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ABSTRACT

Current deep learning models for image segmentation often lack reliable un-
certainty quantification, particularly at the image-specific level. While Confor-
mal Risk Control (CRC) offers marginal statistical guarantees, achieving image-
conditional coverage, which ensures prediction sets reliably capture ground truth
for individual images, remains a significant challenge. This paper introduces a
novel approach to address this gap by learning image-adaptive thresholds for con-
formal image segmentation. We first propose AT (Adaptive Thresholding), which
frames threshold prediction as a supervised regression task. Building upon the in-
sights from AT, we then introduce COAT (Conditional Optimization for Adaptive
Thresholding), an innovative end-to-end differentiable framework. COAT directly
optimizes image-conditional coverage by using a soft approximation of the True
Positive Rate (TPR) as its loss function, enabling direct gradient-based learning
of optimal image-specific thresholds. This novel differentiable miscoverage loss
is key to enhancing conditional coverage. Our methods provide a robust path-
way towards more trustworthy and interpretable uncertainty estimates in image
segmentation, offering improved conditional guarantees crucial for safety-critical
applications.

1 INTRODUCTION

Image segmentation is a fundamental computer vision task with critical applications in medical di-
agnostics, autonomous driving, and remote sensing. While deep learning has significantly advanced
segmentation performance, reliable uncertainty quantification remains challenging but essential for
safety-critical applications. Traditional evaluation metrics like Dice or IoU provide overall perfor-
mance measures but fail to offer instance-wise reliability guarantees.

Conformal prediction (CP) has emerged as a powerful framework for providing distribution-free
uncertainty quantification with finite-sample guarantees. It constructs prediction regions that contain
the true label with a user-specified probability, regardless of the underlying data distribution. Recent
work on Conformal Risk Control (CRC) (Angelopoulos et al.l [2024) has extended this framework
to handle more complex performance metrics beyond simple miscoverage, such as controlling the
false negative rate in segmentation tasks.

However, a key limitation of standard CRC, particularly in image-level tasks like segmentation,
is its focus on marginal guarantees. While CRC ensures that the average risk across a dataset is
controlled, the risk for individual images (i.e., the conditional risk) can vary substantially. In safety-
critical domains, ensuring that each image’s prediction is reliable, rather than just the average over
many images, is paramount. This image-specific variability in risk is a significant challenge that
current approaches struggle to address effectively.

This paper proposes a novel approach to achieve image-conditional coverage in conformal image
segmentation by learning image-adaptive thresholds. Our core idea is to train a model that predicts
a unique threshold for each input image, aiming to satisfy the desired coverage level for that specific
image. We introduce two distinct methods to realize this:
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Figure 1: Schematic Overview of the COAT Framework Pipeline.

1. AT (Adaptive Thresholding): As an initial step, this method treats the problem of threshold
prediction as a supervised regression task. We pre-compute optimal hard thresholds for
training images that achieve the target coverage, and then train a neural network to predict
these thresholds given the image and its base segmentation model outputs.

2. COAT (Conditional Optimization for Adaptive Thresholding): Building upon AT’s con-
cept, we propose an innovative end-to-end differentiable framework, which we name COAT
(as illustrated in Figure[T). Instead of relying on pre-computed hard thresholds, COAT di-
rectly optimizes for image-conditional coverage. It achieves this by utilizing a soft, differ-
entiable approximation of the True Positive Rate (TPR) to define its loss function, enabling
direct gradient-based learning of optimal image-specific thresholds. This novel differen-
tiable miscoverage loss is a key contribution for enhancing conditional coverage.

By learning image-adaptive thresholds and, particularly through the end-to-end differentiable op-
timization of COAT, our methods provide a robust pathway towards more trustworthy and inter-
pretable uncertainty estimates in image segmentation, offering significantly improved conditional
guarantees, which are crucial for the deployment of Al systems in high-stakes applications.

2 PRELIMINARIES AND PROBLEM SETUP

2.1 PROBLEM SETUP

For image segmentation, we consider an input image X; with its ground truth binary mask Y; C
{1,2, ..., N}, which delineates a region of interest. Our primary objective is to construct a prediction
set C(X;) C {1,2,..., N} that controls the false negative rate (FNR) in expectation. The FNR
quantifies the proportion of true positive pixels that are incorrectly excluded from the prediction set,
a critical metric in applications such as medical imaging where missing regions of interest can have
severe consequences. Specifically, we aim to ensure:

‘é\(Xi)ﬁYi
S <
Y3
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where a € (0, 1) is a user-specified risk level. Here, |Y;| denotes the cardinality of the set Y; (i.e.,
the number of positive pixels in the ground truth mask), and this metric is typically considered for
cases where |Y;| > 0. We also define € as a small positive constant (e.g., 10~°) used to prevent
division by zero in certain calculations. The expectation in equation [T] isA taken over random draws

of the test data, reflecting the average performance of the prediction set C'(X;).

However, this marginal guarantee, while ensuring that the average FNR across the entire dataset is
controlled, does not guarantee consistent performance for individual images. Due to the inherent
variability in image “difficulty” or characteristics, applying a single threshold to all images can lead
to over-coverage for “easy” images and severe under-coverage for “difficult” ones. This implies
that, while the FNR might be met on average, the conditional coverage (i.e., 1 — FNR for a single
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image) for specific images can deviate significantly from the target level 1 — «. For safety-critical
applications, such image-to-image variability is unacceptable, necessitating a stronger guarantee:
not only must the marginal FNR be controlled, but the prediction reliability for each image should
also be as close as possible to the target level.

