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ABSTRACT
How can we perform inference on data using cloud servers without leaking any information to them? The answer
lies in Trained-MPC, an innovative approach to inference privacy that can be applied to deep learning models.
It relies on a cluster of servers, each running a learning model, which are fed with the client data added with
strong noise. The noise is independent of user data, but dependent across the servers. The variance of the noise
is set to be large enough to make the information leakage to the servers negligible. The dependency among the
noise of the queries allows the parameters of the models running on different servers to be trained such that the
client can mitigate the contribution of the noises by combining the outputs of the servers, and recover the final
result with high accuracy and with a minor computational effort. In other words, in the proposed method, we
develop a multiparty computation (MPC) by training for a specific inference task while avoiding the extensive
communication overhead that MPC entails. Simulation results demonstrate Trained-MPC resolves the tension
between privacy and accuracy while avoiding the computational and communication load needed in cryptography
schemes.

1 INTRODUCTION

With the expansion of machine learning (ML) applications,
which deal with high-dimensional datasets and models, it
is inevitable to offload heavy computational and storage
tasks to cloud servers, particularly for resource-constrained
edge devices (e.g., mobile units). The vision of future 6G
networks is to enable the edge nodes to send their data to the
servers, so the servers can perform the inference and send
the results back (Uusitalo et al., 2021). This raises a list
of challenges, such as communication overhead, operation
cost, etc. One of the major concerns, becoming increasingly
important, is maintaining the privacy of the client data such
that the level of information leakage to the cloud servers is
under control.

In this paper, we focus on the inference privacy problem,
where a client wishes to employ some server(s) to run an al-
ready trained model on his data while preserving the privacy
of his data against curiosity of servers. There are various
techniques to provide privacy in ML, with the following
three major categories:
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(I) Randomization, Perturbation, and Adding Noise:
Applying these techniques to the client data confuses the
servers and reduces the level of information leakage, at the
cost of sacrificing the accuracy of the results. The infor-
mation leakage can be measured using concepts such as
mutual information (Cover & Thomas, 2012) and differen-
tial privacy (Dwork & Roth, 2014). The authors in (Li et al.,
2017; Liu et al., 2017a; Wang et al., 2018a; Osia et al., 2020;
Mireshghallah et al., 2020; 2021) partition a deep neural net-
work between edge and cloud and offload the computation
of some layers to the server. Those papers only consider
input privacy and do not guarantee output privacy, i.e., some
labels of the input data are exposed to the server. In addi-
tion, their performance depends on heavy computation on
the client-side, e.g., over 40% of the computation is still
performed by the client in (Osia et al., 2018).

(II) Secure Multiparty Computation (MPC): This ap-
proach exploits the existence of a cluster of servers, some
of them non-colluding, to guarantee information-theoretic
privacy in some classes of computation tasks like the poly-
nomial functions (Shamir, 1979; Yao, 1982; Ben-Or et al.,
1988). This approach can be applied to an ML algorithm
(Mohassel & Zhang, 2017; So et al., 2019; Wagh et al., 2019;
2020; Koti et al., 2021). The shortcoming of this solution
is that it costs the network a huge communication overhead
due to the need for exchanging encrypted data, intermedi-
ate results, and coordination messages between the parties.
Moreover, some specifications in the setup of this approach
(e.g., polynomial approximation and finite field arithmetic)
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Figure 1: A motivating example of Trained-MPC framework
for inference privacy. By injecting the correlated queries and
combining the answers with a simple addition, the client
obtains the result with high confidence, as confirmed by
the softmax vector. Thanks to the very strong noise with a
standard deviation of 70 times that of the data, the servers
cannot infer anything about the data and its label (preserv-
ing both input and output privacy). The high performance
of Trained-MPC comes from the fact that the information
leakage from each individual query is negligible, while the
joint queries inject useful information into the system for
classification.

make it challenging to use in deep learning.

(III) Homomorphic Encryption (HE): Homomorphic en-
cryption (Gentry & Boneh, 2009) is a cryptography method
that can be applied for ML applications (Gilad-Bachrach
et al., 2016; Hesamifard et al., 2017; Han et al., 2019). It
creates a cryptographically secure framework, between the
client and the servers, that allows the untrusted servers to
process the encrypted data directly. However, the computa-
tional overhead of HE schemes is very high due to the com-
plex mathematical operations and specialized algorithms on
encrypted data (with a much larger size than plain data). In
addition, it is based on computational hardness assumption
and does not guarantee information-theoretic privacy.

Our contributions: In this paper, we propose Trained-
MPC as an alternative approach to preserve privacy in of-
floading ML algorithms in a multi-server setup. Our key
idea is to design the queries of the servers in such a way
that they individually do not leak any information to the
servers but jointly inject the data into the system so that we
can achieve a high level of privacy and accuracy simulta-
neously. For this purpose, we use correlated queries (see
Figure 1). These correlated queries are generated by adding
strong noises to the client data, where the added noises
are independent of the data itself but dependent across the
servers. On one hand, we set a large enough noise variance
to guarantee negligible information leakage to the servers,
ensuring both input and output privacy. On the other hand,
the dependency among the noise of the queries provides an
opportunity for the parameters of the models in different
servers to be trained in a way that the client, by combining
the outputs of the servers, can mitigate the contribution of
the noises. This opportunity allows the system to potentially

have high accuracy even when we preserve almost perfect
privacy. Note that such an opportunity does not basically
exist in the approaches using adding noise and perturbations.
Furthermore, Trained-MPC is very efficient. In this method,
each server runs a regular ML model (e.g., a deep neural
network) with no computational overhead. In addition, there
is absolutely no communication among the servers. Indeed,
the servers may not even be aware of the existence of each
other. Also, Trained-MPC achieves high accuracy with very
few servers. The experimental results demonstrate that the
proposed method significantly outperforms the adding noise
approach and ARDEN (Wang et al., 2018a), a framework
based on perturbation and adding noise techniques.

In a nutshell, Trained-MPC stems multiparty computation
(MPC) by training for a specific inference task, resolving
the tension between privacy and accuracy, and avoiding the
extensive communication and computational overhead of
MPC and HE approaches, respectively.

The rest of the paper is organized as follows. Section 2 for-
mally presents Trained-MPC framework. Section 3 details
a design for Trained-MPC in the learning task. In Section 4,
the experimental results are discussed.

2 GENERAL TRAINED-MPC FRAMEWORK

Policy: In Trained-MPC, we want to provide a private
machine-learning-as-a-service. We consider a system in-
cluding a client, with limited computational and storage
resources, and N servers. The client has individual data and
wishes to run an ML algorithm (e.g., deep neural networks)
on it with the aid of the servers, while he wishes to keep his
data private from the servers. For this purpose, the client
sends queries to the servers, and then by combining the
received answers, he derives the target (e.g., label in the
supervised learning). Here, the client data and its target are
both sensitive.

Threat model: This paper considers a semi-honest setup
with N honest-but-curious servers. All the servers follow
the protocol, but an arbitrary subset of up to T < N of
them may collude (by sharing their queries together) to gain
information about the client data. As mentioned earlier,
one of the interesting aspects of Trained-MPC framework
is that the servers do not need to communicate with each
other - in other words, the framework does not impose
any communication among the servers on the system. In-
deed, the servers may not even be aware of the existence
of each other. This aspect makes our setup quite practical.
Also, the threat model assumes that any curious server can
access unlimited computational resources to extract infor-
mation about the client data. In other words, we preserve
information-theoretic privacy in this paper rather than only
computational privacy.



Trained-MPC: A Private Inference by Training-Based Multiparty Computation

System model: The system is operated in two phases, the
training phase, and then the inference phase.

