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Abstract

Sparse matrix computations are critical for many applications in machine learning,1

computer vision, and scientific computing. However, optimizing sparse kernels,2

such as Sparse Matrix-Matrix Multiplication (SpMM) and Sampled Dense-Dense3

Matrix Multiplication (SDDMM), remain challenging as their performance is sen-4

sitive to input characteristics and high dimensionality of the scheduling search5

space. Specifically, this complexity arises from the interplay of factors such as6

matrix dimensions, sparsity patterns, sparse storage formats, hardware targets, and7

compiler-specific scheduling primitives, which together create a highly irregular8

and non-intuitive performance landscape. While prior work has introduced learned9

cost models to guide the selection of scheduling primitives, these cost models10

are typically kernel- and hardware-specific, and either require millions of training11

samples or depend heavily on expert-designed heuristics.12

In this work, we frame optimizing sparse matrix kernels as a structured exploration13

problem and identify key limitations in prior work, including its inability to general-14

ize across kernels and hardware, and to train cost models with limited data samples15

without relying on expert heuristics. We then propose a solution to automate the16

data collection effort for cost model training on emerging hardware accelerators.17

Our method augments a state-of-the-art (SOTA) framework with exploration-aware18

data sampling and multi-armed bandit-based active learning, enabling data-efficient19

fine-tuning with minimal manual interventions. Our experimental results demon-20

strate that these strategies substantially reduce reliance on large training datasets21

and expert heuristics, while achieving performance comparable to SOTA.22

1 Introduction23

Sparse matrix computations are at the core of many modern workloads in machine learning (Child24

et al. (2019); Ye & Ji (2021); Dao et al. (2021)), computer vision (Liu et al. (2015)), scientific25

computing (Li et al. (2023a)), high-performance computing (Siegel et al. (2010)), and graph analytics26

(Ashari et al. (2014); Serrano (2019)). Two sparse kernels that are commonly used in these domains27

are Sparse Matrix-Matrix Multiplication (SpMM) and Sampled Dense-Dense Matrix Multiplication28

(SDDMM) (Rahman et al. (2021)). However, unlike dense computations, the performance of sparse29

computations is notoriously hard to optimize. This difficulty stems from several sources, such as30

sensitivity to the input matrix’s sparsity pattern, the choice of sparse storage format, hardware-specific31

behavior (Won et al. (2023); Ye et al. (2023); Sudusinghe et al. (2025)), inconsistencies across32

compiler backends, and the large and irregular search space of low-level scheduling primitives. For33

example, for a matrix with one million rows and columns, the search space explored by WACO (Won34

et al. (2023)) for SpMM on CPU can include approximately 6.9 million valid scheduling choices.35

To address this, previous work has adopted both hand-crafted heuristics (Kjolstad et al. (2017);36

Hong et al. (2019)) and supervised learning-based cost models (Sun et al. (2021); Won et al. (2023);37

Sudusinghe et al. (2025)) that guide the search for high-performance implementations. Here, cost38

models (Baghdadi et al. (2021); Mendis et al. (2019)) serve as efficient surrogates for evaluating a39
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workload’s performance by estimating its execution time on real hardware. Prior work has developed40

dedicated cost models for each sparse kernel and target hardware (Sun et al. (2021); Won et al.41

(2023); Sudusinghe et al. (2025). Compared to heuristic-based methods, these learned cost models42

consistently deliver better performance and adaptability across a wide range of inputs. For instance,43

WACO (Won et al. (2023)) trains cost models that predict runtime across diverse sparsity patterns44

and scheduling primitives, enabling automated search algorithms to identify schedules that lead to45

better runtime performance compared to frameworks like TACO (Kjolstad et al. (2017)) (detailed46

in Appendix A) and AsPT (Hong et al. (2019)). However, these models tend to require large-scale47

datasets, often in the order of millions of measurements, to accurately predict performance (Won et al.48