That is, for an input image X; € Dy and its corresponding ground-truth label Y; € Diy, we should
ensure the fulfillment of the following conditions:

1 Cx) ny;
Coverage = _ )
|Dtest| X;EDyost D/z|
Subsequently, we should strive to narrow the coverage gap (Kaur et al., 2025):
1 Cxn;
Coverage Gap = Y (1-« . 3)
|Dtest| X;E€Dsest D/l| ( )

2.2 CONFORMAL RI1SK CONTROL (CRC)

Conformal Risk Control (CRC) (Angelopoulos et al., 2024) extends the principles of conformal
prediction to offer distribution-free guarantees on the expected value of any monotone loss function.
For image segmentation, CRC achieves control over the false negative rate by applying a specific
threshold to the pixel-wise probabilities generated by a base segmentation model. This optimal
threshold is determined through a calibration procedure performed on a dedicated held-out dataset.

Given a base segmentation model that outputs a probability map p(X;) = (p1(X;),...,pn(X;)) for
an input image X;, where p; (X;) estimates P(j € Y;|X;) for pixel j, the CRC approach proceeds
as follows:

1. Prediction Set Definition: For a given threshold 7, the prediction set C (X, 7) is defined
by including all pixels j whose predicted probability p;(X;) is greater than or equal to 7:

—~

C(Xi,m) =17 :p;(X;3) > 7}. 4)

2. Calibrated Threshold Computation: The calibrated threshold 7’ is determined using a
calibration dataset I.,. It is the largest threshold that satisfies the empirical risk constraint
on the calibration set:

7 =su 7"71 1—|6(Xi’7-)myi| + B < a 5
= sup .n+1_€D Vi nrl S (5)
K3 cal

where n is the size of the calibration set Dy, B is an upper bound of the loss function
(typically B = 1 for the FNR).

3. Final Prediction Set: The final prediction set for a new test image X is then constructed
using the calibrated threshold 7':

C(Xi) = C(X;, 7). (©6)
This methodology guarantees that E {1 — % < « over the data distribution, providing a

distribution-free control of the false negative rate, as established by Theorem 1 in Angelopoulos et
al. (Angelopoulos et al., [2024).

3 METHODOLOGY

We introduce two novel methods for learning an image-adaptive threshold 7(X) for conformal risk
control in image segmentation. The first, AT (Adaptive Thresholding), serves as a supervised base-
line, while the second, COAT (Conditional Optimization for Adaptive Thresholding), is our more
advanced, end-to-end differentiable approach.



Under review as a conference paper at ICLR 2026

1.4 &

Coverage

--- Target Coverage (0.9)

0.
0.0 072 014

X 0.6 0.8 1.0
Threshold (1)

Figure 2: A figure presenting the relationship between the coverage rates of various images and the
variable 7.

3.1 AT: SUPERVISED THRESHOLD PREDICTION

The AT approach frames the problem as learning a direct mapping from an image to its optimal
segmentation threshold.

3.1.1 PREDICTION

The threshold predictor f takes the input image X and the corresponding probability map p(X)
from the base model to predict a single scalar threshold 7(X).

7(X) = fp(X, p(X)). )

The notation (X, p(X)) implies a combination of these inputs, typically through channel-wise con-
catenation and any necessary spatial alignment, to form the input tensor for fp.

3.1.2 TRAINING AND LOSS FUNCTION

This method requires a pre-computation step to generate a “ground-truth" threshold 7*(X,Y") for
each image in the training set. This 7* is determined via numerical search (e.g., binary search) as
the value that makes the TPR of the resulting hard segmentation mask equal to the target coverage
level 1 — a.

The model fp is then trained using a standard Mean Squared Error (MSE) loss between the predicted
threshold 7(X') and the ground-truth threshold 7*. The loss function over the training distribution
is:

Lt = E(x,y)~ Dy [(F(X) = 75(X,Y))?]. (3)

3.2 COAT: END-TO-END DIFFERENTIABLE MISCOVERAGE LOSS

As shown in Figure 2] due to the non-continuous and non-increasing relationship between 7 and
the target coverage across different images, directly training 7 may not necessarily yield satisfac-
tory coverage performance and requires pre-calculating the relationship between 7 and coverage.
Moreover, the non-continuous and non-increasing nature also renders direct training of coverage
infeasible. To circumvent the need for pre-calculating ground-truth thresholds, COAT enables end-
to-end training by defining a fully differentiable loss function that directly optimizes for the target
coverage.

3.2.1 PREDICTION
The prediction model fp has the same architecture as in AT, and it also takes the probability map

from the base model as input.
7(X) = fp(X,p(X)). ©)

3.2.2 TRAINING AND L0OSS FUNCTION

The core of this method is a differentiable approximation of the TPR. Instead of applying a hard
threshold, we use the predicted threshold 7(X) to generate a soft, probabilistic segmentation mask
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Algorithm 1 COAT: Conditional Optimization for Adaptive Thresholding

1: Input: labeled data Di,;,, unlabel test data Dy, target coverage 1 — «, temperature 7', small
constant €.

2: Randomly split Dy, into Dy, Do, and Dy.

3: Train a semantic segmentation model using D; .

4: Initialize parameters of threshold predictor fp.

5: for epoch in training epochs do

6: foreach (X;,Y;) € D, do

7: Obtain probability ‘map i + p(X;).

8: Predict threshold: 7; < fp(X;, p(X;)).

9: Compute soft mask: Mo (X;) = o M)

10: Compute differentiable TPR: TPR(Xi, Y, 7(X;)) = W
11: Compute loss: Lcoar < ("ﬁ)ﬁ(Xi,Yi, 7(X:)) — (1 —a))?
12: Update parameters of fp by descending the gradient V Lcoar.
13:  end for

14: end for
15: Compute base thresholds: 7; fD( (X )) for (X;,Y:,p(X;)) € Dea.

{p(X; )>T7—f}my|

—_
o))

: Define coverage function: R(t) «

1Y:
: Find minimal correction: ¢’ + 1nf{t | R(t) (|Dcal| —|— 1)1 — @)/|Deall}-
: for each (X;, p(X;)) € Diest do
Compute the base threshold: 7; < fp(X;, p(X;)).
Calculate the adjusted threshold after calibration: 7/ < clip(7; — ¢/, 0,1).
Generate the prediction set: C(X;) < {p(X;) > 7/}
: end for
: Output: C(X;) for i € Diey.

