
Enhancing Exploration via Off-Reward Dynamic
Reference Reinforcement Learning

Yamen Habib
Department of Communication
and Information Technologies

Universitat Pompeu Fabra
Barcelona, Spain

yamen.habib@upf.edu

Dmytro Grytskyy
Department of Communication
and Information Technologies

Universitat Pompeu Fabra
Barcelona, Spain

dmytro.grytskyy@gmail.com

Rubén Moreno-Bote
Serra Húnter Fellow Programme
Department of Communication
and Information Technologies

Universitat Pompeu Fabra
Barcelona, Spain

ruben.moreno@upf.edu

Abstract

In reinforcement learning (RL), balancing exploration and exploitation is essen-
tial for maximizing a target reward function. Traditional methods often employ
regularizers to prevent the policy from becoming deterministic too early, such as
penalizing deviations from a static reference policy. This paper introduces a novel
approach by jointly training an off-reward dynamic reference policy (ORDRP)
with the target policy, using a distinct reward function to guide exploration. We
employ Kullback–Leibler divergence between the target policy and the dynamic
reference policy as a regularization mechanism. Crucially, we provide a formal
proof of convergence for the ORDRP iteration method, establishing its theoretical
soundness. Our approach is validated within an actor-critic framework, with the
ORDRP trained either using the maximum occupancy principle or Laplacian in-
trinsic off-rewards. Experimental results in challenging environments demonstrate
that incorporating a jointly trained ORDRP enhances exploration, resulting in
superior performance and higher sample efficiency compared to state-of-the-art
baselines. These findings highlight the benefits of learning the reference policy
alongside the main policy, leading to improved learning outcomes. Project page:
https://yamenhabib.com/ORDRP/

1 Introduction

Balancing exploration and exploitation is a critical challenge in RL, as it directly influences the
efficiency and success of the learning process [46]. Ideally, an RL agent should have two sources of
knowledge to solve this problem: knowledge about what the best actions are to maximize reward
given current learning state, and knowledge about which actions should be explored to enhance future
learning. The latter can be separately crystallized in what we call a reference policy, that is, a policy
that indicates to the agent which actions could be promising to explore given current learning state.
Both pieces of knowledge are synthesized in a target policy, the policy that is used by the agent to
actually generate actions with the only aim of maximizing reward. However, designing an effective

17th European Workshop on Reinforcement Learning (EWRL 2024).

https://yamenhabib.com/ORDRP/

reference policy that incorporates relevant prior information and that it adapts to the new action-state
regions that become more likely through learning can be a quite challenging problem.

In traditional RL, exploration techniques such as ϵ-greedy or entropy maximization encourage agents
to explore actions uniformly and randomly, yet these methods can result in inefficient and aimless
exploration because they do not distinguish between second-best, third-best, and so on, actions
[46, 56]. More recent model-free deep RL algorithms employ more sophisticated strategies. On-
policy algorithms like TRPO [41] and PPO [43] explore by sampling actions according to the latest
version of their target policy, which effectively serves as the reference policy. Early in training, the
target policy exhibits high randomness, but as it learns to exploit rewards, it becomes less random,
risking convergence to local optima due to early collapse of exploration. In these approaches, the
target and reference policies become so similar that there is no clear separation between reward
maximizing and exploration knowledge. In A3C [30], exploration is enhanced by parallel agents,
entropy regularization, and on-policy learning with stochastic policy gradients. TRPO, PPO, and A3C
suffer from poor sample efficiency due to on-policy learning, requiring new samples to be collected
for nearly every policy update, which leads to rapidly escalating costs. REPS [36] improves the
target policy search by avoiding large departures (in terms of relative entropy) between the target and
reference action-state distributions, making it applicable for both on-policy and off-policy learning.
However, REPS may still suffer from reduced exploration over time as the observed data distribution
becomes prematurely biased towards reward exploitation. Off-policy methods such as DDPG [26]
and TD3 [9] train deterministic policies and enhance exploration by adding noise to their actions
during training. This noise, often Gaussian, ensures a wider variety of actions is explored [44],
but it is aimless and difficult to tune, potentially leading to suboptimal exploration and learning
efficiency. Soft Actor-Critic (SAC) [17], a state-of-the-art off-policy algorithm, incorporates entropy
regularization into its objective function to balance exploration and exploitation. However, this
regularization effectively introduces a uniform reference policy [35], impeding finer adjustments to
the novel regions of action-state space being visited.

All this previous research has highlighted the importance of using reference policies to enhance
exploration. These reference policies can be broadly categorized into two types: static and dynamic.
A static reference policy, due to its simplicity, has been the more frequently employed approach
([17, 35]). Examples include the uniform policy in SAC [17] and G-learning [10], and MaxEnt
[16]. While a static reference policy can consistently provide guidance throughout the learning
process of the target policy, it risks becoming outdated as the target policy improves and the explored
regions of the action-state space evolve. Alternatively, some approaches have used dynamic reference
policies ([14, 41, 43]). This dynamic nature ensures that the reference policy evolves in response
to the target policy’s progress, preventing the exploration strategy from becoming obsolete. This
adaptability can enhance sample efficiency by focusing exploration efforts on relevant areas of the
state space that are actively visited by the target policy, thereby improving efficiency and stability of
learning. However, the integration of prior knowledge about beneficial explorative actions and safety
measures into dynamic reference policies remains a largely unexplored field. To address this, we
propose a novel approach: injecting prior knowledge in the design of the dynamic reference policy
by having it maximize a different reward function than the target policy. We introduce off-reward
dynamic reference policy (ORDRP) search to accelerate learning and maintain active exploration
over extended periods. By carefully designing the off-reward function, we can develop a dynamic
reference policy that possesses more information about potentially useful exploration routines while
being more specialized towards the trajectories generated by the target policy.

Figure 1 illustrates our intuition behind the superiority of ORDRP search. We assume that the target
policy π is improved at each iteration to maximize reward, but there is also a penalty for deviating
too much from the current reference policy µ. We will assume (more details to come) that the
penalty increases with the Kullback-Leibler (KL) difference between the new target and the reference
policy, DKL (π(·|s)||µ(·|s)). The reference policy µ can be static, like a uniform function U (Fig
1A), or dynamic, such as the latest target policy πn−1 obtained after n − 1 update iterations (Fig
1B), or any other dynamic reference policy µn at current iteration step n (Fig 1C). The quantity
πn(at|st) log πn(at|st)

µ(at|st) in the KL penalty term changes its sign and magnitude depending on the
difference in assigned probabilities between the target policy and the reference policy, providing
adaptive guidance. When using a static uniform reference policy (Fig. 1A), the KL penalty tends to
greatly reduce the likelihood of an action that has been discovered to be good by the target policy
(peak of the Gaussian), while it increases the likelihood of harmful or useless actions due to the

2

Figure 1: Visualization of the the strategic use of varying reference policies in ORDRP search, and
how the target policy π is iteratively improved by balancing reward maximization against penalties for
deviation from the reference policy. The penalties are informed by the Kullback-Leibler divergence,
reflecting differences in policy probabilities. A demonstrates a static uniform policy U , strongly
penalizing deviations that could otherwise optimize actions. B shows minimal divergence using
the previous iteration’s policy πn−1 as a reference, which stabilizes improvements with limited
exploration. C introduces a dynamic policy µn, enabling flexible adaptations and encouraging
explorioatn of new actions. Panels D and E detail the KL penalty’s impact on action selection,
emphasizing the strategic use of reference policies for effective policy optimization. (see videos
here).

uninformative regularization term (left tail of the Gaussian). When using the current target policy as
the reference (Fig. 1B), there are minimal differences between the new target policy and the reference
policy, which do not significantly enhance exploration beyond what has already been learned. In
contrast, a dynamic reference policy that lies between purely uninformative and purely target-aligned
references (Fig. 1C) can inject relevant information about historically useful actions while remaining
flexible. This suggests that for the reference policy to be effective, it should follow a different reward
function than the target one (i.e., being off-reward), such that it retains knowledge about generally
good and safe actions while dynamically adapting (i.e., being dynamic) as new regions of action-state
space are explored during learning.

To empirically test these ideas, we used a high-dimensional control problem [7] with an ORDRP
featuring an off-reward function based on the maximum occupancy principle (MOP) ([39, 32]), where
the off-reward is defined as the cumulative future action entropy (see Sec. 5). While a uniform
static reference causes the ant to get stuck against a wall (Fig. 1E), ORDRP search enables the
agent to discover and exploit a more varied set of routes, allowing it to escape from the central
zone (Fig. 1F) (see videos). These results demonstrate that even a simple variation of a standard
benchmark (e.g., Mujoco [7]) renders exploration highly ineffective for standard approaches like
SAC [17], highlighting the need for more sophisticated exploration techniques such as our ORDRP.
In Sec. 7, we show that ORDRP surpasses stable state-of-the-art approaches even when tested on the
unmodified standard benchmark.

Novelty. In this paper, we introduce an off-reward dynamic reference policy (ORDRP) KL regular-
ization as a novel way to guide exploration in a more flexible way while injecting prior information
about generally useful actions. We propose two off-reward functions: one based on MOP [39, 32],
which maximizes the occupancy of action-state space by maximizing cumulative action entropy,
and the other based on the graph Laplacian (Lap) [53, 28, 24], which leverages spectral information
from the Laplacian of the transition matrix to guide exploration by encouraging the agent to visit
spectrally distinct states. The superiority of ORDRP over previous regularization schemes is evident
in high-dimensional environments with simple boundaries, demonstrated using both MOP and Lap

3

https://yamenhabib.com/ORDRP/##videos
https://yamenhabib.com/ORDRP/##videos
https://pseudonym-account.github.io#videos

(Fig. 1E-F; Fig. 2). ORDRP search scales up to these high-dimensional control problems due to
significant advancements in the actor-critic methodology. We also prove the convergence of our main
ORDRP regularization scheme for any convergent dynamic reference policy. A key advantage of
ORDRP is its potential for increased sample efficiency. By leveraging insights from the off-reward
dynamic reference policy, our method reduces redundant exploration, making better use of available
data and accelerating the learning process. ORDRP represents a notable departure from conventional
exploration techniques like SAC [17], OAC [8], WCSAC [54], and GAC [47]. Unlike these methods,
which typically tie the reference policy closely to the main target policy objective (e.g., TRPO [41],
PPO [43], and GAC [47]), ORDRP employs a distinct off-reward function that is not directly con-
nected to the primary target policy objective, thus promoting more diverse and effective exploration
strategies. See Appendix 9.1 for a detailed comparison with other approaches.

2 Preliminaries

Our RL problem is formulated as a target policy optimization task within a Markov decision process
(MDP), characterized by a tupleM = (S,A, p, r, γ). We consider both the state space S and the
action space A to be discrete domains and finite in our proofs, but in the experiments we consider
continuous action-state spaces. The function p : S × S × A → [0, 1) denotes the probability
density p(st+1|st, at) for transitioning to a subsequent state st+1 ∈ S, given the present state
st ∈ S and an action at ∈ A. Each state transition is associated with a reward, as defined by
the function r : S × A → [rmin, rmax]. Finally γ is a discounted factor in [0, 1). Furthermore,
ρπ(st) and ρπ(st, at) represent respectively the time-dependent state and state-action marginal
distributions of the trajectory induced by a policy π(at|st). Recall that the standard RL objective
is π∗ = argmaxπ Es0∼ρπ [V (s0)] = argmaxπ

∑∞
t=0 γ

tE(st,at)∼pπ [r(st, at)]. Regularized RL
augments the reward with a regularization term, such that the optimal regularized policy aims to
maximize

π∗
R = argmax

π

∞∑
t=0

γtE(st,at)∼pπ [r(st, at)− αR(π(·|st))] , (1)

where α is a positive temperature parameter, determining the relative importance of the regularization
term against the reward. In this work, we study the regularizer function R(π(·|st)) = DKL [π||µ],
which ensures that policy π is not far from another policy µ that we call the reference policy. We
start with the definition of the regularized state-value function of a state s under a policy π with a
possibly dynamic reference policy µ, denoted Ṽ , as

Ṽ (s) =

∞∑
t=0

γtE(st,at)∼pτ [r(st, at)− α log
π(at|st)
µ(at|st)

], s0 = s . (2)

The optimal regularized value function Ṽ ∗(s) should satisfy the corresponding regularized optimal
Bellman equation for all s ∈ S,

Ṽ ∗(st) = max
π

Eat∼π
[
r(st, at)− α log

π(at|st)
µ(at|st)

+ γ Est+1∼p[Ṽ
∗(st+1)]

]
. (3)

Theorem 1. Optimal Policy Solution. Given a static reference policy µ, the optimal policy π∗ and
optimal state value function Ṽ ∗ that solve the maximization problem in 3 exist and are unique. They
are defined as

π∗(at|st) =
µ(at|st) exp

(
1
α (r(st, at) + γEst+1∼p[Ṽ

∗(st+1)])
)

∑
at∈A µ(at|st) exp

(
1
α (r(st, at) + γEst+1∼p[Ṽ

∗(st+1)])
) , (4)

Ṽ ∗(st) = α log
∑
at∈A

µ(at|st) exp
(
1

α
(r(st, at) + γEst+1∼p[Ṽ

∗(st+1)])

)
. (5)

Proof: See [3, 34, 27]. See proof in the appendix 9.2.1 for completeness.

