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Abstract

Model-based reinforcement learning (MBRL) exhibit favorable performance in
practice, but their theoretical guarantees are mostly restricted to the setting when
transition model is Gaussian or Lipschitz, and demands a posterior estimate whose
representational complexity grows unbounded with time. In this work, we develop
a novel MBRL method (i) which relaxes the assumptions on the target transition
model to belong to a generic family of mixture models; (ii) is applicable to large-
scale training by incorporating a compression step such that the posterior estimate
consists of a Bayesian coreset of only statistically significant past state-action pairs;
and (iii) exhibits a Bayesian regret of O(dH1+(α/2)T 1−(α/2)) with coreset size
of Ω(

√
T 1+α), where d is the aggregate dimension of state action space, H is the

episode length, T is the total number of time steps experienced, and α ∈ (0, 1]
is the tuning parameter which is a novel introduction into the analysis of MBRL
in this work. To achieve these results, we adopt an approach based upon Stein’s
method, which allows distributional distance to be evaluated in closed form as the
kernelized Stein discrepancy (KSD). Experimentally, we observe that this approach
is competitive with several state of the art RL methodologies, and can achieve up-to
50% reduction in wall clock time in some continuous control environments.

1 Problem Formulation

We consider the problem of modelling an episodic finite-horizon Markov Decision Process (MDP)
where the true unknown MDP is defined as M∗ := {S,A, R∗, P ∗, H,Rmax, ρ}, where S ⊂ Rds

and A ⊂ Rda denote continuous state and action spaces, respectively. Here, P ∗ represents the true
underlying generating process for the state action transitions and R∗ is the true rewards distribution.
After every episode of length H , the state will reset according to the initial state distribution ρ. At
time step i ∈ [1, H] within an episode, the agent observe si ∈ S, selects ai ∈ A according to
a policy µ, receives a reward ri ∼ R∗(si, ai) and transitions to a new state si+1 ∼ P ∗(·|si, ai).
We consider M∗ itself as a random process, as is the often the case in Bayesian Reinforcement
Learning, which helps us to distinguish between the true and fitted transition/reward model. Next,
we define policy µ as a mapping from state s ∈ S to action a ∈ A over an episode of length
H . For a given MDP M , the value for time step i is the reward accumulation during the episode
V M
µ,i(s) = E[ΣH

j=i[r̄
M (sj , µ(sj , j))|si = s]where actions are under policy µ(sj , j) (j denotes the

timestep within the episode) and r̄M (s, a) = Er∼RM (s,a)[r]. Without loss of generality, we assume
the expected reward an agent receives at a single step is bounded |r̄M (s, a)| ≤ Rmax, ∀s ∈ S, a ∈ A.
This further implies that |V (s)| ≤ HRmax, ∀s. For a given MDP M , the optimal policy µM is
defined as µM = argmaxµ V

M
µ,i(s) for all s and i = 1, . . . ,H . Next, we also define future value

function UM
i (P ) to be the expected value of the value function over all initializations and trajectories

UM
i (P ) = Es′∼P (s′|s,a),a=µM (s,i)[V

M
µM ,i(s

′)|si = s] where P is the transition distribution under
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MDP M . According to these definitions, one would like to find the optimal policy (??) for the
true model M = M∗. Next, we review the PSRL algorithm, which is an adaption of Thompson
sampling to RL [41] (see Algorithm 1 in Appendix B). In PSRL, we start with a prior distribution
over MDP given by ϕ. Then at each episode, we take sample Mk from the posterior given by ϕ(·|Dk)
, where Dk := {s1,1, a1,1, r1,1, · · · , sk−1,H , ak−1,H , rk−1,H} is a data set containing past trajectory
data, i.e., state-action-reward triples, which we call a dictionary. That is, where sk,i, ak,i and rk,i
indicate the state, action, and reward at time step zi in episode k. Then, we evaluate the optimal
policy µk := µMk

. Thereafter, information from the latest episode is appended to the dictionary as
Dk+1 = Dk ∪ {sk,1, ak,1, rk,1, · · · , sk,H , ak,H , rk,H}.
Bayes Regret and Limitations of PSRL: The Bayes regret of PSRL (cf. Algorithm 1) is established
to be Õ(

√
dK(R)dE(R)T + E[L∗]

√
dK(P )dE(P )) where dK and dE are Kolmogorov and Eluder

dimensions, R and P refer to function classes of rewards and transitions, and L∗ is a global Lipschitz
constant for the future value function. Although it is mentioned that system noise smooths the
future value functions in [41], an explicit connection between H and L is absent, which leads to an
exponential dependence on horizon length H in the regret [41, Corollary 2] for LQR.

A crucial assumption in deriving the best known regret bound for PSRL in continuous control is of
target distribution belonging to Gaussian/symmetric class, which is often violated. For instance, if we
consider a variant of inverted pendulum with an articulated arm, the transition model has at least as
many modes as there are minor-joints in the arm. Another major challenge is related to posterior’s
parameterization complexity M(T ) := |Dk|, which we subsequently call the dictionary size (step 10
in Algorithm 1) which is used to parameterize the posterior distribution. We note that M(T ) = Ω(T )
for the PSRL [41] and MPC-PSRL [19] algorithms which are state of the art approaches.

To alleviate the Gaussian restriction, we consider an alternative metric of evaluating the distributional
estimation error, namely, the kerneralized Stein discrepancy (KSD). Additionally, that KSD is easy to
evaluate under appropriate conditions on the target distribution, i.e., the target distribution is smooth,
one can compare its relative quality as a function of which data is included in the posterior. Doing
so allows us to judiciously choose which points to retain during the learning process in order to
ensure small Bayesian regret. To our knowledge, this work is the first to deal with the compression
of posterior estimate in model-based RL settings along with provable guarantees. These aspects are
derived in detail in the following section.

2 Proposed Approach

2.1 Posterior Coreset Construction via KSD

The core of our algorithmic development is based upon the computation of Stein kernels and
KSD to evaluate the merit of a given transition model estimate, and determine which past samples
to retain. Doing so is based upon the consideration of Stein based integral probability metrics
(IPM) rather than total variation (TV) distance which allows us to employ Stein’s identity, which
under a hypothesis that the score function of the target is computable. This approach is well-
known to yield methods to improve the sample complexity of Markov Chain Monte Carlo (MCMC)
methods [13]. This turns out to be the case in model-based RL as well is a testament to its power
[49, 47]. This method to approximate a target density P consists of defining an IPM [48] based
on a set G consisting of test functions on X ⊂ R2ds+da , and is defined as DG,P ({xi}ni=1) :=
supg∈G

∣∣ 1
n

∑n
i=1 g(xi)−

∫
X gdP

∣∣
Although IPMs efficiently quantify the discrepancy between an estimate and target, requires P to
evaluate the integral, which may be unavailable. To alleviate this issue, Stein’s method restricts
the class of test functions g to be those such that EP [g(z)] = 0. In this case, IPM only depends
on the Dirac-delta measure (δ) from the stream of samples, removing dependency on the exact
integration in terms of P . Under certain smoothness assumptions on the posterior, the IPM can be
evaluated in closed form through the kernelized Stein discrepancy (KSD). The key technical upshot
of employing Stein’s method is that we can now evaluate the integral probability metric of posterior
ϕDk