N NN ===

Moi. The loss is then the MSE between the TPR calculated from this soft mask and the target
coverage level 1 — a.

The full loss function is defined as follows:

Lcoar = E
(X’Y)ND[min

(TPR(X, Y, 7(X)) — (1 — aﬂ :

where the predicted TPR, ﬁ, is computed via:
‘Msofl(X) ) Y|
Y]+ e
Here, Y [h, w] denotes the pixel value at (h,w) for the ground truth mask Y. The soft mask My is
defined using the sigmoid function o (-) and a temperature parameter 7' > 0:
p(X)—-7(X

M) = (P20
This formulation allows gradients to flow from the final loss back to the parameters of the threshold
predictor fp, enabling direct optimization towards the desired conditional coverage without inter-
mediate supervision. As detailed in Algorithm [I] we present a comprehensive description of the
COAT framework for image segmentation, covering all critical implementation components.

TPR(X,Y,7(X)) =

Remark: The primary objective of COAT is to learn the intricate relationship between an image’s
characteristics and its target conditional coverage. COAT achieves this through an innovative end-to-
end differentiable miscoverage loss, which directly optimizes for the desired conditional coverage.
This direct optimization circumvents the need to explicitly pre-calculate the complex, non-linear
relationship between individual 7 and coverage for each image. Following this learning phase, a
calibration set is used to apply a global adjustment, ¢’, to the predicted image-specific thresholds.
This final calibration step, which can involve either a positive or negative ¢, statistically ensures
the marginal coverage rate, as defined by Equation 2] across the entire dataset. This two-stage pro-
cess—directly optimizing for image-conditional reliability and then performing a marginal calibra-
tion—provides a robust pathway towards more trustworthy and interpretable uncertainty estimates.
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3.3 THEORETICAL GUARANTEES

Theorem 1 (Coverage Guarantees). Let D.y = {(X;,Yi)}l., be the calibration set and
(X1, Ynt1) be a test sample. Suppose {(X;,Y;) ?:Jrll are exchangeable. Then the final prediction

set C(X,41) given by AT or COAT satisfies:

‘O(Xn+1) NYnqs |
| Yn+ 1 |

This theorem shows that both AT and COAT provide a powerful finite-sample guarantee for marginal

coverage, i.e., the mean TPR. The proof is provided in Appendix [A.T] We also show in Appendix
[A.Z]that they can achieve asymptotic conditional validity under appropriate assumptions.

E

>1—a. (10)

3.4 RELATED WORK
3.4.1 CONFORMAL RISK CONTROL

Conformal prediction (Vovk et al., 2005) provides distribution-free uncertainty quantification with
finite-sample guarantees. Its split conformal variant (Lei et al.l |2018) is widely used for its com-
putational efficiency. Recent extensions, notably Conformal Risk Control (CRC) (Angelopoulos
et al.| 2024} Bates et al., 2021), allow for controlling the expected value of various monotone loss
functions, such as the false negative rate in segmentation.

While initial CRC applications often used a single global threshold, recent works have explored
more nuanced control. Teneggi et al. (Teneggi et al.,|2023)) proposed grouping pixels to control risk
through a convex surrogate loss, and further extended this to semantic-specific control for medical
imaging (Teneggi et al., |2025). Bereska et al. (Bereska et al., 2025) introduced Spatially-Aware
Conformal Prediction (SACP) to adapt uncertainty estimates based on proximity to critical struc-
tures. He et al. (He et al., 2025)) integrated CRC into model training for quality assurance in radi-
ation therapy. These advancements highlight a growing need for more adaptive and context-aware
risk control beyond global guarantees, which our image-conditional approach directly addresses.

3.4.2 CONDITIONAL CONFORMAL PREDICTION

Achieving conditional coverage — ensuring prediction sets attain the desired coverage for every
possible covariate value — is generally impossible without strong distributional assumptions (Vovkl
2012; [Foygel Barber et al., [2021). However, for high-stakes applications, marginal guarantees are
often insufficient due to potential disparities in coverage across subpopulations.

Many works aim to improve conditional validity by modifying the calibration step (Lei & Wasser-
man), 2014} |Guanl 2023}, [Barber et al.| |2023)) or altering the initial prediction rule (Romano et al.,
2019; [Sesia & Romanol 2021 |Chernozhukov et al., 2021). Some research focuses on coverage
under covariate shift (Lei & Wassermanl, [2014; [Tibshirani et al.l [2019; [Izbicki et al., [2022), with
frameworks like that by Gibbs et al. (Gibbs et al., 2025) aiming for exact finite-sample coverage
across shifts.

Group conditional guarantees have also been explored (Toccaceli & Gammermanl 2019;|Gupta et al.,
2020; |Ding et al., [2023). Mondrian conformal prediction (Vovk et al., 2003) provides exact cover-
age for disjoint groups. More flexible methods for overlapping groups exist (Foygel Barber et al.,
2021} Jung et al., 2023)), though they can be computationally intensive or rely on distributional as-
sumptions. Other approaches learn features to improve conditional coverage, such as density-based
atypicality (Yuksekgonul et al.l 2023)) or learning covariate space partitions (Kiyani et al., [2024).

Our method contributes to this line by providing a novel way to achieve image-conditional coverage
in segmentation, moving beyond group-based approaches to an instance-specific adaptive threshold-
ing mechanism, particularly through the end-to-end differentiable optimization.

4 EXPERIMENTS

This section presents the empirical evaluation of our proposed AT and COAT methods. We assess
their performance in controlling the False Negative Rate (FNR) on diverse image segmentation tasks.
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Our experiments aim to demonstrate the effectiveness of image-adaptive thresholding compared to
approaches like CRC |Angelopoulos et al.| (2024) and AA-CRC (Blot et al., 2025), and to validate
the robustness of our methods across different base segmentation models and datasets. Detailed
experimental settings can be found in Appendixs[A.3]and[A.4]
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Figure 3: Qualitative comparison of CRC and COAT prediction sets at a significance level of o =
0.1. The top row shows original polyp images, the middle row displays CRC prediction sets, and
the bottom row presents COAT prediction sets. White pixels represent true positives, red false
negatives, and cyan false positives. FNR values are given for each prediction. COAT demonstrates
more consistent coverage and false negatives across images compared to CRC, highlighting the merit
of our conditional risk control approach.