In the training phase, the dataset Sm =
{(X(1),Y (1)), . . . , (X(m),Y (m))} consisting of m ∈ N
samples is used by the client to train the model, where
(X(i),Y (i)) denotes the data sample and its target, for
i = 1, . . . ,m. In addition, the client generates m inde-
pendent and identically distributed (i.i.d.) noise samples
Zm = {(Z(1)

1 , . . . ,Z
(1)
N ), . . . , (Z

(m)
1 , . . . ,Z

(m)
N )}, where

each noise sample Z(i) = (Z
(i)
1 , . . . ,Z

(i)
N ), with N

correlated components, is sampled from a joint distribution
PZ = PZ1,...,ZN

. The noise components are independent
of the dataset Sm.

For i = 1, . . . ,m, the client, having access to the
dataset Sm and the noise component set Zm, uses
a preprocessing function gPre to generate N queries(
Q1(X(i),Z

(i)
1 ), . . . , QN (X(i),Z

(i)
N )
)

= gPre(X
(i),Z(i))

and sends Qj(X
(i),Z

(i)
j ) to the j-th server, for j =

1, . . . , N . In response, the j-th server applies a function
(a model) fj (which will be trained), and generates the
answer A

(i)
j as A

(i)
j = fj(Qj(X

(i),Z
(i)
j )). By com-

bining all the answers from the N servers using a post-
processing function gPost , the client estimates the target,

Ŷ
(i)

= gPost(A
(i)
1 , . . . ,A

(i)
N ), while the information leak-

age from the set of queries to any arbitrary T servers must
be negligible.

In the training phase, the goal is to design or train the set of
functions F = {gPre , gPost , f1, . . . , fN} and PZ according to
the following optimization problem,

min
F ,PZ

1

m

m∑
i=1

L{Ŷ (i)
,Y (i)}

s.t. Γ
(
X(i);QT (X(i),Z(i))

)
≤ ε,

∀T ⊂ [N ], |T | ≤ T,
∀i ∈ [m],

(1)

where QT (X(i),Z(i))
4
=
{
Qj(X

(i),Z
(i)
j ), j ∈ T

}
and

L{Ŷ (i)
,Y (i)} shows the loss function between Ŷ

(i)
and

Y (i), for some loss function L. Γ denotes the leakage
function and measures the privacy leakage, which can be
defined according to mutual information (MI) or differential
privacy (DP). The constraint guarantees that information
leakage through any set of T queries is less than ε ∈ R≥0.
Furthermore, we desire that the computational and storage
costs of gPre and gPost are low.

In the inference phase, to deploy this model to estimate the
target of a new input X , the client chooses (Z1, . . . ,ZN ),
sampled from designed distribution PZ, independent of all

other variables in the network, and follows the same protocol
and uses the designed or trained functions set F .

Privacy measure: We measure privacy with both criterions
MI and DP. Here, let gPre be a mechanism with a random
source Z sampled from the distribution PZ = PZ1,...,ZN

that takes an independent variable X as input and gener-
ates N queries, i.e.,

(
Q1(X,Z1), . . . , QN (X,ZN )

)
=

gPre(X,Z).

Definition 1 (Mutual information privacy preserving). Let
X be a random variable sampled from an arbitrary distri-
bution PX . The mechanism gPre satisfies ε-MI privacy if for
all T ⊂ [N ] of size T it holds that:

I
(
X;QT (X,Z)

)
≤ ε.

This definition uses Shannon’s mutual information (Cover
& Thomas, 2012) to measure privacy. This definition states
that information obtained about the client data by observing
any set of T released queries is negligible. Here, ε ∈ R≥0

is the privacy parameter; the less ε, the more privacy is
preserved. Besides mutual information, differential privacy
(Dwork & Roth, 2014) is a well-known privacy metric in
the machine-learning context. Although DP is mainly used
for revealing information about the training dataset in the
trained model privacy problem, we also consider this metric
by the following definition.

Definition 2 (Strict differential privacy preserving). The
mechanism gPre satisfies (ε,δ)-SDP privacy if for all T ⊂
[N ] of size T the following inequality holds for any two
arbitrary inputs X and X ′ and for any possible output set
O of the corresponding T queries:

P
[
QT (X,Z) ∈ O

]
≤ eεP

[
QT (X ′,Z) ∈ O

]
+ δ,

where the probability space is over the random source of
the mechanism.

This definition states that change of the client data in the
input has a negligible effect on the distribution of any set
of T released queries. Here, ε ∈ R≥0 and δ ∈ [0, 1] are
the privacy parameters; the less (ε,δ), the more privacy is
preserved. Note that since strict differential privacy is de-
fined for any two inputs (which can be different in one pixel
or a subset of pixels or completely different), it guarantees
conventional differential privacy defined for two adjacent
inputs.

3 DETAILS OF ONE DESIGN

In this section, we propose one realization of Trained-MPC.
The structure of the algorithm has been shown in Figure 2.
Here, we explain the different components of the proposed
algorithm and then we analyze privacy and accuracy.
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Figure 2: Trained-MPC for classification

3.1 Algorithm

Correlated joint distribution PZ: The following steps
describe how we generate samples of Z. First a matrix
W ∈ RT×N is formed, such that (i) any submatrix of size
T ×T of W is full rank, and (ii) for any submatrix Ω of size
T × (T + 1) of W, the matrix [~1,Ω>] is full rank, here ~1
denotes the all-ones vector with length T + 1. In addition,
random matrix Z̄ = [Z̄1, . . . , Z̄T ] ∈ Rs×T , independent of
X , is formed where each entry is chosen independently and
identically from N (0, σ2). Here, s is the size of each query
and σ2 is a positive real number, denoting the variance of
each entry. Then, let Z be

Z
4
= [Z1, . . . ,ZN ] = Z̄W. (2)

As will see, conditions (i) guarantees privacy-preserving,
and condition (ii) potentially provide the chance of noise
cancellation at the client (accuracy-preserving).

Preprocessing function gPre : This function is formed as,

Qj = Qj(X,Zj)
4
= G(X) + Zj

= Normalized(ḡPre(X)) + Zj . (3)

Since the client has limited computing resources, ḡPre can be
a neural network with one layer or even an identity function.
Normalized(·) is defined in Appendix A.

As we will see in Subsection 3.2, a large enough noise
variance σ2 is sufficient to make the constraint of Opti-
mization (1) be satisfied, independent of the choice of ḡPre

function.

Post-processing function gPost : We form gPost by running
a neural network with learnable parameters, denoted by
ḡPost , over the sum of the received answers from the servers.

Therefore, Ŷ = ḡPost(A) = ḡPost

(∑N
j=1 Aj

)
. To limit the

computational burden on the client, ḡPost is chosen as at most
a single-layer neural notwork with learnable parameters.

Functions f1 to fN : These functions are chosen as some

multi-layer neural networks with learnable parameters. The
parameters of f1 to fN will be different.

Training: To train the learnable parameters of F =
{gPre , gPost , f1, . . . , fN}, we use some a particular form of
gradient descent optimization algorithms to minimize the
loss of Optimization (1). In other words, we train a model,
consisting of N separate neural networks f1 to fN and two
networks ḡPre and ḡPost . The details of this method are pre-
sented in Algorithm 1 (see Appendix B). In this algorithm,
the parameters of the model are denoted by θ and the train-
ing batch size is indicated by b.

3.2 Privacy and Accuracy Analysis

Theorem 1 and 2 respectively show that the proposed
method satisfies ε-MI and (ε,δ)-SDP privacy if we choose
the standard deviation σ large enough. In the following two
theorems, s is the size of each query and

p
4
= max

Ω∈W
{~1>(Ω>Ω)−1~1} ∈ R+, (4)

whereW denotes the set of all T ×T submatrices of W and
~1 denotes the all-ones vector with length T . Φ is the CDF
of the standard normal.

Theorem 1 (ε-MI privacy). Let(
Q1(X,Z1), . . . , QN (X,ZN )

)
= gPre(X,Z) be

the mechanism as defined in (2) and (3). The mechanism
gPre satisfies ε-MI privacy if σ ≥

√
ps√

2 ln 2
1√
ε
.