(2023)). Furthermore, both model training and search rely on heuristically defined search spaces (e.g.,49

powers-of-two loop tiling) and pre-defined scheduling constraints (Won et al. (2023); Sudusinghe50

et al. (2025)), making them inherently brittle due to their dependence on expert knowledge.51

This problem is exacerbated when targeting hardware platforms such as emerging hardware accelera-52

tors (Gerogiannis et al. (2023); Jin et al. (2024)), where collecting a single performance data point can53

take hours to weeks due to the high cost of running simulations (Sudusinghe et al. (2025)). Yet, the54

adoption of these accelerators is becoming mainstream (Aananthakrishnan et al. (2023); Gerogiannis55

et al. (2023); Hegde et al. (2019); Li et al. (2023b); Muñoz-Martínez et al. (2023); Jin et al. (2024))56

due to their potential to deliver significant performance improvements over conventional hardware57

platforms. To tackle the significant overheads associated with data collection, prior work (Sudusinghe58

et al. (2025)) has typically pretrained cost models on CPU (the conventional hardware platform)59

data samples and then applied transfer learning to the accelerator domain (the specialized hardware60

platform) by fine-tuning on a small, expertly curated dataset. This workflow adds additional manual61

interventions, such as selecting matrix samples for fine-tuning, and managing both homogeneous62

and heterogeneous scheduling primitives across different backends (Sudusinghe et al. (2025)), which63

require domain expertise. These challenges underscore a more fundamental problem, which is the64

absence of automated, generalizable, and data-efficient exploration strategies for model training and65

auto-tuning when optimizing sparse matrix computations across different hardware platforms.66

In this paper, we present a perspective that frames optimizing sparse matrix computations across67

hardware platforms as a structured exploration problem. These computations require navigating large,68

complex, and high-dimensional search spaces. This challenge is particularly acute for emerging69

hardware platforms such as sparse accelerators (Gerogiannis et al. (2023); Sudusinghe et al. (2025)).70

We investigate the following research question: Can we design automated strategies to guide data71

collection during cost model training, strategies that effectively identify high-performing schedules72

using limited data and with minimal reliance on expert intervention?73

Our contributions are as follows:74

• We consolidate and formalize the limitations of prior work, introducing a problem formulation75

that synthesizes key challenges in sparse matrix computations, including complexities of search76

spaces of scheduling primitives and data inefficiency in cost model training and auto-tuning.77

• We augment a state-of-the-art pipeline with exploration-aware sampling and bandit-based active78

learning to enable automated data-efficient fine-tuning on emerging hardware accelerators.79

• Our automated exploration strategies reduce reliance on large datasets and expert intervention80

while achieving comparable performance to state-of-the-art methods, laying the foundation for81

developing scalable and generalizable frameworks for cost model training and fine-tuning.82

2 Problem Formulation83

In this section, we formalize the challenges that make optimizing sparse matrix computations a84

complex exploration problem. This difficulty arises due to (i) the complexity of exploring the search85

space to identify high-performing schedules (Section 2.1), and (ii) the difficulty of training cost86

models that are both accurate and generalizable, while minimizing data collection overhead and87

expert interventions (Section 2.2).88

2.1 Search Space Complexity in Optimizing Sparse Matrix Computations89

Optimizing sparse matrix computations differs fundamentally from optimizing dense computations90

(Zheng et al. (2020, 2021); Zhai et al. (2023)). Their performance is influenced by several factors:91

scheduling primitives (i.e., program optimization parameters), input matrix dimensions and sparsity92
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patterns, and sparse storage formats (e.g., COO, CSR, CSC). These factors interact to produce93

a highly irregular and input-dependent performance landscape. Each primitive, such as SpMM94

or SDDMM, exposes a distinct set of low-level scheduling primitives (e.g., loop orderings, loop95

tiling, vectorization), whose impact can vary widely across hardware platforms. The structure of the96

non-zero elements in the matrix can significantly affect which schedules yield good performance,97

even when matrix dimensions and non-zero counts remain constant. This introduces a fine-grained98

sensitivity that renders static heuristics or fixed parameter selections brittle and non-generalizable.99