CRC Original

COAT

As shown in Figure [3] and Figure [ we conducted a qualitative analysis on the polyp dataset (with
alpha = 0.1) and the skin dataset (with alpha = 0.2) respectively. The base segmentation models
presented in both cases are PSPNet. It can be observed that COAT is capable of better maintaining
the given target coverage rate for each image. On the polyp dataset, COAT maintains a more stable
FNR while also achieving a lower false positive rate. On the skin dataset, COAT consistently keeps
the images at the given coverage rate. COAT adaptively adjusts thresholds to achieve the target
False Negative Rate (FNR); while this may increase false positives, such instances often stem from
the base model’s inherent uncertainties. In safety-critical scenarios where false negatives are more
detrimental than false positives, COAT’s precise FNR control proves a significant advantage for
robust risk management.

As shown in Table [T] and Figure [6] we randomly partitioned the dataset 20 times and then tested
the mean and standard deviation of Marginal Coverage and Coverage Gap. Across all base models
and datasets, COAT consistently outperformed CRC and AA-CRC in terms of Coverage Gap, with
COAT consistently achieving the best Coverage Gap.

In addition, we have plotted the training progress of COAT. As can be seen from the loss function
in Figure 5] regardless of the segmentation model employed and the corresponding dataset used,
the training of COAT’s loss function is highly stable, with a rapid decline that eventually approaches
zero. The qualitative results for the Fire dataset are in Appendix[A.5] We also analyzed the reference
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Figure 4: Qualitative comparison of CRC and COAT prediction sets at a significance level of o =
0.2.
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a=0.1 a=02
Dataset Model Method Marginal Coverage Coverage Gap Marginal Coverage Coverage Gap
CRC 0.907 (0.015) 0.145 (0.010) 0.796 (0.028) 0.232 (0.007)
Deeplab v3+ AA-CRC 0.900 (0.017) 0.122 (0.015) 0.797 (0.025) 0.167 (0.020)
P AT 0.899 (0.024) 0.115 (0.014) 0.802 (0.047) 0.174 (0.019)
COAT 0.899 (0.016) 0.106 (0.010) 0.802 (0.020) 0.162 (0.011)
CRC 0.901 (0.018) 0.135 (0.013) 0.797 (0.025) 0.256 (0.016)
UNet AA-CRC 0.908 (0.017) 0.131 (0.012) 0.793 (0.024) 0.217 (0.017)
AT 0.903 (0.013) 0.127 (0.009) 0.805 (0.022) 0.209 (0.013)
Polyp COAT 0.904 (0.022) 0.122 (0.012) 0.803 (0.018) 0.199 (0.014)
CRC 0.906 (0.019) 0.150 (0.015) 0.804 (0.026) 0.249 (0.008)
PSPNet AA-CRC 0.908 (0.018) 0.119 (0.016) 0.796 (0.022) 0.162 (0.025)
AT 0.899 (0.018) 0.119 (0.014) 0.796 (0.020) 0.166 (0.014)
COAT 0.894 (0.016) 0.110 (0.015) 0.796 (0.021) 0.144 (0.013)
CRC 0.904 (0.018) 0.149 (0.014) 0.803 (0.026) 0.255 (0.009)
SINet AA-CRC 0.906 (0.026) 0.126 (0.014) 0.799 (0.022) 0.182 (0.014)
AT 0.899 (0.024) 0.119 (0.013) 0.809 (0.051) 0.170 (0.014)
COAT 0.896 (0.016) 0.102 (0.010) 0.800 (0.021) 0.148 (0.014)
CRC 0.901 (0.003) 0.067 (0.001) 0.803 (0.005) 0.092 (0.001)
Deeplab v3+ AA-CRC 0.903 (0.004) 0.062 (0.002) 0.804 (0.005) 0.083 (0.006)
P AT 0.901 (0.003) 0.061 (0.003) 0.806 (0.031) 0.086 (0.015)
COAT 0.900 (0.002) 0.058 (0.001) 0.799 (0.003) 0.076 (0.002)
CRC 0.899 (0.005) 0.077 (0.001) 0.802 (0.006) 0.103 (0.001)
UNet AA-CRC 0.902 (0.005) 0.068 (0.004) 0.803 (0.005) 0.088 (0.006)
AT 0.900 (0.003) 0.063 (0.003) 0.800 (0.004) 0.085 (0.006)
Fire COAT 0.900 (0.003) 0.061 (0.001) 0.800 (0.003) 0.079 (0.002)
CRC 0.901 (0.003) 0.065 (0.001) 0.801 (0.005) 0.091 (0.001)
PSPNet AA-CRC 0.904 (0.005) 0.063 (0.003) 0.808 (0.008) 0.079 (0.010)
AT 0.904 (0.019) 0.065 (0.003) 0.799 (0.004) 0.089 (0.005)
COAT 0.900 (0.003) 0.060 (0.001) 0.800 (0.004) 0.077 (0.002)
CRC 0.901 (0.004) 0.071 (0.001) 0.800 (0.006) 0.101 (0.001)
SINet AA-CRC 0.903 (0.008) 0.063 (0.002) 0.803 (0.009) 0.082 (0.006)
AT 0.900 (0.003) 0.065 (0.004) 0.799 (0.005) 0.090 (0.007)
COAT 0.900 (0.002) 0.059 (0.002) 0.799 (0.004) 0.080 (0.003)
CRC 0.900 (0.003) 0.072 (0.001) 0.802 (0.006) 0.107 (0.002)
Deeplab v3+ AA-CRC 0.905 (0.004) 0.057 (0.003) 0.806 (0.005) 0.079 (0.010)
P AT 0.904 (0.016) 0.061 (0.009) 0.809 (0.039) 0.090 (0.023)
COAT 0.899 (0.003) 0.054 (0.001) 0.800 (0.005) 0.073 (0.002)
CRC 0.900 (0.003) 0.062 (0.001) 0.800 (0.006) 0.097 (0.002)
UNet AA-CRC 0.908 (0.003) 0.056 (0.003) 0.807 (0.005) 0.081 (0.004)
AT 0.899 (0.003) 0.059 (0.002) 0.800 (0.004) 0.090 (0.006)
Skin COAT 0.899 (0.003) 0.054 (0.001) 0.800 (0.004) 0.079 (0.002)
CRC 0.902 (0.003) 0.069 (0.001) 0.804 (0.006) 0.103 (0.001)
PSPNet AA-CRC 0.906 (0.005) 0.057 (0.005) 0.806 (0.005) 0.071 (0.011)
AT 0.903 (0.015) 0.061 (0.008) 0.809 (0.039) 0.076 (0.025)
COAT 0.899 (0.003) 0.050 (0.002) 0.799 (0.004) 0.064 (0.002)
CRC 0.905 (0.004) 0.078 (0.001) 0.806 (0.004) 0.113 (0.001)
SINet AA-CRC 0.905 (0.005) 0.063 (0.006) 0.805 (0.005) 0.075 (0.010)
e AT 0.906 (0.022) 0.065 (0.010) 0.800 (0.003) 0.074 (0.005)
COAT 0.899 (0.003) 0.055 (0.001) 0.800 (0.004) 0.071 (0.002)

