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ABSTRACT

Machine learning-based methods have been proved to be quite successful in dif-
ferent domains. However, applying the same methods across domains is not a
trivial task. In the literature, the most common approach is to convert a dataset
into the same format as the original domain to employ the same architecture that
was successful in the original domain. Although this approach is fast and conve-
nient, we argue it is suboptimal due to the lack of tailoring to the specific problem
at hand. To prove our point, (1) we exhaustively examine the dataset transfor-
mations that are used in the literature to adapt machine learning-based methods
across domains; (2) we show that these dataset transformations are not always
beneficial; and (3) we show the drawbacks of converting the dataset to adapt a
Machine learning-based method to a different domain. To quantify how different
the original dataset is with respect to the transformed one, we compute the dataset
distances via Optimal Transport. Also, we present simulations with the original
and transformed data to show that the data conversion is not always needed or
beneficial.

1 INTRODUCTION

Machine learning (ML) methods are revolutionizing and transforming a wide range of disciplines.
This is being boosted by unprecedented integration of new real-time monitoring, sensing, control,
and communication devices, which give us a wealth of data to propel the ML techniques. However,
ML research is usually done in computer science to solve problems in computer vision (CV), audio
recognition, among others. The same techniques used in these domains are adapted to many other
different fields and areas. For example, many of these techniques are used to monitor, control, and
operate cyber-physical systems (CPSs) such as tracking object systems, water distribution systems,
power systems, among others. Therefore, nowadays, data-driven monitoring and control play an
important role for Cyber-Physical Systems (CPSs), e.g., smart grids, autonomous automobile sys-
tems, robotic systems, etc. Jazdi (2014). For example, Duchesne et al. (2020) gives an overview of
ML methods for reliability and management in energy systems. Most of such applied methods fall
into classification and regression problems using supervised and unsupervised learning. For exam-
ple, Marot et al. (2018) automatically segments large-scale power grids into coherent zones for the
management of the grid for control operators with ML techniques. However, little research has been
done in maximizing the adaptation of ML techniques across domains in a unified framework.

In this work, we claim that while adopting ML techniques solves specific problems, the way to
adapt these techniques also open the door on CPSs vulnerability with dire consequences Alguliyev
et al. (2018). For example, one can intentionally distort inputs according to how one applies ML
method to cause an incorrect control action due to an estimation mistake. Known as adversarial
attacks Kurakin et al. (2018), many studies show that outputs from classifiers can be easily changed
with imperceptible changes to the input in the computer science domain Carlini & Wagner (2017);
Szegedy et al. (2013). In the CPS context, this is known as a False Data Injection Attack (FDIA),
where an attacker intercepts and maliciously changes the system measurements to cause harm in
the real world. For instance, a cyber-attack in a power system could cause a system operator to
take wrong control actions causing a blackout. Similarly, a cyber-attack could cause fatal autopilot
crashes in autonomous automobile systems Banks et al. (2018); Dikmen & Burns (2017).
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Adapting the ML methods from the originally proposed area to a new one (CV to CPSs, for example)
is a non-trivial task that has not been thoroughly analyzed in the literature. The general consensus in
the ML community says that there are no standard recipes to apply a given method across multiple
domains. The dataset examples are different across domains; for example, whereas the CV dataset
samples are images that are represented as three-dimensional tensors, in CPSs the dataset samples
are one-dimensional tensor measurements from multiple devices with a timestamp. Then, in the
literature, there are two main approaches to adapt methods to a specific domain. (1) Modify the ML
learning architecture to fit the dataset samples format. For example, if the original domain is CV in
which a convolutional neural network (CNN) in employed, the adapted ML technique will use as a
base a fully connected neural network to handle the one-dimensional data in the targeted domain. (2)
Transform the new dataset samples into the same format as the original domain to use the same ML
architecture. For example, if in the original domain a CNN with a three-dimensional as input, and
the targeted domain is a CPS with one-dimensional tensors, then the one-dimensional is transformed
into a grid-like format to use a CNN as in the original domain. This begs the question, What are the
benefits and downsides of using the first or second approach to adapt ML techniques across different
domains?