4

3 Off-Reward Dynamic Reference Value Iteration

Implementing a separate reference policy offers significant advantages over the traditional approach
of integrating bonus rewards for exploration or safety in RL. This methodology isolates the specific
effects of reward functions on environmental dynamics, an analysis unfeasible when rewards are
merely appended to the primary objective. By employing a reference policy, researchers can conduct
a detailed analysis of its behavior—whether by deploying it independently within the environment or
by examining, for instance, its state-action values. This not only clarifies how the reference policy
impacts the target policy but also helps identify the most effective reward function for the given task,
enhancing the clarity of the interaction between different incentives and agent behavior. Moreover,
The use of distinct discount rates between the target and reference policies enables precise behavioral
calibration tailored to training objectives. For example, a higher discount rate allows the target policy
to focus on long-term rewards, while the reference policy can concentrate on immediate exploratory
actions. This dual approach not only customizes the learning process but also strategically flexes the
exploration-exploitation balance.

Furthermore, employing KL divergence to maintain a specified deviation between the target and
reference policies—akin to adjusting the temperature in models like Soft Actor-Critic—provides
dynamic adjustment capabilities. This method allows for precise tuning of the exploration bonus,
removing the need to manually test multiple settings to achieve the optimal balance. The reusability
of the reference policy across various tasks also enhances training efficiency for new agents in related
scenarios. Overall, adopting a separate reference policy presents a more structured, insightful, and
efficient method for advancing reinforcement learning endeavors.

Standard proofs of existence, uniqueness and convergence of Equation 3 assume that the reference
policy is static. If the reference policy µ is simultaneously learnt as the target policy π is also
optimized, convergence of the latter can be compromised. In this first section, we prove that if µ
converges, so does the target policy π by using a standard value iteration algorithm. The advantage of
this proof is that neither the reference nor the target policies need to frozen at any update step, and
thus they can simultaneously be learnt.

In our approach, the dynamic reference policy µ has its own distinct off-reward function defined based
on the same MDP. We assume that the series of training reference policies {µn}∞n=0 converge to an
optimal policy µ∗ defined as µ∗ = argmaxµ

∑∞
t=0 γ

tE(st,at)∼pπ [f(M)]. Here, f(M) represents
a function defined over the Markov Decision Process (MDP), which is characterized by the tuple
M = (S,A, p, off-r, γ) with a given off-reward function off-r, which will be specified in Sec. 5.

We leverage value iteration, a dynamic programming technique that applies ’value backups’ to create
a series of value functions, which are functions defined over the state space, in a recursive process
([46, 33]). Our method ensures to concurrently learn both the state value function and the target policy
π as the reference policy µ evolves, ensuring convergence without the need to freeze either policy
during updates. Inspired by equation 5, we define Ṽ n+1(st) and the dynamic reference Bellman
operator Bµn , for α > 0, by

Ṽ n+1(st) = (Bµn Ṽ n)(st) = α log
∑
at∈A

µn(at|st) exp
(
1

α
(r(st, at) + γEst+1∼p[Ṽ

n(st+1)])

)
.

(6)

Notice that we build state value function Ṽ n+1 using the function Ṽ n and the reference policy µn.
Lemma 1. (Convergence) Given a sequence of reference policies µn that converges to µ∞, that is,

∀ϵ > 0,∃N ∈ N ∪ {0} : ∀n > N, max
a∈A,s∈S

|µn(a|s)− µ∞(a|s)| < ϵ , (7)

then the state value function Ṽ n defined in equation 6 converges as µn converges to µ∞.

In Addition, we define the target policy πn as

πn+1(at|st) =
µn(at|st) exp

(
1
α (r(st, at) + γEst+1∼p[Ṽ

n(st+1)])
)

∑
at∈A µ

n(at|st) exp
(

1
α (r(st, at) + γEst+1∼p[Ṽ

n(st+1)])
) . (8)

πn converges to a limit policy π∞.

5

Proof: See Appendix 9.2.2.

Theorem 2. (Dynamic Reference Value Iteration) Given any initial state value function Ṽ 0, itera-
tively applying the dynamic reference Bellman operatorsBµn , defined in equation 6, until convergence
guarantees that the process reaches the fixed point of the Bellman operator Bµ∞ .

Proof: See Appendix 9.2.2.

Equipped with the above proof, we have now guarantees that the problem of simultaneously learning
the reference and target policies is well-defined. It lies the basis for the development of the dynamic
reference policy iteration and dynamic reference actor-critic methods described next, important for
practical algorithms that can be effectively implemented in complex RL scenarios.

4 Off-Reward Dynamic Reference Policy Iteration

Here we will only present the off-reward dynamic reference policy iteration, and later we will show
the convergence of this method (Appendix 9.2.3) and how we build our off-reward dynamic reference
actor-critic (Appendix 9.3.4). Our off-policy dynamic reference actor-critic algorithm is derived from
a variant of the policy iteration method that takes dynamic reference policy learning into consideration.
We will treat the temperature α as constant and later in Appendix 9.3.3 as a variable to control the
similarity between the target and the reference policy defined by Kullback–Leibler divergence.

ORDRP iteration is derived directly from the vanilla policy iteration algorithm [46]. Let us define
the objective function J for the target policy to take into consideration the dynamic reference policy
as J(π, µ) = E(st,at)∼ρπ

[∑T
t=0 γ

t
(
r(st, at)− α log(π(at|st)µ(at|st))

)]
. In the policy evaluation step

of dynamic reference policy iteration, we wish to compute the value of a policy π according to
the objective function J(π, µ). For a fixed target π policy and dynamic reference policy µn, the
state action value function Qπ/µn can be computed iteratively, starting from any function Qπ/µn :
S ×A→ R and repeatedly applying a modified Bellman backup operator T given by

T Qπ/µn(st, at)
.
= r(st, at) + γEst+1∼p[Vπ/µn(st+1)] , (9)

where

Vπ/µn(st) = Eat∼π[Qπ/µn(st, at)− α log(
π(at|st)
µn(at|st)

)] . (10)

During the policy improvement phase, and inspired by equation 4, we adjust the policy in the direction
of the exponential of the state action value function Qπ/µ weighted by the dynamic reference policy
µ. This update helps the policy to enhance with respect to its value Qπ/µ. We Follow [17] by
imposing additional limitations on the policy to a specific subset of policies Π which correspond to
the parameterized group of Gaussians distributions. To integrate the stipulation that π is within Π, we
map the enhanced policy onto the preferred subset of policies using Kullback-Leibler divergence.
In other words, during the policy improvement phase, we update the policy state-by-state using the
following update rule

πnew = argmin
π∈Π

DKL

(
π(·|st)

∣∣∣∣∣∣µnew(·|st) exp
(
1
αQπold/µnew(st, ·)

)
Zπold/µnew(st)

)
, (11)

where Zπold/µnew is the partition function that normalizes the distribution.

The full ORDRP iteration algorithm alternates between policy evaluation and policy improvement
steps (Appendix 9.2.3), and it will provably converge to the optimal maximum policy among the
policies in Π (Appendix 9.2.3).

5 Off-Reward Dynamic Reference Policies

While numerous exploration methods are available in RL —ranging from intrinsic rewards, count-
based exploration, and uncertainty estimation— our research specifically aims to optimize the
exploration-exploitation trade-off using two innovative methodologies. The first, known as the
MOP reference and denoted by µMOP, focuses on maximizing the cumulative entropy of its policy,
providing a robust exploration strategy [39, 32]. The second, the Lap reference, denoted by µLap,

6

leverages a Laplacian operator derived from the policy’s state transition distribution, allowing for a
sophisticated approach that integrates both the structural and dynamic aspects of the environment
[53]. These methods are specifically chosen not only for their distinct exploration capabilities but
also for their potential to effectively balance between exploring new possibilities and exploiting
acquired knowledge. Importantly, our framework is designed to be compatible with any off-policy
exploration method, offering flexibility and adaptability in application. Full implementation details
of these reference policies are outlined in Appendix9.3.4.

Note that in either case the reference policy µ has to be learnt in order to optimize the off-rewards
defined below, but the reference policy is not allowed to make any actions in the environment, which
is only done by the target policy simultaneously learnt. It is also important to note that the off-reward
functions defined below change with the course of learning. Therefore they are tuned to the priors
that are injected into the reward function construction to aim at exploration, but they also adapt to the
regions of action-state space that are most frequently visited during learning.

MOP reference

The Maximum Occupancy Principle (MOP) is a novel approach to modeling agent’s behavior, which
diverges from traditional reward-maximization frameworks [39, 32]. The goal of MOP is to maximize
the occupancy of future action-state paths, rather than seeking extrinsic rewards. This principle posits
that agents are intrinsically motivated to explore and visit rare or unoccupied action-states, thus
ensuring a broad and diverse range of behaviors over time. The off-reward function in MOP is the
entropy of the paths taken by the agent,

R(τ) = −
∞∑
t=0

γt ln
(
µαMOP(at|st)pβ(st+1|st, at)

)
,

where α > 0 and β ≥ 0 are weights for actions and states, respectively, and γ is the discount factor.
The agent maximizes this intrinsic reward by preferring low-probability actions and transitions, which
encourages exploration and the occupancy of a wide range of action-states. This intrinsic motivation
leads to behaviors that appear goal-directed and complex without the necessity of explicitly defined
extrinsic rewards. In our experiments, we do not have access to the state transition model as we are
using a model-free algorithm, so we set α = 1 and β = 0, thereby considering only the entropy of
the policy. The MOP reference policy helps the target policy to perform actions that are discovered to
lead to many future action paths, improving exploration and sampling efficiency by avoiding strongly
constrained regions, such as terminal states.

Lap reference

Learning state representations in RL is important for effective exploration. A well-designed state
representation captures the essential features and structure of the environment, enabling the agent
to differentiate between meaningful and redundant information [53]. This clarity allows the agent
to make more informed decisions about where to explore, focusing on areas of the state space that
are likely to yield valuable information and potential rewards. Further, if this state representations is
low-dimensional, it can enhance computational efficiency, speed up learning, improve generalization,
and most importantly simplify policy and value function optimization. We can think of learning
a low-dimensional state representation as building a mapping between the original space and a
low-dimensional representation such that near/distant points in the original space are near/distant in
the representation. This problem is referred to as graph drawing problem [51, 23].

