
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

RANDOMNESS HELPS RIGOR:
A PROBABILISTIC LEARNING RATE SCHEDULER
BRIDGING THEORY AND DEEP LEARNING PRACTICE

Anonymous authors
Paper under double-blind review

ABSTRACT

Learning rate schedulers have shown great success in speeding up the convergence
of learning algorithms in practice. However, their convergence to a minimum has
not been theoretically proven. This difficulty mainly arises from the fact that,
while traditional convergence analysis prescribes to monotonically decreasing (or
constant) learning rates, schedulers opt for rates that often increase and decrease
through the training epochs. We aim to bridge this gap by proposing a probabilis-
tic learning rate scheduler (PLRS) that does not conform to the monotonically de-
creasing condition, while achieving provable convergence guarantees. To demon-
strate the practical effectiveness of our approach, we evaluate it on deep neural
networks across both vision and language tasks, showing competitive or superior
performance compared to state-of-the-art learning rate schedulers. Specifically,
our experiments include (a) image classification on CIFAR-10, CIFAR-100, Tiny
ImageNet, and ImageNet-1K using ResNet, WRN, VGG, and DenseNet architec-
tures, and (b) language model fine-tuning on the SQuAD v1.1 dataset with pre-
trained BERT. Notably, on ImageNet-1K with ResNet-50, our method surpasses
the leading knee scheduler by 2.79% in classification accuracy.

1 INTRODUCTION

Over the last two decades, there has been an increased interest in analyzing the convergence of gra-
dient descent-based algorithms. This can be majorly attributed to their extensive use in the training
of neural networks and their numerous derivatives. Stochastic Gradient Descent (SGD) and their
adaptive variants such as Adagrad (Duchi et al., 2011), Adadelta (Zeiler, 2012), and Adam (Kingma
& Ba, 2014) have been the choice of optimization algorithms for most machine learning practition-
ers, primarily due to their ability to process enormous amounts of data in batches. Even with the
introduction of adaptive optimization techniques that use a default learning rate, the use of stochastic
gradient descent with a tuned learning rate was quite prevalent, mainly due to its generalization prop-
erties (Zhou et al., 2020). However, tuning the learning rate of the network can be computationally
intensive and time consuming.

Various methods to efficiently choose the learning rate without excessive tuning have been explored.
One of the initial successes in this domain is the random search method (Bergstra & Bengio, 2012);
here, a learning rate is randomly selected from a specified interval across multiple trials, and the
best performing learning rate is ultimately chosen. Following this, more advanced methods such as
Sequential Model-Based Optimization (SMBO) (Bergstra et al., 2013) for the choice of learning rate
became prevalent in practice. SMBO represents a significant advancement over random search by
tracking the effectiveness of learning rates from previous trials and using this information to build
a model that suggests the next optimal learning rate. A tuning method for shallow neural networks
based on theoretical computation of the Hessian Lipschitz constant was proposed by Tholeti et al.
(Tholeti & Kalyani, 2020).

Several works on training deep neural networks prescribed the use of a decaying Learning Rate
(LR)1 scheduler (He et al., 2016; Zhang et al., 2019; Szegedy et al., 2015). Recently, much attention

1We abbreviate learning rate only in the context of learning rate scheduler as LR scheduler.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

has been paid to cyclically varying learning rates (Smith, 2017). By varying learning rates in a
triangular schedule within a predetermined range of values, the authors hypothesize that the optimal
learning rate lies within the chosen range, and the periodic high learning rate helps escape saddle
points. Although no theoretical backing has been provided, it was shown to be a valid hypothesis
owing to the presence of many saddle points in a typical high dimensional learning task (Dauphin
et al., 2014). Many variants of the cyclic LR scheduler have henceforth been used in various machine
learning tasks (Howard & Ruder, 2018; Dhillon et al., 2020; Andriushchenko & Flammarion, 2020).
A cosine-based cyclic LR scheduler proposed by Loshchilov et al. (Loshchilov & Hutter, 2017b)
has also found several applications, including Transformers (Zamir et al., 2022; Caron et al., 2021).
Following the success of the cyclic LR schedulers, a one-cycle LR scheduler proposed by Smith
et al. (Smith & Topin, 2019) has been observed to provide faster convergence empirically; this
was attributed to the injection of ‘good noise’ by higher learning rates which helps in convergence.
Although empirical validation and intuitions were provided to support the working of these LR
schedulers, a theoretical convergence guarantee has not been provided to the best of our knowledge.

