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Abstract

Sparse matrix computations are critical for many applications in machine learning,
computer vision, and scientific computing. However, optimizing sparse kernels,
such as Sparse Matrix-Matrix Multiplication (SpMM) and Sampled Dense-Dense
Matrix Multiplication (SDDMM), remain challenging as their performance is sen-
sitive to input characteristics and high dimensionality of the scheduling search
space. Specifically, this complexity arises from the interplay of factors such as
matrix dimensions, sparsity patterns, sparse storage formats, hardware targets, and
compiler-specific scheduling primitives, which together create a highly irregular
and non-intuitive performance landscape. While prior work has introduced learned
cost models to guide the selection of scheduling primitives, these cost models
are typically kernel- and hardware-specific, and either require millions of training
samples or depend heavily on expert-designed heuristics.

In this work, we frame optimizing sparse matrix kernels as a structured exploration
problem and identify key limitations in prior work, including its inability to general-
ize across kernels and hardware, and to train cost models with limited data samples
without relying on expert heuristics. We then propose a solution to automate the
data collection effort for cost model training on emerging hardware accelerators.
Our method augments a state-of-the-art (SOTA) framework with exploration-aware
data sampling and multi-armed bandit-based active learning, enabling data-efficient
fine-tuning with minimal manual interventions. Our experimental results demon-
strate that these strategies substantially reduce reliance on large training datasets
and expert heuristics, while achieving performance comparable to SOTA.

1 Introduction

Sparse matrix computations are at the core of many modern workloads in machine learning (Child
et al.| (2019); [Ye & Ji| (2021); Dao et al.| (2021)), computer vision (Liu et al.| (2015)), scientific
computing (L1 et al.[(2023a))), high-performance computing (Siegel et al.[|(2010)), and graph analytics
(Ashari et al.| (2014); Serrano| (2019)). Two sparse kernels that are commonly used in these domains
are Sparse Matrix-Matrix Multiplication (SpMM) and Sampled Dense-Dense Matrix Multiplication
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(SDDMM) (Rahman et al.|(2021))). However, unlike dense computations, the performance of sparse
computations is notoriously hard to optimize. This difficulty stems from several sources, such as
sensitivity to the input matrix’s sparsity pattern, the choice of sparse storage format, hardware-specific
behavior (Won et al.| (2023)); |Ye et al.| (2023); Sudusinghe et al.| (2025)), inconsistencies across
compiler backends, and the large and irregular search space of low-level scheduling primitives. For
example, for a matrix with one million rows and columns, the search space explored by WACO (Won
et al.| (2023)) for SpMM on CPU can include approximately 6.9 million valid scheduling choices.

To address this, previous work has adopted both hand-crafted heuristics (Kjolstad et al.| (2017);
Hong et al.|(2019)) and supervised learning-based cost models (Sun et al.|(2021)); [Won et al.| (2023);
Sudusinghe et al.|(2025)) that guide the search for high-performance implementations. Here, cost
models (Baghdadi et al.|(2021); Mendis et al.| (2019)) serve as efficient surrogates for evaluating a
workload’s performance by estimating its execution time on real hardware. Prior work has developed
dedicated cost models for each sparse kernel and target hardware (Sun et al.| (2021); Won et al.
(2023)); \Sudusinghe et al.| (2025). Compared to heuristic-based methods, these learned cost models
consistently deliver better performance and adaptability across a wide range of inputs. For instance,
WACO (Won et al.[(2023))) trains cost models that predict runtime across diverse sparsity patterns
and scheduling primitives, enabling automated search algorithms to identify schedules that lead to
better runtime performance compared to frameworks like TACO (Kjolstad et al.[(2017)) (detailed
in Appendix [A)) and AsPT (Hong et al.| (2019)). However, these models tend to require large-scale
datasets, often in the order of millions of measurements, to accurately predict performance (Won et al.
(2023))). Furthermore, both model training and search rely on heuristically defined search spaces (e.g.,
powers-of-two loop tiling) and pre-defined scheduling constraints (Won et al.[(2023); |Sudusinghe
et al.| (2025)), making them inherently brittle due to their dependence on expert knowledge.

