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Abstract

Combinatorial optimization (CO) is a widely-applied method for addressing a variety of real-
world optimization problems. However, due to the NP-hard nature of these problems, complex
problem-specific heuristics are often required to tackle them at real-world scales. Neural
combinatorial optimization has emerged as an effective approach to tackle CO problems, but
it often requires the pre-computed optimal solution or a hand-designed process to ensure
the model to generate a feasible solution, which may not be available in many real-world
CO problems. We propose the hierarchical combinatorial optimizer (HCO) that does not
rely on such restrictive assumptions. HCO decomposes the given CO problem into multiple
sub-problems on different scales with smaller search spaces, where each sub-problem can be
optimized separately and their solutions can be combined to compose the entire solution.
Our experiments demonstrate that this hierarchical decomposition facilitates more efficient
learning and stronger generalization capabilities in terms of optimality of the solution. It
outperforms traditional heuristic, mathematical optimization, and learning-based algorithms
on Steiner Tree Packing Problem (STPP), a problem that cannot guarantee a feasible solution
when using the hand-designed process.

1 Introduction

The development of efficient algorithms for solving NP-hard problems, such as combinatorial optimization
(CO) problems, is of central interest to many industries. However, a significant challenge in the development
of CO algorithms is the requirement for in-depth domain knowledge to manually design a heuristic algorithm
specific to a given CO problem. Additionally, such algorithms often lack scalability to other CO problems.
To circumvent this challenge, supervised learning (SL)-based models were proposed to solve complex CO
problems (Vinyals et al., 2015; Joshi et al., 2019; Gasse et al., 2019; Paulus et al., 2022) These approaches
utilize neural networks to directly predict the optimal solution given a problem instance. However, a limitation
of SL-based methods is the requirement for the optimal solution as a learning target during training, as finding
the optimal solution for many CO problems is computationally intractable. Additionally, the supervision
provided in SL-based approaches does not take into account the quality of the solution, such as the cost
objective value. The lack of consideration for solution quality can result in a situation where, despite a small
error in the model’s predictions, the quality of the solution may be arbitrarily poor (i.e., suboptimal). Then,
reinforcement learning (RL)-based approaches were proposed as an alternative, since it can directly learn from
the CO objective (i.e., solution cost) without requiring the optimal solution. RL-based approaches formulate
the CO problem as a sequential decision making problem. At each step, the neural network predicts an
action to update the previous partial solution and the reward is given based on the quality of the constructed
solution. However, the main limitation of RL-based approaches is the ill-defined reward (or the solution
cost) for infeasible solutions. This limitation has been often ignored in previous works (Bello et al., 2017;
Khalil et al., 2017; Kool et al., 2019) as the feasibility of the solution is guaranteed by properly designing
the action space in certain CO problems such as the traveling salesman problem (TSP). However, many
real-world CO problems have complex constraints where action space design cannot guarantee the feasibility
(e.g., circuit wiring (Grötschel et al., 1997), routing problem with time windows (Ma et al., 2020)). We refer
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Figure 1: (Left) We tackle the Steiner tree packing problem that aims to find a minimum-weight tree spanning
all the terminal nodes (square boxes) for each type (color) without overlap. (Middle) We propose to decompose
the given problem into high-level and low-level sub-problems via mapping ϕ : X 7→ Y , and solved separately. This
facilitates the learning since the search spaces are much smaller for high-level problem |Y | ≪ |X| and low-level problem
|ϕ−1(y)| ≪ |X| compared to the original problem. (Right) In MDP formulation, high-level agent chooses a set of
nodes (shaded region) to define a sub-graph for each terminal type (color), and low-level agent finds a tree spanning
all the terminal nodes within the sub-graph.

such constraints as feasibility-hard constraints and the CO problem with such constraints as feasibility-hard
CO problems in the rest of the paper.

A common approach to address the issue of ill-defined reward is assigning the lowest possible reward, such
as 0, for an entire episode when an infeasible solution is predicted. However, this approach can lead to
inefficiency and instability in RL training due to the sparse supervision, known as the sparse reward problem.

To address this issue, we propose a hierarchical decomposition framework for tackling the feasibility-hard CO
problems. Specifically, we focus on the Steiner tree packing problem (STPP) that aims to find a tree spanning
all the terminal nodes with minimum weights (see Figure 1 for illustration). The proposed framework
decomposes the solution search space into high-level and low-level space via latent mapping. Intuitively, the
high-level solution suggests a sub-problem (e.g., a subset of variables, constraints, or a sub-graph) and the
low-level solution is the solution to the suggested sub-problem. We claim that the proposed decomposition
provides several advantages. First, by separating the problem into smaller sub-problems (i.e., separation of
concern), the proposed framework facilitates the learning. Second, the high-level agent partitions the graph
such that low-level agent observes sub-problem of similar size, regardless of the input problem size. This
helps the model scale to larger problems more easily, as the distribution shift is reduced. We empirically
evaluate HCO against competitive baselines on large-scale STPP instances. Our results demonstrate the
effectiveness of the proposed method in comparison to the baselines.

Contribution. We summarize our contributions:

• To our knowledge, this is the first work to solve Steiner tree packing problem utilizing an end-to-end
learning framework.

• We propose a novel decomposition approach for general CO problems that results in sub-problems
with smaller search spaces.

• We demonstrate that the proposed approach significantly improves the learning and generalization.
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2 Preliminaries

2.1 Combinatorial Optimization as Markov Decision Process

Combinatorial optimization (CO) is a mathematical optimization over a finite set, with a discrete feasible
solution space. Formally, a combinatorial optimization problem can be written as follows.

arg min
x∈X

{f(x) : x ∈ F} (1)

where X is a finite support for the variable x, F ⊂ X is a set of feasible solutions1, and f : X → R is an
objective function of the CO problem. For instance, a mixed integer linear programming (MILP) problem
with n variables and m constraints can be written in the form

arg min
x∈Zp×Rn−p

{c⊤x : Ax ≤ b, x ≥ 0} (2)

where A ∈ Rn×m, b ∈ Rm, and c ∈ Rn.

