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Abstract

Recent advances in reinforcement learning (RL)
have strengthened the reasoning capabilities of
vision-language models (VLMs). However, en-
hancing policy exploration to better scale test-
time compute remains largely underexplored. In
addition, VLMs continue to struggle with imper-
fect visual perception, which in turn affects the
subsequent reasoning process. To this end, we
propose NoisyRollout, a simple yet effective data
augmentation method that mixes trajectories from
both clean and moderately distorted images dur-
ing RL training. By injecting targeted diversity
in visual perception and the resulting reasoning
patterns, NoisyRollout promotes better policy ex-
ploration through vision-oriented inductive biases,
ultimately leading to more robust reasoning be-
haviors. We further adopt a noise annealing sched-
ule that gradually reduces distortion strength over
training, leveraging noisy signals early on while
ensuring training stability in later stages. Cru-
cially, our method is easy-to-adopt—requiring
no additional training cost and no modifica-
tions to the RL objective. Extensive experi-
ments on 2 distinct training datasets demonstrate
that NoisyRollout achieves state-of-the-art per-
formance among open-source RL-tuned models
across 5 out-of-domain reasoning and perception
benchmarks. Furthermore, we validate the effec-
tiveness of NoisyRollout across model sizes (7B
and 32B) and data scales (from 1K to 6K), high-
lighting its generalizability and scalability.

1. Introduction

Scaling test-time compute—often referred to as reason-
ing—through reinforcement learning (RL) has emerged as
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a promising axis for advancing model intelligence (Jaech
et al., 2024; Cui et al., 2025). While this idea has been
primarily explored in the context of large language models
(LLMs) (Guo et al., 2025; Zeng et al., 2025), the vision-
language model (VLM) community is also actively investi-
gating this direction (Liu et al., 2025¢c; Peng et al., 2025b;
Meng et al., 2025). Recent endeavours suggests that VLMs
can also benefit from RL-driven scaling of test-time com-
pute (Huang et al., 2025; Liu et al., 2025a; Wang et al.,
2025a; Lu et al., 2025; Yu et al., 2025a).

However, scaling test-time compute via RL requires more
than sheerly generating longer outputs (Liu et al., 2025b),
and VLMs face unique challenges in this process. A key
challenge is effective policy exploration, enabling policies
to discover behaviors that generalize well beyond training
data (Yu et al., 2025b; Yan et al., 2025)—an area largely
underexplored in VLM research. Traditional practices, such
as increasing rollout temperature to promote decoding di-
versity (Zeng et al., 2024), often introduce superficial vari-
ability without meaningfully directing policies toward more
robust or informative behaviors. Moreover, VLMs inher-
ently struggle with imperfect visual perception (Liu et al.,
2024b; Wei et al., 2024), which negatively impacts subse-
quent reasoning processes (Zhang et al., 2024a; Zhuang
et al., 2025; Jiang et al., 2025b). Despite this, recent ef-
forts (Liu et al., 2025c; Meng et al., 2025; Deng et al.,
2025b) tend to adapt RL methods directly from the LLM
domain. Such approaches often fail to address these percep-
tual challenges, thereby hindering the efficient development
of visual reasoning capabilities through RL.

Tackling the challenges of policy exploration and percep-
tual limitations in VLMs during RL training, we propose
NoisyRollout, a simple yet powerful data augmentation
technique for VLMs that introduces meaningful rollout di-
versity. Specifically, for each training sample consisting
of an input image I and a corresponding text query q, the
old policy (mp,,,) produces two sets of rollouts based on
the original clean image and a moderately distorted version
of the same image, respectively. While the current policy
(mp) is updated solely by conditioning on the clean image
and text query pair (I, q), the two sets of rollouts form a
group, collectively contributing to computing the reward
baseline and normalized advantage in Group Relative Pol-
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Figure 1: Accuracy improvement over Qwen2.5-VL-7B-Instruct on 5 out-of-domain benchmarks, covering both visual
reasoning tasks (from MathVerse to WeMath) and a visual perception task (HallusionBench). Both Qwen2.5-VL-GRPO-7B
and NoisyRollout-7B are fine-tuned by ourselves (denoted with ¥) using vanilla GRPO with only 2.1K training samples
from Geometry3K. The exact accuracy of NoisyRollout-7B is annotated above each corresponding bar in parentheses.

icy Optimization (GRPO) (Shao et al., 2024). This hybrid

rollout strategy enables the policy to achieve more targeted

and efficient exploration, ultimately leading to more robust

visual reasoning via RL through two key mechanisms:

® Successful reasoning trajectories from noisy inputs with
distorted images reveal alternative, potentially more ro-
bust reasoning strategies, improving reasoning general-
ization to harder or out-of-domain visual conditions.

® When the same query yields different outcomes for clean
and distorted inputs, the resulting reward differences
expose perceptual discrepancies that affect reasoning.
These discrepancies act as implicit contrastive signals,
helping refine the model’s visual perception during
reasoning by constraining the negative perceptual ex-
ploration space.

While incorporating noisy rollouts can facilitate more ef-
fective and efficient exploration, it may also introduce in-
stability in policy gradient estimation. To further enhance
scalability and training stability, we employ a noise anneal-
ing schedule that gradually reduces the strength of image
distortions over training. Such a strategy mitigates distri-
butional mismatch between the evolving policy and the
noisy trajectories generated from it when conditioned on
clean inputs—an issue that often arises in later training
stages—while retaining the benefits of noisy signals during
the early phases of training.

We conduct extensive experiments to validate the effec-
tiveness of NoisyRollout. Trained with only 2.1K sam-
ples from the Geometry3K (Lu et al., 2021) dataset using
Qwen2.5-7B-VL-Instruct (Bai et al., 2025), Figure 1 shows
that NoisyRollout achieves superior performance across
5 out-of-domain visual reasoning and perception bench-
marks (Lu et al., 2023; Guan et al., 2024; Zhang et al.,

2024a; Wang et al., 2024; Qiao et al., 2024) (MathVerse
53.2%, MathVision 28.5%, and HallusionBench 72.1%).
It outperforms both open-source RL-tuned models (Meng
et al., 2025; Wang et al., 2025e) and those utilizing large-
scale supervised fine-tuning (SFT) before RL (Yang et al.,
2025; Zhang et al., 2025a; Deng et al., 2025b). Further-
more, it consistently surpasses its direct baseline (vanilla
GRPO) on both in-domain and out-of-domain tasks, all
within a fixed total rollout budget. Crucially, these out-of-
domain improvements generalize across different model
sizes (e.g., 7B to 32B) as well as training corpora and data
scales (e.g., MMK12 (Meng et al., 2025) with 1K to 6K sam-
ples). These empirical results, combined with its simplicity
and lightweight characteristics, establish NoisyRollout as a
potentially scalable approach. We summarize the contri-
butions of this paper as follows:

» We identify and investigate critical, yet underexplored,
challenges in policy exploration and perceptual robust-
ness that arise during the RL training of VLMs.

* We introduce NoisyRollout, advancing a data augmen-
tation perspective to improve visual reasoning gener-
alization, by mixing trajectories from both clean and
moderately distorted images.

» Extensive experiments demonstrate NoisyRollout’s con-
sistent outperformance of vanilla GRPO across model
sizes and data scales, achieving state-of-the-art results
among open-source RL-tuned VLMs—without extra
training overhead or complex system modifications.