Theorem 2 ((ε,δ)-SDP privacy). Let(
Q1(X,Z1), . . . , QN (X,ZN )

)
= gPre(X,Z) be

the mechanism as defined in (2) and (3). The
mechanism gPre satisfies (ε,δ)-SDP privacy if
Φ(
√
ps

σ − σε
2
√
ps )− eεΦ(−

√
ps

σ − σε
2
√
ps ) ≤ δ.

Proof of Theorems 1 and 2 and the accuracy analysis can be
found in Appendix C. The experiments in Section 4 show
that by choosing σ large enough, neither the client data nor
its true label can be learned by any T servers.

4 EXPERIMENTS

This section is dedicated to reporting the performance of
the proposed method for the classification task. The imple-
mentation details and the network structure are presented in
Appendix D.1.

4.1 Privacy-Accuracy-Efficiency Trade-Off

We evaluate the performance of Trained-MPC for N = 2
and T = 1, for three different datasets (MNIST (LeCun
et al., 2010), Fashion-MNIST (Xiao et al., 2017), and Cifar-
10 (Krizhevsky, 2009)) and for various noise levels, and we
report the test accuracy. Here we choose W1×2 = [1,−1].
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Figure 3: The Privacy and Accuracy Curves

We also compare the performance of our method with the
adding noise approach, where in this case there is only one
server and noise is added to the input to protect the privacy
of the data. This system is trained to label the noisy data.

Figure 3 demonstrates both the accuracy of the proposed
method and the accuracy of the system with one server
versus σ from 0 to 70, log εMI for MI privacy, and log εDP

for normalized Strict-DP privacy with δSDP = 10−5 (de-
fined in Appendix C.4). For each dataset, we evaluate our
method for two models. In the Trained-MPC-I model, the
client has no neural networks for ḡPre and ḡPost functions,
i.e., the computational load on the client is almost nothing.
In Trained-MPC-II and Trained-MPC-III, there is only one
layer neural network for ḡPost or ḡPre , respectively (the de-
tails of the network structure are provided in Experiment 3
of Appendix D). Also, the computational cost of the client
relative to the computational cost of the entire network is
written next to each model (computational complexity is
calculated by the number of required products.).

This figure shows that, unlike the systems with one server,
Trained-MPC achieves good accuracy for various datasets,
even for a high noise level. For example, in Figure 3a,
the client with a minor post-processing in Trained-MPC-II
achieves 95% accuracy while the privacy leakage is less
than εMI = 0.115 and εDP = 0.121, thanks to the intense
noise with σ = 70. In contrast, with a single server and
adding noise with the same variance, we can reach 13% ac-
curacy. In general, although the accuracy of Trained-MPC
decreases with increasing the noise variance, it still con-
verges to a reasonable value; on the contrary, the adding
noise approach has no gain in perfect privacy preserving.
In summary, Trained-MPC provides a superior trade-off
between privacy-accuracy-efficiency compared to the con-
ventional approaches.

4.2 Comparison

We compare Trained-MPC with the adding noise approach
and ARDEN (Wang et al., 2018a), which is a framework
based on perturbation and adding noise techniques. ARDEN
partitions a neural network across edge and cloud and trans-

ARDEN
(Wang et al.)

Adding Noise Trained-MPC-II
(Ours)

Accuracy
Classification Rate of Client

91.3% 91.1% 95.1%

Computation
Percentage on Client

36.7% 0% 0.003%

Output Privacy
Misclassification Rate of Server

8.7% 8.9% 86.5%

Input Privacy
Reconstruction Loss to Data Power

25.9% 16.1% 46.4%

Query
Transmitted From Client to Server 

Attack
Reconstructed Query by Server

Attacked Attacked Defended

Figure 4: Comparison. The approaches based on pertur-
bation and adding noise have no effective way to mitigate
added confusion and suffer from the level of accuracy and
privacy. The noise mitigation opportunity in Trained-MPC
enables the client to achieve high accuracy in perfect privacy
with a minor computation.

mits the noisy representation of data to the server. It trains
the system on a mixture of the noisy representation and its
clean and perturbed version. As its model parameters are
learnable, it becomes more robust to noise than approaches
like (Mireshghallah et al., 2020; 2021), which do not retrain
the model.

In ARDEN implementation, we use its suggested hyperpa-
rameters (of (Wang et al., 2018a)) and allocate the first two
layers of the network to the client-side. Figure 4 compares
the three methods on the MNIST dataset. Moreover, it visu-
alizes the query and its reconstructed version by the server
for an identical input sample. We leverage the autoencoder
implemented in (Ni, 2018) for the reconstruction and use
mean squared error (MSE) as the loss function.

The figure shows ARDEN, at the cost of computational
burden on the client, improves input privacy slightly com-
pared to the adding noise approach; however, Trained-MPC
outperforms ARDEN by 4% higher accuracy, 10X more
privacy, and 4 orders of magnitude fewer computations on
the client. The low costs on the client-side and the guarantee
of good accuracy make Trained-MPC framework suitable
for practical use cases in mobile devices and the internet
of things (IoT). We report more experiment results in Ap-
pendix D.2.
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Appendix
The appendix is organized as follows: Appendix A provides the notations. Appendix B presents the proposed algorithm.
Appendix C is dedicated to the proofs. Appendix D provides the experimental details and simulation results. Appendix E
reviews the relead works.

A NOTATIONS

Capital italic bold letter X denotes a random vector. Capital non-italic bold letter X denotes a random matrix. Capital
non-italic non-bold letter X denotes a deterministic matrix. I(X;Y ) indicates the mutual information between the two
random vectors X and Y . For a function g, the computational cost (e.g., the number of multiplications) and storage cost (e.g.,
the number of parameters) are denoted as Cc(g) and Cs(g), respectively. Normalized(X), for X = [x1, . . . , xn]> ∈ Rn, is
defined as X−µ

σ , where µ = 1
n

∑n
i=1 xi and σ2 = 1

n

∑n
i=1(xi − µ)2. log x is calculated in base 2 (i.e., log2 x). For T ∈ N,

[T ] = {1, . . . , T}. N (µ, σ2) denotes Gaussian distribution with mean µ and variance σ2. W[:, {t1, . . . , tT }] denotes a
submatrix of W, consisting of the columns t1, . . . , tT of matrix W, respectively. X ⊥⊥ Y indicates the two random vectors
X and Y are independent.

B ALGORITHM

Algorithm 1 Trained-MPC: Inference privacy with N servers, up to T colluding
input: Sm, σ, W, ḡPre (·; θḡPre

), ḡPost (·; θḡPost
), fj(·; θfj ), b

output: PZ and updated ḡPre (·; θḡPre
), ḡPost (·; θḡPost

), fj(·; θfj )

i← 1, . . . , b
s← the output size of ḡPre (·; θḡPre

)

function PZ

Draw s× T i.i.d. noise samples fromN (0, σ2)
Shape the noise samples to s× T matrix Z̄
Compute the noise components: [Z1, . . . ,ZN ]← Z̄W
return (Z1, . . . ,ZN )

end
for the number of training iterations do

Forward path:
Draw b minibatch samples from Sm: {(X(1),Y (1)), . . . , (X(b),Y (b))}
Draw b i.i.d. noise samples from PZ: {(Z(1)

1 , . . . ,Z
(1)
N ), . . . , (Z

(b)
1 , . . . ,Z

(b)
N )}

Compute the client features: U (i) ← ḡPre (X(i); θḡPre
)

Normalize the client features: Û
(i) ← Normalized(U (i))

for j = 1, . . . , N do
Compute the query of the j-th server: Q(i)

j ← Û
(i)

+ Z
(i)
j

Compute the answer of the j-th server: A(i)
j ← fj(Q

(i)
j ; θfj )

end
Compute the sum of the answers: A(i) ←

∑N
j=1 A

(i)
j

Compute the client predicted labels: Ŷ
(i) ← ḡPost (A

(i); θḡPost
)

Compute the loss: L(θḡPre
, θḡPost

, θf1 , . . . , θfN )← 1
b

∑
i

L{Ŷ (i)
,Y (i)}

Backward path:
The backpropagation (BP) algorithm:
Update θḡPost

for j = 1, . . . , N do
Compute the BP of the client to the j-th server
Update θfj
Compute the BP of the j-th server to the client

end
Update θḡPre

end
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As it is clear, the servers do not need to communicate with each other in the forward path. The following proposition states
it also holds for the backward.