Table 1: Marginal Coverage and Coverage Gap Results at « = 0.1 and o = 0.2 Across Different
Models and Conformal Methods. Each dataset result is the mean and standard deviation of 20
random splits.

temperature 7' in the COAT method, examining how different temperatures affect the coverage gap
(see Appendix [A.6).

Remark on Coverage Gap Limitations: It is important to note that the coverage gap cannot be
reduced to zero in practice due to several fundamental limitations. First, finite sample effects mean
that with limited calibration data, perfect estimation of image-specific coverage is statistically im-
possible. Second, there exists an inherent bias-variance trade-off in threshold prediction - while our
adaptive methods reduce bias by learning image-specific patterns, they introduce variance through
the learned predictor. Third, model capacity constraints limit how well our threshold predictor can
capture the complex relationship between image characteristics and optimal thresholds.
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Figure 5: Loss function graphs for different segmentation models trained using the COAT method,
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with datasets shown from left to right being polyp, fire, and skin respectively.
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Figure 6: The box plot results for the Coverage Gap obtained from different datasets and various base
segmentation models are presented. For each experimental setup, 20 random splits were conducted.
The three rows of plots, from top to bottom, display the results for the polyp, fire, and skin datasets,
respectively.

Despite these theoretical limitations, our COAT method consistently achieves the smallest cover-
age gap across all experimental settings, demonstrating its effectiveness in learning meaningful
image-adaptive patterns. The end-to-end differentiable optimization in COAT provides a princi-
pled approach that directly optimizes for the target coverage, leading to more reliable conditional
guarantees compared to both global thresholding (CRC) and supervised approaches (AA-CRC and
AT). This improvement is particularly valuable for safety-critical applications where consistent per-
image reliability is paramount.

5 CONCLUSION

In this paper, we address the limitation of existing segmentation methods that provide only marginal
guarantees and lack image-level conditional coverage in safety-critical applications by proposing
two novel methods for learning adaptive thresholds: AT and COAT. As our core contribution, COAT
introduces an innovative end-to-end differentiable miscoverage loss, enabling the precise learning
of an optimal threshold for each image by directly optimizing the conditional coverage target. Ex-
tensive experiments across multiple datasets demonstrate that our methods, particularly COAT, sig-
nificantly reduce the Coverage Gap while maintaining the target marginal coverage rate, thereby
exhibiting stronger consistency and reliability across different images. This work provides a robust
pathway toward building more trustworthy and interpretable Al systems for critical applications.
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A APPENDIX

LARGE LANGUAGE MODEL (LLM) USAGE

During the preparation of this manuscript, a large language model (LLM), specifically [Gemini-2.5-
Flash], was employed as a general-purpose assist tool. The LLM’s contributions were primarily in
the following areas:

* Code Optimization for Experimental Visualization: The LLM assisted in optimizing
and refining Python code snippets used for experimental visualization and data processing
routines. This collaboration led to more efficient and readable implementations, particu-
larly for generating the figures (e.g., Figure 3, Figure 4, Figure 7) and tables (e.g., Table 1,
Table 2) presented in the paper.

* Writing Assistance and Refinement: The LLM was utilized for drafting and refining cer-
tain sections of the paper, including improving clarity, grammar, and stylistic coherence.
This involved generating initial textual descriptions and polishing existing content to en-
hance its overall quality and readability.

The authors maintained full responsibility for reviewing, editing, and validating all content generated
or optimized with the assistance of the LLM, ensuring its accuracy, originality, and adherence to
scientific standards. The LLM was not involved in the core research ideation, experimental design,
data collection, or primary analysis leading to the scientific conclusions. The scientific content,
conclusions, and any potential errors remain solely the responsibility of the authors.