2. NoisyRollout: A Free-Lunch with Noisy
Reinforcement Learning

We introduce NoisyRollout, a data augmentation method
that enhances visual reasoning in VLMs during RL
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Figure 2: Illustration of the NoisyRollout workflow. Solid lines depict the generation and use of clean rollouts from the
clean (original) input (I, q), while dashed lines depict the generation and use of noisy rollouts from the corresponding noisy

input (I q). The distorted image I is obtained by applying a distortion function I =

T, (I) with distortion strength o;. The

distortion level o, is controlled by a noise annealing schedule, which gradually decreases distortion during training. The terms
{o yi2 ™ Lyt jand {A;}7 172 represent mixed trajectories, rewards, and advantages, respectively. Notably, policy
optimization conditions only on clean inputs, while the corresponding noisy inputs are used solely to collect noisy rollouts.

training, particularly by improving the rollout diversity
for better policy exploration. NoisyRollout achieves this
by incorporating a hybrid rollout strategy that leverages
reasoning trajectories from both clean and distorted images,
and a noise annealing schedule that progressively reduces
distortion strength. These designs require no additional
training cost and integrate seamlessly with standard GRPO
implementations. A simplified overview is provided in
Figure 2 and Algorithm 1.

GRPO. Group Relative Policy Optimization (GRPO) (Shao
et al., 2024) was originally developed to improve math-
ematical reasoning in LLMs but can also be effectively
adapted to enhance visual reasoning in VLMs. For a given
input pair (I,q) consisting of an image and text query
from the training set pp, a rule-based outcome reward
function (I, q, 0) is adopted to avoid reward hacking. This
function assigns (I, q,0) = 1 if the generated response o
correctly addresses the query (as verified by a parser) with
the required format, and (1, q, 0) = 0 otherwise. For each
input, the old policy 7, ,, generates n response rollouts.
The baseline reward is then calculated as mean(r), where
r={r;}, = {r(I,q,0;)}, represents the rewards for
all rollouts. The normalized advantage for the i-th rollout is
defined as A; = Z=2°2®) Derjved from PPO (Schulman

std(r)
et al., 2017), the GRPO objective function is:

Jarro(0) =
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where 7y is the current policy, € > 0 sets the clipping

range. We omit the KL divergence constraint Dk, [mg| 7y, ., ]

following recent practices in Meng et al. (2025) and Liu
et al. (2025b).

Hybrid rollout strategy. Building upon GRPO,
NoisyRollout introduces a hybrid rollout strategy to
enhance the rollout diversity. For each input pair (I, q),
we generate an augmented version of the image I
through a noise transformation function 7T, parameter-
ized by a distortion strength «, i.e., I = To.(I). As
illustrated in Figure 2, the old policy my,, produces
two sets of rollouts: n; responses conditioned on the
clean input (/,q), and ny responses conditioned on
the corresponding noisy input (I,q). All rollouts from
both clean and distorted images are then combined
into a single group for reward calculation, yielding
r = {r )" = {r(I,q,0,) %, U{r(I,q,00) 10 .
Crucmlly, the policy update step remains conditioned solely
on the clean image I and query q for better policy explo-
ration. We defer the discussion of optimizing noisy and
clean trajectories on their corresponding inputs to Appendix
B. The NoisyRollout objective function is defined as:

J(0) =

n 5
(Ia)~pp, {0} ;1 ~mo, C11,a) {or} L 3 ~moy, (11,a)

1 ni+ng T )
S win mo(oi | La) 4
ni + ng i1 TOo1a (Oi | I, q)
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clip (7 1—€ 1+ e)Ai
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Noise annealing schedule. Applying fixed-strength distor-
tions throughout training often leads to training instability,
primarily due to a distributional mismatch between noisy
rollouts and the evolving policy. To mitigate this, we intro-
duce a noise annealing schedule 7)(+) that gradually reduces

the distortion strength over time. Specifically, at training
step ¢, the noise level is defined as a; = (o, t, tmax)s

@




Table 1: Performance comparison of VLMs with moderate parameter sizes on a suite of out-of-domain benchmarks.
Accuracy scores (%) are reported for all benchmarks for clarity. Models marked with “*” are evaluated using our evaluation
suite. For R1-related models, the corresponding reasoning templates are used by default, while “!” indicates results
obtained using the direct-answer template. Data sizes used for SFT and RL are annotated in blue and red, respectively.
The best value in each column is shown in bold, and the second-best is underlined.

Model Data Size MathVerse MathVision MathVista WeMath HallusionBench
Open-source
InternVL-2.5-8B-Instruct (Chen et al., 2024) - 39.5 19.7 64.4 - 67.3F
LLaVA-OneVision-7B (Li et al., 2024b) - 26.2 - 63.2 - 48 4%
Kimi-VL-16B (Kimi Team, 2025b) - 449 21.4 68.7 - 66.2F
URSA-8B (Luo et al., 2025) - 45.7 26.2 59.8 - -
Mulberry-7B (Yao et al., 2024) - - - 63.1 - -
R1i-related (reinforcement learning with verifiable reward)
R1-VL-7B (Zhang et al., 2025a) 260K+10K 40.0 24.7 63.5 - -
Vision-R1-7B (Huang et al., 2025) 200K+10K 52.4 - 73.5 - -
R1-OneVision-7B* (Yang et al., 2025) 155K+10K 46.1 22.5 63.9 62.1 65.6
OpenVLThinker-7B* (Deng et al., 2025b) 35K+15K 48.0 25.0 71.5 67.8 70.8
MM-Eureka-Qwen-7B* (Meng et al., 2025) 15K 50.5 28.3 71.5 65.5 68.3
ADORA-7B* (Gui & Ren, 2025) 2.1K 50.1 27.6 71.1 67.1 53.1
ThinkLite-7B-VL* (Wang et al., 2025¢) 11K 50.2 27.6 72.7 69.2 71.0
VLAA-Thinker-7B* (Chen et al., 2025a) 25K 49.9 26.9 68.8 67.9 68.6
Qwen2.5-VL-7B-Instruct* (Bai et al., 2025) - 46.2 25.0 67.5 63.1 64.6 (71.21)
+ Vanilla GRPO* (n = 12) 2.1K (Geometry3K) 50.8 27.3 70.5 67.4 69.8
+ NoisyRollout* (ny = 6, no = 6) 2.1K (Geometry3K) 53.2 28.5 72.6 69.6 72.1
+ Vanilla GRPO* (n = 12) 6.4K (MMK12) 51.8 294 73.2 70.2 70.3
+ NoisyRollout* (ny = 6, ny = 6) 6.4K (MMK12) 53.0 30.6 74.5 70.3 72.2

where « is the initial noise strength and ¢,,,x denotes the
total number of training steps. As shown in Figure 2, the
distorted image is then generated as I = T, (I).

Consequently, this schedule keeps diverse and informative
supervision signals early in training, when the policy is con-
strained by its perceptual capacity. As training progresses,
the noise level o is gradually reduced, narrowing the gap be-
tween noisy rollouts ({0 };;11"% |) and the trajectories that
7.4 (-], @) would typically produce. This decay helps mit-
igate abrupt distribution shifts after policy updates, which
can arise from unstable or high-variance policy gradients.
Over time, rollouts generated from (f ,q) become progres-
sively more “on-policy” w.r.t the clean-input-conditioned
policy g, (-|1,q), fostering a smoother transition from
exploration to exploitation in later training stages.

Summary. NoisyRollout aims to improve the visual rea-
soning abilities of VLMs by enhancing rollout diversity to
enable more effective policy exploration during RL training.
Built on top of GRPO, it introduces a hybrid rollout strategy
and a noise annealing schedule. These additions require no
extra training cost and preserve the original RL objective.
This design offers several benefits:

* Robust reasoning: Positive trajectories from distorted
inputs offer alternative, and potentially more robust rea-
soning paths, improving generalization to challenging

or out-of-domain visual conditions.

* Contrastive perceptual signals: When clean and
distorted inputs yield divergent outcomes for the same
text query, the resulting reward differences shape a
better perceptual exploration space, serving as implicit
contrastive signals that refine the model’s perceptual
behaviors during reasoning.

* Stable training dynamics for better exploitation: The
noise annealing schedule enables a smooth transition
from early-stage noisy signals to fully on-policy learn-
ing, mitigating distributional mismatch and ensuring sta-
ble convergence as the model gradually improves its per-
ception and reasoning. This provides a solid foundation
for further exploitation in the later stages of RL training.

