), EfficientDreamer (Zhao et al., 2023), have
also been proposed to boost the text-to-3D generation.

Apart from text-to-3D generation, 3D generation based on a single image using diffusion models
(image-to-3D) has also made rapid progress. NeuralLift-360 (Xu et al., 2023) learns to recover a
3D object from a single reference image with CLIP-guided diffusion prior. In addition to using the
SDS loss for distillation, RealFusion (Melas-Kyriazi et al., 2023) and NeRDi (Deng et al., 2023)
also adopt textual inversion to condition the diffusion model on a prompt with a token inverted by
the reference image. While Make-It-3D (Tang et al., 2023a) employs textured point clouds as the
representation in the fine stage to achieve high-quality results and Magic123 (Qian et al., 2023)
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suggests using an additional 3D diffusion prior trained on large-scale multi-view dataset for score
distillation sampling.

2.3 MULTI-VIEW DIFFUSION

Trained on large-scale 2D image datasets, the 2D text-to-image diffusion models could generalize
to unseen scenes and different viewing angles that could be used for distilling 3D assets. However,
due to the data bias of 2D images, e.g., most images are captured from front views, the 2D diffusion
model may lack multi-view knowledge for 3D generation. Some efforts have been made to train
the diffusion with 3D awareness. 3DiM (Watson et al., 2022) and Zero-1-to-3 (Liu et al., 2023b)
present viewpoint-conditioned diffusion model for novel view synthesis trained on multi-view im-
ages. Utilizing large-scale 3D data, Zero-1-to-3 achieves zero-shot generalization ability to unseen
images. One-2-3-45 (Liu et al., 2023a) uses the model from Zero-1-to-3 to generate multi-view
images from the input view and leverage the generated results for 3D reconstruction. The recently
arXived works (Shi et al., 2023; Burgess et al., 2023; Tang et al., 2023b; Liu et al., 2023c) try
to generate multiview-consistent images from a single-view (Liu et al., 2023c) or text prompt (Shi
et al., 2023). MVDream (Shi et al., 2023) leverages image diffusion models and a multi-view dataset
to train a multi-view diffusion model, while SyncDreamer (Liu et al., 2023c) synchronizes the in-
termediate states of all the generated multi-view images at every step of the reverse process through
a 3D-aware feature attention mechanism. However, these methods usually produce lower-quality
results compared with the input view. In this paper, we propose a reference-based novel-view en-
hancement method based on DDIM inversion that could maintain the texture details in the novel
view. Using this strategy, we also show the possibility of optimizing high-quality 3D content with
our generation method.

3 METHODOLOGY

3.1 PRELIMINARY

Diffusion models. A diffusion model consists of a forward process q and a reverse process p. In
the forward process, starting from a clean data x0 ∼ q0(x0), noise is gradually added to the data
point x0 to construct noisy state at different time steps. A notable property of the forward process
is that noisy state xt at time step t could be formulated in the close form: xt = αtx0 + σtϵ, where
αt and σt are hyper-parameters satisfying α2

t + σ2
t = 1, ϵ ∼ N (0, I). This results in a smoothed

data distribution q(xt) =
∫
q(xt|x0)q(x0)dx0, where q(xt|x0) = N (αtx0, σ

2
t I). The reverse

process pϕ is defined by removing noise added on the clean data using a U-Net noise predictor ϵϕ.
In text-to-image diffusion models (Saharia et al., 2022; Ramesh et al., 2022; Rombach et al., 2022),
ϵϕ is trained by minimizing the score matching objective:

LDiff(ϕ) = Ex0∼q0(x0),t∼U(0,1),ϵ∼N (0,I)[w(t)∥ϵϕ(xt; y, t)− ϵ∥22], (1)

where w(t) is a time-dependent weighting function and y is conditional text embedding. After
training, the predicted ϵϕ can be related to the score function of pϕ, expressed as ϵϕ(xt; y, t) =
−σtsϕ(xt; y, t). To balance the quality and diversity of the generated images, classifier-free guid-
ance (CFG Ho & Salimans (2022)) is adopted to modify the estimated noise as a combination of
conditional and unconditional output: ϵ̂ϕ(xt; y, t) = (1 + s)ϵϕ(xt; y, t) − sϵϕ(xt; t), where s > 0
is the guidance scale. Increasing the guidance scale typically enhances the alignment between text
and image, but at the cost of reduced diversity.