:= ϕ(·|Dk) parameterized by dictionary Dk through the KSD, which is efficiently computable:
KSD(ϕDk

) :=
√

1
|Dk|2

∑
hi,hj

κ0(hi, hj) which depends solely on score function of the estimated
posterior and we no longer require access to the true unknown target transition model of the MDP.
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This is a major merit of utilizing Stein’s method in MBRL, and allows us to improve the regret of
model-based RL methods based on posterior sampling. This the previous point is distinct from the
computational burden of storing dictionary Dk that parameterizes ϕDk

and evaluating the optimal
value function according to the current belief model. After this novel change (see Lemma ?? in Sec.
3), we can utilize the machinery of KSD to derive the regret rate for the proposed algorithm in this
work (cf. Algorithm 2) in lieu of concentration inequalities, as in [19]. We shift to the computational
storage requirements of the posterior in continuous space next.

KSD Thinning: We develop a principled way to avoid the requirement that the dictionary Dk retains
all information from past episodes, and is instead parameterized by a coreset of statistically significant
samples. The issue in PSRL (or MBRL in general) is as the number of episodes experienced becomes
large, the posterior representational complexity grows linearly and unbounded with episode index k.
On top of that, the posterior update in PSRL (cf. Algorithm 1) is also parameterized by data collected
in Dk+1 (ex : Gaussian processes.[46]). To deal with this bottleneck, we propose to sequentially
remove those particles from Dk+1 that contribute least in terms of KSD. It can be interpreted as
projecting posterior estimates onto “subspaces" spanned by only statistically representative past
state-action-state triples. Such nonparametric posterior representation has been shown to exhibit
theoretical and numerical advantages in probability density estimation [11, 12], Gaussian Processes
[32], and Monte Carlo methods [18]. Here we introduce it for the first time in model-based RL,
which allows us to control the growth of the posterior complexity, which in turn permits us to obtain
computationally efficient updates.

α E[RegretT ] M(T )

0 O(dHT ) Ω̃(
√
T )

0.5 O(dH 7
4T

1
4 ) Ω̃(T 3/4)

1 O(dH 3
2T

1
2 ) Ω̃(T )

Table 1: Tradeoff
for different val-
ues of α.

To be more specific, suppose we are at episode k with dictionary Dk associated
with posterior ϕDk

, and we denote the dictionary after update as D̃k+1 = Dk+H
and corresponding posterior as ϕD̃k+1

. For a given dictionary Dk, we can
calculate the KSD of posterior ϕDk

to target. We note that the KSD estimate
goes to zero as k →∞ due to the posterior consistency conditions [22]. At each
episode k, after performing the dictionary update to obtain D̃k+1 (step 10 in
Algorithm 2), we propose to thin dictionary D̃k+1 such that KSD(ϕDk+1

)2 <

KSD(ϕD̃k+1
)2 + ϵk+1 where Dk+1 is the dictionary following thinning and

ϵk > 0 is a scalar parameter we call the thinning budget proposed. This means the posterior defined
by compressed dictionary ϕD̃k+1

is at most ϵk+1 in KSD from its uncompressed counterpart. We
will see how ϵk permits us to trade off regret and dictionary size in practice. KSD may be succinctly
stated as

(ϕDk+1
,Dk+1) = KSD-Thinning(ϕD̃k+1

, D̃k+1, ϵk). (1)

We summarize the proposed algorithm in Algorithm 2 with compression subroutine in Algorithm 3 in
Appendix, where KSRL is an abbreviation for Kernelized Stein Discrepancy Thinning for Model-Based
Reinforcement Learning. Please refer to discussion Appendix B for MPC based action selection.

3 Bayesian Regret Analysis

In this section, we develop the Bayesian Regret Analysis for KSRLusing score-based IPM that exploit’s
salient structural properties of Stein’s method, and additionally provides a basis for establishing
tradeoffs between regret and posterior representational complexity which is novel in this work. In
the first step, we upper bound the future value function estimation error of P k with respect to P ∗

as Uk
i (P

k(ĥi)) − Uk
i (P

∗(ĥi)) ≤ HRmaxKSD(P k(hi)) for all i and k. The salient point to note
here is that we do not require access to P ∗ to evaluate the RHS of the equation. Then, we prove

that E [KSD(ϕDk
)] = O

(√
k log(k)

f(k)

)
where ϵk = log(k)

f(k)2 is the thinning budget. For the statistical

consistency of the posterior estimate, we note that it is sufficient to show that E [KSD(ϕDk
)] → 0

as k → ∞, which imposes a lower bound on the dictionary size growth rate f(k) >
√
k log(k)

required for convergence. This result communicates that it is possible to achieve statistical consistency
without having a linear growth in the dictionary size that is a drawback of prior art [41, 19]. Finally,
with ϵk = log(k)

f(k)2 and coreset size growth condition f(k) =
√
kα+1 log(k) where α ∈ (0, 1], we

prove total Bayes regret for KSRLis given by E[RegretT ] = O
(
dT 1−α

2 H1+α
2

)
with coreset size

M(T ) = Ω̃
(√

T 1+α
)

. Observe that we match the best known prior results of PSRL with α = 1 as
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shown in [19] in-terms of O(dH
3
2T

1
2 ), but with relaxed conditions on the posterior, allowing the

approach to apply to a much broader class of problems. Moreover, for α < 1, we obtain a superior
tradeoff in model complexity and regret.
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Figure 1: (a)-(c) compares the average cumulative reward return achieved by the proposed KSRL
(shown in blue) algorithm with MPC-PSRL [19], SAC [23], and DDPG [5] for Cartpole, Pendulum,
and Pusher without rewards. Fig. 4 in the Appendix F shows with rewards. (d)-(f) compares the
model-complexity. We note that KSRL is able to achieve the maximum average reward at-par with
the current SOTA MPC-PSRL with drastically reduced model complexity. Solid curves represent
the average across five trials (seeds), shaded areas correspond to the standard deviation amongst the
trials.

4 Experiments

We present a detailed experimental analysis of KSRL comparing to state of the art model-based and
model-free RL methods on several continuous control tasks in terms of training rewards, model
complexity and KSD convergence. For model-based we compare to MPC-PSRL method proposed in
[19] since MPC-PSRL is already shown to outperform MBPO [27] and PETS [15] in this environ-
mental settings. For comparison to model-free approaches, we compare with Soft Actor-Critic (SAC)
from [23] and Deep Deterministic Policy Gradient (DDPG) [5]. We consider continuous control
environments Stochastic Pendulum , Continuous Cartpole, Reacher and Pusher with and without
rewards of modified OpenAI Gym [8] & MuJoCo environments [55]. See Appendix F for additional
specific details of the environments and architecture.