This problem is exacerbated when targeting hardware platforms such as emerging hardware accelera-
tors (Gerogiannis et al. (2023); Jin et al.|(2024)), where collecting a single performance data point can
take hours to weeks due to the high cost of running simulations (Sudusinghe et al.| (2025)). Yet, the
adoption of these accelerators is becoming mainstream (Aananthakrishnan et al.[(2023); Gerogiannis
et al.|(2023); Hegde et al.|(2019); |Li et al.| (2023b); Munoz-Martinez et al.| (2023); [Jin et al.| (2024)))
due to their potential to deliver significant performance improvements over conventional hardware
platforms. To tackle the significant overheads associated with data collection, prior work (Sudusinghe
et al.| (2025)) has typically pretrained cost models on CPU (the conventional hardware platform)
data samples and then applied transfer learning to the accelerator domain (the specialized hardware
platform) by fine-tuning on a small, expertly curated dataset. This workflow adds additional manual
interventions, such as selecting matrix samples for fine-tuning, and managing both homogeneous
and heterogeneous scheduling primitives across different backends (Sudusinghe et al.[(2025)), which
require domain expertise. These challenges underscore a more fundamental problem, which is the
absence of automated, generalizable, and data-efficient exploration strategies for model training and
auto-tuning when optimizing sparse matrix computations across different hardware platforms.

In this paper, we present a perspective that frames optimizing sparse matrix computations across
hardware platforms as a structured exploration problem. These computations require navigating large,
complex, and high-dimensional search spaces. This challenge is particularly acute for emerging
hardware platforms such as sparse accelerators (Gerogiannis et al.| (2023)); Sudusinghe et al.| (2025))).
We investigate the following research question: Can we design automated strategies to guide data
collection during cost model training, strategies that effectively identify high-performing schedules
using limited data and with minimal reliance on expert intervention?

Our contributions are as follows:

* We consolidate and formalize the limitations of prior work, introducing a problem formulation
that synthesizes key challenges in sparse matrix computations, including complexities of search
spaces of scheduling primitives and data inefficiency in cost model training and auto-tuning.

* We augment a state-of-the-art pipeline with exploration-aware sampling and bandit-based active
learning to enable automated data-efficient fine-tuning on emerging hardware accelerators.

* Our automated exploration strategies reduce reliance on large datasets and expert intervention
while achieving comparable performance to state-of-the-art methods, laying the foundation for
developing scalable and generalizable frameworks for cost model training and fine-tuning.



2 Problem Formulation

In this section, we formalize the challenges that make optimizing sparse matrix computations a
complex exploration problem. This difficulty arises due to (i) the complexity of exploring the search
space to identify high-performing schedules (Section [2.I), and (ii) the difficulty of training cost
models that are both accurate and generalizable, while minimizing data collection overhead and
expert interventions (Section[2.2).

2.1 Search Space Complexity in Optimizing Sparse Matrix Computations

Optimizing sparse matrix computations differs fundamentally from optimizing dense computations
(Zheng et al.| (2020} 2021)); |Zhai et al.| (2023))). Their performance is influenced by several factors:
scheduling primitives (i.e., program optimization parameters), input matrix dimensions and sparsity
patterns, and sparse storage formats (e.g., COO, CSR, CSC). These factors interact to produce
a highly irregular and input-dependent performance landscape. Each primitive, such as SpMM
or SDDMM, exposes a distinct set of low-level scheduling primitives (e.g., loop orderings, loop
tiling, vectorization), whose impact can vary widely across hardware platforms. The structure of the
non-zero elements in the matrix can significantly affect which schedules yield good performance,
even when matrix dimensions and non-zero counts remain constant. This introduces a fine-grained
sensitivity that renders static heuristics or fixed parameter selections brittle and non-generalizable.

The complexity increases further when considering multiple hardware targets and compiler backends.
The same scheduling primitive (e.g., loop tiling) can lead to vastly different performance outcomes
depending on whether the computation is executed on a CPU, a GPU, or a sparse accelerator.
Moreover, different compiler backends may support different sets of primitives or apply them in
backend-specific ways, resulting in divergent behavior even for semantically similar schedules.
This leads to heterogeneous and backend-dependent search spaces. Consequently, any effective
exploration strategy must contend not only with the size of the search space but also with its structural
and semantic variability across hardware and compiler implementations. Below, we have listed down
the factors that influence the structure and complexity of these search spaces. The equations for
sparse matrix kernels are expressed using Einstein summation (Einsum) notation (Barr (1991)).