A.1 PROOF OF THEOREMIII

Proof. For each sample (X;,Y;), we define a parameterized loss function L;(t) for ¢ € [—1,1],
where ¢ is a global correction parameter. The loss is the false negative rate (FNR) for the prediction
set formed by the adjusted threshold:

Hﬁ(Xz) 2 Clip(%\i —t,0, 1)} n YZ‘
— v . (11)

Here, 7; = fp(X;, p(X;)) is the base threshold predicted by AT or COAT. This loss function L;(t)
is a non-increasing and right-continuous function of ¢. It satisfies

L;(1)=0<a« and supL,(t) <1. (12)
¢

Li(t) = 1
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We compute the empirical risk on the calibration set:
_ 1 &
Ly(t) = — Li(t) =1-"R(t), 13
()= 3 2 L) (t (13)

where R(t) is the empirical coverage defined in Algorithm Define
n+1

t' = inf {t (1- a)} . (14)

n -
—L,(t
L) +

< = inf >
+1 n+1—°‘} o {t’R(t)—

By Theorem 1 in|Angelopoulos et al.|(2024), we have E [L,, 11 (t')] < «, which implies

‘Yn-ﬁ-ll
as C(Xpt1) = {D(Xng1) > clip(Fugr — .0, 1)} O

A.2 ASYMPTOTIC VALIDITY OF CONDITIONAL COVERAGE

In this section, we formally establish the asymptotic validity of the conditional coverage provided
by our proposed methods, AT and COAT. Specifically, we will demonstrate that as the sample size
used to train the base threshold models tends to infinity, the conditional coverage rate (i.e., the TPR
of prediction set for each test sample) is asymptotically guaranteed to be not less than the target level
1 — o under appropriate assumptions. To this end, we begin by introducing the necessary notations.

For any (X,Y), let 7,,,(X) be the base threshold estimated by AT or COAT, where m is the sam-
ple size of the dataset used to train 7,,,. Let Doy = {(X;,Y;)}"; be the calibration set and
(Xn41, Ynt1) be a test sample. Similar to we define a FNR function for (X;,Y;):

_ {b(Xi) = clip(Tm (Xi) — 1,0, 1)} N Y|

Lim(t)=1 te[-1,1]. (16)
Y]
The empirical risk on the calibration set is:
- 1 <
Ly m(t) =— L;m(t). 17
mlt) = — ; m(t) (17)
By Algorithm the correction term for (X, 11, Y,+1) is computed as:
- 1 1
t! = inf {t ‘ Lym(t) < Cpla) := n: o — g} . (18)

Suppose the ground-truth threshold function is 7*. Then for ¢ € [—1, 1], we can define:
p(X;) > clip(*(X;) — ,0,1)} NY;
Lty — 1 - HPX) = eliptr* (%) ~ 10,0} 0]

19)
Vil

B 1 n
L (t)=— LI (t 20
n(t) = ; F(), (20)
t* =inf {t | L};(t) < Cn(a)}. (1)

The prediction set for (X,,11,Y,,+1) given by AT or COAT can be expressed as:

C(Xn1) = {P(Xns1) > elip(Fn (Xns1) = £7,,0,1)}. (22)

The result is summarized by the following theorem.

Theorem 2 (Asymptotic Conditional Validity). Assume that for any (X,Y), asm — 0o, T (X)

™(X,Y) and
Hp(X) < (X, Y)}NY|/|Y| =« almost surely. (23)

IF{(X;, )} are iid. and 5(Xn+1) is the prediction set given by AT or COAT, then for any
e>0,asm — oo,

AX, Y.
HD(|C( ,];1)0 n+1‘ > 1—0(-5) — 1. (24)
n+1
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Proof. By assumption, for any fixed ¢, the consistency 7, 2, 7* and the Continuous Mapping

Theorem imply L; .., (t) 2> L*(t) and thus Ly, ,,, (t) 2 L (t) as m — co. Since we assume that for
any (X,Y),

{p(X) <7 (X Y)nY|/Y|=a as., (25)
by definitions we have ~
L:(0)=L;(0)=a a.s.. (26)
As L (t) is non-increasing, L* (1) = 0, and C,,(a) = (n + )a/n — 1/n < a,
{t|Ly(t) <Cn(a)} #2 and t*>0 a.s. 7)

L (t) is a non-increasing, right-continuous step function with finite steps determined by the size of
calibration set D¢y = {(X;, Y;)};, which implies C,, () is not one of the jump values of L7 (%)
almost surely. Therefore, there exists an 17 > 0 such that for any small § > 0,

Li(t*—8)>Cn(a)+n and Li(t"+6)<Cu(a)—1n a.s. (28)
From the pointwise convergence Ly, ,, (t) 2 L*(t), we have:
P (Iinym(t* —9) > Cn(oz)) —1 and P (E7L7m(t* +0) < C'n(oz)) — 1. 29)
Since t], = inf {¢ | Ly m(t) < Cr(a)} and Ly, n,(t) is non-increasing, we have:
{Lnm(t* =0) > Cp(a)} N {Lypm(t* +6) < Cule)} = t, €[t =6, " +6].  (30)

Hence,
P(|t,, —t*| <) =1, ie., t, 5t (31)

For the test sample (X, 41, Y5 11), since Ly, 11 m (f) is non-increasing, it holds that

Ln+1,7n(t* + 5) S Ln—i—l,m(tlm) S Ln+1,7n(t* - 5) (32)

when [t — t*] < §. As m — oo, the lower and upper bounds converge in probability:
Lnrm(t+0) 5 Ly (8 +0), (33)
Lyt —0) B Ly 1 (t* —6). (34)

Recall the definition ¢* = inf {¢ | L} (t) < C,(a)}. Since {(X;,Y;)}/" are i.i.d., the random
variable ¢* is independent of the finite jump points of L7 ,,(¢). Thus, Ly ,,(t) is continuous at ¢*
almost surely. Then, letting § — 0, we obtain:

Ly (t"+06)— Ly (t") and L, (t"—06)— Ly (t") a.s., (35)
which implies
Lt (t) © Lipia (8. (36)
Since
Ly () <Ly 1(0) = as, (37
for any € > 0 we have P (L, 41.m(t),) < a + ¢) — 1. Equivalently,
C(Xp41) N Y
P('C( 1) Yo > 1a€) — 1. (38)
Y1
O

A.3 DATASETS

We utilized three distinct image segmentation datasets to evaluate the robustness of our proposed
algorithms: polyp segmentation, skin lesion segmentation, and flame segmentation. These tasks are
particularly critical for FNR control, as missing parts of the region of interest can lead to severe
consequences.
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For each dataset, we followed a specific data partitioning strategy. The initial training set was used
for training the base segmentation models (UNet (Ronneberger et al., [2015), DeepLab v3+ (Chen
et al.,|2018)), PSPNet (Zhao et al.| 2017), SINet (Fan et al., | 2020a)). The remaining data was desig-
nated as the test set. This test set was then further partitioned. One half of the test set was reserved
for final performance evaluation. The other half was designated as a calibration set. For AA-CRC,
AT and COAT methods, this calibration set was further equally divided into a training subset (for
training the adaptive threshold prediction model fp) and a calibration subset (for determining the
final calibrated threshold). For the standard Conformal Risk Control (CRC) method, the entire cali-
bration set was utilized for its calibration procedure.