To better adapt ML to different domains such as CPS systems, it is important to understand the ben-
efits and possible downsides for different methods using particular architectures and dataset types.
In this paper, we explore the benefits and downsides of using different approaches to adapt ML
methods across disciplines. There are multiple ML methods. To simplify our analysis, we choose to
study classifiers. This will allow us to quantify the benefits of the classifier’s accuracy. To quantify
or evaluate the downsides, we analyze how different datasets and ML architecture are impacted by
adversarial attacks. We will show the trade-offs of using different dataset formats and model archi-
tectures. In specific, this paper demonstrates that while CNN improves model accuracy, they are
more sensitive to adversarial examples than fully connected neural networks (FCNN).

2 RELATED WORK

Computer vision (CV) is an area that studies how computers can gain high-level understanding
from digital images or videos, which utilizes 2- and 3-dimensional data with multi-channels. Con-
volutional neural networks (CNN) are the most important architecture for CV and can be 2- and 3-
dimensional (CNN with higher dimensions are possible but rarely used). These CNN are designed to
learn filters from data where there is translation invariant. CNN can pull out this translational invari-
ance that images inherently have. For example, if you want to recognize a cat in an image, it should
not matter the cat’s location in the picture. Computer vision also deals with 3-dimensional images,
for example, CT and MRI scans. To exploit these 3-dimensional data, 3-d CNN are employed.

Adversarial attacks. Deep Convolutional Neural Networks (CNNs) models are highly susceptible
to adversarial examples Goodfellow et al. (2014); Moosavi-Dezfooli et al. (2017); Szegedy et al.
(2013). Research on this topic has been done mainly for image classifiers and face recognition
systems. These adversarial attacks or adversarial samples have drawn the community’s attention; in
2018, there was an Adversarial Attacks and Defences Competition Kurakin et al. (2018).

A lot of work to create adversarial samples has been done, including techniques such as the L-BFGS
attack Szegedy et al. (2013), FGSM Goodfellow et al. (2014), and the CW attack Carlini & Wagner
(2016). In specific for classifiers in the white-box context, in addition to the model knowledge, the
attacker knows the set of classes Y and the set of valid inputs X to the classifier. These methods
do not explicitly make use of the latent features to create adversarial examples. For example, the
conventional way to create these adversarial examples is by maximizing the log-likelihood of the
target class yt over a ε-radius ball around the original input (which is usually represented as a vector
of d pixels in the range [0, 1]) Athalye et al. (2017):

arg max
x′

logP
(
yt|x′

)
subject to

∥∥x′ − x∥∥
p
< ε

x′ ∈ [0, 1]
d
.

(1)

False data injection in power systems. Past work in the power systems area shows the vulner-
ability of the state estimation functionality. It is based on the observability of the system state.
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Some works show different attacking approaches Mohammadpourfard et al. (2017). Based on such
analysis, the impact of an attack on the system is also evaluated Mohammadpourfard et al. (2019).
Mathematically, the FDIA can be expressed as:

min
ma

∥∥ma − h (v̂st)
∥∥2

2

subject to ma ≤m + a,
(2)

where m and ma are the set of original and corrupted measurements, respectively; v̂st is a vector
of the state variables, h is the state estimator non-linear model, and a is the attack vector to alter the
original set of measurements.

3 BACKGROUND

This section presents the Optimal Transport (OT) problem that will allow us to quantify how differ-
ent similar two distributions or datasets are from each other.

3.1 BACKGROUND ON OPTIMAL TRANSPORT

Optimal transport (OT) is compares probability distributions (Villani, 2003; 2008). OT leverages the
geometry of the underlying space, making them ideal for comparing distributions, shapes and point
clouds (Peyré & Cuturi, 2019).