Discussion. Fig. 2 compares the average reward return (top row) and model complexity (bottom
row) for Cartpole, Pendulum, and Pusher, respectively. We note that KSRL performs equally good or
even better as compared to the state of the art MPC-PSRL algorithm with significant reduction in
model complexity (bottom row in Fig. 2) consistently across different environments. From the model
complexity plots, we remark that KSRL is capable of automatically selecting the data points and
control the dictionary growth across different environments which helps to achieve same performance
in terms of average reward with fewer dictionary points to parameterize posterior distributions. This
also helps in achieving faster compute time in practice to perform the same task as detailed in Fig. 3
in the Appendix F. We also show improvements of our algorithm over MPC with fixed buffer size as
shown in Fig. 8 Appendix F with both random and sequential removal.
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Supplementary Material for
“Posterior Coreset Construction with Kernelized Stein Discrepancy for

Model-Based Reinforcement Learning"

A Introduction

Reinforcement learning, mathematically characterized by a Markov Decision Process (MDP)
[45], has gained traction for addressing sequential decision-making problems with long-term
incentives and uncertainty in state transitions [52]. A persistent debate exists as to whether
model-free (approximate dynamic programming [51] or policy search [57]), or model-based
(model-predictive control, MPC [20, 30]) methods, are superior in principle and practice [56].
A major impediment to settling this debate is that performance certificates are presented in
disparate ways, such as probably approximate correct (PAC) bounds [50, 16], frequentist
regret [28, 29], Bayesian regret [1, 58, 38], and convergence in various distributional metrics
[6, 2, 33]. In this work, we restrict focus to regret, as it imposes the fewest requirements on
access to a generative model underlying state transitions.

In evaluating the landscape of frequentist regret bounds for RL methods, both model-based
and model-free approaches have been extensively studied [28]. Value-based methods in
episodic settings have been shown to achieve regret bounds Õ(dpHq

√
T ) [59] (with p = 1,

q = 2), where H is the episode length, and d is the aggregate dimension of the state and
action space. This result has been improved to p = q = 3/2 in [29], and further to p = 3/2
and q = 1 in [60]. Recently, model-based methods have gained traction for improving upon
the best known regret model-free methods with p = 1 and q = 1/3 [4]. A separate line of
works seek to improve the dependence on T to be logarithmic through instance dependence
[26, 61]. These results typically impose that the underlying MDP has a transition model
that is linearly factorizable, and exhibit regret depends on the input dimension d. This
condition can be relaxed through introduction of a nonlinear feature map, whose appropriate
selection is highly nontrivial and lead to large gaps between regret and practice [37], or meta-
procedures [34]. Aside from the feature selection issue, these approaches require evaluation
of confidence sets which is computationally costly and lead to statistical inefficiencies when
approximated [42].

Thus, we prioritize Bayesian approaches to RL [21, 30] popular in robotics [17]. While
many heuristics exist, performance guarantees take the form of Bayesian regret [40], and
predominantly build upon posterior (Thompson) sampling [54]. In particular, beyond
the tabular setting, [41] establishes a Õ(σR

√
dK(R)dE(R)T + E[L∗]σp

√
dK(P )dE(P ))

Bayesian regret for posterior sampling RL (PSRL) combined with greedy action selections
with respect to the estimated value. Here L∗ is a global Lipschitz constant for the future
value function, dK and dE are Kolmogorov and eluder dimensions, and R and P refers to
function classes of rewards and transitions. The connection between H and L is left implicit;
however, [19][Sec. 3.2] shows that L can depend exponentially on H . Similar drawbacks
manifest in the Lipschitz parameter of the Bayesian regret bound of [14], which extends
the former result to continuous spaces through kernelized feature maps. However, recently
an augmentation of PSRL is proposed which employs feature embedding with Gaussian
(symmetric distribution) dynamics to alleviate this issue [19], yielding the Bayesian regret
of Õ(H

3

2d
√
T ) that is polynomial in H and has no dependence on Lipschitz constant L.

These results are still restricted in the sense that it requires (i) the transition model target
to be Gaussian, (ii) its representational complexity to grow unsustainably large with time.
Therefore, in this work we as the following question:

Can we achieve a trade-off between the Bayesian regret and the posterior representational
complexity (aka coreset size) without oracle access to a feature map at the outset of training,
in possibly continuous state-action spaces?
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We provide an affirmative answer by honing in on the total variation norm used to quantify
the posterior estimation error that appears in the regret analysis of [19], and identify that it
can be sharpened by instead employing an integral probability metric (IPM). Specifically, by
shifting to an IPM, and then imposing structural assumptions on the target, that is, restricting
it to a class of smooth densities, we can employ Stein’s identity [49, 31] to evaluate the
distributional distance in closed form using the kernelized Stein discrepancy (KSD) [22, 35].
This restriction is common in Markov Chain Monte Carlo (MCMC) [3], and imposes that
the target, for instance, belongs to a family of mixture models.

This modification in the metric of convergence alone leads to improved regret because we no
longer require the assumption that the posterior is Gaussian [19]. However, our goal is to
translate the scalability of PSRL from tabular settings to continuous spaces which requires
addressing the parameterization complexity of the posterior estimate, which grows linearly
unbounded [19] . With the power to evaluate KSD in closed form, then, we sequentially
remove those state-action pairs that contribute least (decided by a compression budget ϵ) in
KSD after each episode (which is completely novel in the RL setting) from the posterior
representation according to [25]. Therefore, the posterior estimate only retains statistically
significant past samples from the trajectories, i.e., it is defined by a Bayesian coreset of
the trajectory data [11, 12]. The budget parameter ϵ then is calibrated in terms of a rate
determining factor α to yield both sublinear Bayesian regret and sublinear representational
complexity of the learned posterior – see Table 2. The resultant procedure we call Kernelized
Stein Discrepancy-based Posterior Sampling for RL (KSRL). Our main contributions are,
then, to:

▷ introduce Stein’s method in MBRL for the first time, and use it to develop a novel transi-
tion model estimate based upon it, which operates in tandem with a KSD compression
step to remove statistically insignificant past state-action pairs, which we abbreviate as
KSRL;

▷ establish Bayesian regret bounds of the resultant procedure that is sublinear in the number
of episodes experienced, without any prior access to a feature map, alleviating difficult
feature selection drawbacks of prior art. Notably, these results relax Gaussian and
Lipschitz assumptions of prior related results;

▷ mathematically establish a tunable trade-off between Bayesian regret and posterior’s
parameterization complexity (or dictionary size) via introducing parameter α ∈ (0, 1]
for the first time in this work;

▷ experimentally demonstrate that KSRL achieves favorable tradeoffs between sample and
representational complexity relative to several strong benchmarks.

B Background

Let us write down the posterior sampling based reinforcement learning (PSRL) algorithm
here in detail which is the basic building block of the research work in this paper [41].