The complexity increases further when considering multiple hardware targets and compiler backends.100

The same scheduling primitive (e.g., loop tiling) can lead to vastly different performance outcomes101

depending on whether the computation is executed on a CPU, a GPU, or a sparse accelerator.102

Moreover, different compiler backends may support different sets of primitives or apply them in103

backend-specific ways, resulting in divergent behavior even for semantically similar schedules.104

This leads to heterogeneous and backend-dependent search spaces. Consequently, any effective105

exploration strategy must contend not only with the size of the search space but also with its structural106

and semantic variability across hardware and compiler implementations. Below, we have listed down107

the factors that influence the structure and complexity of these search spaces. The equations for108

sparse matrix kernels are expressed using Einstein summation (Einsum) notation (Barr (1991)).109

• Kernel-Specific Scheduling Primitives: Different kernels (e.g., SpMV, SpMM, SDDMM)110

expose different sets of low-level scheduling primitives. For example, SpMV involves two loop111

indices, while SpMM adds a reduction loop, enabling tiling across three dimensions. Moreover,112

certain kernels may leverage only a subset of the available choices for the scheduling primitives,113

leading to inherently different search spaces across kernels. These structural differences are114

directly reflected in how loop nests are organized and scheduled. For example, in WACO (Won115

et al. (2023)), the sparsity pattern for SpMM (Di,k =
∑

j Ai,j ·Bj,k, where A is sparse and B116

is dense) resides in the input matrix A, which is sparse and drives the computation along the row117

and inner product dimensions. This results in loop tiling and scheduling primitives typically118

aligned with the access pattern over i, k, and j dimensions, with index layout encoded as [’i1’,119

’i0’, ’k1’, ’k0’, ’j1’, ’j0’]. In contrast, SDDMM (Di,k = Ai,k ·
∑

j Bi,j · Cj,k,120

where D and A are sparse, while B and C are dense) computes values only at locations where121

the output matrix D is sparse (Rahman et al. (2021); Gerogiannis et al. (2023)). Here, the122

sparsity pattern determines which (i, k) pairs are evaluated, while the inner summation over j123

(used to compute dense inner products) must be efficiently handled. Consequently, SDDMM124

schedules typically operate over a different loop index layout: [’i1’, ’i0’, ’j1’, ’j0’,125

’k1’, ’k0’]. This divergence implies that each kernel exploits only a subset of choices for the126

scheduling primitives relevant to its computational pattern. For example, certain permutations or127

tiling strategies applicable to SpMM may be invalid or suboptimal for SDDMM. As such, even128

when targeting the same hardware or compiler backend, the effective scheduling search space is129

kernel-specific, and exploration strategies must adapt accordingly to yeild better results.130

• Input Sparse Matrix: The dimensions of the matrix and the overall sparsity level (i.e., the131

percentage of non-zero elements) directly affect which scheduling strategies are performant.132

Beyond these characteristics, the specific distribution of non-zeros (i.e., the sparsity pattern) can133

further influence performance, as certain schedules may exploit structured or localized sparsity134

better than others. This makes schedule selection highly input-dependent.135

• Sparse Storage Format: The choice of sparse storage format (e.g., COO, CSR, CSC ) affects136

data access patterns, iteration structure, and memory efficiency, directly influencing which137

scheduling strategies are performant.138

• Hardware Platform: Hardware architectures differ in their compute models, memory hierar-139

chies, and parallelization strategies. A schedule optimized for CPUs may perform poorly or be140

invalid on GPUs or accelerators, requiring hardware-aware exploration strategies.141

• Compiler Backend and Constraints: Compiler backends vary in how they interpret and apply142

scheduling primitives. Some primitives exhibit homogeneous behavior across backends (e.g.,143

loop tiling), while others are heterogeneous, with backend-specific semantics (e.g., unrolling).144