In the approach taken here, valid for large and continuous spaces, we want to build a set of features
ϕ(s) = (f1(s), ..., fd(s)) ∈ Rd that faithfully represent the input space s ∈ S. As we are interested
in agents that traverse that space S as they follow a current target policy π, we would like to consider
nearby states as those states st+1 that are visited from another state st in consecutive time steps. This
graph drawing problem [51, 23] can be then formalized as finding the set of features such that the
functional

G(f1, . . . , fd) =
1

2
Est∼ρπ,st+1∼p

[
d∑
k=1

(fk(st)− fk(st+1))
2

]
is minimized under the constraint that the features are normalized vectors and that they are orthogonal
to each other (i.e, orthonormal), that is

∑
j,k (Es∼ρ [fj(s)fk(s)]− δjk)

2
= 0, where δjk is the

Kronecker delta. The first condition ensures that features do not become zero, and the second

7

condition promotes that the features are as different as possible from each other. Note that a trivial
feature that would minimize the above functional is simply a constant function over states, and
therefore this feature is removed altogether from the admissible list. It can be shown that the features
minimizing the graph drawing functional correspond to the eigenvectors with the lowest eigenvalues
of the graph Laplacian. Specifically, for a function x ∈ RS defined on the states, and given that each
pair of states (st, st+1) has an associated transition probability p(st+1|st) > 0, the graph Laplacian
quadratic form is given by xTLGx =

∑
(st,st+1)

p(st+1|st)(x(st) − x(st+1))
21. Minimizing the

graph drawing functional corresponds to finding similar representations for pairs of states st and st+1

that are closely related in time under the current target policy, while the constraints favor that the
representations of pairs of states randomly sampled are as different as possible.

In high-dimensional, complex environments, it is necessary to find these eigenvectors efficiently,
even if it involves some loss of accuracy due to function approximations. Following [53], we use
a stochastic gradient descent method along with relaxed constraints to solve the minimum graph
drawing problem. In our case we chose to reduce the original n − dimensional state space (e.g.,
27 in Ant-v4, 376 in Humanoid-v4 [7]) into d = 4 dimensions. In Appendix 9.3.2, we present our
implementation details.

Once the embedding function ϕ(s) = [f1(s), . . . , fd(s)] has been learned, we ask our off-reward
dynamic reference policy to maximize the expected cumulative reward

∑∞
t=0 γ

tR(st, at), where the
instantaneous off-reward R(st, at) is defined as

R(st, at) =
||ϕ(st+1)− ϕ(st)||22
||ϕ(st+1)||22 + ||ϕ(st)||22

.

This novel off-reward function consistently encourages the agent to transition to states that are furthest
from the current one, which leads to improved exploration. This approach effectively prevents the
agent from wasting time on inefficient transitions that result in minimal changes to the embedded
state space, leading to a more sample efficient algorithm.

6 Implementation

Our ORDRP algorithm is implemented in a standard manner. We allow the target policy to interact
with the environment, collect transitions, and store them in a replay buffer. The off-reward dynamic
reference policy does not interact with the environment. During updates, the target policy, its
embedding function (in the case of Lap reference) and the reference policy have access to this replay
buffer. Every few interaction steps, we sample a batch from the replay buffer to update both the target
and reference policies in an off-policy manner. We use SAC [17] to train our reference policy with
the previously discussed reward functions. The implementation details for the MOP reference are
provided in Appendix 9.3.1, and for the Lap reference in Appendix 9.3.2. Similarly to SAC [17], we
employ the actor critic framework to train our target policy (Appendix 9.3.4). This off-policy actor
critic framework allows us to separate the training of the target and reference policies (along with
their necessary embedding functions), making our method generalizable and easily adaptable to any
other reference policy as a plug-and-play component.

7 Results

In this section, we experimentally evaluate the impact of incorporating ORDRPs on exploration
efficiency and learning outcomes. By using two distinct types of ORDRPs, MOP and Lap dynamic
reference policies, we aim to demonstrate the increased sample efficiency of our RL algorithm across
a range of tasks. Details on the hyper-parameters utilized can be found in Appendix 9.4.

Escape Room: Both reference policies in our algorithm are intended to improve the agent’s ex-
ploratory behavior. To test this, we created a novel environment within the Mujoco engine to
rigorously test our algorithm in a high-dimensional continuous domain, where effective exploration
is crucial for task completion. This custom environment ensures that performance improvements are
due to enhanced exploratory behavior and not other factors. Escape Room consists of a square room

1For discrete state space, the Laplacian matrix L = D − M , where D is the diagonal matrix of vertex
degrees, and M is the adjacency matrix of the graph.

8

Figure 2: Effectiveness of different exploration policies on accumulated rewards:(A) The graph shows
accumulated rewards, demonstrating that ORDRPs enhance exploration more effectively than SAC.
Late frames of the agent’s path using the Lap reference, MOP reference, and the agent’s path using
the SAC policy, showing less effective exploration in the last case.

with a door in one of its walls (Fig. 2). The agent’s reward equals its distance from the room’s center,
incentivizing it to move as far away from the center as possible. To exit the room, the agent must
navigate through the door, which requires it to explore and learn the layout. To add complexity and
increase the exploration required, we placed an additional wall in front of the door, creating a more
challenging path for the agent to find its way out. The outcomes are illustrated in (Fig.2 A), showing
that both dynamic references assist the main target policy in learning how to escape the room (Fig.
2 (Lap reference), (MOP reference)) and earn higher rewards, leading to a more sample-efficient
algorithm. Although SAC and MOP both aim to maximize entropy, having a separate reference
contributes to improved algorithm performance (Fig.2 (MOP reference), (SAC)).

Table 1: MOP Reference vs. SAC Performance

Environment MOP Reference SAC

Ant 6166.43 ± 568.79 5754.86 ± 183.80
Humanoid 4972.94 ± 58.96 4761.54 ± 592.75
Walker2d 3656.10 ± 689.60 3347.21 ± 821.24
Hopper 2209.39 ± 48.26 2292.46 ± 891.73
Half Cheetah 8348.35 ± 1351.01 8048.29 ± 263.37

Mean 5070.64 ± 543.32 4840.87 ± 550.58

ORDRPs Vs Exploration Bonus: In this study,
we compare two methods for encouraging ex-
ploration in reinforcement learning: adding an
entropy-based exploration bonus to the main re-
ward function and using the Kullback-Leibler
(KL) divergence between the main target policy
and a continuously updating reference policy
that aims to maximize entropy. Notably, this KL
divergence cannot be simplified to entropy reg-
ularization because the reference policy keeps
updating. By employing a separate reference
policy designed to maximize entropy, we facilitate more targeted and effective exploration strategies
without compromising the primary objectives of the main policy, effectively separating exploration
from goal-directed behaviors and preventing potential conflicts in reward optimization. The key
distinction between using an entropy exploration bonus and employing a reference policy lies in their
influence on the agent’s behavior: the entropy bonus discourages the agent from becoming overly
deterministic by preventing it from assigning high probabilities to specific actions (as illustrated
in Fig. 1A), whereas the entropy-maximizing reference policy actively encourages the agent to
explore states that maximize the expected future occupancy of action-state paths. To evaluate the
differences in performance between these two approaches, we conducted experiments across five
different Mujoco environments, training each with 10 seeds over 500,000 steps. Our results indicate
that the reference policy approach is more sample-efficient and demonstrates improved performance
metrics.

MuJoCo Benchmark Evaluation: We benchmark our approach against previously established
methods, evaluating performance across an array of complex continuous control tasks sourced from
the OpenAI Gym benchmark suite [7]. Our aim with this experimental evaluation is to assess how
our method’s sample complexity and stability stack up against earlier off-policy and on-policy deep
RL algorithms in standard problems without any modifications. We compare our method with SAC
[17], deep deterministic policy gradient (DDPG)[26], considered one of the most efficient off-policy

9

Table 2: Performance Across Mujoco benchmarks
Metric/Method SAC PPO TD3 DDPG ORDRP with Lap reference

Ant-v4 6427.60 ± 369.41 1929.61 ± 365.52 4378.93 ± 2180.22 413.12 ± 57.74 6695.32 ± 27.29
Humainoid-v4 5316.68 ± 63.88 661.88 ± 56.70 93.33 ± 0.01 127.60 ± 1.82 5489.51 ± 58.63
Walker2d-v4 4297.73 ± 1255.16 3444.32 ± 624.90 4172.49 ± 6.06 1449.51 ± 116.59 4558.64 ± 19.56
Hopper-v4 2766.41 ± 700.70 935.58 ± 204.37 3294.23 ± 95.69 1721.71 ± 2768.47 2394.10 ± 535.31
Cheetah-v4 9378.05 ± 136.61 5463.19 ± 420.92 10305.00 ± 485.72 11607.61 ± 534.42 10516.12 ± 105.35

5637.30 ± 505.15 2486.92 ± 334.48 4448.80 ± 553.54 3063.91 ± 695.81 5930.74 ± 149.23

deep RL algorithms, and proximal policy optimization (PPO)[43], a stable and effective on-policy
policy gradient method. Our evaluation also includes twin delayed deep deterministic policy gradient
(TD3)[9].

Table 2 presents average outcomes from ten different agents across each method, with values
reflecting the mean of the last five recordings taken at 4,000-step intervals. It is evident that the
ORDRP methods excel in four of the five environments, with Lap reference policy achieving the
highest average reward across all experiments. While the DDPG method surpasses Lap reference in
the cheetah-v4 environment, its performance is suboptimal in all other scenarios, indicating that Lap
reference policies is not only more stable but also exhibits better generalization across diverse tests.

8 Discussion and conclusion

The findings from our experiments highlight that even state-of-the-art methods often struggle with
directionless exploration or overcommitment to suboptimal policies (see Figs. 1,2). Our ORDRP
approach addresses these challenges by providing a reference policy that evolves in response to the
learning environment. This adaptive nature allows for more structured exploration, reducing the risk
of inefficient learning trajectories. Our study explored a novel approach to RL by introducing an
off-reward dynamic reference policy to guide the main policy through complex learning environments.
This reference policy evolves alongside the target policy, allowing for more targeted exploration
and reducing the inefficiencies of traditional exploration methods. Our approach demonstrates that
incorporating an off-reward reference policy into RL improves convergence rates and enhances
performance in various tasks. The off-reward functions that we used, based on MOP and graph
Laplacian, demonstrated to be much more efficient in exploring, learning and optimizing target
rewards in slightly more involved environments than the ones typically considered (Fig. 1-2). The
experiments conducted in this project, including the Escape Room scenario and MuJoCo Benchmark
Evaluation, demonstrate the success of our method. Figure 4 (see Appendix 9.4) presents the learning
curves of our method compared to our baselines, demonstrating that dynamic reference exhibits
greater stability across various environments. The results indicated that our ORDRP generally
outperformed traditional algorithms, leading to faster learning and higher final rewards.

Limitations. A primary limitation of ORDRP is its increased demand for computational resources,
as it necessitates training an additional reference policy alongside the target policy. This requirement
doubles the computational load, which may restrict the method’s applicability in environments
where resources are limited or rapid decision-making is essential. Unlike traditional policies that
interact directly with the environment, the reference policy does not collect trajectories or make
actions, requiring a fundamentally different approach to its design and evaluation. This divergence
from conventional methods can complicate the engineering process, as the reference policy must
effectively guide exploration without engaging in the environment itself. Moreover, ORDRP, in
its current form, assumes a fixed Markov Decision Process (MDP), which implies stationary, fully
observable dynamics. This assumption limits its effectiveness in non-stationary or partially observ-
able environments. Extending ORDRP to handle non-stationary dynamics or partially observable
scenarios remains an area for future research. Furthermore, crafting the off-reward structure for the
reference policy is particularly challenging. It must be distinct enough from the target policy to drive
meaningful exploration yet carefully calibrated to prevent convergence to suboptimal solutions. This
delicate balance necessitates out-of-the-box thinking and a departure from established RL paradigms,
potentially slowing adoption and integration into existing frameworks.

10

References
[1] J. Achiam. Spinning Up in Deep Reinforcement Learning. 2018.

[2] Z. Ahmed, N. Le Roux, M. Norouzi, and D. Schuurmans. Understanding the impact of entropy on policy
optimization. In International conference on machine learning, pages 151–160. PMLR, 2019.

[3] M. G. Azar, V. Gómez, and H. J. Kappen. Dynamic policy programming. Journal of Machine Learning
Research, 13(103):3207–3245, 2012.

[4] A. G. Barto, R. S. Sutton, and C. W. Anderson. Neuronlike adaptive elements that can solve difficult
learning control problems. IEEE transactions on systems, man, and cybernetics, (5):834–846, 1983.

[5] D. Bertsekas. Dynamic Programming and Optimal Control. Number v. 1 in Athena scientific optimization
and computation series. Athena Scientific, 1995.

[6] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

[7] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba. Openai gym.
arXiv preprint arXiv:1606.01540, 2016. MIT License.