The OT problem considers a complete and separable metric space X , along with probability mea-
sures

α ∈ P(X ), β ∈ P(X ). (3)

The Kantorovich formulation Kantorovitch (1942) of the transportation problem can be writeen as:

OT(α, β) , min
π∈Π(α,β)

∫
X×X

c(x, y) dπ(x, y), (4)

where c(·, ·) : X ×X → R+ is a cost function (the “ground” cost), and the set of couplings Π(α, β)
consists of joint probability distributions over the product space X ×X with marginals α and β, that
is,

Π(α, β) , {π ∈ P(X×X ) | P1#π = α, P2#π = β}. (5)

Whenever X is equipped with a metric dX , it is natural to use it as ground cost, e.g.,

c(x, y) = dX (x, y)p (6)

for some p ≥ 1. In such case,

Wp(α, β) , OT(α, β)1/p (7)

is called the p-Wasserstein distance. The case p = 1 is also known as the Earth Mover’s Distance
(Rubner et al., 2000).

The measures α and β are rarely known in practice. Instead, one has access to finite samples

{x(i)} ∈ X , {y(j)} ∈ X . (8)

In that case, one can construct discrete measures

α =

n∑
i=1

aiδx(i) (9)

and

β =

m∑
i=1

biδy(j) , (10)
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where a, b are vectors in the probability simplex, and the pairwise costs can be compactly repre-
sented as an n×m matrix C, i.e.,

Cij = c(x(i),y(j)). (11)

In this case, Equation equation 4 becomes a linear program. Adding an entropy regularization,
namely

OTε(α, β) , min
π∈Π(α,β)

∫
X 2

c(x, y) dπ(x, y) + εH(π |α⊗ β), (12)

where

H(π | α⊗ β) =

∫
log(dπ/dα dβ) dπ (13)

is the relative entropy that results into a problem that can be solved more efficiently (Cuturi, 2013;
Altschuler et al., 2017) and with better sample complexity (Genevay et al., 2019) than the original
one.

We will use OT to measure the distance between datasets as was done by Alvarez-Melis & Fusi
(2020), see Fig. 1. In specific, we’ll measure the distance between regular and adversarial datasets.

Smaller distance Larger distance

Figure 1: Illustration of OT for regular and perturbed datasets.

4 TRADE-OFFS OF DATASET TRANSFORMATIONS

Machine learning (ML) approaches have been extensively applied on different domains to solve
unsupervised and supervised tasks Olowononi et al. (2020); Duchesne et al. (2020). Unsupervised
tasks mainly encompassed clustering, and supervised tasks primarily included classification prob-
lems. In the last section, the different types of data and the most NN architectures were described.
Choosing a specific NN design will give you a prior or impose a bias on the model. For example, if
you use a vanilla MLP NN, each input will interact with each output. This means either you assume
that all the input data is correlated or have no idea of a structure that you might exploit. If you use a
CNN, you are assuming that your grid-like data are locally correlated but not further data Xu et al.
(2018b); Jeong et al. (2017); Xu et al. (2017). In this way, you are imposing a bias or a prior over the
model, which in this case, will be reflected in the learned kernels by the CNN. On the other hand, if
your data comes in sequence, you can choose to use a RNN that will exploit this prior knowledge of
the problem.

ML techniques have been used across different domains. In CPSs on power systems to do classifi-
cation or regression, for example. In classification for stability, the work Alimi et al. (2020) gives
an overview of the work in this area. The takeaway is that the applied methods are in supervised
ML techniques to classify an event. For example, the work Wang et al. (2016) assesses the power
system stability after the occurrence of a disturbance. They use a feedforward NN. For regression,
ML methods have been applied to forecast. For example, the work Xu et al. (2018a) tries to predict
power load with a deep-belief network.
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Chen et al. (2018) used time-series data such as wind and solar generation with 5- and 60-minute
resolution. They separate the data by day and then stack the time series into a matrix. So, for
hourly data, they form a 24 × 24 matrix. Then a convolutional neural network is employed. Gupta
et al. (2018) monitored three time-series with each PMU at every generator unit: voltage magnitude,
voltage angle, and rate of change of voltage angle. The time series of all generators are stacked to
form a 2-D matrix for each of the three variables. This results in three 2-D matrices. Then, these
three images are combined to form a three-channel, 2-D image, which they call a heatmap. Finally,
a convolutional neural network is trained on the heat maps to classify the power system state. Cai
& Hill (2022) take voltage (V), active (P), and reactive (Q) power measurements at each bus. With
each V, P, and Q, a matrix is formed. Then the three matrices V, P, and Q are combined to create an
“RGB” image. Shi et al. (2020) converted the data as follows. Given N buses PMU phasor voltage
time series with length T , two real matrices N × T are formed to get a two-channel image. Then,
this is the input to the convolutional neural network. Ren et al. (2020) converted the frequency time-
series to a matrix with wavelet decomposition and polar coordinate Gramian Angular Field. Then,
this grid-like data can be used as input to the convolutional neural network. All these applications of
ML methods use a given model architecture and dataset format without analyzing the implications
of different alternatives.