Given the factors outlined above, the goal of exploring the scheduling search space for a sparse kernel145

is to efficiently identify high-performing schedules from a combinatorially large and highly sensitive146

set of candidates. For example, in the case of WACO, the search space for a single matrix with one147

million rows and columns can include approximately 6.9 million candidate schedules ((Won et al.,148
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2023)). To formalize this, let S(k,M, f, h, c) denote the configuration space for a sparse kernel k,149

given an input matrix M , a sparse storage format f , a hardware platform h, and a compiler backend150

c. The goal of exploration is to identify a schedule x∗ ∈ S that minimizes the runtime cost C(x):151

x∗ = arg min
x∈S(k,M,f,h,c)

C(x) (1)

In practice, evaluating C(x) requires executing the schedule on hardware or invoking a simulator,152

which is computationally expensive, particularly during the early design stages of emerging accelera-153

tors. For example, collecting a single data point using the SPADE sparse accelerator’s simulator can154

take up to two weeks ((Gerogiannis et al., 2023; Sudusinghe et al., 2025)). This motivates the need155

for data-efficient exploration strategies that can infer schedules with minimal runtime evaluations.156

2.2 Complexities in Cost Model Training157

Accurate cost models are critical for enabling efficient exploration of the large search spaces associated158

with scheduling primitives in optimizing sparse kernels (Adams et al. (2019); Baghdadi et al. (2021);159

Won et al. (2023); Sudusinghe et al. (2025)). These models serve as surrogates for expensive runtime160

evaluations, predicting the execution time of candidate schedules and guiding search algorithms161

toward promising ones. However, training robust and generalizable learned cost models (typically162

neural network-based) is challenging due to several limiting factors. First, cost models often require163

large training datasets to achieve acceptable predictive performance (Zheng et al. (2021); Baghdadi164

et al. (2021); Won et al. (2023)). For example, WACO (Won et al. (2023)) required over 2.1165

million data points to train a cost model for a single kernel (SpMM) on CPU. This reliance on large166

datasets becomes a significant bottleneck when targeting emerging accelerators, where large-scale167

data collection takes many months to years (Gerogiannis et al. (2023); Sudusinghe et al. (2025)).168

Second, the quality and diversity of the training dataset are crucial. Existing work either samples169

schedules randomly or relies on expert-curated heuristics to guide data collection. For instance,170

COGNATE (Sudusinghe et al. (2025)) selects matrices using a heuristic-based binning strategy for171

fine-tuning and constrains the number of candidate schedules per matrix to 256. These heuristics172

introduce both bias and brittleness, causing the model’s accuracy to become tightly coupled to the173

quality of these expertly selected data, and leading to poor generalization outside of them. Third,174

existing cost models are typically kernel-specific and hardware-specific (Sasaki et al. (2022); Won175

et al. (2023); Sudusinghe et al. (2025)), requiring training or fine-tuning of separate models for each176

distinct kernel or hardware platform. Finally, most cost models for sparse kernels follow a supervised177

learning paradigm (Adams et al. (2019); Zheng et al. (2021); Baghdadi et al. (2021); Sasaki et al.178

(2022); Won et al. (2023); Sudusinghe et al. (2025)). They lack mechanisms for actively sampling179

data points or learning on uncertain regions of the search space. As a result, they remain data-hungry,180

static, and inefficient in complex optimization landscapes. Below, we have listed down the factors181

that influence the efficiency, generalization, and robustness of a learned cost model during training.182

• Dataset Size: Many models require millions of labeled data samples to reach high accuracy183

(Zheng et al. (2021); Baghdadi et al. (2021); Won et al. (2023), which is impractical at scale,184

especially for emerging hardware accelerators.185

• Dataset Diversity and Quality: Narrowly sampled datasets or heuristic-driven subsets can lead186

to overfitting and poor generalization to unseen matrices or schedules.187

• Model Architecture: The capacity of the model (e.g., neural network parameters, representation188

encoding) directly affects its ability to capture complex, nonlinear performance relationships.189