DDIM inversion. In the reverse process pϕ, diffusion models often utilize deterministic DDIM
sampling (Song et al., 2020) to speed up inference. DDIM sampling converts random noise xT

into clean data x0 over a sequence of discrete time steps, from t = T to t = 1, formulated as:
xt−1 = (αt−1/αt)(xt − σtϵϕ) + σt−1ϵϕ.

In contrast, DDIM inversion (Dhariwal & Nichol, 2021; Song et al., 2020) is a forward process that
gradually converts a clean data x0 back to a noisy state xT using denoising U-Net ϵϕ. From t = 1
to t = T , we have xt = (αt/αt−1)(xt−1−σt−1ϵϕ)+σtϵϕ. In the case of unconditional generation,
the DDIM inversion process qϕ is completely consistent with the sampling process pϕ, so that the
original data x0 can be precisely reconstructed by applying DDIM sampling on the inverted xT .
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Figure 2: Reference-guided novel view enhancement pipeline. Our pipeline performs DDIM inver-
sion and sampling on both the reference image and coarse novel view, and utilizes attention injection
to transfer detail textures from the reference image to the coarse novel view.

However, for the text-conditioned generation with classifier-free guidance, the two processes are not
consistent and the reconstruction quality will significantly decrease.

Score distillation sampling (SDS). SDS (Poole et al., 2022) is an optimization method commonly
used in recent text-to-3D generation (Poole et al., 2022; Wang et al., 2023a; Lin et al., 2023; Metzer
et al., 2023; Wang et al., 2023a; Chen et al., 2023a) and image-to-3D generation methods (Melas-
Kyriazi et al., 2023; Qian et al., 2023; Xu et al., 2023; Tang et al., 2023a). The core idea of SDS is to
distill prior knowledge from pre-trained text-to-image diffusion models to optimize the parameters
of the 3D representation by minimizing:

LSDS(θ) = Et [(σt/αt)w(t)KL(q(xt|g(θ, c); y, t)∥pϕ(xt; y, t))] , (2)

where θ denotes the parameters of a trainable 3D representation (e.g., NeRF (Mildenhall et al.,
2021) or DMTet (Shen et al., 2021b)) and g(θ, c) is a rendered image given a camera pose c. By
minimizing the KL divergence between distributions of noisy renderings and denoised images at
different time steps, the 3D representation will be optimized to match the distribution of the images
synthesized by the text-to-image diffusion model.

In practice, the gradients of Eq. 2 is approximated by:

∇θLSDS(θ) ≈ Et,ϵ

[
w(t) (ϵϕ(xt; y, t)− ϵ)

∂x0

∂θ

]
. (3)

Although optimizing with SDS loss can result in overall reasonable geometry, the generated 3D
model often exhibits over-saturated colors and over-smoothed textures (Poole et al., 2022), which
could lead to inconsistent results compared with the reference image when applied to image-to-3D
generation tasks.