Model Predictive Control : Model based RL planning with Model-predictive control
(MPC) has achieved great success[9] in several continuous control problems especially
due to its ability to efficiently incorporate uncertainty into the planning mechanism. MPC
has been an extremely useful mechanism for solving multivariate control problems with
constraints [10] where it solves a finite horizon optimal control problem in a receding
horizon fashion. The integration of MPC in the Model-based RL is primarily motivated due
to its implementation simplicity, where once the model is learnt, the subsequent optimization
for a sequence of actions is done through MPC. At each timepoint, the MPC applies the first
action from the optimal action sequence under the estimated dynamics and reward function
by solving argmaxai:i+τ

∑i+τ
t=i E[r(st, at)]. However, computing the exact argmax is non-

trivial for non-convex problems and hence approximate methods like random sampling

10



Setting Refs Bayes Regret Coreset Size
Tabular PSRL [39] Õ(HS

√
AT ) Ω(T )

Tabular PSRL2 [43] Õ(H
√
SAT ) Ω(T )

Tabular TSDE [44] Õ(HS
√
AT ) Ω(T )

Tabular General PSRL [1] Õ(DS
√
AT ) Ω(T )

Tabular DS-PSRL [53] Õ(CH
√
C ′T ) Ω(T )

Tabular PSRL3 [41] Õ(
√
dkdET ) Ω(T )

Continuous/Gaussian MPC-PSRL [19] Õ(H 3
2 d
√
T ) Ω(T )

Continuous/ Smooth KSRL (This work) Õ
(
dH1+(α/2)T 1−(α/2)

)
Ω(
√
T 1+α)

Table 2: A comparison of Bayes regret (cf. (??)) and Bayesian Coreset (the number of stored data
points in dictionary Dk to represent posterior at k). We introduce KSD-based compression to model-
based RL (KSRL), with tuning parameter α to obtain sublinear Bayesian regret and coreset size for
any α ∈ (0, 1]. For α = 1, we recover the state of the art results of MPC-PSRL (Õ(dH3/2

√
T )). But

our results holds for general transitions which are smooth and not restricted to Gaussian assumption.

Algorithm 1 Posterior Sampling for Reinforcement Learning (PSRL) [41]

1: Input : Episode length H , Total timesteps T , Dictionary D1, prior distribution ϕ for M∗, i=1
2: for episodes k = 1 to K do
3: Sample Mk ∼ ϕ(·|Dk)
4: Evaluate µk under Mk via (??) and initialize empty C = []
5: for timesteps i = 1 to H do
6: Take action ai ∼ µk(si)
7: Observe ri and si+1 action ai ∼ µk(si)
8: Update C = C ∪ {(si, ai, ri, si+1)}
9: end for

10: Update Dk+1 = Dk ∪ C
11: Update posterior to obtain ϕ(· | Dk+1)
12: end for

shooting [36], cross-entropy methods [7] are commonly used. For our specific case we use
the Cross-entropy method for its effectiveness in sampling and data efficiency.

C Proof of Lemma ??

Proof. Using the definition of the future value function with the Bellman Operator, we can
write

Uk
i (P

k(ĥi))− Uk
i (P

∗(ĥi)) ≤max
s
|V Mk

µk
(s)| · ∥P k(·|ĥi)− P ∗(·|ĥi)∥ (2)

≤HRmax∥P k(·|ĥi)− P ∗(·|ĥi)∥, (3)

where we have utilized the absolute upper bound on the value function |V (s)| ≤ HRmax.
The norm in (3) is the total variation distance between the probability measures. In [19,
Lemma 2], the right hand side of (44) is further upper bounded by the distance between the
mean functions after assuming that the underlying distributions are Gaussian. This is the
point of departure in our analysis where we introduce the notion of Stein discrepancy to
upper bound the total variation distance between the probability measures.

First, we build the analysis for d = 1 and later would extend it to multivariate scenarios.
We start the analysis by showing that the total variation distance is upper bounded by the
KSD for d = 1. Let us define the notion of an integral probability metric between two
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Algorithm 2 Kernelized Stein Discrepancy-based Posterior Sampling for RL (KSRL)

1: Input : Episode length H , Total timesteps T , Dictionary D, prior distribution ϕ = {P,R} for
true MDP M∗, planning horizon τ for MPC Controller, thinning budget {ϵk}Kk=1

2: Initialization : Initialize dictionary D1 at with random actions from the controller as D1 :=
{s1,1, a1,1, r1,1, · · · , s1,H , a1,H , r1,H}, posterior ϕD1

= {PD1
,RD1

}
3: for Episodes k = 1 to K do
4: Sample a transition P k ∼ PDk

and reward model rk ∼ RDk
and initialize empty C = []

5: for timesteps i = 1 to H do
6: Evaluate optimal action sequence a∗k,i:k,i+τ = argmaxak,i:k,i+τ

∑i+τ
t=i E[r(sk,t, ak,t)]

7: Execute a∗k,i from the optimal sequence a∗k,i:k,i+τ

8: Update C ← C ∪ {(sk,i, ak,i, sk,i+1, rk,i)}
9: end for

10: Update dictionary D̃k+1 ← Dk ∪ C
11: Perform thinning operation (cf. Algorithm 3)

(ϕDk+1
,Dk+1) = KSD-Thinning(ϕD̃k+1

, D̃k+1, ϵk)

12: end for

Algorithm 3 Posterior Coreset with KSD Thinning for Reinforcement Learning (KSD-Thinning)

1: Input: (qW ,W, ϵ)
2: Require: Target score function
3: Compute the reference KSD as α := KSD(qW) via (??)
4: while KSD(qW)2 < α2 + ϵ do
5: Compute the least influential point xj as the minimial hi ∈ D̃k+1 (??)
6: if KSD(qW\{xj})

2 < α2 + ϵ then
7: Remove the least influential point, setW =W \ {xj}
8: else
9: Break loop

10: end if
11: end while
12: Output thinned dictionaryW satisfying KSD(qW)2 < α2 + ϵ

distributions p and q as

D(p, q) := sup
f∈F

∣∣∣∣∣
∫

fdp−
∫

fdq

∣∣∣∣∣,
where F is any function space. Now, if we restrict ourselves to a function space F ′ := {f :
∥f∥∞ ≤ 1}, then we boils down to the definition of total variation distance between p and q
given by

TV (p, q) := sup
f∈F ′

∣∣∣∣∣
∫

fdp−
∫

fdq

∣∣∣∣∣.
We can restrict our function class to be RKHS given byH and still write

TV (p, q) := sup
f∈H′

∣∣∣∣∣
∫

fdp−
∫

fdq

∣∣∣∣∣,
where we define H′ := {f : ∥f∥∞ ≤ 1}. We note that H′ is uniquely determined by the
kernel κ(x, y) (e.g., RBF kernel) . Now, we knowH′ is a subset of RKHSH. Now, we will
try to upper bound the supremum overH′ with supremum over a general class of functions
which we call Stein class of functions asHS [35]. Note that sinceH′

TV (p, q) = sup
f∈H′

∣∣∣∣∣
∫

fdp−
∫

fdq

∣∣∣∣∣ ≤ sup
f∈HS

∣∣∣∣∣
∫

fdp−
∫

fdq

∣∣∣∣∣.
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Figure 2: (a)-(c) compares the average cumulative reward return achieved by the proposed KSRL
(shown in blue) algorithm with MPC-PSRL [19], SAC [23], and DDPG [5] for modified Cartpole,
Pendulum, and Pusher without rewards. Fig. 4 in the Appendix F shows with rewards. (d)-(f)
compares the model-complexity. We note that KSRL is able to achieve the maximum average reward
at-par with the current SOTA MPC-PSRL with drastically reduced model complexity. Solid curves
represent the average across five trials (seeds), shaded areas correspond to the standard deviation
amongst the trials.