• Transferability Across Domains: Models trained for specific kernels, hardware platforms, or190

sparsity regimes often generalize poorly to others, requiring repeated training or fine-tuning.191

• Learning Paradigm: The use of static supervised learning limits data efficiency. Alternative192

paradigms like active learning or transfer learning may improve sample efficiency and robustness.193

• Loss Function: The training objective influences whether the model learns to predict absolute194

performance or relative rankings across configurations (Kaufman et al. (2021)). For example,195

choosing between regression loss and ranking loss leads to different downstream tasks.196

We formalize the outcome of cost model training as an optimization objective, where prediction197

quality depends on the model architecture NN (e.g., a neural network), hyperparameters ϕ (e.g.,198

learning rate, optimizer, batch size), dataset D size and quality Q, loss function L, and training strategy199

T (e.g., supervised learning, active learning). Let K denote the set of sparse kernels, and consider a200
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specific kernel k ∈ K. For kernel k, we define the dataset as Dk = {(Mj , xi, Ck(Mj , xi))}J, Ij=1, i=1,201

where Mj is an input sparse matrix, xi is a candidate schedule, and Ck(Mj , xi) is the runtime cost202

of applying schedule xi to matrix Mj under kernel k. Our objective is to select a training subset203

Dtrain
k ⊆ Dk that minimizes the expected loss on a separate validation set Dval

k , i.e.,204

Dtrain∗
k = arg min

Dtrain
k ⊆Dk

E(Mj ,xi,Ck(Mj ,xi))∼Dval
k
[L(NN ϕ(Mj , xi), Ck(Mj , xi)), |Dk|, Q(Dk), T )]

(2)
The loss L can vary based on the learning objective, such as minimizing absolute prediction error205

(e.g., mean squared error) or optimizing schedule ranking (e.g., pairwise ranking loss).206

3 Methodology207

Building on the formalization in Section 2, we introduce strategies designed to address search space208

complexities and data efficiency challenges of cost model training. Our solutions (Figure 1) are209

centered on learning structural representations of matrices and leveraging them to guide exploration.210

We achieve this by decoupling matrix representation learning from the performance model.211

Autoencoder

Latent Encoder

Configuration Mapper

Sparse Convolution

Input Featurizer

Sparse Latent Config

Predictor

Sparse Convolution

Matrix EncoderSparse 
Matrices
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Embeddings
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Figure 1: An overview of how our data collection strategies are integrated with COGNATE

3.1 Matrix Representation Learning via Autoencoder Pretraining212

We decoupled the sparse convolutional neural network (SCNN) ( Graham & Van der Maaten (2017))213

from the performance model by first pretraining an autoencoder to learn sparsity patterns from input214

matrices without using any runtime data samples. The resulting structural representations can then be215

leveraged to guide the data collection process for cost model training. Once pretraining is complete,216

we extract latent embeddings from the encoder component and apply k-means clustering to group217

matrices based on structural similarity. From each cluster, we select representative matrices during218

the data collection process, ensuring structural diversity in the training set. This removes the need for219

expert-designed heuristics to curate training subsets. In addition to improving data efficiency and220

generalization by avoiding overfitting to a narrow set of sparsity patterns, this approach also reduces221

the burden of collecting performance data. Since the SCNN-based encoder is pretrained on a large222

collection of input sparsity patterns, the performance model benefits from a meaningful initialization,223

leading to faster convergence and improved robustness during cost model training.224

Autoencoder Training. Given a sparse matrix in COO format, we construct a sparse tensor with225

binary features and pass it through a stack of strided sparse convolutional layers to obtain a compact226

latent embedding using the encoder. Two decoders are trained jointly: one reconstructs a 3D shape227

vector (log-scaled rows, columns, and non-zeros), and the other predicts a 32 × 32 downsampled228

dense representation of the matrix’s sparsity pattern, obtained via area-based interpolation. We train229

the autoencoder by minimizing the sum of mean squared errors between the predicted and target230

shape vectors and sparsity patterns. Once trained, the encoder functions as a matrix feature extractor231

that captures structural representations in the input sparsity patterns. These learned embeddings can232

then be reused in downstream tasks such as cost model training and matrix clustering.233