3.2 REFERENCE-GUIDED NOVEL VIEW ENHANCEMENT

Given a reference image, previous novel view synthesis methods based on diffusion models (Liu
et al., 2023b; Poole et al., 2022) usually produce degraded and inconsistent results in novel views
compared with the reference view. To tackle this problem, we propose a reference-guided novel
view enhancement pipeline to transfer the detailed textures of the reference image to the coarse
novel view. Our pipeline is built upon a discovery that incorporates a depth map into the DDIM
inversion and sampling process using a depth-conditioned diffusion model (SDD) will significantly
improve the reconstruction quality of the input image, as shown in Fig. 6. With this discovery,
we can obtain the initial noise and the reverse processes that can faithfully reconstruct the detailed
textures of the reference image. Then, inspired by the progressive generation property of the reverse
process where the geometry structure emerges first at the early denoising steps while texture details
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Figure 3: Image-to-3D generation pipeline. We utilize two stages to generate high-fidelity 3D con-
tents. In the coarse stage, we optimize an Instant-NGP representation using SDS loss, reference
view reconstruction loss and depth loss. In the refine stage, we export DMTet representation and use
our proposed novel view enhancement pipeline to supervise training.

appear at the late denoising steps, we design a dual-branch pipeline to transfer fine textures of the
reference image to the coarse novel views.

Specifically, our pipeline performs DDIM inversion and sampling on both the reference image and
coarse novel view. In the forward process qϕ, we separately map the reference image and coarse
novel view back to the initial noisy state xr

T and xT , with t = T steps’ DDIM inversion. In the
reverse process, we first perform DDIM sampling separately on the two states to denoise them to
the same intermediate noisy state indexed by t = T − l, where geometry structure has emerged yet
textures are not. Then, in the following t = l denoising steps where fine textures will gradually
appear in the reference branch, we utilize an attention injection method (Wu et al., 2022; Qi et al.,
2023; Cao et al., 2023) to inject attention features from the reference branch to the coarse novel view
branch. In this way, fine textures of the reference image will be transferred to the coarse novel view.
Thanks to the nearly perfect reconstruction quality of depth-based DDIM inversion, the inversion
process and the sampling process are nearly consistent at every time step, we can thus simplify the
pipeline into Fig. 2, where we directly invert the two inputs for t = l steps, and then symmetrically
adopt t = l denoising steps with attention injection to propagate textures of the reference view to
the coarse novel view.

Here, we denote the reverse process of the enhancement pipeline as p̃ϕ, as it requires attention
injection, which is different from the regular reverse process pϕ of text-to-image generation. This
pipeline can serve as a plug-and-play method for enhancing the quality of zero-shot novel view
synthesis methods (Liu et al., 2023b;c), as shown in Fig. 4 and Fig. 12. We also demonstrated it can
improve image-to-3D generation in the following section.

3.3 HIGH-FIDELITY 3D CONTENT GENERATION

Similar to recent text/image-to-3D generation approaches (Lin et al., 2023; Qian et al., 2023; Chen
et al., 2023a; Tang et al., 2023a), we adopt a coarse-to-fine optimization strategy to create 3D con-
tents. As shown in Fig. 3, in the coarse stage, we use SDS loss provided by an image space diffusion
model (DF) along with reference view reconstruction loss and depth loss to optimize a coarse NeRF
(Mildenhall et al., 2021; Müller et al., 2022). In the refine stage, we convert the implicit NeRF into
an explicit mesh representation (Shen et al., 2021a) for higher rendering resolution and efficient
training. Existing approaches (Tang et al., 2023a; Qian et al., 2023) continue optimizing the 3D
model using SDS loss in the refine stage. Nonetheless, it can be observed in Eq. 2 that SDS loss
leads to an optimization direction that forces the forward process q of rendered novel views to ap-
proach the distribution of the reverse process pϕ of text-to-image generation. Due to the ambiguity
of the inferred text descriptions and the large CFG guidance, the optimized novel views are often
inconsistent with the reference image, as shown in Fig. 9. (a). To ensure high fidelity in novel
views, we incorporate our proposed reference-guided novel view enhancement pipeline into the re-
fine stage. Specifically, Inspired by the original formulation of SDS loss (Eq. 2), we construct a
series of optimization targets using noisy states from the latent space of the enhancement pipeline.
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The resulting new objective can be formulated as:

min
θ

Et∼U(0,l/T )[KL(qϕ(xt|g(θ, c); y,m, t)∥p̃ϕ(xt; y,m, t))], (4)