3. Experiments

Dataset. We use EasyR1 (Zheng et al., 2025) as our re-
inforcement learning training framework, which is built
on verl (Sheng et al., 2024) and specifically designed for
VLMs. Our experiments utilize two datasets: Geometry3K
(Lu et al., 2021), focused on geometric problem solving,
and MMK12 (Meng et al., 2025), covering diverse K-12
math topics. These datasets comprise 2.1K and 6.4K train-
ing samples respectively. We processed them by converting
all questions from multiple-choice to free-form format to
prevent reward hacking and model guessing.



Table 2: Performance comparison of VLMs with large parameter sizes on a suite of out-of-domain benchmarks. The notation
and evaluation protocols are consistent with those described in Table 1.

Model #Data MathVerse MathVision MathVista WeMath HallusionBench
Close-source
GPT-40 (Hurst et al., 2024) - 50.8 30.4 63.8 69.0 71.4%
Claude-3.5-Sonnet (Anthropic, 2024) - 26.5 38.0 67.7 - 71.6°
Kimil.5 (Kimi Team, 2025a) - - 38.6 74.9 - -
Open-source
InternVL-2.5-78B-Instruct (Chen et al., 2024) - 51.7 32.2 72.3 - 72.9f
QVQ-72B-Preview (Qwen, 2024) - - 35.9 714 - -
Qwen2.5-VL-72B-Instruct (Bai et al., 2025) - - 38.1 74.8 - 71.9%
RI-related (RL-tuned with verifiable reward)
MM-Eureka-Zero-38B (Meng et al., 2025) 9.4K 48.9 26.6 64.2 - -
MM-Eureka-Qwen-32B* (Meng et al., 2025) 17K 56.5 39.8 76.7 76.7 71.4
Qwen2.5-VL-32B-Instruct* (Bai et al., 2025) - 58.5 37.6 76.5 74.0 66.6
+ Vanilla GRPO* (n = 8) 2.1K (Geometry3K) 58.9 39.2 77.0 76.1 72.3
+ NoisyRollout* (n; =4, no = 4) 2.1K (Geometry3K) 59.6 39.2 78.1 77.2 73.0
+ Vanilla GRPO* (n = 8) 6.4K (MMK12) 58.9 40.0 76.7 76.9 72.1
+ NoisyRollout* (n; = 4, ny = 4) 6.4K (MMK12) 59.3 41.6 77.4 77.6 73.2

Evaluation. We mainly evaluate model performance along
two dimensions. First, we assess out-of-domain generaliza-
tion across five benchmarks: four visual reasoning bench-
marks, including MathVerse (Zhang et al., 2024a), MathVi-
sion (Wang et al., 2024), MathVista (Lu et al., 2023), and
WeMath (Qiao et al., 2024), as well as one visual perception
benchmark, HallusionBench (Guan et al., 2024). Second,
we evaluate the in-domain performance of NoisyRollout
by comparing it with the vanilla GRPO baseline on the
Geometry3K test set.

Moreover, we develop an evaluation suite for consistent
assessment of our trained checkpoints and most open-source
R1-related checkpoints using vLLM (Kwon et al., 2023) for
accelerated inference (marked with * in Tables 1 and 2),
while adopting reported results for others.! We employ
greedy decoding for model inference and use Gemini-2.0-
Flash-001 (Gemini Team, 2023) as the judge model to parse
generated responses.

Implementation details. Following prior work (Meng et al.,
2025; Wang et al., 2025e), we initialize our policy models
with Qwen2.5-VL-7/32B-Instruct, which exhibit strong
foundational capabilities well-suited for subsequent RL
training. All experiments are conducted using 8 A100 GPUs
(40G for 7B model, 80G for 32B model). We keep the
vision encoder frozen for training stability and parameter
efficiency. For other general RL-related hyperparameters,
we adopt the default settings from EasyR1: a global batch
size of 128, a rollout batch size of 512, a rollout temperature

'While we closely follow system (or format) prompts from
relevant codebases or papers, minor result discrepancies may occur
due to differences in judge models or inference engines, which we
consider acceptable.

of 1.0, and a learning rate of 1e—6. To prevent token-length
bias, we compute the policy loss using the token-mean
aggregation strategy.” For NoisyRollout-specific configu-
rations, we adopt Gaussian noise as the image distortion
strategy, and apply a sigmoid-shaped annealing schedule:

1
ay = 77(040,t7tmax) = Qp (1 - :[_A'_e—)\(t—’}’)/tmax> ) (3)

where v determines the midpoint of the annealing curve
and A controls its steepness. Figure 7 illustrates the visual
effects of applying different levels of Gaussian noise to a
clean image. We defer the discussion of image distortion
strategies (e.g., cropping, rotation), noise annealing
strategies (e.g., power, exponential), and proportions
of noisy rollouts in total rollouts to Appendix A. The
reasoning and direct-answer templates used in
our experiments are shown in Appendix J. Additional
implementation details regarding the number of training
steps/epochs and the hyperparameters for image distortion
and noise annealing are presented in Appendix I.

3.1. Main Results

Result 1: Out-of-domain generalization. When trained
on the Geometry3K dataset using Qwen2.5-VL-7B-Instruct,
NoisyRollout not only improves in-domain performance
(Figure 3, lower left subplot), but more importantly, demon-
strates strong out-of-domain generalization. As shown in
Table 1, NoisyRollout achieves superior performance across
five visual reasoning and perception benchmarks, consis-
tently outperforming the vanilla GRPO baseline in every

The code implementation can be found at verl.
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Figure 3: Comparison of NoisyRollout and vanilla GRPO on Qwen2.5-VL-7B-Instruct across in-domain and out-of-domain
scenarios with the same total rollout number (12). The X-axis in all subplots represents RL training steps. First column:
Reward comparison on the in-domain dataset during training. Second and third columns: Comparison on four out-
of-domain visual reasoning benchmarks. Last column: Evaluation of visual perception capabilities, where the upper
subplot directly compares their perception performance on HallusionBench and the lower subplot presents the model-ranked
Bradley-Terry win rates w.rt. the perception qualities of their reasoning traces.

case. This advantage is further illustrated in Figure 3, which
presents detailed comparisons across benchmarks as train-
ing progresses. Specifically, NoisyRollout achieves 53.2%
on MathVerse, 28.5% on MathVision, and 69.6% on We-
Math, surpassing existing R1-related baselines and even
outperforming GPT-4o0.

Moreover, while Qwen2.5-7B-VL-Instruct’s perception ac-
curacy on HallusionBench drops from 71.2% to 64.6%
when switching from direct-answer to reasoning
templates,” NoisyRollout achieves 72.1% with the
reasoning prompt (compared to vanilla GRPO’s 69.8%).
The final subplot in Figure 3 further confirms that
NoisyRollout enhances perception quality during reason-
ing, achieving a higher Bradley—Terry win rate over vanilla
GRPO (See Appendix D for details). These results indi-
cate that our hybrid rollout strategy enhances visual percep-
tion by promoting better policy exploration through vision-
oriented inductive biases.

Result 2: Sample efficiency. NoisyRollout demonstrates
exceptional data efficiency by generalizing with only
2.1K training samples from Geometry3K, whereas
comparable models require significantly more data or
even additional SFT as warm-up training. For example,
Table 1 indicates that OpenVLThinker-7B needs 35K SFT
samples and 15K RL samples but reaches only 48.0% on
MathVerse and 71.5% on MathVista. This efficiency stems

3This degradation caused by the reasoning template has
also been observed in previous studies (Jiang et al., 2025b).

from NoisyRollout’s use of noisy training signals that
foster targeted exploration during RL, enabling effective
generalization from limited samples.