There is extensive research on the convergence behavior of perturbed SGD methods, where noise
is added to the gradient during updates. In Jin et al. (Jin et al., 2017), the vanilla gradient descent
is perturbed by samples from a ball whose radius is fixed using the optimization function-specific
constants. They show escape from a saddle point by characterizing the distribution around a per-
turbed iterate as uniformly distributed over a perturbation ball along which the region corresponding
to being stuck at a saddle point is shown to be very small. In Ge at al. (Ge et al., 2015), the saddle
point escape for a perturbed stochastic gradient descent is proved using the second-order Taylor ap-
proximation of the optimization function, where the perturbation is applied from a unit ball to the
stochastic gradient descent update. Following Ge at al. (Ge et al., 2015), several works prove the
convergence of noisy stochastic gradient descent in the additive noise setting (Zhang et al., 2017; Jin
et al., 2021; Arjevani et al., 2023; Yiming Cao et al., 2025). In contrast to the above works which
operate in the additive noise setting, our proposed LR scheduler results in multiplicative noise. Ana-
lyzing the convergence behavior under the new multiplicative noise setting is fairly challenging and
results in a non-trivial addition to the literature.

1.1 MOTIVATION

Traditional convergence analysis of gradient descent algorithms and its variants requires the use
of a constant or a decaying learning rate (Nesterov, 2014). However, with the introduction of LR
schedulers, the learning rates are no longer monotonically decreasing. Rather, their values heavily
fluctuate, with the occasional use of very large learning rates. Although there are ample justifications
provided for the success of such methods, there are no theoretical results which prove that stochastic
gradient descent algorithms with fluctuating learning rates converge to a local minimum in a non-
convex setting. With the increase of emphasis on trustworthy artificial intelligence, we believe that
it is important to no longer treat optimization algorithms as black-box models, and instead provide
provable convergence guarantees while deviating from the proven classical implementation of the
descent algorithms. In this work, we aim to bridge the gap by providing rigorous mathematical proof
for the convergence of our proposed probabilistic LR scheduler with SGD.

1.2 OUR CONTRIBUTIONS

1. We propose a new Probabilistic Learning Rate Scheduler (PLRS) where we model the
learning rate as an instance of a random noise distribution.

2. We provide convergence proofs to show that SGD with our proposed PLRS converges to
a local minimum in Section 4. To the best of our knowledge, we are the first to theoret-
ically prove convergence of SGD with a LR scheduler that does not conform to constant
or monotonically decreasing rates. We show how our LR scheduler, in combination with
inherent SGD noise, speeds up convergence by escaping saddle points.

3. Our proposed probabilistic LR scheduler, while provably convergent, can be seamlessly
ported into practice without the knowledge of theoretical constants (like gradient and
Hessian-Lipschitz constants). We illustrate the efficacy of the PLRS through extensive
experimental validation, where we compare the accuracies with state-of-the-art schedulers
in Section 5. We show that the proposed method outperforms popular schedulers such as

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

cosine annealing (Loshchilov & Hutter, 2017b), one-cycle (Smith & Topin, 2019), knee
(Iyer et al., 2023) and the multi-step scheduler when used with ResNet-110 on CIFAR-
100, DenseNet-40-12 on CIFAR-100, VGG-16 on CIFAR-10, WRN-28-10 on CIFAR-10
datasets and ResNet-50 on Tiny ImageNet datasets respectively, while performing com-
petitively with baselines when used on NLP datasets like SQuAD v1.1 and IWSLT’14
with BERT and Transformer respectively. Furthermore, we outperform the baseline results
on the CommonVoice 11.0 Hindi dataset with Whisper model on the Automatic Speech
Recognition application (ASR) application. We also observe lesser spikes in the training
loss across epochs which leads to a faster and more stable convergence. We provide our
base code with all the hyperparameters for reproducibility in the supplemental material.