Most of the CO problems can be formulated as a Markov Decision Process (MDP) (Khalil et al., 2017; Gasse
et al., 2019). Formally, it makes two assumptions to the CO problem: 1) the solution space X of the original
problem (1) is a finite vector space and 2) the objective f is linear on X, so that for any given decomposition
of X into direct sum of subspaces X = X1 ⊕ · · · ⊕Xn, we have f(x) =

∑n
i=1 f(xi) for each xi ∈ Xi.2 Then,

the original problem (1) can be written as the following sequential decision making problem:

arg min
xt∈Xt, ∀t=1,··· ,H

X=X1⊕···⊕XH

{
H∑

t=1
f(xt) :

H∑
t=1

xt ∈ F}. (3)

The sequential decision can be thought of choosing for each timestep t an action xt ∈ Xt, to receive a reward
R(st, at) = −f(at) and a large negative penalty c ≤ − supx∈X f(x) if and only if any future choice of action
inevitably leads to an infeasible solution at the end of the horizon. The optimal policy π∗ ∈ Π for the original
problem can be found upon maximizing the expected return

π∗ = arg max
π∈Π

Eπ
[∑H

t=1R(st, at) | s0

]
. (4)

We defer the rest of the details to Appendix A.1. Note that for some CO problems (e.g., TSP, MVC,
Max-Cut), carefully designing the action space can make the constraint trivially satisfied (Khalil et al., 2017),
where in this case, reinforcement learning algorithm can efficiently solve the problem. However, when the
constraint satisfaction is not guaranteed, the reinforcement learning methods often suffer from the sparse
reward problem, and does not learn efficiently. In this work, we focus on the challenging CO problems, where
designing action space cannot guarantee the constraint satisfaction (i.e., feasibility-hard constraint): the
Steiner tree packing problem.

2.2 Steiner Tree Packing Problem

A Steiner tree problem (STP) can be thought of as a generalization of a minimum spanning tree problem,
where given a weighted graph and a subset of its vertices (called terminals), one aims to find a tree (called
a Steiner tree) that spans all terminals (but not necessarily all nodes) with minimum weights. Although
minimum spanning tree problem can be solved within polynomial time, the Steiner tree problem itself is a
NP-complete combinatorial problem Karp (1972). Formally, let G = (V, E) be an undirected weighted graph,
we for e ∈ E its edge weights, and T ⊂ V be the terminals. Then, a Steiner tree S is a tree that spans T
such that its edge weight is minimal. Hence, the optimization problem for STP can be written as follows.

arg min
x∈2E

{
∑
e∈x

we : x ∈ ΣT } (5)

1F is either discrete itself or can be reduced to a discrete set.
2All CO problems that admits MILP formulations, such as STPP, TSP, BPP, Max-Cut, etc, satisfy the above assumptions.
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Figure 2: Illustration of the our policy model for STPP. 1) The agent observes a state consisting of a graph, terminals
(rectangular nodes), and partial solution (thick gray nodes and edges). 2) The agent first extracts the node and
edge features, and feed it to the GAT+attention module. 3) The GAT+attention module computes the global graph
embedding by aggregating the node embeddings of each type. 4) The global graph embedding is then appended to
each node feature, 5) and transformed to compute the logit score for each node. 6) Finally, the action is sampled
according to the logit score.

where 2E is a power set of E, and ΣT is a set of all Steiner trees that span T . A more generalized version of
the above Steiner tree problem is called the Steiner tree packing problem, (STPP) where one has a collection
T of N disjoint non-empty sets T1, · · · , TN of terminals called nets, that has to be packed with disjoint Steiner
trees S1, · · · ,SN spanning each of the nets T1, · · · , TN . The optimization problem for STPP can be written
similarly, with N variables.

arg min
x1,··· ,xN ∈2E

{
∑
n≤N
e∈xn

we : xn∈ΣTn
, G[xn] ∩G[xm] = ∅

∀n,m
} (6)

where G[x] is a subgraph of G generated by x ⊂ E.

3 Bi-level Decomposition for Combinatorial Optimization

The goal of this section is to formulate our bi-level framework for a general CO problem (1) and the
corresponding MDP, which allows us to use a hierarchical reinforcement learning policy that efficiently learns
to solve CO problems.

Let us introduce a continuous surjective latent mapping ϕ : X → Y onto a vector space Y such that |Y | ≪ |X|.
Then, the problem (1) admits a hierarchical solution concept:

y∗ = arg min
y∈Y

{f(L(y)) : ϕ−1(y) ∩ F ̸= ∅} (7)

where, L(y) := arg min
x∈ϕ−1(y)

{f(x) : x ∈ F}. (8)

We refer to problem (7) as a high-level problem, and (8) as a low-level sub-problem induced by the high-level
action y in (7). Note that the hierarchical solution concept still attains an optimality guarantee of the original
problem, since ϕ is a surjection and X is finite.

The advantages of such hierarchical formulation are: (i) searching for feasible solutions over Y rather than
X reduces the size of search space; (ii) learning to obtain an optimal solution can be done by two different
learnable agents, (namely the high-level agent and the low-level agent for (7) and (8), respectively) where the
task for each agent is reduced to be easier than the original problem, and (iii) the generalization capability
(with respect to the problem size) increases when using learnable agents, since the high-level agent can be
made to always provide sub-problems (for the low-level agent) with the same size, regardless of the size of
the original problem.
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3.1 Hierarchical Policy for Bi-level Optimization

In this section, we provide a learning framework that efficiently solves a general CO problem using our bi-level
decomposition. In particular, we propose to employ a hierarchically structured policy to sequentially solve
bi-level optimization problems in (7) and (8), in a similar spirit to reinforcement learning solving CO problem
in Section 2.1. For any given subspace decomposition Y = Y1 ⊕ · · · ⊕ YN , we sequentially solve a low-level
sub-problem from span(ϕ−1(Yj)) for each j ≤ N , since span(ϕ−1(Yj)) is a subspace of X. Hence, we are able
to formulate a high-level MDP Mhi by constructing Y = Y1 ⊕ · · · ⊕ YN sequentially as done in Section 2.1,
and the low-level MDP Mlo from Equation (8). Learning can be done upon training a policy network πθ

parameterized by θ, using reinforcement learning (e.g., policy gradient methods). Theorem 3.1 shows how
our bi-level decomposition benefits the learning in terms of sample complexity. Full illustration of the bi-level
optimization is provided in Appendix A.1.
Theorem 3.1 (Sample Complexity Reduction). Let M be a H-step MDP as in (3). For any algo-
rithm A that has access to M which outputs a policy πθ such that V πθ (s) ≥ V ∗(s) − ϵ with probability
greater than 1 − δ for a given state s, A must make at least Ω(ϵ−1|X|2H log(1/δ)) calls of M, whereas
Ω(ϵ−1 max(|Y |, |X|/|Y |)2H log(1/δ)) calls of either Mhi or Mlo is sufficient when using a bi-level decompo-
sition described as in (7) and (8).