In summary, we can list the main ideas or principles by which data is transformed:

1. Single time-series

(i) The most straightforward and least principled way to convert one-dimensional data into a
grid-like (or image-like) format is to resize your time-series with length T to a matrix with
size n×m = T , as Wang et al. (2017) did.

(ii) A more principled way to convert one-dimensional time-series data into a grid-like format
is to resize your time-series, exploiting the features of your signal. The time series can be
segmented in chunks of one day, and then these chunks can be stacked into a matrix. Chen
et al. (2018) followed this approach. For hourly data, for example, they formed a 24 × 24
matrix.

(iii) Given a one-dimensional time-series, a transform can be applied to every sample to obtain
grid-like data from the time series. In speech recognition, they use the Gabor transform
to obtain a spectrogram, for example. In power systems, Ren et al. (2020) converted the
frequency time-series to a matrix with wavelet decomposition and polar coordinate Gramian
Angular Field.

2. Multiple time-series

(i) When multiple time-series are available, the data conversion is carried out in a different
way. A set of time series of the same variable from many sources can be stacked into
a matrix. This process can be applied to every variable resulting in the same number of
matrices (c). Then, these formed matrices can be stacked in a tensor to form an “image”
with c channels. Examples of these approach are Gupta et al. (2018); Cai & Hill (2022);
Shi et al. (2020).

4.1 DIFFERENT DATASET FORMATS

Given all the dataset transformations previously described, in this part we introduce a classification
for different dataset types. The use of each dataset type will dictate which neural network (NN)
architecture to use. Starting with the most simple dataset format, let DT1

be a dataset type one
defined as

DT1 =

{(
x

(n)
m,b, y

(n)
)

: m = [[M ]], b = [[B]]

}N
n=1

, (14)

where x(n)
m,b ∈ RT is the n time-series sample of variable m at location b with length T , M is the

number of different measured variables, [[M ]] = {1, . . . ,M}, B is the number of different locations,
[[B]] = {1, . . . , B}, N is the number of samples in the dataset, and y(n) is the label associated with
the n sample.

5



Under review as a conference paper at ICLR 2022

As shown before, in the literature, they convert a vector into a matrix. To do so, we can stack the B
samples x(n)

m,b measuring the same variable from different locations as

V (n)
m =


x

(n)
m,1
...

x
(n)
m,B

 ∈ RB×T . (15)

Then, we can define a dataset type two DT2 as

DT2
=

{(
V (n)
m , y(n)

)
: m = [[M ]]

}N
n=1

. (16)

Similarly, in the literature they go further and create datasets with tensors. To achieve this from a
dataset type two, we stack the Vm matrices in a tensor obtaining I(n) = RM×B×T . This results in a
dataset type three

DT3
=

{(
I(n), y(n)

)}N
n=1

. (17)

From the last part, some important points and questions are: (1) What are the advantages or dis-
advantages of using DT1

, DT2
, or DT3

? (if any). (2) Do different dataset types have the same
vulnerabilities? (3) Can we quantify the difference between dataset types by using Optimal Trans-
port?