Proposition B.1. The servers do not need to communicate with each other in the backward path of Algorithm 1.

Proof. We calculate the gradient of the loss function with respect to the model parameters for a given data X . Let
l = L{Ŷ ,Y } be the loss for the data X . Using denominator-layout notation, we have:

∂l

∂θḡPost

=

computed by client︷ ︸︸ ︷
∂Ŷ

∂θḡPost

∂l

∂Ŷ
,

∂l

∂θfj
=

∂A

∂θfj

∂l

∂A
=
∂(A1 + . . .+ AN )

∂θfj

∂l

∂A

(*)
=

computed by j-th server︷ ︸︸ ︷
∂Aj

∂θfj

BP of client to j-th server︷ ︸︸ ︷
∂l

∂Aj
,

∂l

∂θḡPre

=
∂A

∂θḡPre

∂l

∂A
=
∑
j

∂Aj

∂θḡPre

∂l

∂Aj
=
∑
j

∂Qj

∂θḡPre

∂Aj

∂Qj

∂l

∂Aj
=
∑
j

computed by client︷ ︸︸ ︷
∂Qj

∂θḡPre

BP of j-th server to client︷ ︸︸ ︷
∂l

∂Qj

,

where (*) follows from ∂l
∂Aj

= ∂A
∂Aj

∂l
∂A = I ∂l∂A = ∂l

∂A and BP indicates the backpropagation. Clearly, the framework does
not impose any communication among the servers on the system.

C PROOF OF PRIVACY AND ACCURACY PRESERVING

C.1 Proof of Theorem 1

Theorem C.1 (ε-MI privacy). Let
(
Q1(X,Z1), . . . , QN (X,ZN )

)
= gPre(X,Z) be the mechanism as defined in (2) and

(3). The mechanism gPre satisfies ε-MI privacy if

σ ≥
√
ps√

2 ln 2

1√
ε
. (5)

Proof. In this theorem, we want to show that for all T ⊂ [N ] of size T , we have

I(X; {Qj(X,Zj), j ∈ T }) ≤ ε.

Let K = E[G(X)G(X)T ] denote the covariance matrix of G(X). Since G(X) is Normalized, then tr(K) = s. In
addition, consider the set T = {t1, . . . , tT }, where T ⊂ [N ] and |T | = T , also let ΩT = W[:, T ], and QT =
[Qt1(X,Zt1), . . . , QtT (X,ZtT )]. Then, we have

QT = [G(X), Z̄][~1,Ω>T ]>, (6)

where Z̄ is defined in (3). In addition, we define

[ω1, . . . , ωT ] = ~1>Ω−1
T . (7)
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Thus we have,

I(X; {Qj(X,Zj), j ∈ T }) = I(X; QT )

(a)
= I(X; QT Ω−1

T ) = h(QT Ω−1
T )− h(QT Ω−1

T |X)

(b)
= h(ω1G(X) + Z̄1, . . . , ωTG(X) + Z̄T )− h(Z̄)

(c)
≤

T∑
t=1

(
h(ωtG(X) + Z̄t)− h(Z̄t)

)
(d)

≤
T∑
t=1

1

2

(
log
(
(2πe)s det(ω2

tK + σ2Is)
)
− log(2πeσ2)s

)
(e)
≤ 1

2

T∑
t=1

(
log
(
(

1

σ2
)s(

tr(ω2
tK + σ2Is)

s
)s
))

(f)
=
s

2

T∑
t=1

log(
ω2
t + σ2

σ2
)

(g)

≤ s

2 ln 2

T∑
t=1

ω2
t

σ2

(h)

≤ ε,

where (a) follows since ΩT is a full rank matrix; (b) follows from (6), (7) and the fact that Z̄ is independent of X; (c)
follows from inequality h(A,B) ≤ h(A) + h(B) for any two random vectors A and B, and the fact that the set of random
vectors {Z̄1, . . . , Z̄T } is mutually independent; (d) follows because Z̄ is independent of X and jointly Gaussian distribution
maximizes the entropy of a random vector with a known covariance matrix (Cover & Thomas, 2012); (e) follows from
the fact that by considering a symmetric and positive semi-definite matrix H = ω2

tK + σ2Is with eigenvalues λk, we have

det(H) =
s∏

k=1

λk and tr(H) =
s∑

k=1

λk, and therefore we obtain det(H) ≤ ( tr(H)
s )s using the inequality of arithmetic and

geometric means; (f) follows since tr(K) = s; (g) follows due to ln(x+ 1) ≤ x; and (h) follows from (5), (4), (7), and by

substituting
T∑
t=1

ω2
t = ~1>(Ω>T ΩT )−1~1 ≤ p.

C.2 Proof of Theorem 2

Theorem C.2 ((ε,δ)-SDP privacy). Let
(
Q1(X,Z1), . . . , QN (X,ZN )

)
= gPre(X,Z) be the mechanism as defined in (2)

and (3). The mechanism gPre satisfies (ε,δ)-SDP privacy if

Φ(

√
ps

σ
− σε

2
√
ps

)− eεΦ(−
√
ps

σ
− σε

2
√
ps

) ≤ δ. (8)

For δ < 1
2 , Inequality (8) yields a simpler bound, but not as tight as before:

σ ≥ √ps(−2Φ−1(δ)

ε
+

1

−Φ−1(δ)
). (9)

Here Φ−1 denotes the inverse function of Φ.

Proof. The following steps proof the theorem:

Step 1. Mechanism and its distribution:

Consider the set T = {t1, . . . , tT }, where T ⊂ [N ] and |T | = T , and also let ΩT = W[:, T ]. All data revealed to the

colluding servers is the set {Qj(X,Zj), j ∈ T }, where Qj(X,Zj) = G(X) + Zj and ZT
4
= [Zt1 , . . . ,ZtT ] = Z̄ΩT .

Indeed, for all set T , we want to evaluate privacy of the mechanism QT : Rs → RTs where QT (X)
4
= [G(X)> +

Z>t1 , . . . , G(X)> + Z>tT ]>. To structure the algebra equations, we use the Kronecker product. The mechanism is rewrited
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to QT (X) = ~1⊗G(X) + vec(ZT ) that has the distribution N (µX ,Σ). Here,

µX
(a)
= ~1⊗G(X),

Σ = E[vec(ZT )vec(ZT )>]

(b)
= E[(Ω>T ⊗ Is)vec(Z̄)vec(Z̄)>(Ω>T ⊗ Is)

>]

(c)
= σ2(Ω>T ΩT ⊗ Is),

where vec(ZT ) is a vector obtained by stacking ZT ’s columns; (a) follows since ZT is zero-mean; (b) is due to the
fact that vec(ZT ) = (Ω>T ⊗ Is)vec(Z̄) (following from ZT = Z̄ΩT with some simple algebra); and (c) follows from
E[vec(Z̄)vec(Z̄)>] = σ2ITs. As ΩT is full rank, the distribution N (µX ,Σ) is non-degenerate and has density. Note that
unlike MI which deals with both the distributions PX and PZ, in DP the probability space is over the random source of the
mechanism, i.e., the distribution PZ.

Step 2. Privacy loss:

To evaluate privacy of the mechanism QT , we leverage a necessary and sufficient condition for differential privacy (Balle &
Wang, 2018). It states that a mechanismM satisfies

∀O : P[M(X) ∈ O] ≤ eεP[M(X ′) ∈ O] + δ

iff we have

P[LM,X,X′ ≥ ε]− eεP[LM,X′,X ≤ −ε] ≤ δ.