See Appendix A.2 for the proof of the above theorem. One added benefit of our hierarchical framework is that
we can use different approach for each hierarchy: learning-based, heuristic, or mathematical optimization.
Our choice of approach is covered in Section 3.3.

3.2 Hierarchical Decomposition for Steiner Tree Packing Problem

For CO problems defined on a weighted graph G = (V, E) with edge weights we for each e ∈ E, it is
straight-forward and beneficial to choose a latent mapping ϕ : E → V from the set of edges to the set of
nodes.3 Specifically, we consider a version of ϕ such that for any input x ⊂ E, u ∈ ϕ(x) if and only if
(u, v) ∈ x for some v ∈ V (G). Such a mapping ϕ satisfies ϕ−1(y) = G[y] for any set of vertices y ⊂ V , where
we slightly overload the notation for the generated subgraph G[y]. For example, the high-level problem of a
STPP (6) can be written as follows.

arg min
y1,··· ,yN ∈2V

{
∑
n≤N

e∈L(yn)

we : L(yn)∈ΣTn
, yn ∩ ym = ∅

∀n,m
} (9)

which is now a node-selection problem, (instead of the original edge selection problem) where L(yn) is a
solution of the low-level subproblem:

L(yn) := arg min
x∈E(G[yn])

{
∑
e∈x

we : x ∈ ΣTn
} (10)

Notice that the high-level problem (9) has a reduced size search space (from 2E to 2V ≈ O(2
√

E)) , and
the low-level subproblem corresponds to a single STP of a smaller subgraph G[yn]. Therefore, the original
NP-hard problem (6) is decomposed into two smaller NP-hard problems. The overview of our hierarchical
decomposition method for STPP is illustrated in Figure 1.

3.3 MDP Formulation and Hierarchical Policy for Steiner Tree Packing Problem

The high-level MDP Mhi for STPP is based on a sequential decision making y1, · · · , yN in Equation (9).
Formally, a state in the MDP is a tuple st = (G, T , St, t), where G is a weighted graph of the problem, T the
collection of set of terminals, and St ⊂ V (G) is a partial solution constructed until the current timestep t via
previous actions. An action at is to select a set of vertices yt ⊂ V (G) \ S which includes a tree that spans
the terminals Tt ∈ T as a subgraph of G[yt]. In turn, the subgraph G[yt] is forwarded to the low-level agent
which solves STP on the given subgraph by choosing the edges from E(G[yt]). Then, the high-level agent

3Since |V | ≈ O(
√

|E|), so that |Y | << |X| for large graphs.
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receives negative of the sum of the edge weights of the low-level solution L(yt) as a reward, and appends the
solution L(yt) to the previous partial solution St.4 If the low-level solution L(at) does not exist, or when
any future choice of actions at+1, · · · , aN leads to an infeasible solution of the given STPP, the high-level
agent receives a large negative penalty C < 0. We defer detailed settings of our MDP formulation to the
Appendix A.3.

Model architecture Figure 2 shows the overview of our model. Since STPP is a CO problem defined over
a weighted graph, we a use graph neural network (GNN) to encode the state representation with the policy
network πθ and the value function V πθ that serves as a baseline for actor-critic methods (Konda & Tsitsiklis,
1999).

Let G be the weighted graph with edge weights we as an edge feature for each e ∈ E(G). First, a D-
dimensional node feature µv is computed for each node v ∈ V . Please refer to Appendix A.3 for our detailed
choice of node and edge features. Then, the extracted features are encoded with graph attention network
(GAT) (Veličković et al., 2018) and attention network (AT) (Vaswani et al., 2017). GAT aggregates the
information across the neighbors in the graph to capture the local connectivity, but it is limited in modeling
the long-range dependency Vaswani et al. (2017). We overcome the limitation by using the attention network.
The attention network captures the long-range dependency by encoding relation between all (i.e., ignores
the graph structure) pairs of nodes. Global structures are further encoded via a graph embedding layer,
which embeds particular subsets of node features into groups based on their characteristics. Detailed GNN
architecture is provided in Appendix A.5. We use reinforcement learning to train high-level policy and the
mathematical solver (i.e., MILP solver) for solving the low-level problem (10) in our implementation5.

4 Related Works

Neural combinatorial optimization using reinforcement learning. Reinforcement learning (RL)
approaches formulate the process of sequentially predicting the CO solution as a Markov decision process. To
overcome the limitation of the supervised setting, Bello et al. (2017) proposed to train pointer network using
policy gradient method by directly optimizing the cost without employing pre-computed solution. Subsequent
works proposed to employ GNN (Khalil et al., 2017) and attention-based models (Kool et al., 2019; Nazari
et al., 2018; Deudon et al., 2018) often combined with heuristic methods (Deudon et al., 2018) to solve other
general CO problems with RL. However, existing works only focused on the CO instances where constraint
can be easily satisfied by properly designing the action space (e.g., TSP (Bello et al., 2017)). Our work is
also RL-based approach, but overcome the limitation of RL approaches by hierarchically decomposing the
problem. Intuitively, the decomposition of policy reduces the solution search space and facilitate the learning
of feasible solution space.

Combinatorial optimization with feasibility-hard constraints. There were few attempts to directly
tackle CO problems with feasibility-hard constraints using RL. Ma et al. (2021) proposed to learn two
separate RL models where the constraint satisfaction and objective optimization problems are respectively
solved by each model. Cappart et al. (2021) manually shaped the reward to bias the RL process toward
predicting feasible solution, and combined with constraint programming methods to guarantee the feasibility
of solution. Our work indirectly tackles the feasibility-hard constraint by decomposing the given constraint
satisfaction problem into two easier sub-problems with smaller problem size and search space so that the
learning algorithm can efficiently solve each sub-problem.

Decomposition of combinatorial optimization problem. Several decomposition methodologies have
been introduced to address variety of CO challenges. Nowak-Vila et al. (2018) introduced a Divide-and-
Conquer (DnC) framework focusing on scale-invariant problems, which assumes the problem can be split into
sub-problems, solved independently, and subsequently merged to form a full solution. Hou et al. (2022) and
Fu et al. (2021) proposed the domain specific approaches to divide problems and merging partial solutions

4Here, the low-level sub-problem can again be defined by a MDP Mlo, which is equivalent to the original decision making
process (3) but on a smaller problem instance span(ϕ−1(at)).