5 EXPERIMENTAL RESULTS

To explore the advantages and disadvantages of using different dataset types, we carry trained dif-
ferent classifiers with diverse dataset types and models. In specific, we use the MNIST and Fashion-
MNIST datasets. Although these datasets are not from a different domain (e.g., CPSs), they are
helpful to assess what are the implications of using them with other formats (i.e., DT1 or DT2 ) To
assess the advantages, we measure the accuracy of the test regular data. To evaluate the disadvan-
tages, we also measure the accuracy but in perturbed test data. The perturbations are done with the
fast gradient sign method (Goodfellow et al., 2014). All datasets consists in examples x ∈ R28×28.
According to our previous classifications, they are dataset type 2, DMNIST

T2
and DFashion

T2
, respec-

tively.

These datasets can be transformed into datasets type 1 by stacking the columns into a vector resulting
in examples x ∈ R784. This would result in datasets type 1, DMNIST

T1
and DFashion

T1
, respectively.

We create classifiers for both dataset types DT1 and DT2 based on fully connected neural networks
(Dense) and convolutional neural networks (Conv), respectively. The fully connected neural network
(Dense) has two dense layers of size 784 and 128, resulting in 101, 770 parameters. We use a CNN
consisting of two convolutional layers with 32 and 62 filters, respectively, each followed by 2×2
max-pooling, and a fully connected layer of size 256 resulting in 84, 553 parameters (Conv1). Also,
to see that in the CNN model, the number of parameters does not affect the classifier output, we use
a second CNN (Conv2) with two fully connected layers of size 256 and 128 resulting in 116, 168
parameters.

We train these classifiers in two ways: (1) we train them on regular data, and (2) we also adversary
train the networks (AT or Adv) with regular and adversarial samples, with the method proposed
by Madry et al. (2017).

5.1 ACCURACY AND DISTANCE BETWEEN ORIGINAL AND ADVERSARIAL EXAMPLES

The results for the MNIST-Fashion dataset are shown in Table 1 (with ε = 0.05). We perturbed both
datasets DT1

and DT2
with the fast gradient descent method (FGDM) (Goodfellow et al., 2014). As

result, we obtain adversarial or perturbed datsets that DP
T1

and DP
T2

. Then, we measure the distance
between the regular and perturbed datasets with the optimal transport framework. The results are

OTε(DT1 ,DP
T1

) = 1.05, OTε(DT2 ,DP
T2

) = 0.84. (18)
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In this case
OTε(DT1 ,DP

T1
) > OTε(DT2 ,DP

T2
). (19)

The effect of this is that adversarial examples look more similar forDT2
. We hyphotesize that this is

correlated with the classifier accuracy on the perturbed dataset. If the distance between the regular
and perturbed dataset is larger, then the accuracy on the adversarial trained model will be better
as shown in Table 1. We repeat the same experiment for different ε ranging from 0 to 0.3 with
increments of 0.05. The results are shown in Fig. 2. In this Figure, we make two observations. (1)
The accuracy for the adversary trained model with dataset type 1 for the perturbed dataset is higher
than its counterpart with dataset type 2. (2) The OT distance between the regular and perturbed
datasets type 1 is bigger than the distance for dataset type 2.

The results for the MNIST dataset (with ε = 0.05) are shown in Table 2. The OT distances between
regular and perturbed datasets are

OTε(DT1
,DP

T1
) = 16.24, OTε(DT2

,DP
T2

) = 9.64. (20)
We can see a similar effect, the distance for the dataset type 1 is larger than the distance for the
dataset type 1. This results in bigger increase of accuracy in the adversary train classifier as shown
in Table 2. We repeat the same experiment for different ε ranging from 0 to 0.3 with increments of
0.05. The results are shown in Fig. 3. In this Figure, we make two observations. (1) The accuracy for
the adversary trained model with dataset type 1 for the perturbed dataset is higher than its counterpart
with dataset type 2. (2) The OT distance between the regular and perturbed datasets type 1 is bigger
than the distance for dataset type 2.

This shows that we must be aware when selecting the dataset transformation or ML model archi-
tecture across different domains. While using datasets type 2 improves the accuracy, it also makes
models more sensible to adversarial examples.

Model Accuracy (%) No. of parametersRegular Perturbed Regular (AT) Perturbed (AT)
Conv1 (DT2

) 90 39 88 84 84,552
Conv2 (DT2

) 90 44 89 85 116,168
Linear (DT1 ) 86 59 87 97 101,770

Table 1: Model comparison for MNIST-Fashion dataset with ε = 0.05.
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(a) Accuracy for perturbed examples for the regular
and adversarial trained classifiers.
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(b) OT distance between the regular and perturbed test
set.