[8] K. Ciosek, Q. Vuong, R. Loftin, and K. Hofmann. Better exploration with optimistic actor critic. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in
Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

[9] S. Dankwa and W. Zheng. Twin-delayed ddpg: A deep reinforcement learning technique to model a
continuous movement of an intelligent robot agent. In Proceedings of the 3rd international conference on
vision, image and signal processing, pages 1–5, 2019.

[10] R. Fox, A. Pakman, and N. Tishby. Taming the noise in reinforcement learning via soft updates. arXiv
preprint arXiv:1512.08562, 2015.

[11] K. Friston, J. Kilner, and L. Harrison. A free energy principle for the brain. Journal of physiology-Paris,
100(1-3):70–87, 2006.

[12] S. Fujimoto, H. Hoof, and D. Meger. Addressing function approximation error in actor-critic methods. In
International conference on machine learning, pages 1587–1596. PMLR, 2018.

[13] A. Galashov, S. Jayakumar, L. Hasenclever, D. Tirumala, J. Schwarz, G. Desjardins, W. M. Czarnecki,
Y. W. Teh, R. Pascanu, and N. Heess. Information asymmetry in KL-regularized RL. In International
Conference on Learning Representations, 2019.

[14] A. Galashov, S. M. Jayakumar, L. Hasenclever, D. Tirumala, J. Schwarz, G. Desjardins, W. M. Czarnecki,
Y. W. Teh, R. Pascanu, and N. Heess. Information asymmetry in kl-regularized RL. In 7th Interna-
tional Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019.

[15] M. Geist, B. Scherrer, and O. Pietquin. A theory of regularized markov decision processes. In International
Conference on Machine Learning, pages 2160–2169. PMLR, 2019.

[16] T. Haarnoja, H. Tang, P. Abbeel, and S. Levine. Reinforcement learning with deep energy-based policies.
In Proceedings of the 34th International Conference on Machine Learning - Volume 70, ICML’17, page
1352–1361. JMLR.org, 2017.

[17] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar, H. Zhu, A. Gupta, P. Abbeel,
and S. Levine. Soft actor-critic algorithms and applications. CoRR, abs/1812.05905, 2018.

[18] H. Hasselt. Double q-learning. Advances in neural information processing systems, 23, 2010.

[19] H. v. Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with double q-learning. In Proceedings
of the Thirtieth AAAI Conference on Artificial Intelligence, AAAI’16, page 2094–2100. AAAI Press, 2016.

[20] T. Jung, D. Polani, and P. Stone. Empowerment for continuous agent—environment systems. Adaptive
Behavior, 19(1):16–39, 2011.

[21] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

[22] D. P. Kingma and M. Welling. Auto-encoding variational bayes. CoRR, abs/1312.6114, 2013.

11

[23] S. Kirmani and K. Madduri. Spectral graph drawing: Building blocks and performance analysis. In 2018
IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), pages 269–277,
2018.

[24] M. Klissarov and M. C. Machado. Deep Laplacian-based options for temporally-extended exploration.
In A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato, and J. Scarlett, editors, Proceedings of the
40th International Conference on Machine Learning, volume 202 of Proceedings of Machine Learning
Research, pages 17198–17217. PMLR, 23–29 Jul 2023.

[25] A. S. Klyubin, D. Polani, and C. L. Nehaniv. Empowerment: A universal agent-centric measure of control.
In 2005 ieee congress on evolutionary computation, volume 1, pages 128–135. IEEE, 2005.

[26] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra. Continuous
control with deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

[27] J. Ma. The point to which soft actor-critic converges, 2023.

[28] M. C. Machado, M. G. Bellemare, and M. Bowling. A laplacian framework for option discovery in
reinforcement learning. In Proceedings of the 34th International Conference on Machine Learning -
Volume 70, ICML’17, page 2295–2304. JMLR.org, 2017.

[29] A. Miller, N. Foti, A. D' Amour, and R. P. Adams. Reducing reparameterization gradient variance. In
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

[30] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu.
Asynchronous methods for deep reinforcement learning. In M. F. Balcan and K. Q. Weinberger, editors,
Proceedings of The 33rd International Conference on Machine Learning, volume 48 of Proceedings of
Machine Learning Research, pages 1928–1937, New York, New York, USA, 20–22 Jun 2016. PMLR.

[31] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller,
A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis. Human-level control through deep reinforcement learning. Nature,
518(7540):529–533, Feb. 2015.

[32] R. Moreno-Bote and J. Ramirez-Ruiz. Empowerment, free energy principle and maximum occupancy
principle compared. In NeurIPS 2023 workshop: Information-Theoretic Principles in Cognitive Systems,
2023.

[33] R. Munos and C. Szepesvári. Finite-time bounds for fitted value iteration. Journal of Machine Learning
Research, 9(27):815–857, 2008.

[34] O. Nachum, M. Norouzi, K. Xu, and D. Schuurmans. Bridging the gap between value and policy based
reinforcement learning. In Proceedings of the 31st International Conference on Neural Information
Processing Systems, NIPS’17, page 2772–2782, Red Hook, NY, USA, 2017. Curran Associates Inc.

[35] E. Noorani and J. S. Baras. Risk-sensitive reinforcement learning and robust learning for control. In 2021
60th IEEE Conference on Decision and Control (CDC), pages 2976–2981, 2021.

[36] J. Peters, K. Mülling, and Y. Altün. Relative entropy policy search. In Proceedings of the Twenty-Fourth
AAAI Conference on Artificial Intelligence, AAAI’10, page 1607–1612. AAAI Press, 2010.

[37] A. Raffin. Rl baselines3 zoo. https://github.com/DLR-RM/rl-baselines3-zoo, 2020. MIT
License.

[38] R. Raileanu and T. Rocktäschel. Ride: Rewarding impact-driven exploration for procedurally-generated
environments. arXiv preprint arXiv:2002.12292, 2020.

[39] J. Ramírez-Ruiz, D. Grytskyy, and R. Moreno-Bote. Seeking entropy: complex behavior from intrinsic
motivation to occupy action-state path space. arXiv preprint arXiv:2205.10316, 2022.

[40] D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and approximate inference
in deep generative models. In E. P. Xing and T. Jebara, editors, Proceedings of the 31st International
Conference on Machine Learning, volume 32 of Proceedings of Machine Learning Research, pages
1278–1286, Bejing, China, 22–24 Jun 2014. PMLR.

[41] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. Trust region policy optimization. In F. Bach
and D. Blei, editors, Proceedings of the 32nd International Conference on Machine Learning, volume 37
of Proceedings of Machine Learning Research, pages 1889–1897, Lille, France, 07–09 Jul 2015. PMLR.

12

https://github.com/DLR-RM/rl-baselines3-zoo

[42] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel. High-dimensional continuous control using
generalized advantage estimation. arXiv preprint arXiv:1506.02438, 2015.

[43] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization algorithms.
CoRR, abs/1707.06347, 2017.

[44] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller. Deterministic policy gradient
algorithms. In E. P. Xing and T. Jebara, editors, Proceedings of the 31st International Conference on
Machine Learning, volume 32 of Proceedings of Machine Learning Research, pages 387–395, Bejing,
China, 22–24 Jun 2014. PMLR.

[45] S. Still and D. Precup. An information-theoretic approach to curiosity-driven reinforcement learning.
Theory in Biosciences, 131:139–148, 2012.

[46] R. S. Sutton, A. G. Barto, et al. Introduction to reinforcement learning, volume 135. MIT press Cambridge,
1998.

[47] V. Tangkaratt, A. Abdolmaleki, and M. Sugiyama. Guide actor-critic for continuous control. arXiv preprint
arXiv:1705.07606, 2017.

[48] N. Vieillard, T. Kozuno, B. Scherrer, O. Pietquin, R. Munos, and M. Geist. Leverage the average: an
analysis of kl regularization in reinforcement learning. Advances in Neural Information Processing Systems,
33:12163–12174, 2020.

[49] N. Vieillard, T. Kozuno, B. Scherrer, O. Pietquin, R. Munos, and M. Geist. Leverage the average: an
analysis of kl regularization in reinforcement learning. In Neural Information Processing Systems, 2020.

[50] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung, D. H. Choi, R. Powell,
T. Ewalds, P. Georgiev, et al. Grandmaster level in starcraft ii using multi-agent reinforcement learning.
Nature, 575(7782):350–354, 2019.

[51] K. Wang, K. Zhou, Q. Zhang, J. Shao, B. Hooi, and J. Feng. Towards better laplacian representation in
reinforcement learning with generalized graph drawing. In M. Meila and T. Zhang, editors, Proceedings of
the 38th International Conference on Machine Learning, volume 139 of Proceedings of Machine Learning
Research, pages 11003–11012. PMLR, 18–24 Jul 2021.

[52] Z. Wang, V. Bapst, N. Heess, V. Mnih, R. Munos, K. Kavukcuoglu, and N. de Freitas. Sample efficient
actor-critic with experience replay. arXiv preprint arXiv:1611.01224, 2016.

[53] Y. Wu, G. Tucker, and O. Nachum. The laplacian in rl: Learning representations with efficient approxima-
tions. ArXiv, abs/1810.04586, 2018.

[54] Q. Yang, T. D. Simão, S. H. Tindemans, and M. T. Spaan. Wcsac: Worst-case soft actor critic for safety-
constrained reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pages 10639–10646, 2021.

[55] G. Zhu, Z. Lin, G. Yang, and C. Zhang. Episodic reinforcement learning with associative memory. 2020.

[56] B. D. Ziebart, A. L. Maas, J. A. Bagnell, A. K. Dey, et al. Maximum entropy inverse reinforcement
learning. In Aaai, volume 8, pages 1433–1438. Chicago, IL, USA, 2008.

13

9 Appendix

9.1 Related Work

Actor-critic methods, initially introduced by [4] and [46], have been enhanced by integrating deep
learning [30]. Further enhancements include structural improvements [50], advanced value approxi-
mations [42], and the incorporation of off-policy elements [52]. Refinements such as trust region
application [41] and bias mitigation in off-policy methods [55] have also advanced the theory and
application of actor-critic techniques [15, 2, 48].

The Soft Actor-Critic (SAC) approach addresses model-free RL by utilizing a stochastic policy frame-
work that optimizes both the entropy and expected return, fostering a balance between exploration
and exploitation [17]. The Optimistic Actor-Critic (OAC) algorithm enhances model-free RL by
leveraging an upper confidence bound of the critic to improve exploration, effectively mitigating
issues like pessimistic underexploration [8]. Both SAC and OAC implement a KL constraint between
the reference policy and the target policy. In SAC, this is done using a uniform reference policy,
while in OAC, the reference policy is a Gaussian distribution N(µE ,ΣE), where µE is shifted from
the target policy mean µT to optimize the upper bound of the Q-function. The covariance ΣE
remains the same as the target policy’s ΣT , ensuring consistent exploration variance. Additionally,
the Worst-Case Soft Actor Critic (WCSAC) introduces a safety critic (instead of a reference policy)
that optimizes policies using Conditional Value-at-Risk (CVaR), providing a robust framework for
high-safety environments [54]. Finally, the Guide Actor-Critic (GAC) method leverages second-order
information from the critic to refine policy updates effectively. It uses a guide actor, learned to locally
maximize the critic under a Kullback-Leibler (KL) divergence constraint, to enhance the learning
process [47]. All these methods aim to enhance the performance of the target policy using either
another critic or another policy, but to the best of our knowledge, none has tried a completely separate
policy with its own off-reward function as we propose in this work.

G-learning [10], an off-policy RL algorithm that incorporates a reference policy to regularize value
estimates, helps to mitigate bias caused by deterministic policies during the initial learning phases.
G-learning achieves smoother exploration and better convergence rates than Q-learning by including a
penalty term for divergence from a simple stochastic prior policy. A KL-regularized reward objective
in RL that incorporates a static reference policy along with the learned target policy promotes
structured learning and faster training [13]. KL regularization not only facilitates smoother updates
but also averages Q-values, enhancing learning stability and convergence [49]. Other work has used a
dynamic reference policy [41, 49] designed to be the most recent version of the learned target policy.
In contrast to these methods, we use a dynamic reference policy that is learned to maximize a different
off-reward function from the one that the target policy is designed to maximize. This methodological
variation allows for a broader exploration of policy space and more tailored optimization strategies,
promoting enhanced learning outcomes in complex environments (see results in section 7).