5Since our decomposition keeps the size of low-level subproblem small, we can run MILP within short time.
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(via heatmap and MCTS) for VRP and TSP, respectively. Despite the utility, the applicability of such
DnC-based methods is limited by their reliance on scale invariance, often leading to infeasible solutions when
this assumption is violated. In a different vein, local search-based methods from Song et al. (2020) and Li
et al. (2021) require an initial solution to iteratively refine decision variables, which is a notable constraint.
Wang et al. (2021) further investigated a bi-level formulation, here the high-level problem is modifying the
given problem instance and low-level problem is solving the modified instance, to ease problem solving. Yet,
this occasionally resulted in more complex instances (e.g., feasible solution may not exist) and suboptimal
solutions. Our HCO also adopts the bi-level formulation but sidesteps these issues by preserving the original
problem structure.

5 Experiments

We evaluate our model on STPP domain, one of the feasibility-hard CO problems. Firstly, we show our
hierarchical model enhance the learning efficiency (Table 1 and Figure 3). Secondly, we verify our model can
improve generalization performance on unseen larger instances. (Figure 4) Lastly, we examine the impact
of the size of the pre-constructed dataset on learning through experimentation. (Figure 5) The rest of this
section is structured as follows. First, we describe our experimental setup in Section 5.1 including the dataset
construction, baselines, training, and evaluation. Then we present the experiment results in Section 5.2.

5.1 Setting

Dataset To evaluate the learning efficiency and generalization capacity of each algorithm, we created a set
of feasibility-hard STPP instances across multiple scales. Our instance generation protocol involved graphs
of 40, 60, 80, and 100 nodes. For every graph category, we generated 50,000 instances for training, 1,000
for testing, and 100 for validation purposes. The graph structure was derived using the Watts Strogatz
(WS) model (Watts & Strogatz, 1998) with the mean node degree k ∼ Uniform({3, 4, 5, 6}) and a rewiring
probability β ∼ Uniform(0, 1). Weights are assigned to each edge from [0, 1] uniformly at random. Given the
random graph, a subset of vertices are chosen as the terminals (see the definition in Section 2.2) to construct
the STPP instance. However, we found that randomly choosing the terminals mostly yields the instance
that is either not solvable (i.e., feasible solution does not exist) or trivially solvable (i.e., removing constraint
does not change the optimal solution). Thus, we designed the terminal node selection algorithm to ensure
that the generated instances are solvable and non-trivial. We first partitioned the generated random graph
graph into Ntype subgraphs using Lukes algorithm (Lukes, 1974), and then chose Nterminal terminals within
each partitioned subgraph. In particular, each subgraph is partitioned in a way such that a single tree that
spans all the nodes in a subgraph exists. However, depending on the edge connectivity of the subgraph
and the choice of terminals among the nodes, the resulting net may be trivial (e.g., a net may consist of a
small fraction of the partitioned subgraph). Thus, we carefully choose Ntype and Nterminal, and filter out the
instances that are either unsolvable or trivial. For more detail, please refer to Appendix A.7.

Baselines We compare our model with below baselines:

• MILP-t uses the mixed integer linear programming (MILP) solver to find the best solution within
given time limit t. We used OR-Tools (Perron & Furnon) in implementation.

• MILP-∞ is the MILP solver without time limit, which finds the optimal solution.

• PathFinder (McMurchie & Ebeling, 1995) is a heuristic algorithm solving STPP (see Section 4 for
more details). We used the publicly available implementation (Lee et al., 2022) with two variations
of low-level solver: shortest-path finding (PathFinder-SP) and two-approximation (PathFinder-TA).

• Flat is a conventional (i.e., non-hierarchical) RL agent that tries to maximize reward in the given
MDP (i.e., Section 2.1)

• Two-stage Divide Method (TAM) (Hou et al., 2022) decomposes the STPP problem in a one-
shot manner; i.e., the problem is entirely decomposed first, and then each sub-problem is tackled
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individually. This contrasts with HCO, which adopts an iterative approach to select and solve one
sub-problem at a time. See Appendix A.4 for a detailed comparison of HCO with TAM.

For a fair comparison, we set t=1 second for MILP-t to roughly match the execution time of the compared
methods.

Training For HCO, we first pre-train them using behavioral cloning (Bain & Sammut, 1995) and then
use IMPALA (Espeholt et al., 2018) for finetuning. We generate our behavioral cloning data using a solver
(OR-Tools) and use cross entropy loss for training it. And for learning framework of RL, IMPALA of
RLlib (Liang et al., 2017) is used. The hyper-parameters are chosen based on the performance on validation
set. The chosen hyper-parameters and training method details are described in Appendices A.6 and A.8.
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Figure 3: Training performance of the HCO for problem size n = 40. We pre-trained the agents via behavioral
cloning until 5 millions episodes (i.e., vertical dotted line in the figure), and then finetuned via reinforcement learning
afterwards.

Evaluation We use three metrics to evaluate the algorithm’s capability to minimize the cost and satisfy
the constraint. Feasible solution ratio (FSR) is the ratio of instances where a feasible (i.e., constraint is
satisfied) solution was found by the method. Since the solution cost can be computed only for a feasible
solution, we also introduce the metric optimality gap (Gap) measuring average of the cost suboptimality
in feasible solutions found: Gap=

(
algorithm cost
optimal cost − 1

)
. Finally, elapsed time (ET) measures the average wall

clock time taken to solve each instance in the test set. For reinforcement learning, we report the performance
averaged over four random seeds.

5.2 Result

Training Performance Figure 3 shows the learning curves of HCO. Overall, HCO, Flat and TAM show
similar results in terms of FSR but HCO (Ours) learn in sample efficient manner in Gap, due to smaller
search space resulting from hierarchical decomposition. The agent is first trained using imitation learning
until 500K episodes. The performance improves in terms of both FSR and Gap. Then, agent is updated using
reinforcement learning method which directly minimizes the cost while trying to satisfy the constraint. The
result shows that RL improves the performance of HCO, Flat and TAM. We note that performing RL from
scratch makes the training significantly unstable since randomly initialized policy almost always generate an
infeasible solution (i.e., sparse reward problem).