LM,X,X′ is the privacy loss random variable defined as LM,X,X′ = ln
fM(X)(Y )

fM(X′)(Y ) where the random variable Y follows
the distribution ofM(X) and fM(X)(·) denotes the probability density function (PDF) ofM(X). In the following, we
want to calculate the distribution of LQT ,X,X′ for two arbitrary X and X ′ and QT (X) ∼ N (µX ,Σ).

Consider Y sampled from N (µX ,Σ). We have:

LQT ,X,X′ = ln
fQT (X)(Y )

fQT (X′)(Y )

= ln

1√
(2π)Ts det(Σ)

exp
(
− 1

2 (Y − µX)>Σ−1(Y − µX)
)

1√
(2π)Ts det(Σ)

exp
(
− 1

2 (Y − µX′)>Σ−1(Y − µX′)
)

= −1

2

[
(Y − µX)>Σ−1(Y − µX)− (Y − µX′)

>Σ−1(Y − µX′)
]

=
1

2
(µX − µX′)

>Σ−1(µX − µX′) + (Y − µX)>Σ−1(µX − µX′).

Since Y ∼ N (µX ,Σ), LQT ,X,X′ has the distribution N (η, 2η) where η = 1
2 (µX − µX′)

>Σ−1(µX − µX′). By
substituting µX = ~1⊗G(X) and Σ = σ2(Ω>T ΩT ⊗ Is), we have

η =
pT∆2

X,X′

2σ2
,

where pT
4
= ~1>(Ω>T ΩT )−1~1 and ∆X,X′

4
= ‖G(X)−G(X ′)‖2. In a similar way, LQT ,X′,X has the same distribution.

Step 3. Computing ε and δ:

According to the previous step, the mechanism gPre is (ε,δ)-DP iff for all set T and for any X and X ′ it holds:

P[N (η, 2η) ≥ ε]− eεP[N (η, 2η) ≤ −ε] ≤ δ.
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Since the left-hand side of the inequality is monotonically increasing function of η (see (Balle & Wang, 2018)) , we

substitute η with the upper bound η =
pT∆2

X,X′

2σ2 ≤ 4ps
2σ2 . This bound follows from p = max

T
pT = max

Ω∈W
{~1>(Ω>Ω)−1~1}

(see (4)) and ∆2
X,X′ = ‖G(X)−G(X ′)‖22 ≤ 4s (G(X) is Normalized and ‖G(X)‖2 =

√
s for all X). Also, we have

P[N (η, 2η) ≥ ε] = Φ( η−ε√
2η

) and P[N (η, 2η) ≤ −ε] = Φ(−η−ε√
2η

). Thus, the mechanism gPre is (ε,δ)-DP if

Φ(

√
ps

σ
− σε

2
√
ps

)− eεΦ(−
√
ps

σ
− σε

2
√
ps

) ≤ δ,

which is obtained from substituting the upper bound of η for all set T in the necessary and sufficient condition.

For δ < 1
2 , we show that if σ ≥ √ps(−2Φ−1(δ)

ε + 1
−Φ−1(δ) ), then the condition given above is satisfied:

Φ(

√
ps

σ
− σε

2
√
ps

)− eεΦ(−
√
ps

σ
− σε

2
√
ps

)
(a)
≤ Φ(

√
ps

σ
− σε

2
√
ps

)

(b)

≤ Φ(
1

−2Φ−1(δ)
ε + 1

−Φ−1(δ)

+ Φ−1(δ)− ε

−2Φ−1(δ)
)

(c)
≤ Φ(

1
−2Φ−1(δ)

ε

+ Φ−1(δ)− ε

−2Φ−1(δ)
) = δ,

where (a) follows from Φ(·) ≥ 0; (b) follows from the fact that Φ(
√
ps

σ − σε
2
√
ps ) is monotonically decreasing in σ ≥ 0, and

we can substitute σ with the lower bound in (9); and (c) follows because Φ(·) is monotonically increasing, and−Φ−1(δ) > 0
for δ < 1

2 .

C.3 Proof of Accuracy Preserving

The following theorem shows that the proposed algorithm provides the potential of noise cancellation from every T + 1
queries for the client to achieve high accuracy.

Theorem C.3 (Accuracy Preserving). Let
(
Q1(X,Z1), . . . , QN (X,ZN )

)
= gPre(X,Z) be the mechanism as defined

in (2) and (3). For all T ′ ⊂ [N ] of size T + 1, there exists a non-constant function f such that:

f
(
gPreT ′

(X,Z)
)
⊥⊥ Z.

Proof. In this theorem, we want to show that for all T ′ = {t1, . . . , tT+1}, there exists a non-constant function f such that:

f(Qt1(X,Zt1), . . . , QtT+1
(X,ZtT+1

)) ⊥⊥ Z.

According to the definition of matrix W in (3), for all set T ′ = {t1, . . . , tT+1}, the matrix [~1,Ω>T ′ ] is full rank, where
ΩT ′ = W[:, T ′] and ~1 is the all-ones vector with length T + 1. We claim that

f(Qt1(X,Zt1), . . . , QtT+1
(X,ZtT+1

))
4
= QT ′([~1,Ω

>
T ′ ]
>)−1~e1

satisfies the problem. Here, QT ′ = [Qt1(X,Zt1), . . . , QtT+1
(X,ZtT+1

)] and ~e1 = [1, 0, . . . , 0]> is the standard basis
with length T + 1.

Proof of the claim: According to (2) and (3), we have QT ′ = [G(X), Z̄][~1,Ω>T ′ ]
>. Therefore,

f(Qt1(X,Zt1), . . . , QtT+1
(X,ZtT+1

)) = QT ′([~1,Ω
>
T ′ ]
>)−1~e1

= [G(X), Z̄][~1,Ω>T ′ ]
>([~1,Ω>T ′ ]

>)−1~e1

= G(X),

where G(X) is independent of Z. Thus, the system has the chance of noise cancellation.
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Table 1: Privacy Parameters.

Dataset Standard Deviation Privacy Parameter

εMI εDP

MNIST, Fashion-MNIST
s = 28× 28
p = 1

σ = 70 0.1 0.1
σ = 50 0.2 0.2
σ = 30 0.6 0.3

Cifar-10
s = 3× 32× 32
p = 1

σ = 70 0.5 0.1
σ = 50 0.9 0.2
σ = 30 2.5 0.4

C.4 Privacy Parameters

Table 1 reports εMI for mutual information privacy and εDP

4
=

εSDP√
s

for normalized strict differential privacy with δSDP = 10−5

at different values of the standard deviation σ. Here, we choose s equal to the size of the raw data and p = 1 (for
W1×2 = [1,−1]).

Remark: As said before, strict differential privacy guarantees conventional differential privacy. A question may arise - why
do we define DP for any two inputs instead of two adjacent inputs (e.g., different in only one feature or pixel)? The point
is that unlike a usual dataset, which has independent instances, the elements of an image are correlated (see the notion of
group privacy for datasets whose instances are correlated (Dwork & Roth, 2014)). That is, changing a concept/object in a
data/image changes a large number of pixels. Thus, it makes sense to define DP for any two inputs when we do not have a
bound on the number of pixels associated with a concept. The notation of Strict-DP is approximately

√
s times stronger than

conventional DP (see the impact of the data size s in inequalities (8) and (9)).

Here we illustrate the difference between DP and Strict-DP in a simple example. Consider an imageX = [x1, . . . , xs]
> ∈ Rs

consisting of s pixels, each in the range [0, 1]. The Gaussian Mechanism with parameter σ adds noise N (0, σ2) to each
of the pixels. Using Classical Gaussian Mechanism (Dwork & Roth, 2014), the output is (ε, δ)-DP for ε, δ ∈ (0, 1) if

σ ≥ ∆
ε

√
2 ln 1.25

δ , where ∆ is defined as maxadjacentX,X′‖X −X ′‖2. As it is clear, for two adjacent images (i.e., different
in only one pixel), we have ∆ = 1. Now consider Strict-DP, which is defined for any two images instead of two adjacent
images. In this case, ∆ becomes maxanyX,X′‖X −X ′‖2= ‖[1, . . . , 1]>‖2=

√
s. Therefore, εSDP is

√
s times εDP at the

same level of σ.