Now, for Stein class of functionsHS , it holds that
∫
fdp = 0. Therefore, we can write

TV (p, q) = sup
f∈H′

∣∣∣∣∣
∫

fdp−
∫

fdq

∣∣∣∣∣ ≤ sup
f∈HS

∣∣∣∣∣
∫

fdp−
∫

fdq

∣∣∣∣∣ = sup
f∈HS

∣∣∣∣∣
∫

fdq

∣∣∣∣∣
Hence, we can write

TV (p, q) ≤ sup
f∈HS

∣∣∣∣∣
∫

fdq

∣∣∣∣∣ =: KSD(q).

Utilizing the above upper bound into the right hand side of (3), we can write

Uk
i (P

k(ĥi))− Uk
i (P

∗(ĥi)) ≤HRmaxKSD
(
P k(hi)

)
. (4)

The above result holds for d = 1 case, and assuming that the variables are independent of
each other in all the dimensions, we can naively write that in d dimensions, we have

Uk
i (P

k(ĥi))− Uk
i (P

∗(ĥi)) ≤dHRmaxKSD
(
P k(hi)

)
. (5)

Hence proved.

D Proof of Lemma ??

Before starting the proof, here we discuss what is unique about it as compared to the existing
literature. The kernel Stein discrepancy based compression exists in the literature [24] but
that is limited to the settings of estimating the distributions. This is the first time we are
extending the analysis to model based RL settings. The samples in our setting are collected
in the form of episodes following an optimal policy µk (cf. (??)) for each episode. The
analysis here follows a similar structure to the one performed in the proof of [24, Theorem
1] with careful adjustments to for the RL setting we are dealing with in this work. Let us
now begin the proof.
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Proof. Since we are learning for both reward and transition model denoted byR and P and
they both are parameterized by the same dictionary Dk, we present the KSD analysis for
ΛDk

:= {P k, Rk} without loss of generality. Further, for the proof in this section, we divide
the H samples collected in kth episode into M > 1 number of batches, and then select the
KSD optimal point from each batch of H/M samples similar to SPMCMC procedure. We
will start with the one step transition at k − 1 where we have the dictionary Dk−1 and we
update it to obtain D̃k which is before the thinning operation. From the definition of KSD in
(??), we can write

|D̃k|2KSD(ΛD̃k
)2 =

∑
hi∈Dk

∑
hj∈Dk

k0(hi, hj) (6)

= |Dk−1|2KSD(ΛDk−1
)2 +

H/M∑
m=1

[
k0(h

m
k , hmk ) + 2

∑
hi∈Dk−1

k0(hi, h
m
k )

]
.

(7)

Next, for each m, since we select (SPMCMC based method in [13]) the sample hmk from
Ym := {hlk}Ml=1, and without loss of generality, we assume that H/M is an integer. Now,
from the SPMCMC based selection, we can write

k0(h
m
k , hmk ) + 2

∑
hi∈Dk−1

k0(hi, h
m
k ) = inf

hm
k ∈Ym

k0(h
m
k , hmk ) + 2

∑
hi∈Dk−1

k0(hi, h
m
k )

≤S2
k + 2 inf

hm
k ∈Ym

∑
hi∈Dk−1

k0(hi, h
m
k ). (8)

The inequality in (8) holds because we restrict our attention to regions for which it holds
that k0(x,x) ≤ S2

k for all x ∈ Ym
k for all k and m. Utilizing the upper bound of (8) into the

right hand side of (7), we get

|D̃k|2KSD(ΛD̃k
)2 ≤ |Dk−1|2KSD(ΛDk−1

)2 +
HS2

k

M
+ 2

H/M∑
m=1

inf
hm
k ∈Ym

∑
hi∈Dk−1

k0(hi, h
m
k ).

(9)

Eqn (6) clearly differentiates our method from [24] highlighting the novelty of our approach
is deciphering the application of KSD to our model based RL problem. From the application
of Theorem 5 [24] for our formulation with H new samples in the dictionary.

2 inf
hm
k ∈Ym

∑
hi∈D̃k−1

k0(hi, h
m
k ) ≤ rk∥fk∥2K0

+
KSD(ΛDk−1

)

rk

2

, (10)

for any arbitrary constant rk > 0. We use the upper bound in (10) to the right hand side of
(9), to obtain

|D̃k|2KSD(ΛD̃k
)2 ≤ |Dk−1|2

(
1 +

H

rkM

)
KSD(ΛDk−1

)2 +
HS2

k + rkH∥fk∥2K0

M
. (11)

Next, we divide the both sides by |D̃k|2 = (|Dk−1|+H/M)2 to obtain

KSD(ΛD̃k
)2 ≤ |Dk−1|2

(|Dk−1|+H/M)2

(
1 +

H

rkM

)
KSD(qDk−1

)2 +
H
(
S2
k + rk∥fk∥2K0

)
M (|Dk−1|+H/M)2

(12)
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Now, in this step we apply equation (??) and replace ΛD̃k
with the thinned dictionary one

ΛDk
and rewriting equation (12) as

KSD(ΛDk
)2 ≤ |Dk−1|2

(|Dk−1|+H/M)2

(
1 +

H

rkM

)
KSD(ΛDk−1

)2 +
H
(
S2
k + rk∥fk∥2K0

)
M (|Dk−1|+H/M)2

+ ϵk.

(13)
Note that we have established a recursive relationship for the KSD of the thinned distribution
in (13). This is quite interesting because it would pave the way to establish the regret result
which is the eventual goal. After unrolling the recursion in (13), we can write

KSD(ΛDk
)2 ≤

k∑
i=1

(
H
(
S2
i + ri∥fi∥2K0

)
M (|Di−1|+H/M)2

+ ϵi

)k−1∏
j=i

|Dj |
|Dj |+H/M

2k−1∏
j=i

(
1 +

H

rj+1M

) .