Our method is compatible with any state-of-the-art model-free off-policy exploration approach,
enhancing the relevance and impact of our findings. For this study, however, we selected two novel
methods for evaluation. The first method, MOP [39, 32], diverges from traditional techniques like
empowerment [25, 20, 45] and the free energy principle [11], which typically favor deterministic
policies. MOP supports dynamic, goal-oriented behavior by incorporating behavioral variability
and accounting for the physical limitations of embodied agents, thus facilitating more adaptive
and engaging interactions with the environment. It dynamically adjusts to environmental feedback
to maximize the entropy of action-state paths, promoting diverse behaviors over the deterministic
tendencies of uniform policies. Importantly, MOP does not merely maximize entropy at each time
step; instead, it balances entropy maximization with the agent’s objectives to encourage effective
exploration. By leveraging MOP’s objective, we were able to compare the effects of incorporating
entropy through two distinct mechanisms: adding an entropy-based exploration bonus to the main
reward function, and introducing a continuously updating reference policy that aims to maximize
entropy. This comparison allowed us to evaluate how different methods of integrating entropy
influence the agent’s exploration behavior and overall performance. Our second method employs a
Laplacian representation to generate an intrinsic reward based on the differences between consecutive
state representations. While closely related to RIDE [38], which utilizes forward and inverse dynamics
models to learn state representations that focus solely on agent-influenced environmental elements,
our method leverages the Laplacian representation to capture the spectral information of the state
space without considering the agent’s influence.

14

9.2 Proofs

9.2.1 Optimally and Properties of Predefined reference policies

In this section, we reintroduce Theorem 1 from the main body and provide its proof.
Theorem 1. Optimal Policy Solution. Given a static reference policy µ, the optimal policy π∗ and
optimal state value function Ṽ ∗ that solve the maximization problem in 3 exist and are unique. They
are defined as

π∗(at|st) =
µ(at|st) exp

(
1
α (r(st, at) + γEst+1∼p[Ṽ

∗(st+1)])
)

∑
at∈A µ(at|st) exp

(
1
α (r(st, at) + γEst+1∼p[Ṽ

∗(st+1)])
) , (12)

Ṽ ∗(st) = α log
∑
at∈A

µ(at|st) exp
(
1

α
(r(st, at) + γEst+1∼p[Ṽ

∗(st+1)])

)
. (13)

Proof: A similar proof was presented in [3, 34, 27]. We write ours here for completeness. Following
the methodologies outlined in [27], we adopt a Lagrangian approach to tackle the constrained
optimization problem essential to defining the optimal policy π∗ and the state value function Ṽ ∗.
Let’s write out our constrained optimization problem

maximize
π

∑
at∈A

π(at|st)
[
r(st, at)− α log

π(at|st)
µ(at|st)

+ γEst+1∼p

[
Ṽ ∗(st+1)

]]
(14)

s.t. π(at|st) > 0, ∀st, at (15)∑
at∈A

π(at|st) = 1. ∀st (16)

We define the relaxed Lagrangian function

L(st; ν) =
∑
at∈A

π(at|st)[r(st, at)−α log
π(at|st)
µ(at|st)

+γEst+1∼p[Ṽ
∗(st+1)]]−ν(

∑
at∈A

π(at|st)−1) .

(17)
Since −x log(x) is strictly concave function, then we have a convex optimization problem. We can
solve this problem by taking the derivatives of the relaxed Lagrangian function and setting them
equal to zero given by

0 =
∂L(st; ν)

∂π(at|st)
= r(st, at)− α log

π(at|st)
µ(at|st)

− α+ γEst+1∼p[Ṽ
∗(st+1)]− ν . (18)

The solution is

π∗(at|st) = µ(at|st) exp
(
−ν
α
− 1

)
exp

(
1

α
(r(st, at) + γEst+1∼p[Ṽ

∗(st+1)])

)
. (19)

With the equality constraint ∑
at∈A

π∗(at|st) = 1 , (20)

and by applying log transformation on both sides, we can solve for the multiplier as

ν = α log
∑
at∈A

µ(at|st) exp
(
1

α
(r(st, at) + γEst+1∼p[Ṽ

∗(st+1)])

)
− α , (21)

and inserting this into Equation 21 we get

π∗(at|st) =
µ(at|st) exp

(
1
α (r(st, at) + γEst+1∼p[Ṽ

∗(st+1)])
)

∑
at∈A µ(at|st) exp

(
1
α (r(st, at) + γEst+1∼p[Ṽ

∗(st+1)])
) . (22)

15

Finally, inserting this result into Equation 3, we obtain

Ṽ ∗(st) = α log
∑
at∈A

µ(at|st) exp
(
1

α
(r(st, at) + γEst+1∼p[Ṽ

∗(st+1)])

)
. (23)

The solution π∗(at|st) strictly satisfies the constrains of the original problem and KKT conditions
(where γ = 0 for the inequality condition), thus it’s the optimal solution.

We now highlight several important observations that provide new insights into the theoretical
framework of Markov Decision Processes (MDPs):

Remark 1: Continuity of π∗ and Ṽ ∗

The optimal policy π∗ and the value function Ṽ ∗ exhibit continuity with respect to the policy sequence
µ. This continuity is crucial for understanding the behavior of iterative policy refinement methods,
where policies are progressively updated. It signifies that as the sequence of policies µn converges
towards its asymptotic limit µ∞, the corresponding optimal policies (πn)∗ and value functions (V n)∗
derived at each iteration also converge. This result ensures the stability and reliability of using
iterative methods for policy improvement in practical applications, where incremental modifications
to the policy do not lead to disproportionate changes in the resultant policy performance.

Remark 2: Convergence of Optimal Solutions in Sequential MDPs

Each policy µn effectively defines a distinct Markov Decision Process, denoted as MDPn. The
progression of these MDPs mirrors a path towards an ultimate target problem, MDP∞. Our analysis
establishes that the optimal solutions for these intermediate problems converge towards the optimal
solution of MDP∞. This observation not only validates the theoretical underpinnings of evolving
MDP models but also reassures that practical implementations where policies evolve or are learned
over time are based on a solid theoretical foundation.

9.2.2 Off-Reward Dynamic Reference Value Iteration

In the main body of this paper, we introduced a dynamic approach to training reference policies µ
concurrently with the main target policy π within an MDP framework. This method is designed to
effectively adapt to changing environment dynamics and addresses the limitations of static reference
policies by ensuring ongoing alignment and optimization with respect to the target policy’s objectives.
In this appendix, we delve deeper into the technical implementation and mathematical proof of
dynamic reference value iteration method and how it can be concurrently optimized to achieve our
stated goals. We base our proof on the analytical framework provided by [34].

Now consider the dynamic reference Bellman operator Bµn , for α > 0, by

(Bµn Ṽ n)(st) = α log
∑
at∈A

µn(at|st) exp
(
1

α
(r(st, at) + γEst+1∼p[Ṽ

n(st+1)])

)
.

Lemma 2 is important in demonstrating the bounded nature of the state value function Ṽ n, which is
essential for ensuring the convergence and stability of our value iteration method.
Lemma 2. The state value function Ṽ n defined in equation 6 is bounded.

Proof: Let’s start by a randomly initialized state value function Ṽ 0 where ∀s ∈ S, Ṽ 0(s) ≤ C and
C > 0.

We notice that Ṽ 1 is bounded from above because

Ṽ 1(st) = α log
∑
at∈A

µ0(at|st) exp
(
1

α
(r(st, at) + γEst+1∼p[Ṽ

0((st+1)])

)
(24)

≤ α log
∑
at∈A

µ0(at|st) exp
(
1

α
(rmax + γC)

)
(25)

= rmax + γC , (26)

16

and the same for Vπ2/µ2

Ṽ 2(st) = α log
∑
at∈A

µ1(at|st) exp
(
1

α
r(st, at) + γEst+1∼p[Ṽ

1((st+1)])

)
(27)

≤ α log
∑
at∈A

µ0(at|st) exp
(
1

α
(rmax + γrmax + γ2C)

)
(28)

= rmax + γrmax + γ2C . (29)

Therefore we can conclude that ∀n > 1 , Ṽ n((st) ≤ 1−γn

1−γ rmax + γnC and Ṽ n is bounded from
above for γ < 1.
Lemma 3. (Contraction) For α > 0, there exists a unique fixed point for the dynamic reference
Bellman operator BµnV = V .

Proof: Similar proof was presented in [34]:Lemma 15. Starting from two different value functions
Ṽ 1
1 and Ṽ 1

2 , we know that after n updates we have

Ṽ n+1
1 (st) = α log

∑
at∈A

µn(at|st) exp
(
1

α
(r(st, at) + γEst+1∼p[Ṽ

n
1 (st+1)])

)
. (30)

Ṽ n+1
2 (st) = α log

∑
at∈A

µn(at|st) exp
(
1

α
(r(st, at) + γEst+1∼p[Ṽ

n
2 (st+1)])

)
. (31)

Let Vn = ∥Ṽ n1 − Ṽ n2 ∥∞ = max
s∈S
|Ṽ n1 (s)− Ṽ n2 (s)| and denote

A(s, a; Ṽ n1) =
1

α

(
r(s, a) + γEs′∼p[Ṽ n1 (s′)]

)

expA(s, a; Ṽ n1) = exp

(
1

α

(
r(s, a) + γEs′∼p[Ṽ n1 (s′)]

))
≤ exp

(
1

α

(
r(s, a) + γ

(
Es′∼p[Ṽ n2 (s′)] + Vn

)))
= exp

(γ
α
Vµn

)
· exp

(
1

α

(
r(s, a) + γ

(
Es′∼p[Ṽ n2 (s′)]

)))
≤ exp

(γ
α
Vµn

)
· expA(s, a; Ṽ n2) . (32)

we have for ∀s ∈ S,

Ṽ n+1
1 (s)− Ṽ n+1

2 (s) =α log

(∑
a µ

n(a|s) expA(s, a; Ṽ n1)∑
a µ

n(a|s) expA(s, a; Ṽ n2)

)

≤ α log

(∑
a µ

n(a|s) exp
(
γ
αVµn

)
· expA(s, a; Ṽ n2)∑

a µ
n(a|s) expA(s, a; Ṽ n2)

)

= α log

(
exp

(γ
α
Vµn

) ∑
a µ

n(a|s) expA(s, a; Ṽ n2)∑
a µ

n(a|s) expA(s, a; Ṽ n2)

)
= γVn

Then Vn+1 = ∥Ṽ n+1
1 − Ṽ n+1

2 ∥∞ ≤ γVn. Lemma 2 with the contraction mapping fixed-point
theorem [5] ensures the existence and uniqueness of V if γ < 1.

As the reference policies converge towards an optimal limit, the corresponding state value functions
evolve crucially towards stabilization, ensuring the effectiveness of our value iteration approach.
The following theorem introduces a proof strategy that establishes the convergence of the state
value functions in our dynamic reference policy setting, highlighting the direct influence of evolving
reference policies on the optimization process.

17

Lemma 1. (Convergence) Given a sequence of reference policies µn that converges to µ∞, that is,

∀ϵ > 0,∃N ∈ N ∪ {0} : ∀n > N, max
a∈A,s∈S

|µn(a|s)− µ∞(a|s)| < ϵ , (33)

then the state value function Vπn/µn defined in equation 6 converges as µn converges to µ∞.

In addition, we define the target policy πn as

πn(at|st) =
µn(at|st) exp

(
1
α (r(st, at) + γEst+1∼p[Vπn/µn(st+1)])

)∑
at∈A µ

n(at|st) exp
(
1
α (r(st, at) + γEst+1∼p[Vπn/µn(st+1)])

) . (34)

πn converges to its limit policy π∞.

Proof: The convergence of Ṽ n and πn is straightforward due to the convergence of the dynamic
reference policies µn to µ∞. Given that µn → µ∞, we can use the continuity properties of the state
value function and the definition of the target policy to show that Ṽ n and πn will also converge.
Essentially, because the policy µn converges, the iterative process defined by the value iteration
naturally leads to the convergence of the state value function and the target policy.