2 PROBABILISTIC LEARNING RATE SCHEDULER

Let f : Rd → R be the function to be minimized. The unconstrained optimization, minx∈Rd f(x),
can be solved iteratively using stochastic gradient descent whose update equation at time step t is
given by

xt+1 = xt − ηt+1g(xt). (1)
Here, ηt+1 ∈ R is the learning rate and g(xt) is the stochastic gradient of f(x) at time t. In this
work, we propose a new LR scheduler, in which the learning rate ηt+1 is sampled from a uniform
random variable,

ηt+1 ∼ U [Lmin, Lmax], 0 < Lmin < Lmax < 1. (2)
Note that contrary to existing LR schedulers, which are deterministic functions, we propose that
the learning rate at each time instant be a realization of a uniformly distributed random variable.
Although the learning rate in our method is not scheduled, but is rather chosen as a random sample
at every time step, we call our proposed method Probabilistic LR scheduler to keep in tune with the
body of literature on LR schedulers. In order to represent our method in the conventional form of
the stochastic gradient descent update, we split the learning rate ηt+1 into a constant learning rate
ηc and a random component, as ηt+1 = ηc + ut+1, where ut+1 ∼ U [Lmin − ηc, Lmax − ηc]. The
stochastic gradient descent update using the proposed PLRS (referred to as SGD-PLRS) takes the
form

xt+1 = xt − (ηc + ut+1)g(xt) = xt − ηc∇f(xt)−wt, (3)
where we define wt as

wt = ηcg(xt)− ηc∇f(xt) + ut+1g(xt). (4)
Here, ∇f(xt) refers to the true gradient, i.e., ∇f(xt) = E[g(xt)]. Note that in equation 3, the term
xt − ηc∇f(xt) resembles the vanilla gradient descent update and wt encompasses the noise in the
update; the noise is inclusive of both the randomness due to the stochastic gradient as well as the
randomness from the proposed LR scheduler. We set ηc = Lmin+Lmax

2 so that the noise wt is zero
mean, which we prove later in Lemma 1.
Remark 1. Note that a periodic LR scheduler such as triangular, or cosine annealing based sched-
uler can be considered as a single instance of our proposed PLRS. The range of values assigned
to the learning rate ηt+1 is pre-determined in both cases. In fact, for any LR scheduler, the basic
mechanism is to vary the learning rate between a low and a high value - the high learning rates
help escape the saddle point by perturbing the iterate, whereas the low values help in convergence.
This pattern of switching between high and low values can be achieved through both stochastic
and deterministic mechanisms. While the current literature explores the deterministic route (without
providing analysis), we propose and explore the stochastic variant here and also provide a detailed
analysis.

3 PRELIMINARIES AND DEFINITIONS

We denote the Hessian of a function f : Rd → R at x ∈ Rd as H(x) := ∇2f(x) and the minimum
eigenvalue of the Hessian as λmin(H(x)) := λmin(∇2f(x)) respectively.
Definition 1. A function f : Rd → R is said to be β-smooth (also referred to as β-gradient
Lipschitz) if, ∃ β ≥ 0 such that,

∥∇f(x)−∇f(y)∥ ≤ β ∥x− y∥ , ∀x,y ∈ Rd. (5)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Definition 2. A function f : Rd → R is said to be ρ-Hessian Lipschitz if, ∃ ρ ≥ 0 such that,

∥H(x)− H(y)∥ ≤ ρ ∥x− y∥ , ∀x,y ∈ Rd. (6)

Informally, a function is said to be gradient/Hessian Lipschitz, if the rate of change of the gradi-
ent/Hessian with respect to its input is bounded by a constant, i.e., the gradient/Hessian will not
change rapidly. We now proceed to define approximate first and second-order stationary points of a
given function f .
Definition 3. For a function f : Rd → R that is differentiable, we say x ∈ Rd is a ν- first-order
stationary point (ν-FOSP), if for a small positive value of ν, ∥∇f(x)∥ ≤ ν.