D EVALUATION

This section is dedicated to reporting simulation results. In Subsection D.1, the implementation details of the proposed
method is presented. In Subsections D.2, we have conducted experiments to answer the following questions:

1. How is the performance of Trained-MPC in perfect privacy? (Experiment 1 in Part D.2.1).

2. How does noise affect the output? (Experiment 2 in Part D.2.2)

3. How is the accuracy of Trained-MPC compared to the adding noise approach? (Experiment 3 in Part D.2.3)

4. How much do pre- and post-processing impact accuracy? (Experiment 4 in Part D.2.4)

D.1 The Implementation Details

Datasets: We evaluate the proposed algorithm for the classification task on MNIST (LeCun et al., 2010), Fashion-MNIST
(Xiao et al., 2017), and Cifar-10 (Krizhevsky, 2009) datasets by using their standard training sets and testing sets. The only
used preprocessings on images are Random Crop and Random Horizontal Flip on Cifar-10 training dataset and padding
MNIST and Fashion-MNIST images on all sides with zeros of length 2 to fit in a network with input size 32× 32.

Setup: We employ Convolutional Neural Networks (CNNs) in ḡPre , fj , and ḡPost . We initialize the network parameters by
Kaiming initialization (He et al., 2015). For each value of the standard deviation of the noise, we continue the learning
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Table 2: Network structure. Normalized(·) function, normalizes its input as defined in the notation A. Conv2d parameters
represent the number of the input channels, the number of the output channels, the kernel size, the stride, and the padding of
a 2D convolutional layer, respectively. FC parameters represent the number of the input neurons and the number of the
output neurons of a fully connected layer. BatchNorm2d and BatchNorm1d parameters represent the number of the input
channels and the number of the input neurons respectively for batch normalization layer.

N(Iden. → Iden.) N(Iden. → no) N(ni → Iden.) N(ni → no)

ḡPre Identity function Identity function
Conv2d (ci,ni,(5,5),3,0)
BatchNorm2d (ni)
ReLU

Conv2d (ci,ni,(5,5),3,0)
BatchNorm2d (ni)
ReLU

fj

Normalized (·)
Conv2d (ci,64,(5,5),3,0)
BatchNorm2d (64)
ReLU
Conv2d (64,128,(3,3),1,0)
BatchNorm2d (128)
ReLU
Flatten
FC (128*8*8,1024)
BatchNorm1d (1024)
ReLU
FC (1024,10)

Normalized (·)
Conv2d (ci,64,(5,5),3,0)
BatchNorm2d (64)
ReLU
Conv2d (64,128,(3,3),1,0)
BatchNorm2d (128)
ReLU
Flatten
FC (128*8*8,1024)
BatchNorm1d (1024)
ReLU
FC (1024,no)

Normalized (·)
Conv2d (ni,128,(3,3),1,0)
BatchNorm2d (128)
ReLU
Flatten
FC (128*8*8,1024)
BatchNorm1d (1024)
ReLU
FC (1024,10)

Normalized (·)
Conv2d (ni,128,(3,3),1,0)
BatchNorm2d (128)
ReLU
Flatten
FC (128*8*8,1024)
BatchNorm1d (1024)
ReLU
FC (1024,no)

ḡPost Identity function
BatchNorm1d (no)
ReLU
FC (no,10)

Identity function
BatchNorm1d (no)
ReLU
FC (no,10)

process for 265 epochs. We also use Adam optimizer (Kingma & Ba, 2014) and decrease the learning rate from 10−3 to
2× 10−5 exponentially during the training. We set the training batch size equal to 128. The models are implemented using
PyTorch (Paszke et al., 2019). For N = 2 and T = 1, we choose

W1×2 =
[
1 −1

]
.

For N = 3 and T = 2, we choose

W2×3 =

[
0
√

3
4 −

√
3
4

1 − 1
2 − 1

2

]
.

For N = 4 and T = 3, we choose

W3×4 =

0
√

8
9 −

√
2
9 −

√
2
9

0 0
√

2
3 −

√
2
3

1 − 1
3 − 1

3 − 1
3

 .
Network structure: fj is a neural network with several convolutional layers and two fully connected layers with the
Rectified Linear Unit (ReLU) activation function (see Table 2 for details). To limit the computational cost of the pre- and
post-processings at the client, we use at most one convolutional layer in ḡPre and at most one fully connected layer in ḡPost .
In particular, ḡPre is either an identity function, denoted by Iden., or a convolutional layer with ni ∈ N output channels.
In addition, ḡPost can be a fully connected layer, with a vector of length no ∈ N as the input, and generating 10 outputs,
representing 10 different classes. The input vector of length no is formed by adding the N vectors of length no, received the
from servers. In addition, we also consider a very simple case for ḡPost , where no = 10 and at the client side, we simply add
up the vectors of length no, received from the servers. In other words, in this case ḡPost is equal to the identity function. We
represent the structure of ḡPre and ḡPost by N(ni → no), where the number of the output channels at ḡPre is equal to ni (with
the exception that ni = Iden. means ḡPre is the identity function, i.e., ḡPre(X) = X), and the number of the output neurons
at fj is equal to no (with the exception that no = Iden. means ḡPost(A) = A). In Table 2, ci denotes the number of the input
image channels. Since the variance of the input queries can be high (see Equation (3)) we use Normalized(.) function at
the first stage of fj . We use the cross-entropy loss function between Y and softmax(Ŷ ) for L{Ŷ ,Y }.
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Figure 5: Results on the accuracy versus the epoch number, for noise level σ = 70, N = 2, T = 1, and N(Iden.→ Iden.)
model on MNIST dataset in Experiment 1.

D.2 More Experiments

D.2.1 Experiment 1: Accuracy Results in Perfect Privacy

Here, we are particularly interested in the case of perfect privacy. For this target, we choose σ = 70, representing a very
strong noise. We consider a vary simple system for the client with N = 2 servers and T = 1. In addition, we use identity
mapping for both ḡPre and ḡPost . This means the number of the output neurons at the servers is 10 and we simply add the
received answers of the servers to find the label of the client data. This case is denoted by N(Iden. → Iden.). Figure 5
reports the test and train accuracy for the MNIST dataset versus the training epoch number. This figure shows that the
system gradually learns how to mitigate the contribution of the correlated noises by combining the outputs of the servers and
achieves high accuracy. It shows that using Trained-MPC, the client achieves 90% accuracy while the privacy leakage is less
than εMI = 0.12, thanks to the strong noise with σ = 70. Note that it is done without any computational load on the client.

D.2.2 Experiment 2: Effect of Noise on the Output

To answer the question of how noise affects the output, here we plot the noise distribution in the output. In Figure 6, we use
a test sample from MNIST dataset with label ”6” as the input. We want to visualize how each server is confused about the
correct label (here ”6”), with an incorrect one (say ”9”). Each plot in the second row of Figure 6 is a 2D-plot histogram,
representing the joint distribution of two neurons of the output of server one, i.e., A1[6] and A1[9] (A1[6] on the x-axis and
A1[9] on the y-axis). We have this figure for different values of σ. If the point (A1[6],A1[9]) is above the line y = x, i.e.,
A1[9] > A1[6], it means that server one incorrectly prefers label ”9” to label ”6”. In the first row in Figure 6, we have the
same plots for A[9] versus A[6], where A = A1 +A2. As we can see, for large noise (i.e., σ = 70), server one chooses ”6”
or ”9” almost equiprobably, while the client almost always chooses the label correctly. This shows that, in our proposed
method, simultaneous training of the two networks f1 and f2 on the correlated queries allows the system to be trained such
that the distribution of the noise at the output of the system does not confuse the client about the correct label (see the first
row in Figure 6).