where m denotes the conditioned depth map. Compared with Eq. 2, this improved objective forces
noisy states of the rendered novel views to approach the enhanced states produced by the reference-
guided novel view enhancement pipeline, ensuring that the supervision from the reference image
can cover all the camera views, thereby endowing an accurate optimization direction towards the
distribution of the 3D object that is consistent with the reference image. Since qϕ and p̃ϕ are de-
terministic processes given a specific reference image, we can solve Eq. 4 using a distance metric
(Huang et al., 2020) such as L2 distance. In this way, Eq. 4 can be simplified as:

min
θ

Et∼U(0,l/T )[∥xt − x̃t∥22], (5)

where the noisy states xt and the enhanced states x̃t are obtained using the enhancement pipeline
depicted in Fig. 2. Specifically, we invert the rendered novel view x0 = g(θ, c) into a noisy state
xl ∼ qϕ(xl) with l-step DDIM inversion, then perform with attention injection to denoise xl to
an enhanced latent x̃t ∼ p̃ϕ(x̃t). Then, we detach x̃t from the computation graph to make it an
optimization target, so that the gradients of Eq. 5 will backpropagate to the DMTet parameter θ
only through xt. By applying L2 loss on the noisy state xt from the inversion process and the
corresponding enhanced state x̃t from the sampling process, the distribution of noisy novel views
can be optimized to approach the distribution of their enhanced version.

However, in Eq. 4, unlike regular forward process q where the gradients of xt = αtx0 + σtϵ can
be efficiently calculated, DDIM inversion qϕ requires multiple forward-pass of U-Net ϵϕ, whose
gradient is expensive to compute. We therefore turn to a more computationally efficient way to
compute gradients of xt. Instead of constructing xt by adding noise to x0 step by step using DDIM
inversion, we can use the deterministic noise ϵ̃t predicted from x̃t in the DDIM sampling process to
construct noisy states for the rendered novel view, so that the resulted xt = αtx0 + σtϵ̃t will have
the same noisy level with x̃t. By this means, the gradients of RGSD loss in Eq. 5 can be efficiently
computed and backpropagated to DMTet parameters θ.

We name it Reference-Guided State Distillation (RGSD) loss, as it operates on deterministic noisy
states and helps to distill from the DDIM sampling process of our reference-guided novel view
enhancement pipeline. We provide a summarized algorithm of RGSD in Algorithm 1. In Ap-
pendix. A.2, we demonstrate that our RGSD loss effectively resolves the issues of oversaturation
and inconsistent views caused by SDS loss. Please also refer to Appendix. A.1 for more implemen-
tation details of the two training stages.

4 EXPERIMENTS

4.1 ZERO-SHOT NOVEL VIEW SYNTHESIS

Baseline. We use Zero-1-to-3-XL (Liu et al., 2023b; Deitke et al., 2023) as the baseline method to
assess our novel view enhancement pipeline. Zero-1-to-3 (Liu et al., 2023b) is a diffusion model-
based zero-shot novel view synthesis method. By fine-tuning stable diffusion (Rombach et al., 2022)
on the Objaverse (Deitke et al., 2023) 3D dataset, it allows for explicit control over the generation of
novel views through relative camera pose. By training on a larger 3D dataset Objaverse-XL (Deitke
et al., 2023), Zero-1-to-3-XL has achieved state-of-the-art results in zero-shot novel view synthesis.

Comparison on single view dataset. We compare our method with the baseline using 400 images,
including challenging real-world images and realistic images generated by a T2I model (DF). Fig. 4
presents the qualitative results. We found that although the images generated by Zero-1-to-3-XL
exhibit reasonable geometry, their textures often lack details and appear to be unreasonable, resulting
in poor consistency with the reference image. On the other hand, our enhancement pipeline produces
high-fidelity novel views with realistic textures.