Generalization to Unseen Instances Table 1 summarizes the performance of each method on unseen
instances with same graph size. The first row represents HCO. We claim that our hierarchical framework
improves the overall sample efficiency of reinforcement learning due to the reduced search space in high-level
and low-level problems. MILP-1s achieves the near-optimal performance in terms of Gap for all the instance
sizes, but the FSR quickly degrades as the instance size grows. This indicates that satisfying the constraint
is much more challenging (i.e., MILP-1s spends much more time) for MILP-1s than minimizing the cost.
HCO outperforms Flat and TAM in terms of FSR and Gap thanks to the reduced search space. Regarding
execution time (ET), TAM is more computationally efficient than HCO, owing to its one-shot problem
partitioning approach, in contrast to HCO’s iterative sub-problem selection that accounts for partial solution
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Table 1: Result table for Steiner Tree Packing problem. Gap, and FSR mean the average optimality gap, and feasible
solution ratio, respectively, and ET represents the average time taken to process a test instance.

n = 40 n = 60
Gap↓ FSR↑ ET (ms)↓ Gap↓ FSR↑ ET (ms)↓

HCO (Ours) 0.039 0.969 38 HCO (Ours) 0.031 0.953 99
TAM 0.105 0.885 17 TAM 0.128 0.914 46
Flat 0.045 0.957 106 Flat 0.087 0.935 252
MILP-1s 0.000 1.000 127 MILP-1s 0.000 0.982 501
PathFinder-SP 0.112 0.974 5 PathFinder-SP 0.165 0.990 8
PathFinder-TA 0.116 0.966 19 PathFinder-TA 0.147 0.974 48
MILP-∞ 0.000 1.000 125 MILP-∞ 0.000 1.000 532

n = 80 n = 100
Gap↓ FSR↑ ET (ms)↓ Gap↓ FSR↑ ET (ms)↓

HCO (Ours) 0.054 0.932 124 HCO (Ours) 0.056 0.892 246
TAM 0.246 0.620 47 TAM 0.291 0.520 47
Flat 0.087 0.902 529 Flat 0.062 0.905 679
MILP-1s 0.001 0.832 975 MILP-1s 0.000 0.035 1007
PathFinder-SP 0.150 0.976 20 PathFinder-SP 0.155 0.970 35
PathFinder-TA 0.149 0.965 115 PathFinder-TA 0.150 0.954 170
MILP-∞ 0.000 1.000 1648 MILP-∞ 0.000 1.000 4685

feasibility. We note that it ultimately contributes to improved FSR and Gap of HCO. Both PathFinder
methods show overall slightly worse Gap but the highest FSR compared to other methods. We ascribe their
high FSR to its iterative algorithm, negotiated-congestion avoidance, that is tailored for finding the feasible
solution in STPP. Lastly, MILP-∞ can find the optimal solution using tree search but the computation (i.e.,
ET) increases exponentially in terms of the problem size (n), which is not scalable.
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Figure 4: Generalization performance of HCO. The
agent was trained only on the small (n = 40) instances
and evaluated on the unseen and larger (n ≥ 40) in-
stances.
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Figure 5: Analysis on the effect of training data set size on
the performance. We trained all learning-based models on
varying size of training set (x-axis) and evaluated on the
test set in term of FSR (left) and Gap (right)

.

Generalization to Unseen and Larger Instances Figure 4 stress-tests how well the HCO, Flat and
TAM can extrapolate to unseen and larger instances. Specifically, we trained the all learning-based models on
a small (n = 40) instances and evaluated on a larger instances with the graph size n ∈ {40, 60, 80, 100}. As
the graph size increases (i.e., larger distribution shift in data), the performance generally decreases, but HCO
maintains a reasonably low Gap, while Flat and TAM can’t. We attribute it to our hierarchical decomposition
framework that keeps the size of the sub-problem presented to the low-level agent consistent even when the
instance size changes. Then, low-level agent will be affected less by the distribution shift and can generalize
better.

9
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Effect of Training Set Size We analyze the effect of training dataset size on the performance. We
randomly sub-sampled D instances from the 50,000 training instances of the size n = 40, trained the all
methods on the sub-sampled data set, and evaluated on the entire test set of the size n = 40. We report the
performance after training the agent with behavioral cloning on each sub-sampled training set for 100 epochs
and RL until convergence. Figure 5 summarizes the result. Small datasets (less than 10,000 data) have poor
FSR, but using more than 20,000 improves FSR and Gap score to match results from using 50,000 data for
all methods. We also observe that the performance improves when the model is trained on larger number of
instances. Unlike Flat and TAM, the HCO achieves near-optimal performance in term of Gap even with only
1,000 training instances. We note that Gap is measured only over the instances that the algorithm predicted
a feasible solution. This indicates that HCO can easily minimize the cost with the help of MILP solver used
in low-level agent if the high-level agent resolves the constraint properly (i.e., find the feasible solution).

6 Conclusions

In this work, we proposed a novel hierarchical approach to tackle challenging CO problems with complex
constraint. The central idea of the approach is to decompose the solution search space using latent mapping,
resulting in a more sample-efficient learning due to separation of concerns and a smaller search space, as
well as stronger generalization capability due to homogeneous problem size for low-level policy. To this end,
a general hierarchical decomposition framework is formulated, which can be applied to any CO problem.
The practical implementation of this framework is demonstrated for the specific case of the STPP using a
hierarchical policy architecture and a graph neural network. The effectiveness of the proposed method is
evaluated on large-scale STPP instances, and it is shown that the hierarchical framework improves the sample
efficiency and generalization capability of the model, outperforming heuristic, mathematical optimization and
learning-based algorithms specifically designed for STPP.
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A Appendix

A.1 Combinatorial Optimization as Markov Decision Process

In this section, we provide a full illustration of a sequential optimization process for a general CO problem.
Our goal is to design a corresponding MDP for Equation (3). Intuitively, the sequential decision making
process in Equation (3) can be thought of choosing for each timestep t an action xt ∈ Xt, until we have a full
solution x =

∑
t xt. However, note that we are constructing X1, · · · , XH sequentially, i.e., we do not have

the subspace decomposition X = X1 ⊕ · · · ⊕XH beforehand. Hence, assume we have constructed X1, · · · , Xt

until the current timestep t. Let us define Wt the remaining subspace that are yet to be decomposed, i.e.,
X = X1 ⊕ · · · ⊕Xt ⊕Wt. Then, the sequential decision making is equivalent to choosing for each timestep t
a subspace Xt ≤ Wt and consequently an action xt ∈ Xt, until we have a trivial subspace Wt = {0}. We
illustrate this process formally in Algorithm 1.

Algorithm 1: Sequential Optimization for Combinatorial Optimization in MDP
Input: Problem instance (1), stationary policy πlo.
Result: Solution x =

∑T
t=1 xt.