D.2.3 Experiment 3: Correlated vs. Independent Noise

In this part, we express the details of the experiment described in Subsection 4.1. In that experiment, Trained-MPC-I, Trained-
MPC-II, and Trained-MPC-III indicate the network structure of N(Iden.→ Iden.), N(Iden.→ 32), and N(32→ Iden.),
respectively. Also, here we plot the accuracy of the proposed method for N = 2 and T = 1 versus the case with one server
in Figures 7. This comparison emphasizes the fact that having more than one server with correlated noise would allow the
system to mitigate the negative effects of the noise, even when the noise is strong; however, with one server, even with
training, the system cannot eliminate the noise. Thus, the ability of noise mitigation in Trained-MPC follows not only
from training in the presence of noise but also from the fact that we inject correlated noises into the servers and have the
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Figure 6: The joint distribution of (A[6],A[9]) in the first row and (A1[6],A1[9]) in the second row for a sample with
label ”6” for various the standard deviation of the noise (i.e., σ) in Expriment 2.
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Figure 7: 2 Servers with correlated noise (Trained-MPC) vs. 1 Server (Adding Noise). The results of Experiment 3.

opportunity for noise mitigation.

D.2.4 Experiment 4: Accuracy vs. Efficiency

In this experiment, we discuss client costs in terms of computation, storage, and communication. In Table 3, we evaluate
the proposed algorithm for various models and values (N,T ). We report the test accuracy for three datasets and the
computational and storage costs of the client relative to the computational and storage costs of one of the servers. In
this table, Cc(·) and Cs(·) denote the number of products (representing computational complexity) and the number of the
parameters (representing storage complexity) in a model, respectively. In addition, we report the size of each query, denoted
by s, relative to the size of the client data (the image size).

According to the table, pre- and post-processing results in improved accuracy. Preprocessing plays a role in enhancing
accuracy by enabling a higher capacity to project raw data onto a representation that is more conducive to classification. On
the other hand, post-processing allows clients to perform additional processing on the combined answers.
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Table 3: Test accuracy in the classification task, for various models and different tuple (N,T ). The test accuracy for MNIST,
Fashion-MNIST, and Cifar-10 is evaluated for log εMI = 0, 0, and 1.5, respectively. The results of Experiment 4.

Dataset Model s
Image Size

Cc(g)
Cc(fj)

Cs(g)
Cs(fj)

Accuracy for (N,T )

(2, 1) (3, 2) (4, 3)

MNIST

N(Iden.→ Iden.) 1 0 0 90.72 90.52 90.23
N(Iden.→ 32) 1 3.1e-5 5.1e-5 95.16 95.10 94.87
N(Iden.→ 64) 1 6.3e-5 9.9e-5 96.40 95.57 94.82
N(1→ Iden.) 1.0e-1 3.1e-4 4.0e-6 90.53 - -
N(2→ Iden.) 2.1e-1 6.2e-4 8.1e-6 94.21 - -

Fashion-MNIST

N(Iden.→ Iden.) 1 0 0 81.00 80.45 80.13
N(Iden.→ 32) 1 3.1e-5 5.1e-5 83.32 82.45 82.04
N(Iden.→ 64) 1 6.3e-5 9.9e-5 84.00 - -
N(Iden.→ 128) 1 1.2e-4 1.9e-4 83.02 - -
N(2→ Iden.) 2.1e-1 6.2e-4 8.1e-6 81.69 - -
N(4→ Iden.) 4.1e-1 1.2e-3 1.6e-5 83.35 - -
N(8→ Iden.) 8.3e-1 2.4e-3 3.2e-5 81.51 - -
N(4→ 32) 4.1e-1 1.3e-3 6.7e-5 83.13 - -

Cifar-10

N(Iden.→ Iden.) 1 0 0 35.70 35.47 35.12
N(Iden.→ 32) 1 2.3e-5 3.9e-5 38.30 - -
N(Iden.→ 64) 1 4.7e-5 7.6e-5 42.47 - -
N(Iden.→ 128) 1 9.3e-5 1.5e-4 42.28 - -
N(8→ Iden.) 2.6e-1 6.7e-3 7.2e-5 50.30 - -
N(16→ Iden.) 5.2e-1 1.3e-2 1.4e-4 54.39 - -
N(32→ Iden.) 1.0 2.2e-2 2.9e-4 58.13 - -
N(64→ Iden.) 2.1 3.7e-2 5.7e-4 55.27 - -
N(32→ 128) 1.0 2.2e-2 4.3e-4 58.16 58.02 57.63

In this table, the difference in the cost of the client and each server (in terms of computational and storage complexity) is
quite evident. Also, the communication load between the client and each server is low, which is in the order of the size of X
(in the stage of sending query), and in the order of the size of Y (in the stage of receiving answer).

E RELATED WORKS

In this section, we present privacy concerns in ML and the techniques that can be used to preserve privacy.

Data privacy concerns in ML: Offloading ML tasks to the cloud servers raises the concern of maintaining the privacy of
the used datasets, either the training dataset or the user dataset, such that the level of information leakage to the cloud
servers is under control.

The information from the training dataset may leak either during the training phase or from the trained model. In training
phase privacy, a data owner that offloads the task of training to some untrusted servers is concerned about the privacy of his
sampled data. In trained model privacy, the concern is to prevent the trained model from exposing information about the
training dataset. On the other hand, in inference privacy, a user wishes to employ some server(s) to run an already trained
model on his dataset while preserving the privacy of his dataset against curiosity of servers. Note that in inference privacy,
there is an additional concern that we keep the computational burden on the user/client-side low.

Remark (Inference privacy vs. differential privacy settings): It is worth noting that inference privacy, the focus of this
paper, and trained model privacy, the problem that mostly deals with differential privacy techniques, are two different
problems with different goals.

The trained model privacy problems have these steps: 1) in the training phase, an individual, say Alice, locally trains a
model on his sensitive training dataset such that the information leakage of the training dataset from the trained model is
negligible; 2) Alice releases the trained model to a client, say Bob, in the form of black-box or white-box; 3) in the inference
phase, Bob locally uses this model to label his sensitive data. The goal is to limit the information leakage of Alice’s training
dataset to Bob from the trained model while maintaining the inference accuracy high (note that since the inference phase
performs locally, no information is leaked from Bob’s data). As you can see, no phase of training or inference is offloaded to
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cloud servers to reduce the computational load of the parties. In other words, in the conventional settings that mostly deals
with differential privacy, there is no opportunity to offload computational tasks to servers while preserving privacy, since
these settings are not basically designed for this purpose. Instead, in inference privacy, we have such a purpose.

The inference privacy problem has these steps: 1) in the training phase, a client trains a model on his own or public training
dataset using some servers; 2) in the inference phase, he labels his sensitive data with the aid of the servers. The goal is to
limit the information leakage of the client data in the inference phase while maintaining the inference accuracy high and
keeping computational costs at the client low. In the training phase, the system is trained/designed for such a goal.

Privacy preserving techniques: Various methods have been proposed to protect privacy in the literature, with the following
three major categories:

Randomization, Perturbation, and Adding Noise: Those techniques can be used for the trained model, training phase,
and inference privacy at the cost of sacrificing the accuracy of the results.

In (Fredrikson et al., 2015; Shokri et al., 2017), it is shown that parameters of a trained model can leak sensitive information
about the training dataset. Various approaches based on the concept of differential privacy (Dwork, 2006; Dwork et al.,
2006; Dwork & Roth, 2014) have been proposed to reduce this leakage. A randomized algorithm is differentially private
if its output distributions for any two adjacent input datasets, i.e., two datasets that differ only in one element, are close
enough. This technique has been applied to principal component analysis (PCA) (Chaudhuri et al., 2013; Dwork et al.,
2014), support vector machines (SVM) (Rubinstein et al., 2012), linear and logistic regression (Chaudhuri & Monteleoni,
2009; Zhang et al., 2012), deep neural networks (DNNs) (Abadi et al., 2016; Papernot et al., 2017), and distributed and
federated learning (Shokri & Shmatikov, 2015).