3.2 Automated Data Collection for Emerging Sparse Accelerators234

Sparse accelerators often operate under extreme constraints, limiting the feasibility of large-scale235

data collection (as detailed in Section 2.2). Existing fine-tuning pipelines, such as COGNATE236

(Sudusinghe et al. (2025)), depend heavily on expert-curated subsets of input matrices and schedules.237

While effective, such reliance introduces inductive bias and hampers generalization and scalability to238
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unseen sparsity patterns or novel hardware platforms. To address this, we introduce two exploration-239

driven techniques for data-efficient training: exploration-aware sampling and multi-armed bandit240

(MAB)-based active learning (Slivkins et al. (2019)). These are implemented independently and offer241

potential solutions for developing highly accurate cost models with minimal data requirement.242

Exploration-Aware (EA) Sampling. We implement a reward-driven strategy that avoids manual243

dataset curation under a small data budget. The approach begins by clustering a large input matrix244

pool using autoencoder-derived embeddings and initializing training with a small, uniformly sampled245

subset of input matrices, one from each cluster. Each selected matrix is initially assigned a fixed246

number of schedules (e.g., 10). In subsequent training epochs, additional samples are allocated based247

on recent performance. We compute a sampling probability pM for each eligible matrix M using a248

softmax over a score that balances exploitation and exploration:249

pM =
exp (α(1− sM ) + (1− α)sM + bM )∑

M ′ exp (α(1− sM ′) + (1− α)sM ′ + bM ′)
(3)

Here, sM ∈ [0, 1] is a normalized performance score based on recent model accuracy, and bM = 0.2250

provides a fixed bonus for cold-start matrices (i.e., those not yet used). The hyperparameter α ∈ [0, 1]251

balances exploration and exploitation. The matrices are drawn from this distribution and allocated252

additional training samples, subject to a maximum number of active matrices and per-matrix schedule253

caps. The score sM is updated using an exponential moving average:254

s
(t+1)
M = (1− η)s

(t)
M + ηrM (4)

where rM is the reward signal, typically derived from rank prediction quality (e.g., ordered pair255

accuracy), and η is a smoothing constant. The matrices not selected in an epoch receive zero256

reward, promoting long-term exploration. To ensure structural diversity, new matrices are introduced257

only when the active set is under capacity, with cluster-level quotas to maintain balance. This258

exploration-aware policy enables data-efficient discovery of sparsity patterns and thier schedules.259

Multi-Armed Bandit (MAB)-Based Active Learning. We also explore a MAB-inspired strategy260

that reduces the data footprint by restricting training to a fixed set of input matrices. Specifically,261

we cluster a large input matrix pool and select a small, representative subset of 25 matrices, five262

from each cluster, as fixed arms. These matrices remain constant throughout training, while their263

associated schedules are incrementally explored over time. At each epoch, the model ranks matrices264

using an Upper Confidence Bound (UCB) score (Carpentier et al. (2011)):265

UCB(M) =
RM

NM
+

√
2 log T

NM
(5)

Here, RM is the cumulative reward for matrix M , NM is the number of schedules sampled from it so266

far, and T =
∑

M NM is the total number of scheduling attempts across all matrices. The reward267

RM is derived from the model’s ranking accuracy on recent schedules, encouraging allocations to268

matrices where the cost model exhibits greater uncertainty or poor ordering. Using UCB scores,269

we prioritize matrices with high expected gain or unexplored potential. During each epoch, a small270

budget of new schedules (e.g., 5) is allocated to the top-ranked matrices according to their UCB271

scores. This allows the training process to focus on matrices that yield poor cost model predictions.272

4 Evaluation273

We evaluate our exploration strategies in the context of fine-tuning cost models for optimizing sparse274

kernels on emerging accelerators. Specifically, we augment the COGNATE pipeline ( Sudusinghe275

et al. (2025)), a state-of-the-art framework that leverages transfer learning to adapt cost models from276