Similar to previous research (Tang et al., 2023a; Qian et al., 2023; Xu et al., 2023), we adopt con-
textual distance (Mechrez et al., 2018) and CLIP-similarity (Radford et al., 2021) to quantitatively
measure the consistency between reference image and novel views. To ensure a fair comparison, we
mask out the background generated by our method when computing the metrics since Zero-1-to-3
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Reference image Zero-1-to-3-XL Ours

Figure 4: Qualitative comparison with Zero-1-to-3-XL on novel view synthesis. It can be found that
our method can generate novel views with higher fidelity and consistency.

Table 1: Quantitative comparison
with Zero-1-to-3-XL.

Contextual↓ CLIP↑
Zero-1-to-3-XL 1.94 0.89
Ours 1.60 0.93

Table 2: Quantitative comparison
with image-to-3D generation base-
lines.

LPIPS↓ Contextual↓ CLIP↑
RealFusion 0.35 2.18 0.81
Make-It-3D 0.23 1.97 0.90
Magic123 0.19 1.88 0.88
Ours 0.21 1.63 0.92

can not generate images with the background. The results are listed in Tab. 1. The improvements
in the evaluation metrics reflect our ability to generate novel views that are more consistent with the
reference image.

Comparison on multi-view dataset. Following (Liu et al., 2023b), we adopt the Google Scanned
Object dataset (Downs et al., 2022) and randomly select 30 objects for qualitative and quantitative
evaluation. The results are reported in Appendix. A.3.

4.2 IMAGE-TO-3D GENERATION

Baselines. We compared our image-to-3D generation framework against three state-of-the-art meth-
ods: RealFusion (Melas-Kyriazi et al., 2023), Make-It-3D (Tang et al., 2023a) and Magic123 (Qian
et al., 2023). RealFusion is a one-stage method that reconstructs NeRF representation from the ref-
erence image using L2 reconstruction loss and 2D SDS loss provided by the T2I model. Make-It-3D
is a two-stage method that uses 2D SDS loss. It leverages point cloud representation in the second
stage for training at higher resolution. Magic123 is also a two-stage method that uses both 2D SDS
loss and 3D SDS loss provided by Zero-1-to-3 to balance between geometry and texture quality. We
compare all the baselines using their official code.

Comparison on single view dataset. We firstly conducted quantitative and qualitative comparisons
against baseline methods on realistic single view images. Fig. 5 displays the qualitative comparison
results between our method and the baselines. For each input image, we showcase two novel views.
For a more comprehensive comparison, please refer to the supplementary videos. We also present
a comparison of the normal map optimized by Magic123 and our method. It can be observed that,
under the viewpoint that deviates significantly from the reference image, all the baseline methods
fail to generate reasonable textures, while our method can maintain the same texture details as the
reference image, which greatly improves the fidelity of the generated 3D assets.

For quantitative evaluation, we compute metrics on a total of 19 images. Except for adopting CLIP-
similarity and contextual distance for evaluating view consistency, we also use LPIPS (Zhang et al.,
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Figure 5: Qualitative comparison with baselines. Our method outperforms baselines in maintaining
texture details under significantly deviating viewpoints.

2018) to evaluate the quality of reference view reconstruction. The results are shown in Tab. 2.
The results on CLIP-similarity and contextual distance indicate that our method can generate 3D
objects with better 3D consistency. It is worth noting that although Magic123 achieved better results
in reference view reconstruction than us by using a larger reference view reconstruction loss, there
is a significant inconsistency between their reference view and novel view. This inconsistency is
particularly evident at the boundaries between invisible and occluded areas, resulting in noticeable
seams. Our method, on the other hand, does not exhibit this issue.

Comparison on multi-view dataset. We adopt the Google Scanned Object dataset (Downs et al.,
2022) and use 10 objects for multi-view evaluation. The results are reported in Appendix. A.3.