(14)
Taking expectation on both sides of (14) and applying the log-sum exponential bound we
get

E
[
KSD(ΛDk

)2
]
≤ E

exp
H

M

k∑
j=1

1

rj

 k∑
i=1

(
H(S2

i + ri∥fi∥2K0
)

M (|Di−1|+H/M)2
+ ϵi

)k−1∏
j=i

|Dj |
|Dj |+H/M

2 ,

(15)
where the log-sum exponential bound is used as

k−1∏
j=i

(
1 +

H

rj+1M

)
≤ exp

H

M

n∑
j=1

1

rj

 . (16)

Next, we consider the inequality in (15), ignoring the exponential term, we further decom-
pose the remaining summation term into two parts, respectively, as:

E

 k∑
i=1

(
H(S2

i + ri∥fi∥2K0
)

M (|Di−1|+H/M)2
+ ϵi

)k−1∏
j=i

|Dj |
|Dj |+H/M

2 (17)

= E

 k∑
i=1

(
H(S2

i + ri∥fi∥2K0
)

M (|Di−1|+H/M)2

)k−1∏
j=i

|Dj |
|D̃j |+H/M

2
︸ ︷︷ ︸

T1

+E

 k∑
i=1

ϵi

k−1∏
j=i

|Dj |
|Dj |+H/M

2
︸ ︷︷ ︸

T2

,

where T1 corresponds to the sampling error and T2 corresponds to the error due to the
proposed thinning scheme. The term T1 represents the bias incurred at each step of the
un-thinned point selection scheme. The term T2 is the bias incurred by the thinning operation
carried out at each step. However, for our case in the model-based reinforcement learning
setting, the bias term T1 will be different in our case as the samples are generated in a
sequential manner in each episode from a Transition kernel with a decaying budget. Let
develop upper bounds on both T1 and T2 as follows.

Bound on T1: Let consider the first term on the right hand side of (17) as follow

T1 =E

 k∑
i=1

(
H(S2

i + ri∥fi∥2K0
)

M (|Di−1|+H/M)2

)k−1∏
j=i

|Dj |
|Dj |+H/M

2
=E

 k∑
i=1

(
H(S2

i + ri∥fi∥2K0
)

M (|Dk−1|+H/M)2

)k−1∏
j=i

|Dj |
|Dj−1|+H/M

2 , (18)

15



0 10 20 30 40 50
Wall-Clock (mins)

25

50

75

100

125

150

175

200

Av
er

ag
e 

Re
wa

rd
s

KSRL
MPC-PSRL

(a)

0 20 40 60 80 100
Wall-Clock (mins)

1800

1600

1400

1200

1000

800

600

400

Av
er

ag
e 

Re
wa

rd
s

KSRL
MPC-PSRL

(b)

0 25 50 75 100 125 150 175 200
Wall-Clock (mins)

350

300

250

200

150

100

50

0

Av
er

ag
e 

Re
wa

rd
s

KSRL
MPC-PSRL

(c)

0 10 20 30 40 50
Wall-Clock (mins)

0

10000

20000

30000

40000

50000

KS
D

KSRL
MPC-PSRL

(d)

20 40 60 80 100
Wall-Clock (mins)

0

1000

2000

3000

4000

KS
D

KSRL
MPC-PSRL

(e)

0 25 50 75 100 125 150 175 200
Wall-Clock (mins)

0

10000

20000

30000

40000

50000

60000

70000

KS
D

KSRL
MPC-PSRL

(f)

Figure 3: Performance against wall clock time and KSD Convergence results: (a)-(c) shows the
average reward return against wall clock time (in minutes) for modified Cartpole, Pendulum, and
Reacher (mean across 5 runs). (d)-(f) provides the evidence of KSD convergence which shows we
are learning the target posterior effectively without any bias (even we are compressing the dictionary).
From (a)-(c) it is evident that KSRL(blue) is able to achieve the similar performance even earlier than
the existing dense counterparts with no thinning. Wall-clock time measured in minutes for runs in
CPU.

where the equality in (18) holds by rearranging the denominators in the multiplication,
and pulling (|Dk−1|+H/M)2 inside the first term. Next, from the fact that |Dj | ≤
|Dj−1|+H/M which implies that the product will be less that 1, we can upper bound
the right hand side of (18) as follows

T1 ≤ E

[
k∑

i=1

(
H(S2

i + ri∥fi∥2K0
)

M (|Dk−1|+H/M)2

)]
(19)

=

k∑
i=1

(
H(S2

i + riE
[
∥fi∥2K0

]
)

M (|Dk−1|+H/M)2

)
, (20)

where we took expectation inside the summation and apply it to the random variable in the
numerator. From the model order growth condition, we note that |Dk−1|+H/M ≥ |Dk| ≥
f(k), which implies that 1/ (|Dk−1|+H/M)2 ≤ 1/f(k)2, which we utilize in the right
hand side of (20) to write

T1 ≤ E

[
k∑

i=1

(
H(S2

i + ri∥fi∥2K0
)

M (|Dk−1|+H/M)2

)]
(21)

=

k∑
i=1

(
H(S2

i + riE
[
∥fi∥2K0

]
)

Mf(k)2

)
(22)

Following the similar logic mentioned in [13, Appendix A, Eqn. (17)], we can upper bound
E
[
∥fi∥2K0

]
as

E
[
∥fi∥2K0

]
≤ 4b

γ
exp

(
−γ

2
S2
i

)
+

4

H/M
S2
i , (23)
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which is based on the assumption that Ey∼P [exp(γκ0(y,y))] = b <∞. This implies that

T1 ≤
1

f(k)2

k∑
i=1

(
(H/M + 4ri)S

2
i +

4briH

γM
exp

(
−γ

2
S2
i

)
)

)
, (24)

which we obtain by applying the upper bound in (23) into (22). After simplification, we can
write

T1 ≤ O
(
k log(k)

f(k)2

)
, (25)

which provide the bound on T1. Next, we derive the bound on T2 as follows.

Bound on T2 : Let us consider the term T2 from (17) as follows

T2 = E

 k∑
i=1

ϵi

k−1∏
j=i

|Dj |
|Dj |+H/M

2 . (26)

This term is extra in the analysis and appears due to the introduction of compression budget
ϵk into the algorithm. We need control the growth of this term, and by properly designing ϵk,
we need to make sure T2 goes to zero at least as fast at T1 to obtain a sublinear regret analysis.
We start by observing that |Dj | ≤ (H/M)j which holds trivially and hence implies

|Dj |
|Dj+1|

≤ j

j + 1
. (27)

From the algorithm construction, we know that |Dj+1| ≤ |Dj | +H/M , applying this to
(27), we obtain

|Dj |
|Dj |+H/M

≤ j

j + 1
. (28)

Utilize the upper bound in (28) to the right hand side of (26), to write

T2 ≤
k∑

i=1

ϵi

k−1∏
j=i

j

j + 1

2

=

k∑
i=1

ϵi
i2

k2
=

1

k2

k∑
i=1

ϵii
2. (29)

The above bound implies that we should choose the compression budget ϵi such that T2

goes to zero at least as fast at T1

1

k2

k∑
i=1

ϵii
2 ≤ k log(k)

f(k)2
(30)

k∑
i=1

ϵii
2 ≤ k3 log(k)

f(k)2
. (31)

To satisfy the above condition, we choose ϵi =
log(i)
f(i)2 , and obtain

k∑
i=1

ϵii
2 =

k∑
i=1

i2 log(i)

f(i)2

≤
k∑

i=1

k2 log(k)

f(k)2

≤ k3 log(k)

f(k)2
, (32)
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Figure 4: (a)-(c) compares the average cumulative reward return achieved by the proposed KSRL
(shown in blue) algorithm with MPC-PSRL [19], SAC [23], and DDPG [5] for Cartpole, Pendulum,
and Pusher with oracle rewards. (d)-(f) compares the model-complexity. We note that KSRL is able
to achieve the maximum average reward at-par with the current state of the art MPC-PSRL with
drastically reduced model complexity. Solid curves represent the average across five trials (seeds),
shaded areas correspond to the standard deviation amongst the trials

.

which satisfy the upper bound in (31), which shows that ϵi =
log(i)
f(i)2 is a valid choice. Hence,

T2 ≤ k log(k)
f(k)2 .