Result 3: Robustness across training datasets and model
sizes. NoisyRollout consistently improves upon vanilla
GRPO, demonstrating strong robustness across model sizes
and training datasets. As shown in Tables 1 and 2, the 7B
model trained on MMK12 achieves gains of 1.2%, 1.3%,
and 1.9% over GRPO on MathVerse, MathVista, and Hallu-
sionBench, respectively. Similarly, the 32B model trained
on MMK12 surpasses GRPO by 0.4%, 0.7%, and 1.1% on
the same benchmarks.

Notably, in certain benchmarks like MathVerse and Math-
Vista, the performance gains of NoisyRollout over vanilla
GRPO are smaller for the 32B model than for the 7B model.
This is likely because the 32B model’s initial policy was
already fine-tuned via RL.,* whereas the 7B model’s was not.

3.2. Ablation Study: More Effective Rollout Diversity
with Noisy Trajectories

Setup. Unless otherwise specified, all ablation studies in
this and the following subsection use Geometry3K as the
training dataset on Qwen2.5-VL-7B-Instruct. In this part,
we aim to examine the effectiveness of our NoisyRollout
from the perspective of rollout diversity, a key factor for

*nttps://qwenlm.github.io/blog/qwen2.
5-v1-32b/


https://qwenlm.github.io/blog/qwen2.5-vl-32b/
https://qwenlm.github.io/blog/qwen2.5-vl-32b/

Table 3: Performance comparison under different rollout temperature settings, with the total number of rollouts fixed at
12. In vanilla GRPO, “n(6) : 1.0, n(6) : 1.2” indicates 6 rollouts with temperature 1.0 and another 6 with temperature
1.2. In NoisyRollout, “n1(6) : 1.0” denotes 6 rollouts per sample generated from clean input (I, q) with temperature 1.0,
while “ng(6) : 1.0” denotes 6 rollouts per sample from noisy input (f ,q) with temperature 1.0. “Geo3K” represents the
test set of Geometry3K dataset. “Avg.” represents average accuracy (%) across six benchmarks.

Method ‘ Rollout Temperature ‘GeoSK MathVerse MathVision MathVista WeMath HallusionBench Avg.
n(12): 0.8 50.1 50.5 26.7 69.9 65.8 70.1 55.5

n(12) : 1.0 514 50.8 27.3 70.5 67.4 69.8 56.2

. n(12) : 1.1 50.4 50.2 27.7 70.4 68.1 69.4 56.0
Vanilla GRPO n(12) : 1.2 532 51.2 27.1 69.3 68.3 70.9 56.7
n(12) : 1.4 514 50.6 25.8 70.1 69.0 69.6 56.1

n(6) : 1.0,n(6) : 1.2 | 50.8 50.7 26.8 70.1 67.4 68.2 55.7
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Figure 4: Comparison of accuracy and diversity metrics (%) across RL training steps (0 to 40). The left two subfigures
contrast NoisyRollout versus vanilla GRPO (both with temperature 1.0), while the right two demonstrate the effects of
different temperature settings (0.8, 1.0, 1.2) on vanilla GRPO.

effective policy exploration in RL training. Here, we define
rollout diversity as the average pairwise cosine distance be-
tween trajectory embeddings, where higher values indicate
greater diversity. We randomly sample 256 instances from
the Geometry3K training set. For each sample, we generate
either n = 12 trajectories in vanilla GRPO or a combination
of n; = 6 and ny = 6 trajectories in NoisyRollout, then
encode them with an embedding model.> We track both
diversity and accuracy across training steps (Figure 4) and
evaluate final performance on in-domain and out-of-domain
benchmarks (Table 3). We use vanilla GRPO with a rollout
temperature of 1.0 as the control group.

Result. As shown in Figure 4, NoisyRollout enhances roll-
out diversity in early training stages compared to the control
group, similar to increasing rollout temperature in vanilla
GRPO from 1.0 to 1.2. This initial diversity boost, though
accompanied by lower starting accuracy, ultimately leads to
higher final training accuracy. Moreover, both NoisyRollout
and higher-temperature vanilla GRPO show diversity de-

Shttps://huggingface.co/
sentence-transformers/all-MiniLM-L6-v2

creasing below the control group in later training stages.

Table 3 reveals that NoisyRollout with temperature 1.0
consistently outperforms vanilla GRPO across all temper-
ature settings (0.8 to 1.4), as well as mixed-temperature
variants. Moreover, when applying temperature 1.2 to both
approaches, NoisyRollout still demonstrates significant
improvement over vanilla GRPO. These results indicate
that NoisyRollout introduces more targeted and effective
diversity than simply adjusting temperature parameters,
which increases diversity in a less focused manner.

3.3. Ablation Study: Impact of Hyperparameters and
Module Design

Data scale. Although Geometry3K is a high-quality
training dataset, its limited size (2.1K samples) prevents
a thorough investigation of the scaling behavior of
NoisyRollout compared to vanilla GRPO. To enable
such analysis, we additionally consider MMKI12, which
contains 6.4K samples after preprocessing. Figure 6 shows
NoisyRollout consistently outperforms vanilla GRPO
across various data scales, ranging from 1.1K to 6.4K.
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Figure 5: Comparison of NoisyRollout w. and w.o0. noise annealing, and vanilla GRPO in terms of training dynamics (policy
clip fraction and training reward) and accuracy on the in-domain test set.
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Figure 6: Performance comparison on MMK12 when scal-
ing up the training data size.

Table 5: Ablation study on the impact of initial noise steps
(avg). “O0D Avg.” represents average accuracy (%) across
five out-of-domain benchmarks.

Noise Step Geometry3K OOD Avg.

0 51.4 57.2
100 52.7 574
300 534 57.7
400 54.6 58.1
500 54.9 59.2
550 39.6 57.7
600 Diverged

Table 6: Performance comparison when using GRPO vari-
ants for policy optimization.

Table 4: Ablation study on the noise annealing strategy. Method Geometry3K OOD Avg.
Method Geometry3K OOD Avg. Qwen2.5-VL-7B-Instruct 394 53.3
Qwen?2.5-VL-7B-Instruct 39.4 533 + GRPO (w.0. std(r)) 51.3 57.0
+ Vanilla GRPO SL4 57.2 + NoisyRollout (w.o. std(r)) 56.1 58.9
+ NoisyRollout w.o. Noise Annealing 43.9 58.0
+ NoisyRollout 549 59.2 + GRPO (epnigh = 0.28) 52.6 58.2

+ NoisyRollout (epignh = 0.28) 53.9 59.6

Notably, the performance gains do not diminish as the
dataset size increases, suggesting that NoisyRollout has
strong potential for use in large-scale training regimes.

Noise annealing. As shown in Figure 5, removing noise
annealing causes the in-domain performance of our method
to drop sharply around training step 45. This drop is due to
divergence caused by a distributional mismatch—an issue
discussed in Section 2 and further illustrated by the training
dynamics in the same figure. Additionally, Table 4 shows
that disabling noise annealing leads to lower performance
in both in-domain and out-of-domain settings (43.9% and
58.0%, respectively), compared to our standard setting with
noise annealing (54.9% and 59.2%). These results further
highlight the effectiveness of noise annealing.

Initial noise step. We evaluate the impact of noise strength

by varying the initial Gaussian noise step, as shown in Ta-
ble 5. Gradually increasing the initial noise step o from 0
to 500 consistently improves performance across all evalu-
ation categories, suggesting that moderate noise promotes
exploration and enriches the training signal. However, ex-
ceeding this threshold leads to performance degradation, as
overly distorted images (see Figure 7) yield noisy rollouts
with average near-zero rewards. These excessively noisy
samples introduce harmful distribution shifts during policy
updates, ultimately destabilizing the learning process. Addi-
tional ablation results on the MMK12 dataset are deferred
to Appendix A.°

%We also include additional ablations (e.g., number of rollouts
and data seed variations) in Appendix A.
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Figure 7: Illustration of visual degradation under increasing
Gaussian noise steps.