* Kernel-Specific Scheduling Primitives: Different kernels (e.g., SpMV, SpMM, SDDMM)
expose different sets of low-level scheduling primitives. For example, SpMV involves two loop
indices, while SpMM adds a reduction loop, enabling tiling across three dimensions. Moreover,
certain kernels may leverage only a subset of the available choices for the scheduling primitives,
leading to inherently different search spaces across kernels. These structural differences are
directly reflected in how loop nests are organized and scheduled. For example, in WACO (Won
et al.[(2023)), the sparsity pattern for SpMM (D; j, = Zj A; j - Bj i, where A is sparse and B
1s dense) resides in the input matrix A, which is sparse and drives the computation along the row
and inner product dimensions. This results in loop tiling and scheduling primitives typically
aligned with the access pattern over ¢, k, and j dimensions, with index layout encoded as [?i1’,
7107, k1, ’k0°, ’j1’, ’j0’]. In contrast, SDDMM (D;y = Aix - >, Bij - Cjk,
where D and A are sparse, while B and C are dense) computes values only at locations where
the output matrix D is sparse (Rahman et al.| (2021)); |Gerogiannis et al.| (2023)). Here, the
sparsity pattern determines which (¢, k) pairs are evaluated, while the inner summation over j
(used to compute dense inner products) must be efficiently handled. Consequently, SDDMM
schedules typically operate over a different loop index layout: [*i1’>, ’i0’, ’j1°, ’j0’,
’k1?, °k0°’]. This divergence implies that each kernel exploits only a subset of choices for the
scheduling primitives relevant to its computational pattern. For example, certain permutations or
tiling strategies applicable to SpMM may be invalid or suboptimal for SDDMM. As such, even
when targeting the same hardware or compiler backend, the effective scheduling search space is
kernel-specific, and exploration strategies must adapt accordingly to yeild better results.

* Input Sparse Matrix: The dimensions of the matrix and the overall sparsity level (i.e., the
percentage of non-zero elements) directly affect which scheduling strategies are performant.
Beyond these characteristics, the specific distribution of non-zeros (i.e., the sparsity pattern) can
further influence performance, as certain schedules may exploit structured or localized sparsity
better than others. This makes schedule selection highly input-dependent.

* Hardware Platform: Hardware architectures differ in their compute models, memory hierar-
chies, and parallelization strategies. A schedule optimized for CPUs may perform poorly or be
invalid on GPUs or accelerators, requiring hardware-aware exploration strategies.



* Compiler Backend and Constraints: Compiler backends vary in how they interpret and apply
scheduling primitives. Some primitives exhibit homogeneous behavior across backends (e.g.,
loop tiling), while others are heterogeneous, with backend-specific semantics (e.g., unrolling).

Given the factors outlined above, the goal of exploring the scheduling search space for a sparse kernel
is to efficiently identify high-performing schedules from a combinatorially large and highly sensitive
set of candidates. For example, in the case of WACO, the search space for a single matrix with one
million rows and columns can include approximately 6.9 million candidate schedules ((Won et al.,
2023)). To formalize this, let S(k, M, f, h, ¢) denote the configuration space for a sparse kernel k,
given an input matrix M, a sparse storage format f, a hardware platform h, and a compiler backend
c. The goal of exploration is to identify a schedule * € S that minimizes the runtime cost C(z):

* = i C 1
T s e C) W

In practice, evaluating C'(x) requires executing the schedule on hardware or invoking a simulator,
which is computationally expensive, particularly during the early design stages of emerging accelera-
tors. For example, collecting a single data point using the SPADE sparse accelerator’s simulator can
take up to two weeks ((Gerogiannis et al., 2023 |Sudusinghe et al.| 2025))). This motivates the need
for data-efficient exploration strategies that can infer schedules with minimal runtime evaluations.