* Polyp Dataset: Following similar setups as Angelopoulos et al. (Angelopoulos et al.,
2024), blot et al. (Blot et al., [2025) and Fan et al. (Fan et al., 2020Db), this dataset (Jha
et al., 2019} Bernal et al., 2017; [Vazquez et al.l [2017} [Tajbakhsh et al., [2015} |Silva et al.,
2014) comprised 1450 images for training the base segmentation models and 798 images
for the test set.

* Skin Lesion Dataset: We employed the HAM10000 skin image dataset (Tschandl et al.,
2018). This dataset was split with 50% (5007 images) allocated for training the base models
and the remaining 50% (5008 images) for the test set.

* Fire Dataset: For image fire segmentation experiments, we used the dataset provided by
Aktag (Aktagl [2023). This dataset was partitioned with 80% (21968 images) for training
the base models and 20% (5492 images) for the test set.

Additionally, for both the AT and COAT methods, the threshold predictor fp was implemented
using a ResNet-50 (He et al., [2016) architecture. The training epochs for AT were set to 30, while
for COAT, they were set to 60. For the COAT method, the temperature parameter 7" used in the
sigmoid function for the soft mask calculation was set to 0.05.

A.4 EXPERIMENTAL DETAILS

Reproducibility Statement: The source code and experiment scripts used to generate the results in
this paper will be made publicly available upon publication of the paper.

Implementation Details: All experiments were conducted on a server equipped with an NVIDIA
RTX 4090 GPU (24GB of RAM), running Ubuntu 24.04. Our models were implemented using
Python 3.10, PyTorch 2.3.0, and the system was configured with CUDA 12.6. The learning rate of
the COAT method is consistently set to 5e~#, and the batch size is 64. All the basic segmentation
models underwent 20 epochs of training. Additionally, a unified learning rate of 1e~* and a batch
size of 24 were employed for all models. The random seed was set to 42 for all experiments.

L » v = Wim|

FNR=0.779 FNR=0.514 FNR=0.500 FNR=0.302 FNR=0.301 FNR=0.202 FNR=0.199 FNR=0.101 FNR=0.100

FNR 0.181 FNR=0.328 FNR=0.213 FNR=0.219 FNR=0.205 FNR=0.194 FNR=0.197 FNR=0.187 FNR=0.199 FNR=0.197

Figure 7: Qualitative comparison of CRC and COAT prediction sets at a significance level of a =
0.2.

A.5 FIRE RESULTS

Desired FNR=0.2 (a 0.2)

Original

FNR=0.803

CRC

COAT

Due to space constraints, we have included the qualitative analysis of the fire dataset in the appendix.
It is evident that COAT consistently maintains target coverage, albeit with a certain degree of false
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positive rate. However, when compared to CRC, COAT demonstrates a lower and more stable false

negative rate.

A.6  SENSITIVITY ANALYSIS

In this section, we employed the SINet basic segmentation model on various datasets and
conducted a grid search sensitivity analysis with parameters set as «
[0.001,0.01,0.05,0.1, 1,10, 100]. Similarly, each experiment was carried out with 20 random splits,
and the results are presented as the mean values and standard deviations.

a=0.1
Dataset T Marginal Coverage Coverage Gap
100 0.901 (0.016) 0.151 (0.012)
10 0.899 (0.023) 0.153 (0.018)
1 0.899 (0.023) 0.156 (0.017)
Polyp 0.1 0.899 (0.012) 0.114 (0.015)
0.05 0.896 (0.016) 0.102 (0.010)
0.01 0.900 (0.020) 0.148 (0.013)
0.001 0.901 (0.026) 0.147 (0.018)
100 0.900 (0.003) 0.071 (0.001)
10 0.901 (0.003) 0.070 (0.001)
1 0.900 (0.003) 0.070 (0.001)
Fire 0.1 0.900 (0.003) 0.062 (0.001)
0.05 0.900 (0.003) 0.059 (0.001)
0.01 0.900 (0.004) 0.060 (0.001)
0.001 0.900 (0.003) 0.066 (0.014)
100 0.900 (0.001) 0.081 (0.001)
10 0.901 (0.001) 0.081 (0.001)
1 0.900 (0.002) 0.081 (0.001)
Skin 0.1 0.901 (0.004) 0.056 (0.001)
0.05 0.899 (0.003) 0.055 (0.001)
0.01 0.900 (0.004) 0.056 (0.002)
0.001 0.899 (0.003) 0.058 (0.009)

0.1 and T

Table 2: Marginal Coverage and Coverage Gap Results at « = 0.1 Across Different Models and 7'
Each dataset result is the mean and standard deviation of 20 random splits.

A.7 COAT CoORE CODE IMPLEMENTATION

To enhance the reproducibility of our work, this appendix provides the core PyTorch implementation
details for our COAT (Conditional Optimization for Adaptive Thresholding) method. We have split
the implementation into two parts, mirroring the two main stages of the framework: the end-to-end

training of the threshold predictor, and the subsequent post-hoc calibration and inference process.
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A.7.1 ALGORITHM FOR COAT TRAINING PHASE

This first algorithm details the training procedure for the adaptive threshold predictor, fp. The core
components are the network architecture itself and the novel differentiable miscoverage loss func-
tion, LcoaT, which enables direct, gradient-based optimization towards the conditional coverage

target.