CPUs to sparse accelerators. Our goal is to assess whether automated data exploration strategies277

introduced in Section 3 can reduce expert interventions while maintaining or improving performance.278

Experimental Setup. We use real-world sparse matrices from the SuiteSparse Matrix Collection279

( Davis & Hu (2011)), which offers a diverse range of workloads with varying sparsity patterns.280

Following COGNATE, we first pretrain separate cost models for SpMM and SDDMM using schedule281

data collected on an Intel Xeon Gold 6348 CPU. We then fine-tune each model using performance282

data gathered using the simulator of the SPADE sparse accelerator Gerogiannis et al. (2023).283

Implementation. We implemented our cost model using PyTorch, employing sparse convolutional284

layers from MinkowskiEngine Choy et al. (2019) to encode the matrix structure. For autoencoder285

pretraining, we downsampled sparse matrix representations using OpenCV’s area-based interpolation.286

6



SpMM SDDMM
Sparse Matrix Kernels

0.50

0.75

1.00

1.25

1.50
Ge

om
ea

n 
Sp

ee
du

p

0.84

1.40
1.47

1.16
1.30 1.35

1.44

1.29
1.41

1.55

0.88

1.27
1.39

1.18
1.24 1.22

1.29
1.20 1.25

1.44

Zero-Shot (CPU)
COGNATE (Top-1)

COGNATE (Top-5)
EA-10 (Top-1)

EA-10 (Top-5)
EA-25 (Top-1)

EA-25 (Top-5)
MAB-25 (Top-1)

MAB-25 (Top-5)
Optimal

Figure 2: Geomean speedups of EA, MAB, COGNATE, and Zero-Shot, normalized to the baseline.

Baselines. We compare our strategies against COGNATE’s fine-tuning framework, which relies on287

expert-selected matrices and constraints. All evaluations are conducted for the SPADE accelerator.288

We report speedups over SPADE’s default implementation, which applies its native scheduling rules289

without learned cost models or search, to isolate the impact of our automated data collection strategies.290

Experiments. To ensure comparability with COGNATE, we begin by selecting 100 matrices291

using our autoencoder-based clustering method. Each matrix is paired with 100 randomly sampled292

schedules, forming the CPU pretraining dataset. For fine-tuning on SPADE, we consider all remaining293

input matrices as candidates and restrict the total number of fine-tuning data samples to 500, consistent294

with COGNATE’s low-data regime. We evaluate three automated exploration strategies: (1) EA-10,295

an exploration-aware approach that selects at most 10 matrices and emphasizes schedule diversity;296

(2) EA-25, which increases matrix diversity by selecting up to 25 matrices; and (3) MAB-25, a297

multi-armed bandit strategy that uses a fixed set of 25 matrices as arms. We evaluate on a held-out set298

of 715 real-world matrices from the SuiteSparse Matrix Collection (Davis & Hu (2011)).299

Results and Discussion. Figure 2 shows the fine-tuning performance of our exploration strategies300

on both SpMM and SDDMM kernels, measured as Top-1 and Top-5 speedups over SPADE’s default301

implementation. The expert-guided baseline, COGNATE (Sudusinghe et al. (2025)), achieves302

strong performance with 1.40× (Top-1) and 1.47× (Top-5) speedups. Our automated strategies303

deliver comparable results under the same data budget with no manual data curation. EA-10,304

which emphasizes schedule diversity across 10 matrices, reaches 1.16× (Top-1) and 1.30× (Top-5).305

Expanding to 25 matrices, EA-25 improves performance to 1.35× and 1.44×, closely matching306

COGNATE. MAB-25, a bandit-based strategy using fixed matrix arms, achieves 1.29× and 1.41×307

speedups. A similar trend is observed for the SDDMM kernel. These consistent trends across both308