2.2 Complexities in Cost Model Training

Accurate cost models are critical for enabling efficient exploration of the large search spaces associated
with scheduling primitives in optimizing sparse kernels (Adams et al.[(2019); Baghdadi et al.{(2021);
Won et al.|(2023)); Sudusinghe et al.| (2025)). These models serve as surrogates for expensive runtime
evaluations, predicting the execution time of candidate schedules and guiding search algorithms
toward promising ones. However, training robust and generalizable learned cost models (typically
neural network-based) is challenging due to several limiting factors. First, cost models often require
large training datasets to achieve acceptable predictive performance (Zheng et al.| (2021); Baghdadi
et al.| (2021); Won et al.| (2023))). For example, WACO (Won et al.| (2023)) required over 2.1
million data points to train a cost model for a single kernel (SpMM) on CPU. This reliance on large
datasets becomes a significant bottleneck when targeting emerging accelerators, where large-scale
data collection takes many months to years (Gerogiannis et al.[(2023); Sudusinghe et al.| (2025)).
Second, the quality and diversity of the training dataset are crucial. Existing work either samples
schedules randomly or relies on expert-curated heuristics to guide data collection. For instance,
COGNATE (Sudusinghe et al.| (2025))) selects matrices using a heuristic-based binning strategy for
fine-tuning and constrains the number of candidate schedules per matrix to 256. These heuristics
introduce both bias and brittleness, causing the model’s accuracy to become tightly coupled to the
quality of these expertly selected data, and leading to poor generalization outside of them. Third,
existing cost models are typically kernel-specific and hardware-specific (Sasaki et al.| (2022); [Won
et al.| (2023); [Sudusinghe et al.| (2025)), requiring training or fine-tuning of separate models for each
distinct kernel or hardware platform. Finally, most cost models for sparse kernels follow a supervised
learning paradigm (Adams et al.|(2019); Zheng et al.| (2021); |Baghdadi et al.|(2021); [Sasaki et al.
(2022); ' Won et al.|(2023)); Sudusinghe et al.| (2025)). They lack mechanisms for actively sampling
data points or learning on uncertain regions of the search space. As a result, they remain data-hungry,
static, and inefficient in complex optimization landscapes. Below, we have listed down the factors
that influence the efficiency, generalization, and robustness of a learned cost model during training.

¢ Dataset Size: Many models require millions of labeled data samples to reach high accuracy
(Zheng et al.| (2021)); Baghdadi et al.| (2021); 'Won et al.| (2023), which is impractical at scale,
especially for emerging hardware accelerators.

 Dataset Diversity and Quality: Narrowly sampled datasets or heuristic-driven subsets can lead
to overfitting and poor generalization to unseen matrices or schedules.

* Model Architecture: The capacity of the model (e.g., neural network parameters, representation
encoding) directly affects its ability to capture complex, nonlinear performance relationships.

* Transferability Across Domains: Models trained for specific kernels, hardware platforms, or
sparsity regimes often generalize poorly to others, requiring repeated training or fine-tuning.

* Learning Paradigm: The use of static supervised learning limits data efficiency. Alternative
paradigms like active learning or transfer learning may improve sample efficiency and robustness.



* Loss Function: The training objective influences whether the model learns to predict absolute
performance or relative rankings across configurations (Kaufman et al.| (2021))). For example,
choosing between regression loss and ranking loss leads to different downstream tasks.

We formalize the outcome of cost model training as an optimization objective, where prediction
quality depends on the model architecture N'A (e.g., a neural network), hyperparameters ¢ (e.g.,
learning rate, optimizer, batch size), dataset D size and quality @, loss function £, and training strategy
T (e.g., supervised learning, active learning). Let X denote the set of sparse kernels, and consider a

specific kernel k£ € K. For kernel k, we define the dataset as Dy, = {(M;, z;, C (M, xl))}jzi P
where M is an input sparse matrix, x; is a candidate schedule, and C}, (M i1 x;) is the runtime cost
of applying schedule z; to matrix M; under kernel k. Our objective is to select a training subset
Dy C Dy, that minimizes the expected loss on a separate validation set Dy e,
D‘ram* = arg D“Ia‘rnllcnp B, w0 (0 20wt [CNN o (Mj, @), C(Mj, 24)), |Di|, Q(Dy), T)]
@)

The loss £ can vary based on the learning objective, such as minimizing absolute prediction error
(e.g., mean squared error) or optimizing schedule ranking (e.g., pairwise ranking loss).