Let Vn = ||Ṽ n − Ṽ∞|| = max
s∈S
|Ṽ n(s) − Ṽ∞(s)| and let’s define A(s, a;V) = 1

α (r(s, a) +

γEs′∼p[V (s′)]). Then we can show as in the lemma 3 that

expA(s, a; Ṽ n) = exp

(
1

α

(
r(s, a) + γEs′∼p[Ṽ n(s′)]

))
≤ exp

(
1

α

(
r(s, a) + γ

(
Es′∼p[Ṽ∞(s′)] + Vn

)))
= exp

(γ
α
Vµn

)
× exp

(
1

α

(
r(s, a) + γ

(
Es′∼p[Ṽ∞(s′)]

)))
≤ exp

(γ
α
Vµn

)
× expA(s, a; Ṽ∞) . (35)

Finally, ∀s ∈ S, Ṽ n+1(s)− Ṽ∞(s), and by assumption of convergence of the series µn there exists
n such that

Vn+1 = α log

(∑
a µ

n(a|s) expA(s, a; Ṽ n)∑
a µ

∞(a|s) expA(s, a; Ṽ∞)

)

≤ α log

(∑
a(µ

∞(a|s) + ϵ) expA(s, a; Ṽ n)∑
a µ

∞(a|s) expA(s, a; Ṽ∞)

)

= α log

(∑
a µ

∞(a|s) expA(s, a; Ṽ n)∑
a µ

∞(a|s) expA(s, a; Ṽ∞)
+ ϵ

∑
a expA(s, a; Ṽ

n)∑
a µ

∞(a|s) expA(s, a; Ṽ∞)

)

≤ α log

(∑
a µ

∞(a|s) exp
(
γ
αVµn

)
expA(s, a; Ṽ∞)∑

a µ
∞(a|s) expA(s, a; Ṽ∞)

+ ϵ

∑
a exp

(
γ
αVµn

)
expA(s, a; Ṽ∞)∑

a µ
∞(a|s) expA(s, a; Ṽ∞)

)
= α log

(
exp

(γ
α
Vn
)
+ ϵ exp

(γ
α
Vn
)
× C

)
= α log

(
exp

(γ
α
Vn
)
(1 + ϵC)

)
= γVn + α log (1 + ϵC)

≤ γVn + αϵC ,

where C = max
s∈S

[∑
a∈A expA(s,a;Ṽ∞)∑

a∈A µ
∞(a|s) expA(s,a;Ṽ∞)

]
. The existence of this value is guaranteed by the

bounded nature of the value function and therefore A(s, a; Ṽ) as established in Lemma 2.

Similarly we can show that

∀s ∈ S, Ṽ∞(s)− Ṽ n+1(s) ≤ γVn + αϵC . (36)

18

This indicates that

Vn+1 = max
s∈S
|Ṽ∞(s)− Ṽ n+1(s)| ≤ γVn + αϵC

≤ γ2Vn−1 + αϵ γC + αϵC

≤ γn−N+1VN +
1− γn−N+1

1− γ
αϵC ,

which implies that limn→∞ Vn = 0 and ∀s ∈ S, limn→∞ Ṽ n(s) = Ṽ∞(s). Finally, the convergence
of sequence πn follows from the convergence of Ṽ n and µn.

Theorem 2. (Dynamic Reference Value Iteration) Given any initial state value function Ṽ 0, itera-
tively applying the dynamic reference Bellman operatorsBµn , defined in equation 6, until convergence
guarantees that the process reaches the fixed point of the Bellman operator Bµ∞ .

Proof : Lemma 3 establishes the contractive property of the dynamic reference Bellman operator,
ensuring that successive applications of Bµ∞ on any initial value function V result in a sequence
converging to a unique fixed point. Theorem 1 shows that as the sequence of reference policies µn

converges to µ∞, the corresponding state value functions Ṽ n converge to Ṽ∞, which is the fixed
point of Bµ∞ . Therefore, starting with any state value function and applying the dynamic reference
Bellman operators until convergence, the process is assured to stabilize at the fixed point of Bµ∞ .

9.2.3 Off-Reward Dynamic Reference Policy Iteration

In this section, we present the proofs for the dynamic reference policy iteration algorithm, which
serves as the theoretical basis for our dynamic reference actor-critic method. We describe the
application of dynamic reference policy evaluation using both the main target policy and the dynamic
reference policy, as well as the methodology for directing the improvement of the target policy
accurately. We utilize Lemma 5 to illustrate the discrepancies in the value function under the same
policy π but with different references. We conclude with a proof of the convergence of the dynamic
reference policy iteration algorithm. First we remind you that our state value function is defined as

Vπ/µn(s) := Es0=s,at∼π(·|st)
st+1∼p(·|st,at)

[∞∑
t=0

γt(r(st, at)− α log
π(at|st)
µn(at|st)

]

= E at∼π(·|st)
st+1∼p(·|st,at)

[
Qπ/µn(st, at)− α log(

π(at|st)
µn(at|st)

)

]
.

where
Qπ/µn(st, at) := r(st, at) + γEst+1∼p(·|st,at)[Vπ/µn(st+1)] , (37)

Lemma 4. (Dynamic Reference Policy Evaluation) Consider the modified Bellman backup
operator T in equation 37 and a mapping Q0

π/µn : S × A → R with |A| < ∞ and

E(at,st)∼ρπ

[
log
(
π(at|st)
µn(at|st)

)]
< C, and define Qk+1

π/µn = T Qkπ/µn . Then the sequence Qkπ/µn

will converge to the dynamic reference Q-function Q∗
π/µn of π as k →∞.

Proof : The proof follows directly from established results in the literature, specifically leveraging the
framework and techniques discussed in [17]. Define the regularized-augmented reward, denoted by
rπ,µ,t(st, at), as

rπ,µn,t(st, at) = r(st, at)− γαEst+1∼P,at+1∼π(·|st+1)

[
log

(
π(at+1|st+1)

µn(at+1|st+1)

)]
. (38)

Then we can rewrite the modified Bellman equation 37 into the standard Bellman equation from the
true Qπ as follows

T Qπ/µn(st, at) = rπ,µn,t(st, at) + γEst+1∼P,at+1∼π[Qπ/µn(st+1, at+1)] . (39)

19

Under the assumption of a bounded action space and E(at,st)∼ρπ

[
log
(
π(at|st)
µn(at|st)

)]
< C, the reward

rπ,µ,t is bounded and the convergence is guaranteed as the usual policy evaluation.

Lemma 5. Given a reference policy µn from a sequence of reference policies µ that converges
to its optimal policy µ∞ and satisfies ∀(a, s) ∈ A × S,∀k ∈ N ∪ {∞}, µk(a|s) > 0 and the
condition in (7), then for every ϵ > 0, there exists N ∈ N such that for all n ≥ N , we have
∥Qπ/µn −Qπ/µ∞∥∞ ≤ ϵ.

Proof: Let’s denote ∆µ = max
∀a,s∈A×S

|µ∞(a|s)− µn(a|s)|. From Equation 7, we know that for any

δ > 0, there exists an N ∈ N such that for all n > N , we have ∆µ < δ. Let N0 ∈ N such that
0 < δ < (1− γα) · ϵ · min

∀a,s∈A×S
(µ∞(a|s)) and notice that ∀s, a we have

Qπ/µn(st, at)

= r(st, at) + γEst+1∼p
[
Vπ/µn(st+1)

]
= r(st, at) + γEst+1∼p

[
Eat+1∼π

[
Qπ/µn(st+1, at+1)− α log

(
π(at+1|st+1)

µn(at+1|st+1)

)]]
≤ r(st, at) + γEst+1∼p

[
Eat+1∼π

[
Qπ/µn(st+1, at+1)− α log

(
π(at+1|st+1)

µ∞(at+1|st+1) + ∆µ

)]]

= r(st, at) + γEst+1∼p

Eat+1∼π

Qπ/µn(st+1, at+1)− α log

 π(at+1|st+1)

µ∞(at+1|st+1)
(
1 + ∆µ

µ∞(at+1|st+1)

)

= r(st, at) + γEst+1∼p

[
Eat+1∼π

[
Qπ/µn(st+1, at+1)− α log

(
π(at+1|st+1)

µ∞(at+1|st+1)

)]]
+ γαEst+1∼p

[
Eat+1∼π

[
log

(
1 +

∆µ

µ∞(at+1|st+1)

)]]
= ...

= Qπ/µ∞(st, at) +
∑
l

γlαlEsl+1∼p

[
Eal+1∼π

[
log

(
1 +

∆µ

µ∞(al+1|sl+1)

)]]
≤ Qπ/µ∞(st, at) +

∑
l

γlαlEsl+1∼p
[
Eal+1∼π [log (1 + (1− γα)ϵ)]

]
≤ Qπ/µ∞(st, at) + (1− γα)

∑
l

γlαlEsl+1∼p
[
Eal+1∼π [ϵ]

]
= Qπ/µ∞(st, at) + (1− γα)

∑
l

γlαlϵ

= Qπ/µ∞(st, at) + ϵ .

We have obtained that ∀at, st ∈ A×S, Qπ/µn(st, at)−Qπ/µ∞(st, at) ≤ ϵ. By following the exact
same steps we find that also ∀at, st ∈ A × S, Qπ/µ∞(st, at) −Qπ/µn(st, at) ≤ ϵ. Therefore, we
conclude that ∥Qπ/µn −Qπ/µ∞∥ ≤ ϵ.

Lemma 6. (Dynamic Reference Policy Improvement):

Let πold ∈ Π and let πnew be the optimizer of the minimization problem defined in Equation 11. Then
Qπnew/µnew(st, at) ≥ Qπold/µnew(st, at) for all (st, at) ∈ S ×A with |A| <∞.

Proof: A similar proof has been introduced in [17] and [46]. Here, we present a variation with
additional details. Starting with the definition of the KL-divergence, we have

20

Jπold(π(·|st)) = DKL

(
π(·|st)

∣∣∣∣∣∣µnew(·|st) exp
(
1
αQπold/µnew(st, ·)

)
Zπold/µnew(st)

)
(40)

= Ea∼π(·|st)

log
 π(a|st)

µnew(a|st) exp(1
αQπold/µnew (st,a))

Zπold/µnew (st)

 . (41)

Rearranging the terms inside the expectation

Jπold(π(·|st)) = Ea∼π(·|st)
[
log(π(a|st))− log (µnew(a|st))−

1

α
Qπold/µnew(st, a) + log(Zπold/µnew(st))

]
.

(42)
Now, let’s denote the minimizing policy as πnew equals

πnew = argmin
π′∈Π

Jπold(π
′(·|st)) . (43)

The term log(Zπold/µnew) is a function only of the states, and therefore, will not have an impact on the
argmin operation. Following the definition we have

Ea∼πnew(·|st)

[
Qπold/µnew(st, a)− α log

(
πnew(a|st)
µnew(a|st)

)]
≥ Ea∼πold(·|st)

[
Qπold/µnew(st, a)− α log

(
πold(a|st)
µnew(a|st)

)]
(44)

Repeatedly expanded Qπold/µnew on the RHS by applying the Bellman equation and the bound in
Equation 44 we have

Qπold/µnew(st, at) = r(st, at) + γEst+1∼p
[
Vπold/µnew(st+1)

]
= r(st, at) + γEst+1∼p

[
Eat+1∼πold

[
Qπold/µnew(st+1, at+1)− α log

(
πold(at+1|st+1)

µnew(at+1|st+1)

)]]
≤ r(st, at) + γEst+1∼p

[
Eat+1∼πnew

[
Qπold/µnew(st+1, at+1)− α log

(
πnew(at+1|st+1)

µnew(at+1|st+1)

)]]
≤ ...
≤ Qπnew,µnew(st, at) .

Theorem 3. Given a sequence of reference polices µn convergent to µ∞. Repeated application of
dynamic reference policy evaluation and dynamic reference policy improvement from any π ∈ Π
converges to a policy π∗ such that Qπ∗/µ∞(st, at) ≥ Qπ/µ∞(st, at) for all π ∈ Π and (st, at) ∈
S × A, assuming |A| < ∞ and E(at,st)∼ρπ

[
log
(
π(at|st)
µ(at|st)

)]
< C and the policy sequence µn

satisfies the condition in equation 7.