SpMM and SDDMM indicate that our exploration strategies generalize across kernels with differing309

characteristics and scheduling constraints. Our experimental results validate our hypothesis that310

automated exploration strategies can replace expert heuristics in training cost models for optimizing311

sparse matrix kernels. EA-25 demonstrates the benefit of matrix-level diversity, while MAB-25 shows312

that uncertainty-driven allocation can yield robust gains even with a fixed matrix pool. Together, these313

results demonstrate that combining unsupervised matrix representation learning with exploration-314

guided sampling paves a scalable and data-efficient path for developing data-efficient cost models315

that could effectively identify high-performing schedules with minimal expert interventions.316

5 Conclusion317

In this paper, we presented automated strategies for guiding the data collection effort during cost318

model training for optimizing sparse matrix computations on emerging accelerators. By leveraging un-319

supervised structural representations and introducing exploration-aware sampling and a bandit-based320

active learning approach, we eliminate the need for manual dataset curation while achieving perfor-321

mance comparable to expert-driven baselines such as COGNATE under the same data budget. Our322

results demonstrate the potential of automated exploration strategies as a viable alternative to expert323

interventions, offering a scalable and data-efficient path for identifying high-performing schedules324

for sparse matrix computations across increasingly complex hardware–software environments.325
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A Background, and Related Work448

Sparse Tensor Algebra. Tensor Algebra Compiler (TACO) (Kjolstad et al. (2017)) was the first449

compiler capable of generating code for arbitrary compound tensor algebra expressions involving450

dense and sparse inputs. TACO decomposes a kernel into two abstractions: an iteration graph, which451

encodes loop dependencies, and a format abstraction, which defines tensor storage as a per-dimension452

combination of dense or compressed levels. From these structures, the compiler generates a single453

fused loop nest for the entire expression. Because TACO delegates schedule selection to the user,454

its performance hinges on manual tuning or exhaustive template-based search. Nevertheless, it455

introduced the crucial idea that sparse algorithms, schedules, and formats can be decoupled and456

reconciled during code generation. This idea of decoupling was initially introduced for dense457

computations in Halide (Ragan-Kelley et al. (2017); Adams et al. (2019)).458

Sparse Tensor Cost Modeling and Auto-Tuning. WACO Won et al. (2023) extends this paradigm459

by automating both format and schedule selection for sparse matrix computations, building on460

the foundational abstractions introduced by TACO (Kjolstad et al. (2017)). WACO employs a461

Sparse Convolutional Neural Network (SCNN) feature extractor (Graham & Van der Maaten (2017)),462

WACONet, trained on approximately 2.1 million ⟨matrix, schedule, runtime⟩ data tuples per463

kernel per model, covering multiple sparse matrix kernels such as SpMV, SpMM, and SDDMM.464

At runtime, the input matrix is embedded and used to query a k-nearest-neighbor graph over a465

pre-sampled set of schedules to select the fastest candidate via on-device profiling. By coupling466

storage and traversal decisions, WACO outperforms the default TACO implementation. Unlike TACO,467

however, WACO’s cost model is kernel-specific, and each kernel is trained and tuned independently.468

Learned Cost Models for Compiler Optimization. Learned cost models have also been extensively469

studied in the context of optimizing dense computations. Early approaches such as those in TVM470

( Chen et al. (2018)) leveraged gradient-boosted trees (e.g., XGBoost ( Chen & Guestrin (2016))) to471

model schedule performance. More recent systems have explored the use of deep learning to improve472

generalization and prediction accuracy ( Baghdadi et al. (2021); Zheng et al. (2020); Sasaki et al.473

(2022); Zhai et al. (2023); Kaufman et al. (2021)). These models enable effective search over large474

schedule spaces, often outperforming traditional auto-tuners by using learned performance predictors475

to guide optimizations. The underlying principles such as feature-based embeddings, surrogate476

modeling, and data-driven schedule selection in optimizing dense computations, have strong parallels477

to sparse cost modeling. Leveraging these ideas, alongside new techniques, may offer promising478

directions for overcoming the current limitations in sparse matrix optimization frameworks.479
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