3 Methodology

Building on the formalization in Section[2] we introduce strategies designed to address search space
complexities and data efficiency challenges of cost model training. Our solutions (Figure [T) are
centered on learning structural representations of matrices and leveraging them to guide exploration.
We achieve this by decoupling matrix representation learning from the performance model.
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Figure 1: An overview of how our data collection strategies are integrated with COGNATE
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3.1 Matrix Representation Learning via Autoencoder Pretraining

We decoupled the sparse convolutional neural network (SCNN) (|Graham & Van der Maaten| (2017))
from the performance model by first pretraining an autoencoder to learn sparsity patterns from input
matrices without using any runtime data samples. The resulting structural representations can then be
leveraged to guide the data collection process for cost model training. Once pretraining is complete,
we extract latent embeddings from the encoder component and apply k-means clustering to group
matrices based on structural similarity. From each cluster, we select representative matrices during
the data collection process, ensuring structural diversity in the training set. This removes the need for
expert-designed heuristics to curate training subsets. In addition to improving data efficiency and
generalization by avoiding overfitting to a narrow set of sparsity patterns, this approach also reduces
the burden of collecting performance data. Since the SCNN-based encoder is pretrained on a large
collection of input sparsity patterns, the performance model benefits from a meaningful initialization,
leading to faster convergence and improved robustness during cost model training.

Autoencoder Training. Given a sparse matrix in COO format, we construct a sparse tensor with
binary features and pass it through a stack of strided sparse convolutional layers to obtain a compact
latent embedding using the encoder. Two decoders are trained jointly: one reconstructs a 3D shape
vector (log-scaled rows, columns, and non-zeros), and the other predicts a 32 x 32 downsampled
dense representation of the matrix’s sparsity pattern, obtained via area-based interpolation. We train
the autoencoder by minimizing the sum of mean squared errors between the predicted and target
shape vectors and sparsity patterns. Once trained, the encoder functions as a matrix feature extractor
that captures structural representations in the input sparsity patterns. These learned embeddings can
then be reused in downstream tasks such as cost model training and matrix clustering.

3.2 Automated Data Collection for Emerging Sparse Accelerators

Sparse accelerators often operate under extreme constraints, limiting the feasibility of large-scale
data collection (as detailed in Section 2.2)). Existing fine-tuning pipelines, such as COGNATE



(Sudusinghe et al.| (2025)), depend heavily on expert-curated subsets of input matrices and schedules.
While effective, such reliance introduces inductive bias and hampers generalization and scalability to
unseen sparsity patterns or novel hardware platforms. To address this, we introduce two exploration-
driven techniques for data-efficient training: exploration-aware sampling and multi-armed bandit
(MAB)-based active learning (Slivkins et al.|(2019)). These are implemented independently and offer
potential solutions for developing highly accurate cost models with minimal data requirement.

Exploration-Aware (EA) Sampling. We implement a reward-driven strategy that avoids manual
dataset curation under a small data budget. The approach begins by clustering a large input matrix
pool using autoencoder-derived embeddings and initializing training with a small, uniformly sampled
subset of input matrices, one from each cluster. Each selected matrix is initially assigned a fixed
number of schedules (e.g., 10). In subsequent training epochs, additional samples are allocated based
on recent performance. We compute a sampling probability pj; for each eligible matrix M using a
softmax over a score that balances exploitation and exploration:

oar = exp (a(1 —sp) + (1 —a)sar + bar)
2o exp (a(l —sy) + (1 —a)sp + bar)

Here, sps € [0, 1] is a normalized performance score based on recent model accuracy, and by, = 0.2
provides a fixed bonus for cold-start matrices (i.e., those not yet used). The hyperparameter « € [0, 1]
balances exploration and exploitation. The matrices are drawn from this distribution and allocated
additional training samples, subject to a maximum number of active matrices and per-matrix schedule
caps. The score s is updated using an exponential moving average:

3

sUH = = n)st) + nrar @)

where 7 is the reward signal, typically derived from rank prediction quality (e.g., ordered pair
accuracy), and 7 is a smoothing constant. The matrices not selected in an epoch receive zero
reward, promoting long-term exploration. To ensure structural diversity, new matrices are introduced
only when the active set is under capacity, with cluster-level quotas to maintain balance. This
exploration-aware policy enables data-efficient discovery of sparsity patterns and thier schedules.