Proof: The proof of this theorem relies on Lemma 5 and the vanilla policy iteration method [46, 17]
and lemma 6 and lemma 4. Our dynamic reference policy iteration algorithm starts with an initial
random policy π0 and iteratively improves it. The process can be described as follows

π0
E−→
µ1

Qπ0/µ1

I−→
µ1

π1
E−→
µ2

Qπ1/µ2

I−→
µ2

π2
E−→
µ3

. . .
I−−→
µ∞

π∞ E−−→
µ∞

Qπ∞/µ∞ . (45)

In this sequence, E and I denote the evaluation and improvement steps, respectively, for the dynamic
reference policy. We evaluate Q-values based on the current target policy and the reference policy µ,
then improve the target policy based on these Q-values.

We know from the properties of vanilla policy iteration that for a fixed µ∞, the algorithm converges
to the optimal Qπ∞/µ∞ [17]. This implies that for any ϵ > 0, there exists N0 ∈ N such that for all
n > N0,

∥Qπ∞/µ∞ −Qπn/µ∞∥∞ < ϵ.

21

From Lemma 5, it follows that there exists N1 ∈ N such that for all n > N1,
∥Qπn/µ∞ −Qπn/µn∥∞ < ϵ.

Combining these results, for n > max{N0, N1}, we obtain:
∥Qπ∞/µ∞ −Qπn/µn∥∞ ≤ ∥Qπ∞/µ∞ −Qπn/µ∞∥∞ + ∥Qπn/µ∞ −Qπn/µn∥∞ < 2ϵ.

Finally, from the properties of the vanilla policy iteration, we know that Qπ∞/µ∞(st, at) ≥
Qπ/µ∞(st, at) for all π ∈ Π and (st, at) ∈ S×A. This establishes that the dynamic reference policy
iteration converges, proving the theorem.

9.3 Implementation Details

9.3.1 MOP reference

The Maximum Occupancy Principle (MOP) [39, 32] is an effective exploration strategy because it
emphasizes intrinsic motivation to maximize future action-state paths rather than relying on extrinsic
rewards. This approach inherently promotes behavioral variability, preventing agents from getting
stuck in local optima and encouraging the exploration of diverse and novel states. By eliminating the
need for arbitrary and task-dependent reward functions, MOP simplifies the exploration process and
adapts naturally to various environments. Despite being off-reward, MOP agents exhibit goal-directed
behaviors, making them versatile and adaptive.

The implementation of MOP in our scenario is straightforward. We do not account for state transition
entropy, allowing us to implement it with using SAC [17] with an alpha parameter set to 1 and no
rewards, r(st, at) = 0 for all st, at ∈ A× S throughout the training process.

Algorithm 1 MOP Reference

1: Initialize policy µ(a|s).
2: Initialize SAC Agent with fixed α = 1.
3: function UPDATEREFERENCEPOLICY(D)
4: Update policy µ(at|st) using SAC [17] with reward R(st, at) = 0
5: end function

9.3.2 Lap Reference

Laplacian eigenfunctions provide an effective method for learning state representations in RL. This
technique uses the eigen-decomposition of the graph Laplacian to find the smallest eigenvectors,
which capture the geometry of a weighted graph formed by state transitions [53, 28, 24]. The main
objective is to create robust state representations by capturing how states connect and transition under
a given policy.

As shown in section 5 from the main body, our goal is to identify the first d eigenfunctions f1, . . . , fd
associated with the smallest d eigenvalues of L. The mapping ϕ : S → Rd defined by ϕ(u) =
[f1(u), . . . , fd(u)] creates an embedding or representation of the space S.

The eigenfunctions f1, . . . , fd of the graph Laplacian possess several key properties:

• Orthogonality: The eigenfunctions are orthogonal with respect to the stationary distribution
ρ, i.e., Eu∼ρ[fi(u)fj(u)] = δij , where δij is the Kronecker delta.

• Eigenvalues: Each eigenfunction corresponds to an eigenvalue λi of the graph Laplacian,
with 0 = λ1 ≤ λ2 ≤ . . . ≤ λd.

• Dimensionality: The eigenfunctions collectively define a d-dimensional embedding of the
state space, encapsulating the underlying geometric and transition dynamics.

The paper [53] suggests a method to train the functions fi, we minimize a graph drawing objective
[51, 23] using stochastic gradient descent:

G(f1, . . . , fd) =
1

2

∑
st∼ρ,st+1∼Pπ(·|st)

[
d∑
k=1

(fk(st)− fk(st+1))
2

]
,

22

where Pπ(st+1 | st) is the transition distributions and ρ stationary state distribution of Pπ .

As discussed before we want to ensure orthonormality of the functions fi which impose this constrain∑
j,k (Es∼ρ [fj(s)fk(s)]− δjk)

2, where δjk is the Kronecker delta. The orthonormality constraint is
relaxed to a soft constraint and incorporated as a penalty in the objective (see [53]):

G̃(f1, . . . , fd) = G(f1, . . . , fd) + λEs∼ρ,s′∼ρ
((
ϕ(s)⊤ϕ(s′)

)2 − ∥ϕ(s)∥22 − ∥ϕ(s′)∥22 + d
)
,

During training, we need to sample states st and st+1 from Pπ. This can be done using the current
target policy. However, since we are restricted to the off-policy paradigm, we sample st and st+1

from transitions (st, at, rt, st+1) stored in the replay buffer. Additionally, to compute the constraint,
we randomly sample states from the replay buffer. To ensure this approximation does not negatively
impact representation learning, one can reduce the replay buffer size. Nevertheless, we found that
even with a large replay buffer, the representation method still provides valuable information for
the target policy to explore. We selected d = 4 to minimize computational resources while training
additional reference policy concurrently with the target policy. The dynamic reference policy and
embedding function are trained simultaneously.

Our off-reward dynamic reference policy maximizes
∑∞
t=0 γ

tR(st, at), where the off-reward
R(st, at) is defined as

R(st, at) =
||ϕ(st+1)− ϕ(st)||22
||ϕ(st+1)||22 + ||ϕ(st)||22

.

This reward function, as stated in the main body 5, encourages the agent to transition to states furthest
from the current one, leading to improved exploration.

Algorithm 2 Lap reference

1: Initialize policy µ(a|s), representation function ϕ(s), Lagrange multiplier λ. Target embedding
size d, and a small relaxation constant ϵ.

2: Initialize SAC Agent with fixed α = 0.2.
3: function UPDATEREFERENCEPOLICY(D)
4: Compute The Objective:

Obj = E(st,st+1)∼D

[
(ϕ(s′)− ϕ(s))2

]
5: Compute The Relaxed Constraint:

Cstn = E(s,s′)∼D

[(
ϕ(s)⊤ϕ(s′)

)2 − ∥ϕ(s)∥22 − ∥ϕ(s′)∥22 + d− ϵ
]

6: Update ϕ(s) using gradient descent:

∇ϕ[Obj + λ · Cstn]

7: Update λ using gradient ascent:
∇λ[λ · Cstn]

8: Compute reward

R(st, at) =
∥ϕ(st+1)− ϕ(st)∥22
∥ϕ(st+1)∥22 + ∥ϕ(st)∥22

9: Update policy µ(at|st) using SAC [17] with reward R(st, at)
10: end function

9.3.3 Dynamically Tuning the Similarity Weight

In the previous section, we developed an off-policy learning algorithm that seeks to maximize
cumulative rewards while keeping the new policy similar to a reference policy. The level of similarity
is controlled by a temperature parameter α. Unfortunately, determining the optimal temperature
is not straightforward, and it requires fine-tuning for each specific task. Rather than having users
manually set this temperature, we can redefine our learning objective by treating similarity as a
constraint. This removes the need to find the perfect temperature and instead ensures that the average

23

similarity between the two policies stays below a predefined hyperparameter C. This approach allows
the target policy to maintain some resemblance to the reference policy while providing room for more
deterministic behavior, helping to distinguish between desirable and undesirable actions.

Given reference polices µn and for t ∈ {0, ..., T}, the optimization problem is formally stated as

maximize Eρπ

[∞∑
t=0

r(st, at)

]
(46)

subject to E(st,at)∼ρπ

[
log

π(at|st)
µn(at|st)

]
≤ C . (47)

Adopting a similar procedure as described in [17], we can change our constrained maximization
problem for the last time step T to the dual problem as

max
πT

E(sT ,aT)∼ρπT
[r(sT , aT)] = min

αT≥0
max
π

E(sT ,aT)∼ρπt

[
r(sT , aT)− αT log

πT (aT |sT)
µn(aT |sT)

+ αTC
]

︸ ︷︷ ︸
L(πT ,αT)

.

(48)

We could compute the optimal πT and αT iteratively. First given the current αT , get the best policy
π∗
T that maximizes L(π∗

T , αT). Then plug in π∗
T and compute α∗

T that minimizes L(π∗
T , αT).

π∗
T = argmax

π
E(st,at)∼ρπ

[
r(sT , aT)− αT log

πT (aT |sT)
µn(aT |sT)

+ αTC
]
,

α∗
T = argmin

αT≥0
E(st,at)∼ρπ∗

T

[
−αT log

π∗
T (aT |sT)
µn(aT |sT)

+ αTC
]
.

To find αt for t ≤ T , recall that our Q-function is defined as following

Q∗
t (st, at;πt+1:T , µ

n, α∗
t+1:T) = r(st, at) + Eρπ∗

t+1

[
Q∗
t+1(st+1, at+1)− α∗

t+1 log
π∗
t+1(at+1|st+1)

µn(at+1|st+1)

]
,

(49)

with Q∗
T (sT , aT) = E [r(sT , aT)]. Notice that

Q∗
T−1(sT−1, aT−1) = r(sT−1, aT−1) + Eρπ∗

T

[
r(sT , aT)− α∗

T log
π∗
T (aT |sT)
µn(aT |sT)

]
= r(sT−1, aT−1) + max

πT

E [r(sT , aT)]− α∗
TC .

Where the second equality comes from equation 48. We can find our αT−1 using the Kullback–Leibler
divergence constraint and the dual problem as the following

max
πT−1

E
[
r(sT−1, aT−1) + max

πT

E [r(sT , aT)]

]
(50)

= max
πT−1

[
Q∗
T−1(sT−1, aT−1) + α∗

TC
]

(51)

= min
αT−1≥0

max
πT−1

(
E
[
Q∗
T−1(sT−1, aT−1)− αT−1 log

πT−1(aT−1|sT−1)

µn(aT−1|sT−1)
+ α∗

T−1C
])

+ α∗
TC .

(52)

In this manner, we can iteratively optimize our objective by proceeding backwards through time.
Once we have computed Q∗

t and π∗
t , we can subsequently determine the optimal value of the dual

variable, α∗
t as

argmin
αt>0

E(st,at)∼ρ∗π

[
−αt log

π∗
t (at|st)
µn(at|st)

+ αtC
]
. (53)

24

9.3.4 Off-Reward Dynamic Reference Actor Critic

While the previous sections establish the theoretical basis and convergence properties of our proposed
dynamic reference policy iteration, it becomes imperative to transition these theoretical constructs
into practical, feasible solutions for real-world applications. This need arises from the inherent
complexities and computational demands encountered in expansive continuous domains, where
exact policy iteration may be impractical or impossible. Therefore, the introduction of function
approximators, as discussed in this section, serves not only as a bridge between theory and application
but also emphasises the essential role of approximation techniques in deploying robust RL algorithms
in practical settings. Consequently, function approximators are employed for both the Q-function and
the policy. Rather than achieving convergence through evaluation and improvement, we transition
towards optimizing all networks via stochastic gradient descent. Let’s denote the parameterized
Q-function as Qθ(st, at), target policy as πϕ(at|st) and reference policy µψ(at|st) with θ, ϕ and
ψ representing their respective parameters. The Q-function will be realized through feed-forward
neural networks, while the target and the reference policy is represented as a Gaussian—its mean
and covariance guided by neural networks. In the subsequent section, we will describe the update
procedures for these parameter vectors.