GRPO variant. Recently, several variants have been
proposed to enhance the original GRPO implementation.
Specifically, Liu et al. (2025b) identified a question-level
difficulty bias and proposed removing the standard deviation
normalization (std(r)) to address this issue. In addition, Yu
et al. (2025b) increased the upper clipping threshold (epigh)
to mitigate entropy collapse. As shown in Table 6, applying
NoisyRollout consistently improves performance not only
on the original GRPO implementation but also across these
variants. This highlights that NoisyRollout provides com-
plementary benefits alongside optimization-focused modifi-
cations, underscoring its broad applicability.

3.4. Further Analysis: Quantitative Contribution of
Noisy Rollouts on RL Optimization

Setup. For each training sample, we partition the collected
rollouts into Clean and Noisy subgroups, containing
n1 and ng rollouts, respectively. We measure each sub-
group’s contribution by projecting its specific effective gra-
dients onto an anchor gradient gt = #*t2t — ¢, which
represents the overall model update over At optimization
steps, beginning at training step ¢. The subgroup effective
gradients, gf,, and g‘ﬁoisy, are derived from actual opti-
mization steps starting from ¢, using only rollouts from
the respective subgroup (by masking losses from the other
subgroup). The projection ratios are then calculated as
Tétean = (8ctean - 87)/ 118117 and 75 = (810isy - 8°) /1187 [1%.
These ratios provide a quantitative estimate of each sub-
group’s contribution to the overall model update g‘. More
details are included in Appendix H.

Result. Figure 8 shows that the Noi sy subgroup consis-
tently contributes more significantly to policy optimization
compared to Clean, especially during early training phases
when distortion strength o is high and the policy my still
struggles with visual understanding. This trend gradually
diminishes towards the final stages of training as the learn-
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Figure 8: Comparison of gradient projection ratio.

ing is gradually “on-policy”. These findings quantitatively
confirm that our method effectively leverages noisy rollouts
to enhance training signals.

4. Related Work

VLMs have rapidly advanced through integrating vision
encoders (Radford et al., 2021; Zhai et al., 2023) with large
language models (Alayrac et al., 2022; Li et al., 2023; Liu
et al., 2023; 2024a; Hurst et al., 2024; Gemini Team, 2023),
with specialized efforts in reasoning tasks (Shi et al., 2024;
Zhang et al., 2024b). Reinforcement learning training in
LLMs and VLMs, initially employed for alignment via
human feedback (RLHF) (Ouyang et al., 2022; Achiam
et al., 2023; Yu et al., 2024), has evolved to incorporate
rule-based rewards and advanced optimization methods
like GRPO (Shao et al., 2024), as exemplified by DeepSeek-
R1 (Guo et al., 2025) and Kimi-1.5 (Kimi Team, 2025a).
Emerging RL approaches in multimodal domains include
LMM-R1 (Peng et al., 2025b), Vision-R1 (Huang et al.,
2025), R1-V (Chen et al., 2025b), OpenVLThinker (Deng
et al., 2025b), and MM-Eureka (Meng et al., 2025), which
extend RL to visual reasoning tasks. However, existing stud-
ies on training VLMs via RL have not adequately explored
techniques that can enhance the explorative capabilities
of models. Our method addresses this gap by proposing a
data augmentation technique with visual-oriented inductive
biases. A detailed discussion of related work is deferred
to the Appendix E due to space limit.

5. Conclusion

In this paper, we investigate scaling test-time compute in
VLMs via RL. We introduce NoisyRollout, a simple yet
effective data augmentation technique that promotes di-
versity by mixing trajectories from both clean and dis-
torted inputs with vision-oriented inductive biases. This
approach enhances policy exploration during RL training
without incurring additional training costs. Empirically,
NoisyRollout demonstrates improved generalization and
robustness, achieving state-of-the-art performance across
multiple visual reasoning and perception benchmarks with
high sample efficiency.
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A. Additional Ablation Studies

Noise annealing strategy. On the Geometry3K training
dataset, we further examine the impact of different noise
annealing schedules on NoisyRollout’s performance
by comparing our default sigmoid strategy with power
(¢ = ap - (1 — t/tmax)?, p = 3.0) and exponential
(v = o - ¥/t v = 0.98) decay functions. As shown
in Table 7, all three strategies enable NoisyRollout to out-
perform the vanilla GRPO baseline on benchmarks. Among
them, the sigmoid schedule achieves the highest average
score (58.5%), surpassing both power and exponential
decays (57.1% and 57.0%). The superior performance of
the sigmoid schedule likely results from its characteristic
“slow-fast-slow” decay, which balances exploration and
stability more effectively by maintaining sufficient early
exploration and promoting rapid convergence afterward.

Table 7: Ablation study on the strategies of noise annealing.
“Avg.” denotes the average accuracy across the six bench-
marks, including the in-domain benchmark Geometry3K.

Method | Geometry3K Avg.
Qwen2.5-VL-7B-Instruct 394 51.0
+ GRPO 52.0 56.3
+ NoisyRollout (Power) 52.2 57.1
+ NoisyRollout (Exponential) 51.9 57.0
+ NoisyRollout (Sigmoid) 54.9 58.5

Total rollout number. We analyze the impact of total roll-
out number by comparing vanilla GRPO and NoisyRollout
under varying rollout budgets. As shown in Table 8, increas-
ing the number of rollouts in vanilla GRPO from n = 8 to
n = 16 improves in-domain performance (from 49.6% to
54.7%), but only marginally benefits out-of-domain general-
ization (from 56.8% to 57.5%). NoisyRollout consistently
outperforms vanilla GRPO even when the total number
of rollouts is held constant. Notably, NoisyRollout with
n1 = ng = 6 (total 12) achieves both higher in-domain
(54.9%) and out-of-domain (59.2%) accuracy than vanilla
GRPO with 16 rollouts.

Image data augmentation. We explore a range of image
distortions beyond Gaussian noise, including cropping and
rotation. However, these augmentations often led to critical
information loss, resulting in rollouts with consistently zero
rewards. This caused unreliable policy gradient estimates
and ultimately led to training instability and divergence (Fig-
ure 9). We also experiment with randomized augmentation,
where one distortion (cropping, rotation, or Gaussian noise)
is randomly selected at each training step. However, this
approach fails to improve stability. In contrast, Gaussian
noise alone preserved essential visual information while in-
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Table 8: Comparision of NoisyRollout and GRPO on
Qwen2.5-VL-7B-Instruct across different rollout config-
urations. “OOD Avg.” denotes the average accuracy across
all five out-of-domain benchmarks.

Rollout | Geometry3K OOD Avg.

n==~, 49.6 56.8

n=12 52.0 57.2

n =16 54.7 57.5

n =20 53.6 57.3
ny=ng =4 51.7 58.3
ni=ny=6| 549 59.2
ny =ng =8 4.7 58.9

troducing moderate perturbations. We find that Gaussian
noise serves as an effective regularizer during training:
rollouts generated with this type of augmentation closely
resemble those encountered during test-time on benchmark
tasks, thereby injecting useful variability into the inputs.

061 Rotation
—— Cropping
0.61 — Gaussian Noise
T
E 0.5
3
o 0.5
(o))
o4
£
Zo
04
0.3
0.2
0 10 20 30 40 50 60

Training Steps

Figure 9: Comparison of different image augmentation
strategies.

Data seed. To evaluate the robustness of our approach
to data sampling variations, we examine the performance
consistency of NoisyRollout when using different random
seeds for data sampling during training on the Geometry3K
dataset. We compare these results against vanilla GRPO
trained with the same seeds to verify that the improvements
offered by NoisyRollout are consistent across different data
orderings and not merely an artifact of a specific seed (Ta-
ble 9).

Initial noise step (MMK12). Based on our experience, the
initial noise step «y is a critical hyperparameter. In addition
to the Geometry3K dataset, we also evaluate the impact of
different initial noise steps on the MMK12 dataset using
Qwen2.5-VL-7B-Instruct. Table 10 shows NoisyRollout
outperforms standard GRPO on MMK 12 when configured
with an appropriate initial noise step (g = 450).