Multi-Armed Bandit (MAB)-Based Active Learning. We also explore a MAB-inspired strategy
that reduces the data footprint by restricting training to a fixed set of input matrices. Specifically,
we cluster a large input matrix pool and select a small, representative subset of 25 matrices, five
from each cluster, as fixed arms. These matrices remain constant throughout training, while their
associated schedules are incrementally explored over time. At each epoch, the model ranks matrices
using an Upper Confidence Bound (UCB) score (Carpentier et al.[|(2011)):

- RM + 210gT
Ny N

Here, Ry is the cumulative reward for matrix M, N, is the number of schedules sampled from it so
far, and T' = ), , Ny is the total number of scheduling attempts across all matrices. The reward
Ry is derived from the model’s ranking accuracy on recent schedules, encouraging allocations to
matrices where the cost model exhibits greater uncertainty or poor ordering. Using UCB scores,
we prioritize matrices with high expected gain or unexplored potential. During each epoch, a small
budget of new schedules (e.g., 5) is allocated to the top-ranked matrices according to their UCB
scores. This allows the training process to focus on matrices that yield poor cost model predictions.

UCB(M) (5)

4 Evaluation

We evaluate our exploration strategies in the context of fine-tuning cost models for optimizing sparse
kernels on emerging accelerators. Specifically, we augment the COGNATE pipeline (|Sudusinghe
et al.|(2025)), a state-of-the-art framework that leverages transfer learning to adapt cost models from
CPUs to sparse accelerators. Our goal is to assess whether automated data exploration strategies
introduced in Section [3|can reduce expert interventions while maintaining or improving performance.

Experimental Setup. We use real-world sparse matrices from the SuiteSparse Matrix Collection
(/Davis & Hu| (2011)), which offers a diverse range of workloads with varying sparsity patterns.
Following COGNATE, we first pretrain separate cost models for Sp)MM and SDDMM using schedule
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Figure 2: Geomean speedups of EA, MAB, COGNATE, and Zero-Shot, normalized to the baseline.

data collected on an Intel Xeon Gold 6348 CPU. We then fine-tune each model using performance
data gathered using the simulator of the SPADE sparse accelerator (Gerogiannis et al.| (2023)).

Implementation. We implemented our cost model using PyTorch, employing sparse convolutional
layers from MinkowskiEngine |Choy et al.|(2019) to encode the matrix structure. For autoencoder
pretraining, we downsampled sparse matrix representations using OpenCV’s area-based interpolation.

Baselines. We compare our strategies against COGNATE’s fine-tuning framework, which relies on
expert-selected matrices and constraints. All evaluations are conducted for the SPADE accelerator.
We report speedups over SPADE’s default implementation, which applies its native scheduling rules
without learned cost models or search, to isolate the impact of our automated data collection strategies.

Experiments. To ensure comparability with COGNATE, we begin by selecting 100 matrices
using our autoencoder-based clustering method. Each matrix is paired with 100 randomly sampled
schedules, forming the CPU pretraining dataset. For fine-tuning on SPADE, we consider all remaining
input matrices as candidates and restrict the total number of fine-tuning data samples to 500, consistent
with COGNATE’s low-data regime. We evaluate three automated exploration strategies: (1) EA-10,
an exploration-aware approach that selects at most 10 matrices and emphasizes schedule diversity;
(2) EA-25, which increases matrix diversity by selecting up to 25 matrices; and (3) MAB-25, a
multi-armed bandit strategy that uses a fixed set of 25 matrices as arms. We evaluate on a held-out set
of 715 real-world matrices from the SuiteSparse Matrix Collection (Davis & Hu| (2011)).