Finally, after substituting the upper bounds for T1 and T2 into (17), we obtain

E

 k∑
i=1

(
H(S2

i + ri∥fi∥2K0
)

M (|Di−1|+H/M)2
+ ϵi

)k−1∏
j=i

|Dj |
|Dj |+H/M

2 ≤ 2k log(k)

f(k)2
. (33)

Now revisiting the inequality in (14), we write

E
[
KSD(ΛDk

)2
]
≤ E

exp
H

M

k∑
j=1

1

rj

 k∑
i=1

(
H(S2

i + ri∥fi∥2K0
)

M (|Di−1|+H/M)2
+ ϵi

)k−1∏
j=i

|Dj |
|Dj |+H/M

2
≤ exp

H

M

k∑
j=1

1

rj

(2k log(k)

f(k)2

)

≤e
(
2k log(k)

f(k)2

)
. (34)

where the last equality holds by the selection rj =
Hk
M for all j. Finally, we collect all the

constants in C to write

E
[
KSD(ΛDk

)2
]
≤O

(
k log(k)

f(k)2

)
. (35)

Next, from applying Jensen’s inequality on the left hand side in (35), and we can write

E
[
KSD(ΛD̃k

)
]
≤O

(√
k log(k)

f(k)

)
. (36)
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Hence proved.

E Proof of Theorem ??

Proof. Based on the equality in (23), the first part of our regret in (??) becomes zero and
we only need to derive and upper bound for ∆II

k . Recall that, we have

∆II
k =

∫
ρ(s1)(V

M̃k

µ̃k (s1)− V M∗

µ̃k (s1))ds1. (37)

Following the Bellman equations representation of value functions, We can factorize ∆II
k

in-terms of the immediate rewards r and the future value function U (cf. [41]) as follows

E[∆II
k |Dk] =E[∆k(r) + ∆k(f)|Dk], (38)

where we define

∆k(r) =

H∑
i=1

(rk(ĥi)− r∗(ĥi)), (39)

∆k(P ) =

H∑
i=1

(Uk
i (P

k(ĥi))− Uk
i (P

∗(ĥi))). (40)

Now, for our Stein based thinning algorithm, we thin the updated dictionary D̃k after every
episode (H steps) and obtain a compressed and efficient representation of dictionary given
by Dk. Let us derive the upper bound on E[∆k(P )]as follows. The Bayes regret at the kth

episode can be written as

E[∆k(P )] = E

[
H∑
i=1

(Uk
i (P

k(ĥi))− Uk
i (P

∗(ĥi)))

]
. (41)

Utilize the upper bound from the statement of Lemma ?? to write

E[∆k(P )] ≤ E

[
H∑
i=1

dHRmaxKSD(P k(·|ĥi))

]

= dHRmax

H∑
i=1

E
[
KSD(P̃ k(hi))

]
. (42)

This is a an important step and point of departure from the existing state of the art regret
analysis for model based RL methods [19, 41]. Instead of utilizing the naive upper bound
of Total Variation distance in the right hand side of (41), we follow a different approach
and bound it via the Kernel Stein Discrepancy which is a novel connection explored for
the first time in this work. We remark that the KSD upper bound in Lemma ?? is for the
joint posterior where samples are hi = (s, a, s′). We note here that since the score function
if independent of the normalizing constant, we can write ∇ log P̃ k(·|h′i) = ∇ log P̃ k(hi),
therefore we utilize the KSD upper bound of joint posterior in Lemma ?? on the KSD term
per episode in the right hand side of (42) to obtain

E[∆k(P )] ≤ dHRmax

H∑
i=1

√
k log(k)

f(k)
= dH2Rmax

√
k log(k)

f(k)
. (43)

Next, we take summation over the number of episodes which are given by [ TH ] where T is
the total number of time steps in the environments, and H is the episode length. So, after
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Figure 5: (a)-(b) compares the average cumulative reward return achieved by the proposed KSRL
(shown in blue) algorithm with MPC-PSRL [19], SAC [23], and DDPG [5] for Reacher with and
without oracle rewards respectively. (c)-(d) compares the model-complexity. We note that KSRL is
able to achieve the maximum average reward at-par with the current state of the art MPC-PSRL with
drastically reduced model complexity. Solid curves represent the average across five trials (seeds),
shaded areas correspond to the standard deviation amongst the trials

.

summing over k = 1 to [ TH ], we obtain

[ T
H
]∑

k=1

E[∆k(P )] ≤ dH2Rmax

[ T
H
]∑

k=1

√
k log(k)

f(k)
. (44)

To derive the explicit regret rates, we assume our dictionary growth function f(k) =√
kα+1 log(k) with range of α ∈ [0, 1]. Substituting this into (44), we can write

T

H∑
k=1

√
k log(k)

f(k)
=

T

H∑
k=1

√
k log(k)√

kα+1 log(k)
=

T

H∑
k=1

k−
α

2 ≤
∫ T

H

0
x−

α

2 dx =
2

1− α/2
T 1−α

2 H1+α

2 .

(45)

Using (45) into (44), we get

[ T
H
]∑

k=1

E[∆k(P )] ≤ d
2

1− α/2
T 1−α

2 RmaxH
1+α

2 . (46)

The expression implies that

[ T
H
]∑

k=1

E[∆k(P )] = O
(
dT 1−α

2 H1+α

2

)
. (47)
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Figure 6: (a)-(c) compares the posterior variance of our KSRL(blue) with MPC-PSRL [19] for
Cartpole, Pendulum & Reacher environments across the timesteps which shows we are learning
the true posterior effectively without any significant bias (even we are compressing the dictionary).
From (a)-(c) it is evident that posterior variance from KSRL(blue) with compression converges to very
similar posterior variance achieved by MPC-PSRL which highlights that the uncertainty estimation
in our KSRLis accurate. Plot is in logarithmic scale. Solid curves represent the average across five
trials (seeds), shaded areas correspond to the standard deviation amongst the trials

The same derivation would hold for the term E[∆k(r)] (similar logic to [19, Sec. 3.4]0),

which would imply that
∑[ T

H
]

k=1 E[∆k(r)] ≤ O
(
dT 1−α

2 H1+α

2

)
. From (38) and (47), we

can write
[ T
H
]∑

k=1

E[∆II
k ] = O

(
dT 1−α

2 H1+α

2

)
. (48)

Hence proved.