5 CONCLUSION AND DISCUSSION

Conclusion. We introduce HiFi-123, a method that can be applied for generating high-fidelity novel
views in a zero-shot manner as well as high-quality 3D models. Our approach has two key contri-
butions. Firstly, we propose a reference-guided novel view enhancement pipeline, which narrows
the quality gap between synthesized and reference views in zero-shot novel view synthesis. Based
on this pipeline, we further proposed an RGSD loss to supervise and optimize 3D representations,
resulting in highly realistic 3D assets.

Limitations. Similar to all optimization-based 3D generation techniques, our image-to-3D frame-
work requires long optimization times. Additionally, Our novel view enhancement pipeline relies
on a pre-trained depth-conditioned image diffusion model, which inherently bounds its performance
to the capabilities of such models. Moreover, the enhancement process currently requires a coarse
novel view to provide an initial depth structure. This makes it more apt as a plug-and-play mod-
ule for existing zero-shot novel view synthesis methods. Pursuing a pure standalone approach for
high-fidelity novel view synthesis remains a promising direction for future research.

9
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6 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of HiFi-123: 1) We will release our code to the community. 2) We will
release the reference images we used in experiments. 3) We provide additional comparison videos
in the supplementary material. (4) We provide additional implementation details in the appendix.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

Training details. We train the coarse stage for 5000 iterations using DeepFloyd (DF) guidance, the
guidance scale is set to 7.5 and we sample time steps from t ∼ U(0.2, 0.6). After the coarse stage,
we train the refine stage for 1000 iterations using our proposed RGSD loss with depth-conditioned
SD (SDD) guidance, the guidance scale is set to 7.5 and we sample time steps t ∼ U(0.0, 0.6). We
conduct experiments on a 40G A100 GPU, the coarse stage training takes approximately 0.5 hour
and the refine stage training takes about 1 hour.

Coarse Stage NeRF Reconstruction. In the coarse stage, we adopt instant-ngp(iNGP) (Müller
et al., 2022) based NeRF (Mildenhall et al., 2021) as the 3D representation and optimize it with
pixel-level image reconstruction loss. Additionally, similar to dreamfusion (Poole et al., 2022), we
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Algorithm 1 RGSD loss
Input: Depth-conditioned SD model ϵϕ, reference image, 3D model with parameter θ, attention
injection start step t = l, learning rate η.

1: while not converged do
2: Randomly sample camera pose c and render x0 = g(θ, c)
3: Randomly sample time step t = τ
4: for t ∈ [1, l] do
5: xt = (αt/αt−1)(xt−1 − σt−1ϵϕ) + σtϵϕ {DDIM inversion}
6: end for
7: for t ∈ [l, τ + 1] do
8: x̃t−1 = (αt−1/αt)(x̃t − σtϵ̃t) + σt−1ϵ̃t {DDIM sampling with attention injection}
9: end for

10: Construct xτ = ατx0 + στ ϵ̃τ
11: θ ← θ − η∇θE[∥xτ − x̃τ∥22]
12: end while
13: return

employ SDS loss to encourage semantically plausible results that comply with the text prompts. The
chosen iNGP has a 16-level hash encoding of size 219 and entry dim 2, and its base resolution is set
to 16 with a two-layer MLP with 64 hidden channels to decode density and color.

We also penalize the foreground mask differences between the rendered opacity map and the seg-
mentation map of the reference image. To further regularize the object geometry, we incorporate a
reference view depth loss (Tang et al., 2023a) and normal consistency loss (Poole et al., 2022). We
train the coarse NeRF at image resolution 128.

Refine Stage DMTet Reconstruction. During the refine stage, we choose DMTet(Shen et al.,
2021b) as the 3D representation. DMTet is a hybrid SDF-Mesh 3D representation comprising
deformable tetrahedral grid (VT , T ) which is capable of differential rendering and explicit high-
resolution shape modeling. The deformation vector is initialized to 0 and SDF is initialized by
converting the coarse stage density field.