Figure 2: Accuracy and OT distance for the MNIST-Fashion dataset.

5.2 COMPARISON OF DISTANCES BETWEEN SAMPLES FOR DIFFERENT MODELS

To further investigate the effect of adversarial examples for different models, we compute the dis-
tances among the original and pertubed datasets for both the FCN and the CNN. Suppose we have a
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Model Accuracy (%) No. of parametersRegular Perturbed Regular (AT) Perturbed (AT)
Conv1 (DT2 ) 99 47 99 99.22 84,552
Conv2 (DT2 ) 99 65 99 98 116,168
Linear (DT1 ) 98 5 98 99.88 101,770

Table 2: Model comparison for dataset 2.
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(b) OT distance between the regular and perturbed
test set.

Figure 3: Accuracy and OT distance for the MNIST dataset.

dataset with N samples D = {xn}Nn=1. Then, we can compute the distance of an example with all
the remaining dataset with the OT framework. Mathematically, it is expressed as follows

emdi = OTi
(
xi, {xn ∈ D : xn 6= xi}

)
, for i = 1, . . . , N. (21)

With the computed distances for every sample, we define the set as EMD = {emdn}Nn=1. We
can interpret this as an empirical PDF of distances. The results for the MNIST dataset for the
FCN and the CNN are shown in Fig. 4. We can see in Fig. 4b that the distances between the
original and perturbed examples barely move. Fig. 4a, on the other hand, shows that interestingly
the perturbed distances are smaller than the original ones. This could be the reason why the CNN
is more vulnerable to adversarial attacks than the FCN. In other words, the FCN is more resilient to
adversarial attacks because the distribution of distances between the original and perturbed examples
is not entirely overlapping as in the case of the CNN case. We can see similar results for the MNIST-
Fasion dataset in in Fig. 5.

6 CONCLUSION

This paper showed that using different dataset types and neural network architectures has benefits
and downsides. When adapting ML techniques across domains, practitioners must be aware of the
trade-offs on selecting a given dataset type format or model architecture. While using a convo-
lutional neural network improves the model’s accuracy, making it more vulnerable to adversarial
examples. We showed that it is possible to infer how vulnerable is a given model with respect
to another one by computing their corresponding OT distances between the regular and perturbed
datasets. It was proven that a lower OT would result in a more vulnerable model against adversarial
examples.
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ity of sinkhorn divergences. In Kamalika Chaudhuri and Masashi Sugiyama (eds.), Proceedings
of Machine Learning Research, volume 89 of Proceedings of Machine Learning Research, pp.
1574–1583. PMLR, 2019.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

Ankita Gupta, Gurunath Gurrala, and PS Sastry. An online power system stability monitoring system
using convolutional neural networks. IEEE Transactions on Power Systems, 34(2):864–872, 2018.

Nasser Jazdi. Cyber physical systems in the context of industry 4.0. In International conference on
automation, quality and testing, robotics, pp. 1–4. IEEE, 2014.

Il-Young Jeong, Subin Lee, Yoonchang Han, and Kyogu Lee. Audio event detection using multiple-
input convolutional neural network. Detection and Classification of Acoustic Scenes and Events
(DCASE), 2017.

L Kantorovitch. On the translocation of masses. Dokl. Akad. Nauk SSSR, 37(7-8):227–229, 1942.
ISSN 0002-3264.

Alexey Kurakin, Ian Goodfellow, Samy Bengio, Yinpeng Dong, Fangzhou Liao, Ming Liang, Tianyu
Pang, Jun Zhu, Xiaolin Hu, Cihang Xie, et al. Adversarial attacks and defences competition. In
The NIPS’17 Competition: Building Intelligent Systems, pp. 195–231. Springer, 2018.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

Antoine Marot, Sami Tazi, Benjamin Donnot, and Patrick Panciatici. Guided machine learning for
power grid segmentation. In 2018 IEEE PES Innovative Smart Grid Technologies Conference
Europe (ISGT-Europe), pp. 1–6. IEEE, 2018.