F Additional Experiments and Analysis

In this section, we first provide details of the environments and the complexities added in
order to validate multiple aspects of our KSRL.

Low-dimensional environments: We consider the Continuous Cartpole (ds = 4, da =
1, H = 200) environment with a continuous action space which is a modified version of
the discrete action classic Cartpole environment. The continuous action space enhances the
complexity of the environment and makes it hard for the agent to learn. We also consider
the Pendulum Swing Up (ds = 3, da = 1, H = 200) environment, a modified version
of Pendulum where we limit the start state to make it harder and more challenging for
exploration. To introduce stochasticity into the dynamics, we modify the physics of the
environment with independent Gaussian noises (N (0, 0.01)). However, these environments
are primarily lower dimensional environments.

Higher-dimensional environments We consider the 7-DOF Reacher (ds = 17, da =
7, H = 150) and 7-DOF pusher (ds = 20, da = 7, H = 150) two challenging continuous
control tasks as detailed in [15]. We increase the complexity from lower to higher dimen-
sional environments and with added stochasticity to see the robustness of our algorithm and
the consistency in performance. We conduct the experiments both with and without true
oracle rewards and compare the performance with other baselines.

F.1 Experimental Details

It is shown in literature [19] that a simple Bayesian Linear regression with non-linear
feature representations learnt by training a Neural network works exceptionally well in the
context of posterior sampling reinforcement learning. For a fair comparison of our KSRL,
we follow a similar architecture as [19] where we first train a deep neural network for both
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Figure 7: Continuous Control Environments Pusher, Reacher, Pendulum from [55] [8] used to
validate the performance of KSRLin our experiments

.

the transition and rewards model and extract the penultimate layer of the network for the
Bayesian linear regression and Posterior sampling. As per our notation si, ai, si+1, ri where
hi =< si, ai > be the current state-action pair with the next state si+1 and reward ri and
let’s assume the representation from the penultimate layer of the deep neural network of
the state-action pair is denoted by zi = NN(hi) ∈ Rd where NN is the trained deep neural
network model and d is the dimensionality of the representation. Then the Bayesian linear
regression model deals with learning the posterior distribution Ppost = P (β|D), with the
linear model given by δi = βT zi + ϵ, where δi = si+1 − si as suggested in [17, 19] and
ϵ ∼ N(0, σ2), D is the size of the dictionary. Similar to prior approaches, we choose a
multivariate Gaussian prior with zero mean and Σprior (conjugate prior) to obtain a closed-
form estimation of the posterior distribution which is also multivariate Gaussian. Now,
we sample β from the posterior distribution Ppost at the beginning of each episode and
interact with the environment using MPC controller. As described in Appendix A at each
timepoint, the MPC applies the first action from the optimal action sequence under the
estimated dynamics and reward function by solving argmaxai:i+τ

∑i+τ
t=i E[r(st, at)], where

τ is the horizon and is considered as a hyperparameter. However, as described above the
above method suffers from high computation complexity as the matrix multiplication step in
posterior estimation is of order O(d2N) which scales linearly with the size of the dictionary
prior to that episode N . This not only enhances the computational complexity but also makes
the optimization with MPC extremely hard. Hence, in our algorithm KSRLwe construct an
efficient posterior coreset with Kernelized Stein discrepancy measure from (??) and validate
the average reward achieved with the compressed dictionary. We observe in all the cases
with varied complexity, our algorithm KSRLperforms equally well or sometimes even better
than the uncompressed current state of the art MPC-PSRL method with drastically reduced
model complexity.
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Figure 8: Comparison of our KSRLwith MPC-PSRL restricted with fixed size buffer on Reacher
which clearly shows improvement of our KSRL
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F.2 Experimental Analysis

We perform a detailed multifaceted analysis comparing our algorithm KSRLwith other
baselines and state of the art methods in the continuous control environments. We perform
the experiments in the environments with and without oracle rewards. The environmental
setting of without oracle rewards is much more complex as here we have to model the
reward function as well along with the dynamics which makes it much harder for the agent
to learn with the added uncertainty in modelling. We also enhance the complexity of the
environments by adding stochasticity which makes it harder for the agent to learn even
for environments with oracle rewards and we also observe the performance by varying the
dimensionality of the environments. In Figure 2 and Figure 4, we compare our KSRLwith
other baselines and SOTA algorithms for Cartpole, Pendulum and Pusher environments
without and with oracle rewards respectively and Figure 5 for Reacher with and without
rewards. In all the cases, KSRLshows performance at-par or even better for some cases with
drastically reduced model complexity where we can see a benefit of 80% improvement
in the model complexity over the current SOTA with similar performance in terms of
average rewards. In Figure 3, we validate the average reward achieved by our KSRLagainst
baselines with respect to the runtime (wallclock time) in CPU minutes and clearly observe
improved performance in-terms of wallclock time where KSRLachieves optimal performance
prior to the baselines and MPC-PSRL. We also perform the convergence analysis from
an empirical perspective and observe the convergence in-terms of both Kernelized Stein
Discrepancy and Posterior Variance. In Figure 3 (d) -(f), we study the convergence in-terms
of KSD and observe the convergence of our algorithm KSRLwithout any bias and faster
than the dense counterpart MPC-PSRL in-terms of wall clock time. We also study the
convergence from the posterior variance perspective as it is extremely important for PSRL
based algorithms to accurately estimate the uncertainty. Since, we are compressing the
dictionary it is important to analyze and monitor the posterior variance over the timesteps
to ensure that we are not diverging and close to the dense counterparts. In 6, we observe
the posterior variance achieved by KSRLconverges to the posterior variance achieved by
MPC-PSRL [19] even though we are compressing the dictionary which highlights the
efficacy of our posterior coreset. Finally, from the above plots and analysis we conclude
that our our algorithm KSRLachieves state of the art performance for continuous control
environments with drastically reduced model complexity of its dense counterparts with
theoretical guarantees of convergence.

F.3 Details of Hyperparamters

Environment Cartpole Pendulum Pusher Reacher
Steps
per episode 200 200 150 150

Popsize 500 100 500 400
Number
of elites 50 5 50 40

Network
architecture

MLP with
2 hidden layers
of size 200

MLP with
2 hidden layers
of size 200

MLP with
4 hidden layers
of size 200

MLP with
4 hidden layers
of size 200

Planning
horizon 30 20 25 25

Max iter 5
Table 3: Hyperparameters used for our algorithm KSRL

We keep the hyperparameters and the network architecture almost similar to [19] for a fair
comparison. For the baseline implementation of MPC-PSRL algorithm and our algorithm
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KSRLwe modify and leverage 1 and observe that we were able to achieve performance as
described in [19]. For obtaining the results from model-free algorithms as shown in we
use 2, and could replicate the results. Finally, for our posterior compression algorithm we
modify the 3, 4 to fit to our scenario of posterior sampling reinforcement learning. We are
thankful to all the authors for open-sourcing their repository.
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