Before we define an ϵ-second order stationary point, we define a saddle point.
Definition 4. For a ρ-Hessian Lipschitz function f : Rd → R that is twice differentiable, we say
x ∈ Rd is a saddle point if,

∥∇f(x)∥ ≤ ν and λmin(H(x)) ≤ −γ,

where ν, γ > 0 are arbitrary constants.

For a convex function, it is sufficient if the algorithm is shown to converge to the ν-FOSP as it
would be the global minimum. However, in the case of a non-convex function, a point satisfying
the condition for a ν-FOSP may not necessarily be a local minimum, but could be a saddle point
or a local maximum. Hence, the Hessian of the function is required to classify it as a second-order
stationary point, as defined below. Note that, in our analysis, we prove convergence of SGD-PLRS
to the approximate second-order stationary point.
Definition 5. For a ρ-Hessian Lipschitz function f : Rd → R that is twice differentiable, we say
x ∈ Rd is a ν-second-order stationary point (ν-SOSP) if,

∥∇f(x)∥ ≤ ν and λmin(H(x)) ≥ −γ, (7)

where ν, γ > 0 are arbitrary constants.
Definition 6. A function f : Rd → R is said to possess the strict saddle property at all x ∈ Rd if
x fulfills any one of the following conditions: (i) ∥∇f(x)∥ ≥ ν, (ii) λmin(H(x)) ≤ −γ, (iii) x is
close to a local minimum.

The strict saddle property ensures that an iterate stuck at a saddle point has a direction of escape.
Definition 7. A function f : Rd → R is α−strongly convex if λmin(H(x)) ≥ α ∀x ∈ Rd.

We now provide the formal definitions of two common terms in time complexity.
Definition 8. A function f(s) is said to be O(g(s)) if ∃ a constant c > 0 such that |f(s)| ≤ c|g(s)|.
Here s ∈ S which is the domain of the functions f and g.
Definition 9. A function f(s) is said to be Ω(g(s)) if ∃ a constant c > 0 such that |f(s)| ≥ c|g(s)|.

In our analysis, we introduce the notations Õ(.) and Ω̃(.) which hide all factors (including β, ρ, d,
and α) except ηc, Lmin and Lmax in O and Ω respectively.

4 PROOF OF CONVERGENCE

We present our convergence proofs to theoretically show that the proposed PLRS method converges
to a ν-SOSP in finite time. We first state the assumptions that are instrumental for our proofs.
Assumptions 1. We now state the assumptions regarding the function f : Rd → R that we require
for proving the theorems.

A1 The function f is β-smooth.

A2 The function f is ρ-Hessian Lipschitz.

A3 The norm of the stochastic gradient noise is bounded i.e, ∥g(xt)−∇f(xt)∥ ≤ Q ∀t ≥ 0.
Further, E[Q2] ≤ σ2.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

A4 The function f has strict saddle property.

A5 The function f is bounded i.e., |f(x)| ≤ B, ∀x ∈ Rd.

A6 The function f is locally α−strongly convex i.e, in the δ-neighborhood of a locally optimal
point x∗ for some δ > 0.

Remark 2. If ∇f̃(x̃t) and g̃(x̃t) are the gradient and stochastic gradient of the second order Taylor

approximation of f about the iterate x̃t, from Assumption A3, it is implied that
∥∥∥g̃(x̃t)−∇f̃(x̃t)

∥∥∥ ≤
Q̃. Further, E[Q̃2] ≤ σ̃2.

Note that these assumptions are similar to those in the perturbed gradient literature (Ge et al., 2015;
Jin et al., 2017; 2021). We call attention to two significant differences in our approach compared
to other perturbed gradient methods such as (Jin et al., 2017; Ge et al., 2015; Jin et al., 2021): (i)
In contrast to the isotropic additive perturbation commonly added to the SGD update, we introduce
randomness in our learning rate, manifested as multiplicative noise in the update. This makes the
characterization of the total noise dependent on the gradient, making the analysis challenging. (ii)
The magnitude of noise injected is computed through the smoothness constants in the work by Jin
et al. (Jin et al., 2017; 2021); instead, we treat the parameters Lmin and Lmax as hyperparameters
to be tuned. This enables our PLRS method to be easily applied to training deep neural networks
where the computation of these smoothness constants could be infeasible due to sheer computational
complexity.