1 initialize W0 ← X
2 initialize A0 ← ∅ // Set of past actions.
3 for t = 1, · · · , H do
4 Update state st ← (Wt−1, At−1)
5 Determine the action set Xt ≤Wt−1 such that dim(Xt) = 1 // By policy or environment.

6 xt ∼ πlo(st) and At ← At−1 ∪ {xt} // Sampling xt from Xt.
7 Wt ←W such that X = X1 ⊕ · · · ⊕Xt ⊕W

8 end

Sequential decision making process for the bi-level decomposition in Equation (7) and Equation (8) can be
formulated similarly. The key is to construct the subspace decomposition Y = Y1 ⊕ · · · ⊕ YN sequentially
as done in Algorithm 1, while obtaining the partial solution for the original problem from the low-level
sub-problem (8) simultaneously. Full illustration of the bi-level optimization is provided in Algorithm 2.

Algorithm 2: Sequential Bi-level Optimization for Combinatorial Optimization in MDP
Input: Problem instance (1), stationary high-level policy πhi and low-level policy πlo.
Result: Solution x =

∑T
t=1 xt.

1 initialize W0 ← X and V0 ← Y
2 initialize A0 ← ∅ // Set of past actions.
3 for t = 1, · · · , H do
4 Update state st ← (Vt−1, At−1)
5 Determine the action set Yt ≤ Vt−1 such that dim(Yt) = 1 // By policy or environment.

6 Ft ←
(
F ∩

(∑t−1
j=1 xj + Wt−1

))∣∣∣
span(ϕ−1(Yt))

// Local restriction of the feasible solution space.

7 yt ∼ πhi(st) and At ← At−1 ∪ {yt} // High-level problem

8 Xt ← span(ϕ−1(yt)) ∩Wt−1 // Search space for the low-level subproblem
9 xt ← L(yt) := arg minx∈Xt

{f(x) : x ∈ Ft} // Low-level solution from πlo and Algorithm 1.

10 Wt ←W such that X = span(ϕ−1(Y1))⊕ · · · ⊕ span(ϕ−1(Yt))⊕W
11 Vt ← V ∩ ϕ(Wt) such that Y = Y1 ⊕ · · · ⊕ Yt ⊕ V

12 end
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A.2 Proof of Theorem 3.1

We begin with a proposition which we adopt as an important assumption of our latent mapping ϕ.
Proposition A.1. Let X and Y be n and m-dimensional vector spaces over a finite field F , respectively.
Then there exists a surjective latent mapping ϕ : X → Y such that |span(ϕ−1(y))| ≤ O(|X|/|Y |) for all
y ∈ Y .

Proof. In fact, the above property always holds if the mapping ϕ is linear. We claim that for a linear
surjection ϕ : X → Y , dim(span(ϕ−1(y))) ≤ n−m + 1, and hence |span(ϕ−1(y))| ≤ |F |n−m+1 = O(|X|/|Y |).
Let B = {v1, · · · , vm} be a basis for Y . Since ϕ is a surjection, there exists uj ∈ X such that ϕ(uj) = vj for
each j = 1, · · · , m. Let y ∈ Y be arbitrary. Then there exist scalars c1, · · · , cm ∈ F such that y =

∑m
j=1 cjvj .

Then we have

ϕ−1(y) = {x ∈ X : ϕ(x) = y} = {x ∈ X : ϕ(x) =
m∑

j=1
cjvj} (11)

= {x ∈ X : ϕ(x−
m∑

j=1
cjuj) = 0} ⊆ ker ϕ +

m∑
j=1

cjuj (12)

where the third equality follows from the linearity of ϕ. Note that since ϕ is a surjection, dim(ker ϕ) = n−m
from the rank-nullity theorem. Thus, we have dim(span(ϕ−1(y))) ≤ dim(span(ker ϕ+

∑m
j=1 cjuj)) ≤ n−m+1

as desired.

The existence of such ϕ is important, since we wish to adopt such a ϕ as our latent mapping to prove
its usefulness. Note that if we are given arbitrary ϕ, then our decomposed problem is as hard as the
original problem. For instance, consider a mapping ϕ : X → Y such that |ϕ−1(y)| = 1 for all y ̸= 0 and
|ϕ−1(0)| = |X| − |Y |+ 1. In this case, the solution space of Mlo is either trivial or as large as the original
problem. Hence, for the remaining part of this section, we assume that our latent mapping ϕ is well-chosen
as in Proposition A.1.

Before we prove our main theorem, we demonstrate how we can train our agents in Mhi and Mlo of our
bi-level decomposition framework (Algorithm 3). Notice that we are exploiting the fact applying the optimal
solver L to a smaller subspace span(ϕ−1(y)) ≤ X instead of entire X is plausible for many problem settings.
We first begin with a definition of a block MDP.
Definition A.2 (Block MDP). A block MDP is defined by the tuple (S, A, P, R, b, B, γ), where S is a set of
states, A is a set of actions, P : S×A→ ∆(S) is a transition function, R : S×A→ [0, 1] is a reward function,
B is a set of blocks, induced by a surjective blocking function b : S → B, and γ ∈ (0, 1] is a discount factor.

Finally, an important lemma from Kakade (2003):
Lemma A.3 (Sample complexity lower bound; Kakade (2003)). Assume that a H-step Markov decision
process with state space S and action space A is given. Fix ϵ, δ > 0 and a state s ∈ S. Let A be any algorithm
that has access only to a generative model of the MDP, and outputs a policy π that satisfies Vπ(s) ≥ V ∗(s)− ϵ,
with probability greater than 1− δ. Then, the algorithm A must make at least Ω(ϵ−1|S||A|H log(1/δ)) calls to
the generative model of the MDP.

Proof. See Theorem 2.5.2 and Theorem 8.3.4 of Kakade (2003).

We now provide a full proof of Theorem 3.1.
Theorem 3.1 (Sample Complexity Reduction). Let M be a H-step MDP as in (3). For any algo-
rithm A that has access to M which outputs a policy πθ such that V πθ (s) ≥ V ∗(s) − ϵ with probability
greater than 1 − δ for a given state s, A must make at least Ω(ϵ−1|X|2H log(1/δ)) calls of M, whereas
Ω(ϵ−1 max(|Y |, |X|/|Y |)2H log(1/δ)) calls of either Mhi or Mlo is sufficient when using a bi-level decompo-
sition described as in (7) and (8).
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Algorithm 3: Training high-level policy πhi and low-level policy πlo in Bi-level Framework
Input: Problem instance (1), and some constants ϵ, δ > 0.
Result: Near-optimal policies π∗

hi and π∗
lo.