We train the refine stage at the image resolution of 512. For the texture field, we employ an iNGP
with the same setting as the aforementioned coarse NeRF. The novel view results can be rendered by
a differentiable rasterizer which rasterizes extracted mesh from DMTet and the texture field that gets
a 3D intersection from the rasterizer as input. During training, except for utilizing reference view
L2 loss and RGSD loss to optimize the SDF, deformation vector and texture field, we additionally
leverage two enhanced non-overlapping novel views as pseudo ground truth and apply L2 loss in the
pixel space for producing sharper textures and training stability.

Camera Settings. During the coarse stage optimization, we sample the predefined reference view
and a random view in each iteration. During the fine stage optimization, we sample uniformly one
from the combined image set comprised of the selected enhanced views and reference views. We
also sample a random view for SDS loss back-propagation in each iteration. For the random sam-
pling, the elevation angles in uniformly sampled from [-10, 60], and the azimuth angle is uniformly
sampled from [-180, 180].

A.2 ABLATION STUDY

Depth-based DDIM inversion. Our novel view enhancement pipeline is built on the discovery that
performing DDIM inversion on an input image using a depth-conditioned diffusion model (SDD)
can significantly improve the reconstruction quality. As shown in Fig. 6, compared with regular
DDIM inversion, depth-based DDIM inversion can significantly improve the reconstruction quality
of the input images, even outperforming the optimization-based textual inversion (Gal et al., 2022b),
and is comparable to Null-text inversion (Mokady et al., 2023) which is also optimization-based.
This enables us to obtain an accurate representation of the input image and adapt it to high-fidelity
novel-view synthesis in a zero-shot manner.
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Input image DDIM inversion Depth-based 
DDIM inversion

Input image Null-text inversion Depth-based 
DDIM inversion

Input image Textual inversion Depth-based 
DDIM inversion

Figure 6: Comparison between depth-based DDIM inversion and other inversion approaches.

Reference image ! = 50 ! = 40 ! = 30 ! = 20 ! = 10 Coarse 
novel view

Figure 7: Ablation on time steps

Ablation on inversion time steps. As introduced in Section. 3.2, we perform t = l steps’ DDIM
inversion to invert the reference image and coarse novel view into noisy latent, then perform DDIM
sampling on it with attention injection to transfer textures. The impact of different inversion time
steps l is shown in Fig. 7. We use the commonly used 50 step’s DDIM sampling and inversion in
the experiment. It can be observed that as l increases, the texture of the enhanced image approaches
that of the reference image more closely, but may introduce geometry change. We use l = 30 in
image-to-3D generation and use l = 50 in novel view synthesis.

Ablation on depth condition and attention injection in novel view enhancement. There are two
key components in our proposed reference-guided novel view enhancement pipeline: the depth-
based DDIM inversion and the attention injection. We qualitatively validate this design choice in
Fig. 8. Given a reference image and a rendered coarse novel view, performing novel view enhance-
ment without the depth-conditioned SD model (SDD) leads to enhanced results that are inconsistent
with the reference image. The reason lies in that the regular DDIM inversion cannot precisely re-
construct the reference image (see Fig. 6), thus failing to transfer fine textures of reference image
to the coarse novel view. Further, directly using the depth-conditioned SD model (SDD) without
attention injection to enhance the coarse novel views also results in images inconsistent with the
reference. With depth-based DDIM inversion that capture fine details of the reference image and
attention injection that transfer fine textures to the coarse novel views, our enhancement pipeline
can produce enhanced images consistent with the reference, as shown in the last column.