Table 9: Comparision of NoisyRollout and GRPO on
Qwen2.5-VL-7B-Instruct across data seeds.

Method | Seed | Geometry3K OOD Avg.
GRPO | 52.0 57.2
NoisyRollout 54.9 59.2
GRPO ’ 51.9 57.5
NoisyRollout 54.1 58.8
GRPO 3 51.1 57.0
NoisyRollout 53.7 58.8
GRPO 4 51.9 57.2
NoisyRollout 54.1 58.4

Table 10: Performance of NoisyRollout on the MMKI12
dataset (2.1K) across different noise steps.

Method | Initial Noise Step | OOD Avg.
GRPO | 0 | 579
300 58.5
. 400 58.3
NoisyRollout 450 594
500 58.7

Proportion of noisy rollouts. Table 11 demonstrates that
incorporating noisy rollouts during training significantly
enhances model performance across both reasoning and
perception benchmarks. A balanced 50/50 distribution of
clean and noisy rollouts achieves optimal results (58.5%
average accuracy), outperforming both the no-noise baseline
(56.3%) and higher noise proportions. This finding aligns
with our earlier observations about the effectiveness of noise
as a regularizer, confirming that the ideal approach combines
clean rollouts for exploitation of current state with noisy
rollouts for exploration, rather than relying exclusively on
either strategy.

Table 11: Comparison across different proportions of noisy
rollouts ny /(11 + ng) during rollout collection, with a fixed
total of 12 rollouts.

Proportion ‘ Geometry3K Avg.

0/12 | 520 56.3
3/12 51.1 574
6/12 54.9 58.5
9/12 42 579
12/12 53.1 57.8

15

B. Unsuccessful Attempts

During the early development of NoisyRollout, we encoun-
tered several unsuccessful trials that are worth documenting.
Due to limited computational resources, we could only ex-
plore a limited set of hyperparameter combinations heuristi-
cally. Some of these approaches might prove effective with
further hyperparameter optimization and better design.

Optimizing noisy and clean trajectories on correspond-
ing inputs. We explored an alternative design in which
policy updates were conditioned on the same input used
to generate each rollout—i.e., using clean inputs for clean
rollouts and distorted inputs for noisy rollouts. However,
this approach did not yield meaningful improvements
over the original GRPO baseline. We hypothesize that
this design reduces the benefits of group-based advantage
estimation. Specifically, by decoupling clean and noisy
rollouts during optimization, the method -effectively
degrades into a form of sample-level data augmentation.
This fragmentation weakens the shared reward signal
across rollouts, thereby diminishing the informativeness
of group-level statistics such as the normalized advantage.
As a result, the exploration benefits introduced by noisy
rollouts are not fully leveraged during policy updates.

In contrast, our proposed approach treats clean and noisy
rollouts as a unified group for advantage calculation, while
anchoring all policy optimization to the clean inputs. This
design retains the distributional diversity introduced by
noise, but preserves a consistent input distribution for policy
updates—striking a balance between exploration and stable
learning.

Reward penalty on noisy subgroup. We experimented
with applying explicit reward penalties (e.g., —0.1) to all
noisy rollouts, aiming to encourage the model to better
capture contrastive learning signals. However, this approach
quickly led to training divergence. Rather than improving
its core reasoning and perception abilities, the policy model
learned to distinguish between clean and noisy rollouts. As a
result, the noisy rollouts rapidly became highly “off-policy”,
since the model could easily identify. This distributional
mismatch destabilized training and undermined the learning.

C. Training Procedure

To better illustrate the workflow of our method, a simplified
overview is provided in Algorithm 1.



Algorithm 1 NoisyRollout: Noisy Reinforcement Fine-Tuning

1: Input: Current policy mg, old policy mg

old?

dataset pp, training steps ¢max, clean rollout number n;, noisy rollout

number ng, clip parameter e, initial noise strength «, noise scheduler (), noise transformation function 7°(-)

2: for ¢t = 1to tyax do

7o (0i]1,q)
oy (0il1,Q)

> Annealing schedule

> Clean rollouts
> Noisy rollouts

ni+ng
i=1
,1—e1 —|—6)A1)]
> Update conditioned on clean images only
> Update old policy parameters

3: Sample batch (I, q) ~ pp

4: Set noise strength a; = n(ap, t, tmax)

5: Generate distorted images I = T, (I)

6: Sample {0}, from 7y, (0 | 1, q)

7 Sample {ok}Z;‘ZTil from g, (0 | I,q)

8: Compute rewards r; = r(I,q,0;) foralli € {1,...,n; +ns}
9: Compute advantages A; = %‘w, where r = {r;
10: Update policy using:

11: JO)=E {nl_lmz ZZ’;T"Z min (%Ai, clip(
12: 0+ 0—VoJ(0)

13: Qold «— 0

14: end for

D. Evaluating the Perception Quality of
Reasoning Traces

To further evaluate the perception quality of models trained
with NoisyRollout and vanilla GRPO during reasoning, we
perform a paired comparison using a strong VLM.” We
sample 300 reasoning traces from the evaluation logs of
the models performing visual reasoning on the MathVerse
and MathVista benchmarks, forming paired comparisons
between NoisyRollout and vanilla GRPO.

To isolate visual perception, we extract only the visual
components from each reasoning trace using a specialized
prompt, removing any influence from mathematical rea-
soning or final answers. To reduce potential position bias
in the comparisons, each pair of traces is evaluated twice:
once with the NoisyRollout trace shown first and the vanilla
GRPO trace second, and once with the order reversed. We
combine the results using the Bradley-Terry model to com-
pute win rates. This methodology offers a reliable measure
focused specifically on visual perception quality during rea-
soning. The results are presented in Figure 3 (the 8th sub-
figure). The extraction and evaluation prompts are shown
below.

E. Detailed Related Work

Large Vision-Language Models. VLMs have rapidly
evolved to understand and reason with both visual and tex-
tual information (Thawakar et al., 2025). These models
combine visual encoders with large language models to en-
able comprehension and inference across modalities. Early
VLMs like Flamingo (Alayrac et al., 2022) and BLIP-2 (Li
et al., 2023) established foundational integration techniques

"Specifically, we use Gemini-Flash-2.0-001 in this experiment.
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between vision and language components. The LLaVA se-
ries (Liu et al., 2023; 2024a; Li et al., 2024b;a) introduced
effective visual instruction tuning methodologies that signif-
icantly advanced multimodal capabilities. For mathematical
reasoning, specialized approaches (Shi et al., 2024; Zhang
et al., 2024b) have employed mathematical visual instruc-
tion tuning to enhance VLMs’ abilities to interpret and solve
mathematical problems in multimodal contexts.

Advanced VLMs including GPT-40 (Hurst et al., 2024) and
Gemini (Gemini Team, 2023) have demonstrated unprece-
dented general visual understanding through massive pre-
training. Mixture-of-Experts approaches in DeepSeek-VL-2
(Wu et al., 2024b), Uni-MoE (Li et al., 2025b), and MoVA
(Zong et al., 2024) improved computational efficiency by se-
lectively activating specialized components based on input
characteristics. Meanwhile, unified models like SEED-X
(Ge et al., 2024), Chameleon (Team, 2024), Show-o (Xie
et al., 2024), and Janus series (Wu et al., 2024a; Ma et al.,
2024; Chen et al., 2025¢) integrated visual understanding
and generation capabilities within single architectures. How-
ever, most existing VLMs still lack robust visual reasoning
capabilities (Dong et al., 2024), especially for tasks requir-
ing sophisticated analysis of visual information combined
with complex reasoning (Liu et al., 2024c; Wang et al.,
2025¢).