1 Initialize randomized policies πhi and πlo.
2 Equip Mhi defined as in Algorithm 2 with an optimal low-level solver L(·).
3 Train πhi on the above Mhi to obtain deterministic near-optimal policy π∗

hi. // Policy or value iteration,
etc.

4 Fix obtained high-level policy π∗
hi.

5 Replace optimal solver L(·) with πlo in Mhi.
6 for t = 1, · · · , T do
7 Call Mhi to sample yt ∼ π∗

hi(st), Wt−1, and Ft in Algorithm 2.
8 Obtain M(t)

lo from Ft and Xt = span(ϕ−1(yt)) ∩Wt−1.
9 end

10 Train πlo on a block MDP defined by collecting all M(t)
lo to obtain π∗

lo.

Proof. Let X and Y be n and m-dimensional vector space over a finite field F , respectively. Let M be
a Markov decision process for Equation (3) as described in Algorithm 1. Since the state space consists
of all possible partial solutions for x, we have at most 2n|X| states. The action xt ∈ Xt in Algorithm 1
for any timestep t is precisely a choice xt ∈ F . Thus, for any given X over a finite field F , we have
|S||A| = 2n|F |n+1 = O(|X|2). This along with Lemma A.3 proves the first part of the theorem (i.e., the
lower bound for sample complexity of M).

To prove the remaining part of Theorem 3.1, let Mhi and Mlo be MDPs for high-level problem (7) and
corresponding low-level subproblem (8), respectively, where we train both Mhi and Mlo with Algorithm 3.
The state space of Mhi consists of all possible partial solutions in Y , and hence there are at most 2m|Y |
states. The action space is again isomorphic to the field F , so that we have |S||A| = O(|Y |2) as in the above
claim. Finally, suppose we obtained π∗

hi from Algorithm 3. Note that low-level MDP Mlo is equivalent to
a block MDP in Algorithm 1 with its sub-MDPs collected from span(ϕ−1(π∗

hi(st))) for each t = 1, · · · , H.
Since their sizes are bounded above with O(|X|/|Y |) by Proposition A.1, any algorithm is expected to learn
on Mlo with sample complexity Ω(ϵ−1(|X|/|Y |)2H log(1/δ)). As we are training πhi and πlo independently
on Mhi and Mlo, respectively, the overall sample complexity for the bi-level decomposition framework is
additive. This completes the proof.

A.3 MDP formulation

Below we provide a full description of our MDP formulation for STPP in Section 3.3.

State The state st of the high-level MDP Mhi consists of a graph G, collection of set of terminals T ,
a partial solution St ⊂ V (G) constructed until timestep t, (i.e., the nodes of the disjoint trees that span
terminals T1, · · · , Tt−1) and the current timestep t. The graph G provides a general information of the
problem instance, i.e., the connectivity of the graph via edges. In practice, the graph G can be represented
by the adjacency matrix A ∈ R|V |×|V |, where aij takes the edge weight wij . The information can be further
encoded via message passing layers of GAT and AT in GNN. T , St and t provide node features for current
timestep, and are essential for generating a graph embedding. From the state information st, we extract the
node features of the graph to encode further via GNN model. For a node v ∈ V , we denote the node features
of the vertice v as xv := (xo, xτ , xd) ∈ Z3. The first node feature xo ∈ {0, 1} denotes whether a node v is
included in the current partial solution or not. If v is selected as a partial solution, we define xo = 1, and
otherwise 0. The second node feature xτ ∈ {0, 1, · · · , Ntype} indicates the terminal type (i.e., xτ = k if and
only if v ∈ Tk), where the indices are labeled in the order that the high-level MDP solves for. Non-terminal
nodes will be assigned a value of 0. The last feature, xd denotes the degree of a node v ∈ V . The edges of the
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Table 2: Node features

Notation Value Description
xo ∈ {0, 1} Is partial solution
xτ ∈ {0, 1, 2, ..., Ntype} Terminal type
xd ∈ Z Node degree

Table 3: Edge feature

Notation Value Description
we ∈ R Edge weight(=cost)

graph are also assigned with edge features. We only use the edge weights as the edge features in this paper.
Our choice of node and edge features are summarized in Tables 2 and 3.

Action The action at of a high-level MDP Mhi at timestep t is to select a set of vertices yt ⊂ V (G) \ St,
where St is the partial solution constructed until the previous timesteps. Intuitively, the action at is to select
a node set that includes all terminals of current type at timestep t. The selected set of nodes should create a
subgraph G[at] of G generated by the nodes at, and should correnspond to a STP instance (with single type
of terminals). The low-level agent then computes a minimum weight tree that spans all terminals of current
type from the subgraph G[at]. In practice, we further assist the agent by designing the MDP environment for
Mhi in a way such that the terminal nodes of the current type are automatically selected by the environment
internally. Hence, the action at will result in a subgraph G[at ∪ V (Tt)] instead of G[at].

Reward Designing a reward with optimality guarantee is a non-trivial task. In particular, we wish to
construct a reward where all feasible solutions result in higher reward than those of any infeasible solutions.
Also, the feasible solutions with better solution quality (i.e.objective being closer to optimal solution) should
be assigned with higher reward. Hence, given a final solution x of a CO problem (1), a reward with optimality
guarantee can be compactly formulated as r(x) = c ·1F (x)− f(x), where c ≥ supx∈X f(x), f is the objective
function of problem (1), and 1F (·) is an indicator function. Note that this form of reward is equivalent to
what is described in Section 2.1; achieving the maximal return will result in the same optimal policy6. Finally,
recall that our objective f is linear of X; for each partial solution xt constructed at timestep t, we are able
to decompose our reward function as follows.

r(xt) = c · 1F

(
t∑

k=1
xk

)
− f(xt) (13)

Transition Our transition in MDP is deterministic; the change in the partial solution alters a node feature
xo from 0 into 1, which result in different node and graph embeddings from GNN.

Termination Our STPP environment is terminated when it is not able to generate feasible STPP solution
or when a feasible solution is found. The cases where generating a feasible STPP solution includes (1) no
possible actions remaining, (2) any choice of actions in future timestep inevitably results in an infeasible
solution, or (3) the choice of action at in a high-level MDP Mhi results in an unsolvable STP instance G[at].