To optimize the Q-function, parameters can be refined by minimizing the Bellman difference

JQ(θ) = E(st,at)∼D

[
1

2

(
Qθ(st, at)−

(
r(st, at) + γEst+1∼p[Vθ̄(st+1)]

))2]
. (54)

Where the value function, V , is indirectly determined by the Q-function’s parameters as per Equation
(10) and D is the replay buffer (pool) to store the collection of transition tuples (Algorithm 3).

In this schema, the update employs a target Q-function, defined by parameters θ̄. These parameters
originate from the primary parameters, albeit with a delay [31]. This method has been demonstrated
to enhance stability throughout the training process.

The parameters of the policy are refined by minimizing the expected KL-divergence as denoted in
Equation (11), with a factor of α, while omitting the constant log-partition function, as it remains
unchanged during the optimization process and thus does not influence the outcome.

Jπ(ϕ) = Est∼DEat∼πϕ

[
α log

(
πϕ(at|st)
µψ(at|st)

)
−Qθ(st, at)

]
. (55)

Since the Q-function function is symbolized by a neural network and is differentiable, we opt
to employ the reparameterization trick, similar to [17, 22, 40]. The reparameterization trick, by
parameterizing the stochasticity in the policy through a fixed noise distribution and a deterministic
function, allows for direct backpropagation through the stochastic nodes of the network. This results
in gradients that exhibit lower variance compared to those obtained through a score function estimator,
hence facilitating more stable and efficient learning [29]. Consequently, the policy undergoes
reparameterization through a neural network transformation given by at = fϕ(εt; st) where εt
signifies a noise vector sourced from a consistent distribution, possibly a standard normal distribution.
Now we write our objective Jπ(ϕ) as

at = fϕ(εt; st) = tanh(µϕ(st) + σϕ(st)⊙ εt), εt ∼ N (0, I) (56)

Jπ(ϕ) = Est∼D,εt∼N

[
α log

πϕ (fϕ(εt; st)|st)
µψ (fϕ(εt; st)|st)

−Qθ(st, fϕ(εt; st))
]
. (57)

Finally, similar to [17], we learn α using approximating dual gradient descent [6]. We compute the
gradient of α with respect to the objective function Jα(α) defined by

Jα(α) = Est∼D,at∼πϕ

[
−α log

πϕ(at|st)
µψ(at|st)

+ α C
]
, (58)

and then perform gradient descent to optimize α for minimizing this objective. Equation 58is derived
from equation 53 where C is a hyper-parameter that control the similarity between πϕ and µψ (see
section 9.3.3 in Appendix).

In developing our algorithm, we also employed twin Q-functions, in line with previous works
[17, 19, 12], to counteract the positive bias in the policy improvement step—a known factor that

25

impacts the success of value-based methods [18]. We adapted a similar parameterization strategy for
the two Q-functions, characterized by parameters θi. These were independently trained to optimize
JQ(θi). Consistent with [12], the lesser value among the Q-functions was selected for the stochastic
gradient detailed in Equation 54 and the policy gradient in Equation 55. We use feed-forward neural
networks to parameterize both the policy and value functions, each network having two hidden layers
with 256 neurons per layer. Check the full algorithm pseudo-code for all details (Algorithm 3).
Finally, we employ the method for enforcing action bounds as outlined in [17], using an unbounded
Gaussian distribution for actions and applying the tanh function to ensure actions are within a finite
interval. This involves transforming the likelihoods accordingly, as detailed in the equations provided.

Algorithm 3 Dynamic Refernece Actor-Critic

1: Input: initial policy parameters ϕ, Q-function parameters θ1, θ2, empty replay buffer D, target
update frequency ν

2: Initialize target value network θ̄1 ← θ1, θ̄2 ← θ2
3: Initialize reference policy parameters ψ
4: Initialize entropy coefficient α← 1, log-alpha η ← log(α)
5: Obtain initial observation state s0
6: for t = 0, 1, 2, . . . do
7: Select action at ∼ πϕ(·|st) with a stochastic policy (Equation 56)
8: Execute at in the environment
9: Observe next state st+1, reward rt, and done signal dt

10: Store (st, at, rt, st+1, dt) in replay buffer D
11: if t is a multiple of N (for some N) then
12: for j = 1, . . . ,M (for some M) do
13: Sample mini-batch B = (s, a, r, s′, d) from D
14: µψ ← UPDATEREFERENCEPOLICY(D)
15: Compute targets:

y(r, s′, d) = r + γ(1− d)
(
min
i=1,2

Qθ̄i(s
′, ã′)− α log

(
πϕ(ã

′|s′; η)
µψ(ã′|s′; η)

))
, ã′ ∼ πϕ(.|s′)

16: Update Q-functions by one step of gradient descent:

∇θi
1

|B|
∑

(s,a,r,s′,d)∈B

(Qθi(s, a)− y(r, s′, d))2 for i ∈ 1, 2

17: Update main target policy πϕ by one step of gradient ascent:

∇ϕ
1

|B|
∑
s∈B

(
min
i=1,2

Qθ̄i(s, ã)− α log

(
πϕ(ã|s)
µψ(ã|s)

))
, ã ∼ πϕ(.|s)

18: Update α by one step of gradient descent:

∇α
1

|B|
∑
s∈B

[−α log
πϕ(ã|s)
µψ(ã|s)

+ αC], ã ∼ πϕ(.|s)

19: end for
20: if t is a multiple of ν then
21: Update the target networks: θ̄i ← θi
22: end if
23: end if
24: end for
25: Output: ϕ, θ1, θ2

9.4 Experiments

In the following, we provide a comprehensive description of the setups used for the escape room
and MuJoCo experiments. For training each set of 5 agents, we utilized a cluster node equipped

26

0.2 0.4 0.6 0.8 1.0
Steps 1e6

0

1000

2000

3000

4000

5000

6000

Re
wa

rd
s

Ant-v4

0.2 0.4 0.6 0.8 1.0
Steps 1e6

1000

2000

3000

4000

5000

6000

Re
wa

rd
s

Humanoid-v4
Dynamic Reference MOP
Static Reference MOP

Figure 3: Comparison of dynamic and static reference policies. The graphs display the performance
of dynamic (blue) and static (orange) reference policies across two benchmarks: Ant-v4 (left) and
Humanoid-v4 (right). The shaded areas represent the confidence intervals for each policy. The results
demonstrate the superior adaptability and effectiveness of the dynamic reference policy, particularly
in the more complex Humanoid-v4 environment where the static policy’s limitations are pronounced.

with a T4 GPU, 16 CPU cores, and 4GB of memory per CPU. The CPUs varied and included types
such as Intel Xeon and Broadwell processors. The training time for each agent is documented in the
provided data, with each run for 5 agents taking between 20 and 30 hours on average, while baseline
training required less time. Our experiments were conducted within a Docker environment based
on the nvidia/cuda:12.0.0-base-ubuntu20.04 image. MuJoCo 2.1.0 was employed for the
simulations, with setup details specified in the Dockerfile. The GPU memory usage during training
was approximately 8 GB to 10 GB. This setup ensures that all necessary software and dependencies
are correctly installed and configured, promoting accurate reproducibility of the experiments. Certain
aspects of our algorithm implementation were inspired by the implementation in [1].

9.4.1 Dynamic and Static Reference Policies in Complex Environments

In our study, we conducted experiments to compare dynamic and static reference policies in the
Ant-v4 and Humanoid-v4 Mujoco environments. The results, illustrated in (Fig. 3), show that while
both types of policies enhance learning in the Ant-v4 environment, the dynamic reference policy
demonstrates a consistent advantage by adapting its strategy according to the evolving state of the
environment and the main policy’s performance. In the more complex Humanoid-v4 environment,
the static reference policy plateaued early, underperforming significantly compared to the dynamic
policy, which continued to adapt and guide the main policy towards more optimal behaviors. This
adaptability of the dynamic reference was important in complex environments, highlighting its utility
in preventing premature convergence to suboptimal policies and promoting better exploration and
performance outcomes.

9.4.2 Escape room

In our experiments, we employed a simulated environment created using the MuJoCo physics engine,
specifically designed to evaluate the exploration capabilities of RL algorithms. The environment
features a quadrupedal robotic agent, modeled as an "ant," which is tasked with navigating a bounded
arena characterized by a room with opened wall and additional wall forward. The main objective
in this scenario is to assess how effectively the agent can explore its surroundings, with the reward
mechanism based on the distance between the agent and the center of the room, promoting central
exploration. Additionally, the agent has access to its positional information, which is crucial for
making informed decisions about movements and pathfinding. This experimental design is intended
to challenge the agent’s exploratory behaviors and decision-making processes, leveraging the detailed
and realistic simulation capabilities of MuJoCo to derive meaningful conclusions about the perfor-
mance of the learning algorithms. You can find the XML file description of this environment with the
provided code.

27

0.2 0.4 0.6 0.8 1.0
Steps 1e6

1000

0

1000

2000

3000

4000

5000

6000

7000

Re
wa

rd
s

Ant-v4

0.2 0.4 0.6 0.8 1.0
Steps 1e6

0

1000

2000

3000

4000

5000

Humanoid-v4

0.2 0.4 0.6 0.8 1.0
Steps 1e6

0

1000

2000

3000

4000

5000

Walker2d-v4

0.2 0.4 0.6 0.8 1.0
Steps 1e6

500

1000

1500

2000

2500

3000

3500

Hopper-v4

0.2 0.4 0.6 0.8 1.0
Steps 1e6

2000

4000

6000

8000

10000

12000

HalfCheetah-v4

MOP reference LAP reference SAC PPO TD3 DDPG

Figure 4: Training curves on continuous control benchmarks indicate that the target policy, when
paired with an Exploration-Driven off-reward dynamic reference one, outperforms across several
tasks.

9.4.3 Mujoco

For all our MuJoCo benchmark experiments, we followed standard literature regarding the action
and state spaces. You can find a detailed information about our set of hyperparameters in Table
3. As in [17], we constrain the actions within a finite interval by applying the hyperbolic tangent
(tanh) squashing function to Gaussian-distributed samples. We observed that DDPG and PPO,
implemented from RL-Zoo3 [37], exhibited poor results in some Mujoco environments, aligning
with trends documented in [17]. Our independently developed SAC implementation also mirrored
the performance results reported by the original authors [17].

Figure 4 shows the total average return of evaluation rollouts during training for SAC, DDPG, PPO,
and TD3. We train ten separate instances of each algorithm with distinct random seeds, with each
carrying out one evaluation rollout every 4000 environment steps. The solid lines represent the mean,
while the shaded areas represent the standard deviation of returns over the ten trials. The results
indicate that, in general, Lap reference outperforms the baseline approaches on challenging tasks,
with poor outcomes in only one out of five tasks. Dynamic Reference methods demonstrate a clear
advantage in learning speed, stability and final performance.

28

Table 3: Hyperparameters
Parameter Value

Optimizer Adam [21]
Learning rate 3× 10−4

Discount (γ) 0.99
Replay buffer size 107

Number of hidden layers (all networks) 2
Number of hidden units per layer 256
Number of samples per minibatch 512
Steps per epoch 4000
Initial random steps 10000
Number of test episodes 10
Nonlinearity ReLU
Similarity hyper-parameters C 8
Update interval of target networks 500

Lap
Update interval of target networks 1000
Batch Size 1024
Similarity hyper-parameters C 16
ϵ 10−3

Initial λ 30
SAC α 0.2

MOP

Update interval of target networks 1000
Batch Size 1024
Similarity hyper-parameters C 8
β 0
SAC α 1.0

SAC entropy target −dim(A)

29

	Introduction
	Preliminaries
	Off-Reward Dynamic Reference Value Iteration
	Off-Reward Dynamic Reference Policy Iteration
	Off-Reward Dynamic Reference Policies
	Implementation
	Results
	Discussion and conclusion
	Appendix
	Related Work
	Proofs
	Optimally and Properties of Predefined reference policies
	Off-Reward Dynamic Reference Value Iteration
	Off-Reward Dynamic Reference Policy Iteration

	Implementation Details
	MOP reference
	Lap Reference
	Dynamically Tuning the Similarity Weight
	Off-Reward Dynamic Reference Actor Critic

	Experiments
	Dynamic and Static Reference Policies in Complex Environments
	Escape room
	Mujoco