Reinforcement Learning-Enhanced Visual Reasoning.
RL has emerged as a key methodology for enhancing the
capabilities of LLMs and VLMs. Early research primar-
ily focused on Reinforcement Learning from Human Feed-
back (RLHF) (Ouyang et al., 2022), which aligned model
outputs with human preferences (Achiam et al., 2023). Re-
cent advancements have further demonstrated that RL-based
techniques can significantly enhance reasoning abilities. For
instance, DeepSeek-R1 (Guo et al., 2025) utilizes rule-based



Visual Information Extraction Prompt

Extract all visual perception and information recognition components from the following reasoning trace.
Original question: {question}
Reasoning trace: {reasoning}

Your task is to extract and summarize ONLY the parts that relate to visual perception, information extraction, and
understanding of visual elements from the image.

This includes:

1. Any measurements, dimensions, or numerical values extracted from the image

2. Description of visual elements like shapes, objects, positions, or spatial relationships
3. Recognition of text, symbols, diagrams, or graphs from the image

4. Any visual features mentioned or used in the reasoning

Format your response with the tag:
<visual_perception> [Extracted visual information here] </visual_perception>

Include ONLY visual perception elements, not mathematical reasoning that happens after the information is extracted. If
there are no clear visual perception elements, respond with “No clear visual perception elements identified.”

Visual Perception Comparison Prompt

Compare the quality of visual perception between two models based on the image and the original question.
Original question: {question}

Visual perception from Model A: {visual A}

Visual perception from Model B: {visual B}

Your task is to determine which model better captures and correctly extracts visual information from the image. Compare
their visual perception quality based on:

* Accuracy of visual information extraction (measurements, shapes, relationships)
» Complete identification of all relevant visual elements
* Proper recognition of visual information required to solve the problem

Score both models and determine the winner: If Model A demonstrates significantly better perception than Model
B, respond: <result>A</result>; if Model B demonstrates significantly better perception than Model A, respond:
<result>B </result>; if both models show similar quality of visual perception, respond: <result>tie</result>.

Now:

1. identify what visual information is required to solve this problem.
2. analyze how each model perceives this information.

3. provide your comparative judgment with specific reasons.

4. provide your <result> tag with exactly A, B, or tie.

L
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rewards combined with Group Relative Policy Optimization
(GRPO) (Shao et al., 2024), whereas Kimi-1.5 (Kimi Team,
2025a) employs a variant of online policy mirror descent,
both methods showing notable improvements in reasoning
performance.

In the multimodal domain, research on leveraging RL to en-
hance VLMs’ reasoning capabilities remains in early stages.
Some approaches explore using generative reward mod-
els (Zhang et al., 2025b; Wang et al., 2025d) to enhance
VLMs’ general capability, but these typically require power-
ful closed-source models for training data generation. Re-
cent work including LMM-R1 (Peng et al., 2025b), Vision-
R1 (Huang et al., 2025), R1-V (Chen et al., 2025b) and
OpenVLThinker (Deng et al., 2025b) has applied R1-type
RL to VLMs in diverse specific subdomains like geometry
problems and object counting tasks (Peng et al., 2025a;
Chris et al., 2025; Deng et al., 2025a; Li et al., 2025a;
Wang et al., 2025b; Jiang et al., 2025a). Further more, pilot
studies (Meng et al., 2025; Ma et al., 2025) further extend
large-scale rule-based RL to broader multimodal mathemat-
ical reasoning, demonstrating significant performance gains
without relying on in-domain training data.

F. Broader Impacts

Our proposed method, NoisyRollout, introduces a simple
yet powerful data augmentation approach designed to im-
prove visual reasoning and perceptual robustness in VLMs.
Given its effectiveness, especially noted through strong out-
of-domain performance and high sample efficiency, this ap-
proach has broad applicability within resource-constrained
training scenarios. This is particularly beneficial in domains
where acquiring or annotating large-scale datasets is costly
or practically challenging, such as medical imaging (Lai
et al., 2025), robotic perception (Singh et al., 2022), and
assistive technologies (Gao et al., 2023).

Moreover, by enhancing model robustness to visual
conditions, our method can also facilitate safer and more
reliable deployment of VLMs in real-world applications, po-
tentially leading to more trustworthy human-Al interactions.
Furthermore, as our method involves relatively simple
augmentation steps without additional computational
overhead or complex training protocols, along with strong
performance on scaling experiments as shown in Table
2 and Figure 6, it is suitable for integration into existing
large-scale training pipelines, supporting broader adoption
in both academia and industry.

G. Limitations

Despite easy-to-adopt designs and promising empirical re-
sults, our study has several limitations. First, due to com-
putational constraints, our experiments are limited in scale:
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we primarily explore model sizes up to 32B parameters and
training dataset scales in the order of a few thousand sam-
ples. Future work should validate and extend our findings
using significantly larger-scale training scenarios—such as
models with 72B parameters or training datasets in the range
of hundreds of thousands of sample. Second, NoisyRollout
is applied during the RL fine-tuning phase of an already pre-
trained VLM. A more fundamental, but vastly more com-
plex, direction would be to explore how the principles of
NoisyRollout (i.e., learning from noisy signals in RL) could
be integrated into the large-scale pre-training phase of the
VLM itself. Finally, while empirically effective, our study
lacks a formal theoretical analysis of how NoisyRollout,
with its specific hybrid trajectory mixing and noise anneal-
ing, affects the exploration-exploitation trade-off and the
convergence properties of the RL algorithm. It’s unclear if
the introduced noise guarantees broader state-space cover-
age in a principled way or if certain noise characteristics
could inadvertently hinder convergence.

H. Detailed Methodology for Gradient
Contribution Analysis

To quantitatively assess the impact of noisy rollouts on
the reinforcement learning (RL) optimization process, we
partition the rollouts associated with each training sample
into two distinct subgroups based on their input type:
Clean and Noisy. Specifically, Clean rollouts are gen-
erated from original inputs (I, q), whereas Noi sy rollouts
originate from distorted inputs (I, q). In this experimental
setup, each training sample comprises ny = 6 Clean
rollouts and ny = 6 Noisy rollouts. For computational
efficiency, all gradient calculations and parameter differ-
ences discussed below (g, gl1..n» Bhoiy,) are performed
using only the parameters from specific model modules.
The exact modules used are “lm_head.weight”,
“model .27.self_attn.o_proj”,
“model .27.self_attn.gproj”,
“model .27.self_attn.k_proj”,
“model .27.self_attn.v_proj”.

.layers
.layers
.layers
.layers

and

To quantify the contribution of each subgroup to the opti-
mization, we first define an anchor gradient, denoted gl.
This quantity represents the effective overall update to the
selected model parameters 6 at a given training stage ¢. It
is calculated as the difference in these parameters between
checkpoints at training steps ¢ and ¢ + At:

gt _ 9t+At _ et

)

where ¢ represents the selected model parameters at train-
ing step ¢, and we use At = 5 steps. This g reflects the
actual change in these parameters resulting from the stan-
dard training procedure which utilizes losses derived from
both Clean and No1i sy rollouts from each training sample.



Subsequently, starting from the same parameter state 6,
we isolate the influence of each subgroup. This involves
performing At actual optimization steps under two modified
conditions, using the same batch of training samples that
contributed to the standard update from 6? to §*+4¢:

1. To obtain Gifgaﬁt: Starting from ¢, we performed At
optimization steps. During these steps, the loss com-
ponents arising from the Noi sy rollouts were masked
(i.e., their corresponding loss was set to zero). Thus,
the gradients and subsequent parameter updates were
derived solely from the Clean rollouts. This proce-

. At
dure yielded the updated parameters Giltanf.

2. To obtain Ofl;ri@t: Similarly, starting from 6?, we per-
formed At optimization steps. In this case, the loss
components arising from the Clean rollouts were
masked. The gradients and subsequent parameter up-
dates were therefore derived solely from the Noisy
rollouts. This yielded updated parameters Gflji@t.