A.4 Comparison with TAM

Since there are no known neural methods that is designed to solve STPP, we establish minor modifications to
TAM (Hou et al., 2022), one of the state-of-the-art neural method for solving the VRP problem, to be able to
tackle STPP. Although TAM is algorithmically similar to HCO, the biggest difference is that the solutions

6Providing incentives for x ∈ F instead of a penalty when x /∈ F scales all rewards to be non-negative.

16



Under review as submission to TMLR

to other sub-problems are not known. TAM consists of one high-level step followed by one low-level step,
where problems divided in the first high-level step followed by one low-level step, where problems divided
in the first high-level step are solved independently in the subsequent low-level step. In other words, while
HCO learns to solve problems sequentially, TAM aims to first decompose the problem beforehand, and solve
the subproblems simultaneously. For application in STPP, we structure it such that in the first step, all
terminals are divided at once into subgraphs, and then each subgraph representing an STP problem is solved
independently by MILP.

A.5 GNN architecture

Encoder Given a graph G, we first extract a D-dimensional node embedding µv for each node v ∈ V ,
where D denotes the number of features provided as in Appendix A.3. Note that we use D = 3, which
consists of xv = (xo, xτ , xd) respectively as in Table 2. Let ρ : RD → RD·p be a fixed vectorization mapping
of a given node feature xv, and let θ0 : RD·p → Rp be a linear mapping. Then we obtain the initial node
embedding µv as follows.

µv = ReLU(θ0(ρ(xv))). (14)

Then we further encode the node embeddings M := (µ1, · · · , µ|V |) ∈ R|V |×p via graph attention network
(GAT) and attention network (AT). Formally, let Θi : Rnh×p → R2p and θi : R2p → Rp for i = 1, · · · , l be
linear mappings, where nh denotes the number of heads of GAT. Let us slightly overload the notation and
write Θi(M) := (Θi(µ1), · · · , Θi(µ|V |)) and θi likewise. Then, we encode the node embedding recursively as
follows.

M(i−1)′ = AT(Θi(GAT(M(i−1); G)); G) (15)
M(i) = θi(ReLU(M(i−1)||M(i−1)′)) (16)

for each i = 1, · · · , l, where we define M(0) ≡ M, and write (·||·) for CONCATENATE(·, ·). In particular, we
write our graph encoder function Enc briefly as follows, with some details omitted.

Enc(·; G) :=
l times︷ ︸︸ ︷

(AT ◦GAT) ◦ · · · ◦ (AT ◦GAT)(·; G) (17)

Graph embedding, logit and probability Given the node embedding of the last layer M(l), we obtain
the embedding for the entire graph µG (see Figure 2). Instead of simply averaging over all the nodes, we
enrich the graph embedding by grouping the nodes into three subsets based on their characteristics: current
terminal Tt, partial solution St, and non-terminal nodes V := V \

⋃
T ∈T T . Then, the embeddings are

averaged within each subset, concatenated, and projected to obtain the graph embedding µG. Formally, the
graph embedding layer Emb is written as follows.

Emb(·; t) := Ψ(·, Tt)||Ψ(·, St)||Ψ(·, V ) (18)

where Ψ(M(l), A) performs the average pooling over the set of node embeddings that belong to A. The graph
embedding µG is obtained as µG = Emb(M(l); t). Finally, the logit value (i.e., the probability of choosing
the node) for each node v ∈ V is computed as follows.

logitv = w4(w3(ReLU(w1(µG)||w2(µ(l)
v ))) + µ(0)

v ) ∀v ∈ V (19)
pv = softmax(logitv) ∀v ∈ V (20)

where w1 : R3p → Rp, w2 : Rp → Rp, w3 : R2p → Rp, and w4 : Rp → R2 are linear functions.

Value function The value function V πθ uses a model that has a similar GNN architecture with a simple
multi layer perceptron MLP that sequentially projects (R3p → R3p → Rp → R1), and does not share weights
from policy network.

V πθ (st) = MLP(Emb(Enc(M; G); t)). (21)
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A.6 Hyperparameters

The GNN model has a hidden dimension of p = 128, and l = 5 for GAT and AT encoder layers. Both GAT
and AT use 8 heads, and the dropout rate is 0.5 in IL but not used in RL training. A batch size of 64 is used,
and the learning rate is initialized to 10−4, which decreases by 0.99 per epoch. Fine-tuned value if 5× 10−7

is used for weight decay. To prevent divergence of learning, clips the gradient norm to 1. HCO learns 100
epochs, using 1 epoch as updating model with BC data in every step using every episode. In RL phase, batch
size of 30, learning rate of 10−6, discount factor of 0.99, and an entropy coefficient of 0.01 are used, and the
value function loss coefficient is set to 5. The number of workers used in IMPALA is set to 30.

A.7 Dataset generation

Let n be the number of nodes of a graph instance G. To assign terminal nodes while ensuring the existence
of a feasible solution, we first set maximum number of type M = 5. And the number of terminal types
Ntype is determined by (Lukes, 1974). The algorithm generates partitions of the graph with the determined
Ntype. The partitions are guaranteed to include a spanning tree by the algorithm, but their sizes may not be
consistent, due to the randomness in Lukes algorithm. Finally, we randomly choose for each graph partition
Nterminal = max(2, ⌊n× q/Ntype⌋) terminal nodes from uniform distribution, to ensure that a net is formed
(i.e., a feasible solution exists), where q = 0.2 that follows convention from Yan et al. (2021). Through this
way, it is possible to create a solution where a feasible solution exists, but to create feasibility-hard instances,
instances that is solvable by sequential STP is excluded. Note that the number of terminal types Ntype is
precisely the maximal length of the horizon of HCO MDP formulation.

A.8 Training and evaluation

Imitation learning for HCO agent. For imitation learning, we first collect the demonstration data using
the optimal solver, MILP, as expert policy. The expert policy πexpert is defined as πexpert(at|·) = 1 if at ∈ A∗

t

and πexpert(at|·) = 0 otherwise. The nodes that are not selected by the expert are excluded from the loss
calculation. HCO use cross-entropy loss for BC training, and 1 epoch is defined as updating HCO for every
step of every instance. During the evaluation phase, the softmax function is applied to the logit values of
each node to obtain probabilities, and nodes with probability values exceeding 0.5 are selected as high-level
actions. The training and evaluation are carried out on a single GPU, comprising an AMD EPYC 7R32 CPU
and NVIDIA A10G GPU.
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