We reiterate the update equations of the proposed SGD-PLRS.

xt+1 = xt − ηc∇f(xt)−wt. (3)

wt = ηcg(xt)− ηc∇f(xt) + ut+1g(xt). (4)

Note that the term wt has zero mean and we state this formally in the lemma below.
Lemma 1 (Zero mean property). The mean of wt−1 ∀t ≥ 1 is 0.

Proof.
E[wt−1] = E [ηcg(xt−1)− ηc∇f(xt−1)] + E [utg(xt−1)]

= 0 ∀t ≥ 1.
(8)

This follows as E[ut] =
Lmin+Lmax−2ηc

2 = 0 and E [g(xt−1)] = ∇f(xt−1).

For a function satisfying the Assumptions A1-A6, there are three possibilities for the iterate xt with
respect to the function’s gradient and Hessian, namely, B1: Gradient is large; B2: Gradient is small
and iterate is around a saddle point; B3: Gradient is small and iterate is around a ν-SOSP.

We now present three theorems corresponding to each of these cases. Our first result pertains to the
case B1 where the gradient of the iterate is large.
Theorem 1. Under the assumptions A1 and A3 with Lmax < 1

β , for any point xt with ∥∇f(xt)∥ ≥√
3ηcβσ2 where

√
3ηcβσ2 < ϵ, after one iteration, we have

E[f(xt+1)]− f(xt) ≤ −Ω̃(L2
max).

This theorem suggests that, for any iterate xt for which the gradient is large, the expected functional
value of the subsequent iterate f(xt+1) decreases, and the corresponding decrease E[f(xt+1)] −
f(xt) is in the order of Ω̃(L2

max). The formal proof for this theorem can be found in Appendix A.

The next theorem corresponds to the case B2 where the gradient is small and the Hessian is negative.
Theorem 2. Consider f satisfying Assumptions A1 - A5. Let {xt} be the SGD iterates of the
function f using PLRS. Let ∥∇f(x0)∥ ≤

√
3ηcβσ2 < ϵ and λmin(H(x0)) ≤ −γ where ϵ, γ > 0.

Then, there exists a T = Õ
(
L
−1/4
max

)
such that with probability at least 1− Õ

(
L
7/2
max

)
,

E[f(xT)− f(x0)] ≤ −Ω̃
(
L3/4
max

)
.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

The formal proof of this theorem is provided in Appendix C. The sketch of the proof is given below.

Proof Sketch This theorem shows that the iterates obtained using PLRS escape from a saddle point
x0 (where the gradient is small, and the Hessian has atleast one negative eigenvalue), i.e, it shows
the decrease in the expected value of the function f after T = Õ

(
L
−1/4
max

)
iterations. Note that for

a ρ−Hessian smooth function,

f(xT) ≤ f(x0) +∇f(x0)
T (xT − x0) +

1

2
(xT − x0)

T H(x0)(xT − x0) +
ρ

6
∥xT − x0∥3 . (9)

To evaluate E[f(xT) − f(x0)] from equation 9, we require an analytical expression for xT − x0,
which is not tractable. Hence, we employ the second-order Taylor approximation of the function
f , which we denote as f̃ . We then apply SGD-PLRS on f̃ to obtain x̃T . Following this, we write
xT − x0 = (xT − x̃T)+ (x̃T − x0) and derive expressions for upper bounds on x̃T − x0 and xT − x̃T
which hold with high probability in Lemmas 2 and 3, respectively (given in Appendix B.1 and B.2).