Mostafa Mohammadpourfard, Ashkan Sami, and Yang Weng. Identification of false data injection
attacks with considering the impact of wind generation and topology reconfigurations. IEEE
Transactions on Sustainable Energy, 9(3):1349–1364, 2017.

10



Under review as a conference paper at ICLR 2022

Mostafa Mohammadpourfard, Yang Weng, and Mohsen Tajdinian. Benchmark of machine learning
algorithms on capturing future distribution network anomalies. IET Generation, Transmission &
Distribution, 13(8):1441–1455, 2019.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal Frossard. Universal
adversarial perturbations. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 1765–1773, 2017.

Felix O Olowononi, Danda B Rawat, and Chunmei Liu. Resilient machine learning for networked
cyber physical systems: A survey for machine learning security to securing machine learning for
cps. IEEE Communications Surveys & Tutorials, 23(1):524–552, 2020.

Gabriel Peyré and Marco Cuturi. Computational optimal transport. Foundations and Trends® in
Machine Learning, 11(5-6):355–607, 2019. ISSN 1935-8237. doi: 10.1561/2200000073.

Huiying Ren, Z Jason Hou, Bharat Vyakaranam, Heng Wang, and Pavel Etingov. Power system
event classification and localization using a convolutional neural network. Frontiers in Energy
Research, 8:327, 2020.

Yossi Rubner, Carlo Tomasi, and Leonidas J Guibas. The earth mover’s distance as a metric for
image retrieval. Int. J. Comput. Vis., 40(2):99–121, November 2000. ISSN 0920-5691, 1573-
1405. doi: 10.1023/A:1026543900054.

Zhongtuo Shi, Wei Yao, Lingkang Zeng, Jianfeng Wen, Jiakun Fang, Xiaomeng Ai, and Jinyu Wen.
Convolutional neural network-based power system transient stability assessment and instability
mode prediction. Applied Energy, 263:114586, 2020.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

Cédric Villani. Topics in Optimal Transportation. American Mathematical Soc., 2003. ISBN
9780821833124.

Cédric Villani. Optimal transport, Old and New, volume 338. Springer Science & Business Media,
2008. ISBN 9783540710493.

Bo Wang, Biwu Fang, Yajun Wang, Hesen Liu, and Yilu Liu. Power system transient stability
assessment based on big data and the core vector machine. IEEE Transactions on Smart Grid, 7
(5):2561–2570, 2016.

Huaizhi Wang, Haiyan Yi, Jianchun Peng, Guibin Wang, Yitao Liu, Hui Jiang, and Wenxin Liu.
Deterministic and probabilistic forecasting of photovoltaic power based on deep convolutional
neural network. Energy conversion and management, 153:409–422, 2017.

Daoqiang Xu, Zhixin Li, Shihai Yang, Zigang Lu, Haowei Zhang, Wenguang Chen, and Qingshan
Xu. A classified identification deep-belief network for predicting electric-power load. In 2018
2nd IEEE Conference on Energy Internet and Energy System Integration (EI2), pp. 1–6. IEEE,
2018a.

Yong Xu, Qiuqiang Kong, Qiang Huang, Wenwu Wang, and Mark D Plumbley. Convolutional gated
recurrent neural network incorporating spatial features for audio tagging. In 2017 International
Joint Conference on Neural Networks (IJCNN), pp. 3461–3466. IEEE, 2017.

Yong Xu, Qiuqiang Kong, Wenwu Wang, and Mark D Plumbley. Large-scale weakly supervised
audio classification using gated convolutional neural network. In 2018 IEEE international con-
ference on acoustics, speech and signal processing (ICASSP), pp. 121–125. IEEE, 2018b.

11


	Introduction
	Related Work
	Background
	Background on Optimal Transport

	Trade-offs of Dataset Transformations
	Different Dataset Formats

	Experimental Results
	Accuracy and distance between original and adversarial examples
	Comparison of distances between samples for different models

	Conclusion