Comparison of utilizing RGSD loss and other losses in the refine stage. Based on our novel view
enhancement pipeline, we propose an RGSD loss for refining textures of a coarse 3D representation.
Here, we performed an ablation study on using different losses in the refine stage of our image-to-3D
generation method. As shown in Fig. 9, the coarse novel views rendered from the coarse stage are of
low quality with smooth textures. In Fig. 9. (a), refining with vanilla SDS loss fails to generate colors
consistent with the reference image due to the ambiguity of the text prompt. To ensure high fidelity
in novel views, we incorporate our proposed reference-guided novel view enhancement pipeline into
the refine stage. A naive approach would be to use our enhancement pipeline to generate enhanced
images for random camera views and apply reconstruction loss between rendered images and en-
hanced images, namely using pixel loss. However, Fig. 9. (b) shows even slight inconsistencies in
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Reference image Coarse novel view w/o depth w/o attention Ours

Figure 8: Ablation on depth condition and attention injection.

A DSLR photo 
of a blue jay 
standing on a 
large basket of 
rainbow 
macarons

(a). SDS loss refine results

(b). Pixel loss refine results (c). RGSD loss refine results
Reference image

Coarse novel views

Figure 9: Comparison of using different losses in the refine stage.

the overlapping areas between enhanced novel views will accumulate and lead to blurry optimized
results. In contrast, as shown in Fig. 9. (c), our RGSD loss performs state distillation in the latent
space of the stable diffusion model, enabling faithfully generating consistent appearance with the
reference image.

A.3 MORE COMPARISONS.

Novel view synthesis comparison on multi-view dataset. We adopt the commonly used PSNR,
SSIM (Wang et al., 2004) and LPIPS (Zhang et al., 2018) to quantitatively evaluate the novel view
synthesis quality, the results are shown in Tab. 3. Our method achieves better performance in all
the metrics, indicating that the reference-guided novel view enhancement pipeline helps to improve
fidelity of the novel views. Qualitative results are displayed in Fig. 10, showing that our method can
generate textures that are more consistent with the reference image.

Image to 3D generation comparison on multi-view dataset. For image-to-3D generation evalu-
ation with ground truth data, we adopt PSNR, SSIM (Wang et al., 2004) and LPIPS (Zhang et al.,
2018) to quantitatively evaluate the novel view synthesis quality, and utilize the commonly used
Chamfer Distances and Volume IoU to evaluate the generated geometry. As shown in Fig. 11, our
method produces more reasonable texture and material information that are consistent with the ref-
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Table 3: Quantitative com-
parison with zero-1-to-3
on GSO dataset.

Zero-1-to-3 Ours

PSNR↑ 34.58 36.89
SSIM↑ 0.763 0.795
LPIPS↓ 0.231 0.214

Input view Zero-1-to-3 Ours GT

Figure 10: Qualitative comparison with Zero-1-to-3 on GSO
dataset.

Table 4: Quantitative comparison with image-to-3D generation baselines on GSO dataset.

PSNR↑ SSIM↑ LPIPS↓ Chamfer Dist↓ Volume IoU↓
Make-it-3D 22.38 0.734 0.251 0.086 0.368
Magic123 30.16 0.789 0.237 0.066 0.461
Ours 32.05 0.785 0.221 0.055 0.493

erence image. Tab. 4 shows the quantitative results, which indicates that our method is capable of
generating 3D contents with better geometry and textures comparing with the strong baselines.

Comparison with syncdreamer. We qualatitively compare with Syncdreamer (Liu et al., 2023c),
the reslts are shown in Fig. 12. Our method can generated novel views more consistent with the
referene image.

A.4 MORE RESULTS.

We shown more results of the 3D contents generated by our method. As shown in Fig. 13, our
method can produce high fidelity 3D contents with consistent appearances. The corresponding
coarse novel view are displayed in the last tow columns, which demonstrates the effectiveness of
the refine stage.
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Input view Make-it-3D Magic123 Ours GT

Figure 11: Qualitative comparison with image-to-3D generation baselines on GSO dataset.
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Figure 12: Qualitative comparison with Syncdreamer. It can be found that our method can generate
novel views with higher fidelity according to the reference image.

19



Under review as a conference paper at ICLR 2024

Figure 13: Additional image-to-3D generation results by our method. We show the corresponding
coarse novel view in the last tow columns.
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