Results and Discussion. Figure 2] shows the fine-tuning performance of our exploration strategies
on both SpMM and SDDMM kernels, measured as Top-1 and Top-5 speedups over SPADE’s default
implementation. The expert-guided baseline, COGNATE (Sudusinghe et al.| (2025))), achieves
strong performance with 1.40x (Top-1) and 1.47x (Top-5) speedups. Our automated strategies
deliver comparable results under the same data budget with no manual data curation. EA-10,
which emphasizes schedule diversity across 10 matrices, reaches 1.16x (Top-1) and 1.30x (Top-5).
Expanding to 25 matrices, EA-25 improves performance to 1.35x and 1.44x, closely matching
COGNATE. MAB-25, a bandit-based strategy using fixed matrix arms, achieves 1.29x and 1.41 x
speedups. A similar trend is observed for the SDDMM kernel. These consistent trends across both
SpMM and SDDMM indicate that our exploration strategies generalize across kernels with differing
characteristics and scheduling constraints. Our experimental results validate our hypothesis that
automated exploration strategies can replace expert heuristics in training cost models for optimizing
sparse matrix kernels. EA-25 demonstrates the benefit of matrix-level diversity, while MAB-25 shows
that uncertainty-driven allocation can yield robust gains even with a fixed matrix pool. Together, these
results demonstrate that combining unsupervised matrix representation learning with exploration-
guided sampling paves a scalable and data-efficient path for developing data-efficient cost models
that could effectively identify high-performing schedules with minimal expert interventions.

5 Conclusion

In this paper, we presented automated strategies for guiding the data collection effort during cost
model training for optimizing sparse matrix computations on emerging accelerators. By leveraging un-
supervised structural representations and introducing exploration-aware sampling and a bandit-based
active learning approach, we eliminate the need for manual dataset curation while achieving perfor-
mance comparable to expert-driven baselines such as COGNATE under the same data budget. Our
results demonstrate the potential of automated exploration strategies as a viable alternative to expert
interventions, offering a scalable and data-efficient path for identifying high-performing schedules
for sparse matrix computations across increasingly complex hardware—software environments.
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A Background, and Related Work

Sparse Tensor Algebra. Tensor Algebra Compiler (TACO) (Kjolstad et al.| (2017)) was the first
compiler capable of generating code for arbitrary compound tensor algebra expressions involving
dense and sparse inputs. TACO decomposes a kernel into two abstractions: an iteration graph, which
encodes loop dependencies, and a format abstraction, which defines tensor storage as a per-dimension
combination of dense or compressed levels. From these structures, the compiler generates a single
fused loop nest for the entire expression. Because TACO delegates schedule selection to the user,
its performance hinges on manual tuning or exhaustive template-based search. Nevertheless, it
introduced the crucial idea that sparse algorithms, schedules, and formats can be decoupled and
reconciled during code generation. This idea of decoupling was initially introduced for dense
computations in Halide (Ragan-Kelley et al.[(2017);|Adams et al.[(2019)).

Sparse Tensor Cost Modeling and Auto-Tuning. WACO |Won et al.|(2023)) extends this paradigm
by automating both format and schedule selection for sparse matrix computations, building on
the foundational abstractions introduced by TACO (Kjolstad et al. (2017)). WACO employs a
Sparse Convolutional Neural Network (SCNN) feature extractor (Graham & Van der Maaten| (2017)),
WACONet, trained on approximately 2.1 million (matrix, schedule, runtime) data tuples per
kernel per model, covering multiple sparse matrix kernels such as SpMV, SpMM, and SDDMM.
At runtime, the input matrix is embedded and used to query a k-nearest-neighbor graph over a
pre-sampled set of schedules to select the fastest candidate via on-device profiling. By coupling
storage and traversal decisions, WACO outperforms the default TACO implementation. Unlike TACO,
however, WACO’s cost model is kernel-specific, and each kernel is trained and tuned independently.

Learned Cost Models for Compiler Optimization. Learned cost models have also been extensively
studied in the context of optimizing dense computations. Early approaches such as those in TVM
(/Chen et al|(2018))) leveraged gradient-boosted trees (e.g., XGBoost (|Chen & Guestrin| (2016))) to
model schedule performance. More recent systems have explored the use of deep learning to improve
generalization and prediction accuracy (|Baghdadi et al.| (2021)); Zheng et al.| (2020); [Sasaki et al.
(2022)); Zhai et al | (2023)); Kaufman et al.|(2021))). These models enable effective search over large
schedule spaces, often outperforming traditional auto-tuners by using learned performance predictors
to guide optimizations. The underlying principles such as feature-based embeddings, surrogate
modeling, and data-driven schedule selection in optimizing dense computations, have strong parallels
to sparse cost modeling. Leveraging these ideas, alongside new techniques, may offer promising
directions for overcoming the current limitations in sparse matrix optimization frameworks.
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