Algorithm 2 Python Pseudo-Code for COAT: Training Phase. This code outlines the end-to-end
training of the ThresholdPredictor network. It includes the network architecture, the differ-
entiable TPR approximation (calculate_differentiable_tpr), and the main training loss

computation within a single training step function (coat_training_step).

import torch
import torch.nn as nn
from torchvision.models import resnet50, ResNet50_Weights

class ThresholdPredictor (nn.Module):
"""The adaptive threshold predictor network, f_D in the paper.
def __init__(self, pretrained: bool = True):
super (). __init__ ()
self.resnet = resnet50 (weights=ResNet50_Weights .DEFAULT)
# Modify input layer for 4 channels (Image RGB + Probability Map)
original_convl = self.resnet.convl

won

self .resnet.convl = nn.Conv2d(4, 64, kernel_size=7, stride=2, padding=3,bias=False)

with torch.no_grad():

self.resnet.convl.weight[:, :3, :, :] = original_convl.weight.clone()
self .resnet.convl.weight[:, 3, :, :] = original_convl.weight.clone().mean(dim=1,

keepdim=True)
# Modify output layer for a single threshold value
self .resnet.fc = nn.Linear(self.resnet.fc.in_features, 1)

def forward(self, image: torch.Tensor, prob_map: torch.Tensor) —> torch.Tensor:

input_tensor = torch.cat([image, prob_map.unsqueeze(l)], dim=1)
return torch.sigmoid(self.resnet(input_tensor))

def calculate_differentiable_tpr (
prob_map: torch.Tensor, true_mask: torch.Tensor, pred_tau: torch.Tensor,
T: float, epsilon: float) —> torch.Tensor:
"""Computes the differentiable TPR"'."""
soft_mask = torch.sigmoid ((prob_map — pred_tau) / T)
intersection = torch.sum(soft_mask = true_mask)
true_mask_size = torch.sum(true_mask)
return intersection / (true_mask_size + epsilon)

def coat_training_step (
model: ThresholdPredictor, optimizer: torch.optim.Optimizer,
image_batch: torch.Tensor, prob_map_batch: torch.Tensor, true_mask_batch:
alpha: float, T: float, epsilon: float):
"""Performs a single training step for the COAT model."""
model . train ()
optimizer.zero_grad ()

# Predict image—specific thresholds
pred_taus = model(image_batch, prob_map_batch)

total_loss = 0.0
target_coverage = 1 — alpha
# Compute loss for each sample in the batch
for i in range(image_batch.size (0)):
tpr_prime = calculate_differentiable_tpr(
prob_map_batch[i], true_mask_batch[i], pred_taus[i], T, epsilon)
# L_COAT = (TPR' - (1 - alpha))”"2
loss = (tpr_prime — target_coverage)#2
total_loss += loss

# Update parameters

avg_loss = total_loss / image_batch.size (0)
avg_loss.backward ()

optimizer.step ()

return avg_loss.item ()

torch . Tensor ,
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A.7.2 ALGORITHM FOR COAT CALIBRATION AND INFERENCE PHASE

Once the ‘ThresholdPredictor’ is trained, this second algorithm details the procedure for calibration
and inference. A held-out calibration set, D.,;, is used to compute a single, global correction term
t’. This correction is then applied to the predicted thresholds for all test images to generate the final
prediction sets, C'(X), which are guaranteed to satisfy the marginal coverage property.

Algorithm 3 Python Pseudo-Code for COAT: Calibration and Inference Phase. This code shows
the post-training procedure. First, calibrate_coat uses the trained model and a calibration set
to find the optimal correction term t_prime. Then, apply_calibrated_coat uses this term
to generate final prediction sets on the test data.

import torch
import numpy as np

def calibrate_coat(
model: torch.nn.Module, cal_loader: torch.utils.data.DataLoader, alpha: float) —> float:
"""Performs calibration to find the correction term t"'."""
model . eval ()
base_taus_cal = []

# Compute base thresholds for the calibration set D_cal
with torch.no_grad():
for (images, prob_maps, _) in cal_loader:
base_taus_cal.extend (model (images, prob_maps).cpu().numpy())

# Define the empirical coverage function R(t)
def get_empirical_coverage(t: float) —> float:
coverages = []
cal_dataset = cal_loader.dataset
for i in range(len(cal_dataset)):
_, prob_map, true_mask = cal_dataset[i]
# Apply correction: tau_i — t
adjusted_tau = np.clip(base_taus_cal[i] — t, 0, 1)
pred_set = prob_map >= adjusted_tau
if true_mask.sum() > O:
coverage = (pred_set & true_mask).sum() / true_mask.sum()
coverages .append(coverage .item())
return np.mean(coverages) if coverages else 0.0

# Find minimal correction t' via search (e.g., binary search)

# Target is R(t) >= (ID_call+1)/ID_call % (l-alpha)

n = len(cal_loader.dataset)

target_cal_coverage = (n + 1) / n * (1 — alpha)

# A placeholder for a binary search function to find t'

t_prime = binary_search_for_t(get_empirical_coverage , target_cal_coverage)

return t_prime

def apply_calibrated_coat(
model: torch.nn.Module, test_loader: torch.utils.data.DataLoader, t_prime: float) —> list:
""" Applies the calibrated model to the test set."""
model . eval ()
prediction_sets = []
with torch.no_grad():

for (images, prob_maps, _) in test_loader:
# Compute base thresholds for test images
base_taus_test = model(images, prob_maps)

for i in range(len(images)):
# Calculate the adjusted threshold
adjusted_tau = torch.clamp(base_taus_test[i] — t_prime, 0, 1)
# Generate the final prediction set
pred_set = prob_maps[i] >= adjusted_tau
prediction_sets .append(pred_set)

return prediction_sets # Line 23: Output C(X_i)
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