From these updates, we define the subgroup-specific ef-

fective gradients (or parameter deltas) with respect to the

selected modules:

t _ pt+At t
Eclean — Gclean -0
and
t  _ pt+At_ pt
Bnoisy = enoisy 0"

We then quantify the contribution of each subgroup by pro-
jecting its effective gradient onto the anchor gradient. The
projection ratios are computed as follows:

t t t ot
clean ”gt ”2 noisy Hgt ” 2
: t t .
These ratios, 7., and Tnoisy> represent the estimated pro-

portion of the anchor gradient g* that can be attributed to
the Clean and Noisy subgroups, respectively, at training
stage t. To ensure robust estimates, all effective gradient
quantities (g, g, and g, ) are determined by averag-
ing results from 5 independent runs of the A¢-step update
processes described above. Each run starts with the same
parameters 7.

I. Supplementary Implementation Details

This section provides the detailed hyperparameter configura-
tions for our experiments that were omitted from Section 3.
In Table 12, we summarize our experimental settings across
different model sizes and datasets, with specific focus on
image distortion parameters and noise annealing schedules.
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Table 12: Summary of hyperparameter configurations.

Parameter Configuration

General Settings (All Experiments)

Model Base Qwen2.5-VL-Instruct
Vision Encoder Frozen
Global Batch Size 128

Rollout Batch Size 512

Rollout Temperature 1.0
Learning Rate le—6
Optimizer AdamW

token-mean
Gaussian noise
Sigmoid-shaped

Policy Loss Aggregation
Image Distortion Strategy
Noise Annealing Schedule

CPU Memory 1TB

GPU A100-SXM4-40/80GB
Qwen2.5-7B-VL-Instruct on Geometry3K (2.1K samples)
Initial Noise (aq) 500

Training Episodes 15

Total Optimization Steps (£max) 60

Sigmoid Midpoint () 40

Sigmoid Steepness (\) tmax/2 (30)
Rollout Number ny=ng =26

Time Cost per Step about 1100s

Qwen2.5-7B-VL-Instruct on MMK12 (6.4K samples)

Initial Noise (a) 450
Training Episodes 12
Total Optimization Steps (fmax) 120
Sigmoid Midpoint (vy) 40
Sigmoid Steepness (\) tmax/2 (60)
Rollout Number ny=ng =6

Time Cost per Step about 1500s

Qwen2.5-32B-VL-Instruct on Geometry3K (2.1K samples)

Initial Noise (ag) 450
Training Episodes 10
Total Optimization Steps (fmax) 40
Sigmoid Midpoint (vy) 35
Sigmoid Steepness (\) 30
Rollout Number ny=ny =4
Time Cost per Step about 3300s

Qwen2.5-32B-VL-Instruct on MMK12 (6.4K samples)

Initial Noise (o) 450
Training Episodes 7

Total Optimization Steps (fmax) 84
Sigmoid Midpoint (vy) 35
Sigmoid Steepness (\) 30
Rollout Number ny=ny =4
Time Cost per Step about 3300s




J. Templates

Reasoning Template from EasyR1
SYSTEM: You FIRST think about the reasoning process
as an internal monologue and then provide the final an-
swer.The reasoning process MUST BE enclosed within
<think> </think> tags. The final answer MUST BE put
in \boxed{}.

USER: {question}
Direct-Answer Template

SYSTEM: You are a helpful assistant
USER: {question}. Answer yes or no directly.

K. Case Study

We present two case studies to demonstrate the improved
perception and reasoning capabilities of our NoisyRollout
compared to vanilla GRPO, as illustrated in Figure 10 and
Figure 11, respectively.

20



| > < Question: Is the green line longer than the red line in the
image? |

I Source: HallusionBench, set_id:27, figure_id:0 question_id:1 |
Perception Issue |

NoisyRollout I

<think> |
| To determine if the green line is longer than the red line, let's analyze the image step by step:

I 1 forming a V-shape with the segments extending outward.
2. The red line is a single straight segment with arrows at both ends, indicating it extends in both directions but does I
I not have any additional segments like the green line.

By visually comparing the two lines: |

| - The red line is a single, continuous segment without any additional segments, and it appears to be the same length as
the green line when considering the total length. |

I </think> I
\boxed{no} I

Vanilla GRPO I

<think> I
| To determine if the green line is longer than the red line, I need to compare their lengths visually.
The red line is a single I
I straight segment with arrows at both ends, indicating it is a bidirectional arrow but does not change its length.

By comparing the two, , I
I which is a straight segment without any branches extending from it.

| Therefore, the green line is longer than the red line.
</think> |
\ \boxed{yes}

Figure 10: Case study showing improved perception capability of NoisyRollout over vanilla GRPO.
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- N
/ As shown in the figure, AC = BC, AD bisects angle CAB,
ther) the perimeter of triangle DBE is () . . . . \
[ Choices: A:6cm B:7cm C:8cm D:9cm Question: According to the question shown in the image, please
C first conduct reasoning, and then answer the question and |
| provide the correct option letter, e.g., A, B, C, D, at the end.
| D Source: MathVerse-VisionOnly, id: 45 |
Reasoning Issue
I A B I
| 6.0 |
| NoisyRollout I
<think>
I Since AC = BC and AD bisects angle CAB, triangle CAD is congruent to triangle BAD by the SAS (Side-Angle-Side) congruence criterion.
This means that €D = BD and AD = AD. I
I Given that AD bisects angle CAB, and since AC = BC, triangle ACD is isosceles with AC = BC. The perpendicular from D to AB at E implies |
I that DE is the altitude and also the median in triangle ADB, making DE = CE.
The perimeter of triangle DBE is the sum of DB, BE, and DE. Since €D = BD and DE = CE, we can express the perimeter as: I
I DB+ BE+ DE =BD + BE+ CE = BC + BE I
I Given that AB = 6 cm and AC = BC, and since AC = BC, we can infer that the segments are symmetrically divided. Therefore, I
I the perimeter of triangle DBE is the sum of the segments that can be derived from the given information.

Since AC = BC and the segments are symmetric, the perimeter of triangle DBE is: I

I DB+ BE + DE = 6 cm |

Thus, the perimeter of triangle DBE is 6 cm.

I </think>

\boxed{A} |
I Vanilla GRPO |
| <think>

Given that AC = BC and AD bisects angle CAB, triangle ACD is congruent to triangle ABD by the SAS (Side-Angle-Side) congruence I
I criterion. This means that AD = AD (common side), angle CAD = angle BAD (bisected angle), and AC = AB (given). Therefore, friangle ACD

is congruent to triangle ABD. I
I Since AD bisects angle CAB, it also means that D is the foot of the perpendicular from A to BC, and E is the foot of the perpendicular

from D to AB. This implies that DE is parallel to AC and BC, and thus DE is the harmonic mean of AC and BC, but more importantly, it I
I means that DE is the altitude of triangle ABD and also the median from D to AB.

The perimeter of triangle DBE is the sum of the lengths of its sides: DB + BE + DE. Since D is the foot of the perpendicular from A to I
I BC, and E is the foot of the perpendicular from D to AB, we can use the properties of the right triangles to find the lengths. I
I Given that AC = BC = 6 cm and AD bisects angle CAB, we can use the fact that the altitude from the vertex of the right angle in a right

triangle splits the hypotenuse into segments that are proportional to the squares of the legs. However, a simpler approach is to recognize I
that since D is the foot of the perpendicular from A to BC, and E is the foot of the perpendicular from D to AB, the segments DB and BE

I are equal to half the hypotenuse of the right triangle ABD, which is 3 cm each. I
I Therefore, the perimeter of friangle DBE is DB+ BE+DE=3+3+3 =9 cm.
So, the perimeter of triangle DBE is 9 cm. I
\ </think>
\boxed{D} /
\ v
B ——

Figure 11: Case study illustrating enhanced reasoning capability of NoisyRollout over vanilla GRPO.
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