A line of works on the federated learning setting (Heikkilä et al., 2017; Bonawitz et al., 2017; Jayaraman et al., 2018; Imtiaz
et al., 2019a;b; Sabater et al., 2020), exploiting the existence of a cluster of non-colluding data owners and servers, utilizes
techniques from MPC for secure aggregation to increase their performance and privacy. In particular, each party has a
sensitive dataset, and they want to do differentially private computations (e.g., training an ML model) jointly across all
datasets. The noise of each party is obtained from the sum of an independent term and a correlated term. Their system is
designed such that the correlated noises are completely eliminated in the output, and only the independent noises remain to
produce a differentially private result. Although their method improves performance, still the remained noise sacrifices
accuracy. The caveat is that the privacy-accuracy tradeoff in those approaches (Alvim et al., 2011) bounds the scale of
randomization and thus limits their ability to preserve privacy. Note that the purpose of the above papers is not to reduce the
computational burden on the users, no ML tasks are offloaded to cloud servers, and their scope falls into the trained model
privacy problem.

InstaHide (Huang et al., 2020), using an instance-hiding scheme, releases an encrypted version of the training dataset to
perform the training phase with privacy preserving.

The client can offload some computational tasks during the inference phase of a deep neural network by partitioning it
between the client and the cloud (Li et al., 2017). Despite the fact that revealing transformed data prevents direct disclosure
of the raw data, valuable information still leaks to the servers (Wang et al., 2018a); therefore, some privacy-protective
actions (e.g., adding noise) are needed to be taken. Authors in (Osia et al., 2018; 2020) perturb the data by passing it through
the local module trained to protect some sensitive attributes of the data while preserving the accuracy of learning as much
as possible. As an alternative approach, (Mireshghallah et al., 2020; 2021), without retraining the entire network, train
only the noise distribution to protect privacy. Inspired by Generative Adversarial Networks (GANs) (Goodfellow et al.,
2020), several works (Oh et al., 2017; Raval et al., 2017; Huang et al., 2017; Wu et al., 2018; Leroux et al., 2018; Ren et al.,
2018; Chen et al., 2018; Kim et al., 2019; Tripathy et al., 2019) attempt to generate queries such that a computationally
bounded adversary cannot extract some sensitive information from them. The performance of those techniques relies on
heavy computation on the client-side, which is not desirable.

K-anonymity (Samarati & Sweeney, 1998; Sweeney, 2002; Bayardo & Agrawal, 2005) is another privacy preserving
framework, in which the data items, related to one individual cannot be distinguished from the data items of at least K − 1
other individuals in the released data. It is known that K-anonymity framework would not guarantee a reasonable privacy,
particularly for high-dimensional data (Aggarwal, 2005; Brickell & Shmatikov, 2008).

Secure Multiparty Computation: By exploiting a cluster of non-colluding servers, this approach protects data privacy
in ML algorithms that can be represented or approximated with a particular class of functions (e.g., polynomials) in each
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Table 4: Techniques and Problems

Technique Privacy Problem Method

Randomization, Perturbation,
and Adding Noise

Trained model

(Chaudhuri et al., 2013; Dwork et al., 2014; Rubinstein et al., 2012)
(Chaudhuri & Monteleoni, 2009; Zhang et al., 2012; Abadi et al., 2016)
(Papernot et al., 2017; Shokri & Shmatikov, 2015; Heikkilä et al., 2017)
(Bonawitz et al., 2017; Jayaraman et al., 2018; Imtiaz et al., 2019a)
(Imtiaz et al., 2019b; Sabater et al., 2020; Huang et al., 2020)

Training phase (Huang et al., 2020)

Inference

(Li et al., 2017; Liu et al., 2017a; Wang et al., 2018a; Osia et al., 2018)
(Osia et al., 2020; Mireshghallah et al., 2020; 2021; Oh et al., 2017)
(Raval et al., 2017; Huang et al., 2017; Wu et al., 2018; Leroux et al., 2018)
(Ren et al., 2018; Chen et al., 2018; Kim et al., 2019; Tripathy et al., 2019)

Multiparty Computation Training phase
(Gascón et al., 2017; Chen et al., 2019; Mohassel & Rindal, 2018)
(Wagh et al., 2019; Patra & Suresh, 2020; Byali et al., 2020; So et al., 2019)
(Wagh et al., 2020; Koti et al., 2021; Mohassel & Zhang, 2017)

Inference

(Gascón et al., 2017; Chen et al., 2019; Mohassel & Rindal, 2018)
(Wagh et al., 2019; Patra & Suresh, 2020; Byali et al., 2020; So et al., 2019)
(Wagh et al., 2020; Koti et al., 2021; Mohassel & Zhang, 2017)
(Liu et al., 2017b; Juvekar et al., 2018; Riazi et al., 2018; 2019)

Homomorphic Encryption Training phase (Graepel et al., 2012; Wang et al., 2018b; Han et al., 2019)

Inference (Graepel et al., 2012; Gilad-Bachrach et al., 2016; Hesamifard et al., 2017)
(Li et al., 2018; Han et al., 2019)

round (Mohassel & Zhang, 2017; Gascón et al., 2017; Mohassel & Rindal, 2018; So et al., 2019; Chen et al., 2019; Wagh
et al., 2019; Patra & Suresh, 2020; Byali et al., 2020; Wagh et al., 2020; Koti et al., 2021). In several attempts (Liu et al.,
2017b; Juvekar et al., 2018; Riazi et al., 2018; 2019), MPC and cryptography tools have been leveraged to provide oblivious
inference in which neither the servers learn the client data nor the client learns the servers’ model. The shortcoming of
MPC is that it costs the network a huge communication overhead. Moreover, the particular setups of those schemes (e.g.,
polynomial approximation and finite field arithmetic) make them challenging to apply to deep learning. In contrast, our
approach is applicable to modern ML models.

Homomorphic Encryption: HE enables a cryptographically secure environment between the client and servers to perform
ML algorithms (Graepel et al., 2012; Hesamifard et al., 2017; Li et al., 2018; Wang et al., 2018b). The public-key
infrastructure in HE schemes imposes heavy computational overhead on the system. This disadvantage is directly reflected
in the time needed to train a model or use a trained one, as reported in (Gilad-Bachrach et al., 2016; Han et al., 2019).
Besides, those schemes are based on computational hardness assumption, not information theory.

Other techniques: Some approaches that do not fall into the above categories are described in the following:

Trusted Execution Environment (TEE): TEEs, e.g., ARM TrustZone (Alves, 2004) and Intel SGX (McKeen et al., 2013),
provide an execution space where data can be processed in an isolated environment. By embedding TEEs on an untrusted
server, ML algorithms can be deployed in a secure and private environment between the client and the server (Ohrimenko
et al., 2016; Hunt et al., 2018; Narra et al., 2019; Hanzlik et al., 2021). Despite having more functionality and outperforming
HE schemes, TEEs have low availability and performance compared to rich untrusted alternatives (e.g., GPUs), making
them challenging to use (Tramer & Boneh, 2018).

DataMix (Liu et al., 2020): This paper suggests a privacy protection scheme inspired by mixup (Zhang et al., 2017). The
client mixes N images and sends N queries to one server - each a distinct linear combination of those images - and then
de-mixes the server outputs to predict the image labels. However, the scheme becomes prone to privacy violations if all the
images are sensitive since the linear combinations are disclosed to the server. On the other hand, if some of those images are
not sensitive and are used as noise to confuse the server, privacy will scale with communication; the more images we mix,
the more queries we need to send to the server.

Table 4 categorizes the papers according to technique and problem.