We split the quadratic term in equation 9 into two parts corresponding to x̃T − x0 and xT − x̃T . We
further decompose the term, say Y = (x̃T − x0)

T H(x0)(x̃T − x0) into its eigenvalue components
along each dimension with corresponding eigenvalues λ1, . . . , λd of H(x0). Our main result in
this theorem proves that the term Y dominates over all the other terms of equation 9, and that it
is bounded by a negative value, thereby, proving E[f(xT)] ≤ f(x0). This main result uses a two-
pronged proof. Firstly, we use our assumption that the initial iterate x0 is at a saddle point and hence
at least one of λi, 1 ≤ i ≤ d is negative. We formally show that the eigenvector corresponding
to this eigenvalue points to the direction of escape. Secondly, we use the second order statistics
of our noise, to show that the magnitude of Y is large enough to dominate over the other terms of
equation 9. Note that our noise term involves the stochasticity in the gradient and the probabilistic
learning rate. Hence, we have shown that the negative eigenvalue of the Hessian at a saddle point and
the unique characterization of the noise is sufficient to force a descent along the negative curvature
safely out of the region of the saddle point within T iterations.

As each SGD-PLRS update is noisy, we need to ensure that once we escape a saddle point and
move towards a local minimum (case B3), we do not overshoot the minimum but rather, stay in the
δ−neighborhood of an SOSP, with high probability. We formalize this in Theorem 3.

Theorem 3. Consider f satisfying the assumptions A1-A6. Let the initial iterate x0 be δ close to a
local minimum x∗ such that ∥x0 − x∗∥ ≤ Õ(

√
Lmax) < δ. With probability at least 1− ξ, ∀t ≤ T

where T = Õ
(

1
L2

max
log 1

ξ

)
,

∥xt − x∗∥ ≤ Õ

(√
Lmax log

1

Lmaxξ

)
< δ

This theorem deals with the case that the initial iterate x0 is δ-close to a local minimum x∗ (case B3).
We prove that the subsequent iterates are also in the same neighbourhood, i.e., δ close to the local
minimum, with high probability. In other words, we prove that the sequence {∥xt − x∗∥} is bounded
by δ for t ≤ T . In the neighbourhood of the local minimum, gradients are small and subsequently,
the change in iterates, xt − xt−1 are minute. Therefore, the iterates stay near the local minimum
with high probability. It is worth noting that the nature of the noise, which is comprised of stochastic
gradients (whose stochasticity is bounded by Q) multiplied with a bounded uniform random variable
(owing to PLRS), aids in proving our result. We provide the formal proof in Appendix D.

5 EMPIRICAL EVALUATION

We conduct extensive empirical evaluations across diverse modalities and tasks, including: (a) im-
age classification on benchmarks such as CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009), and
Tiny ImageNet (Le & Yang, 2015); (b) large-scale image classification on the ImageNet-1K dataset
(Russakovsky et al., 2015); (c) natural language processing tasks, comprising question answering
on SQuAD v1.1 (Rajpurkar et al., 2016) and machine translation on the IWSLT’14 dataset (Cettolo
et al., 2014); and (d) automatic speech recognition on the CommonVoice 11.0 (Ardila et al., 2020)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Hindi dataset. We compare with the following baseline learning rate schedulers wherever applica-
ble: (i) cosine annealing with warm restarts (Loshchilov & Hutter, 2017b), (ii) one-cycle scheduler
(Smith & Topin, 2019), (iii) knee scheduler (Iyer et al., 2023), (iv) constant learning rate and (v)
multi-step decay scheduler. We choose the parameters for these baseline schedulers as suggested in
the original papers (further details of parameters are provided in Appendix F).

Further, in order to compare our proposed PLRS against the noisy SGD mechanism proposed by
Ge et al. (Ge et al., 2015), we provide convergence results on the online tensor decomposition
problem using the code provided by the authors in Appendix I. We conduct all our experiments on
one NVIDIA GeForce RTX 2080 12GB GPU card and one NVIDIA A100 30GB GPU card.

Hyperparameter tuning To determine the parameters Lmin and Lmax for PLRS, we perform a
range test, where we observe the training loss for a range of learning rates as is done in state-of-
the-art LR schedulers such as one-cycle (Smith & Topin, 2019) and knee schedulers (Iyer et al.,
2023). As the learning rate is gradually increased, we first observe a steady decrease in the training
loss, then followed by a drastic increase. We note the learning rate at which there is an increase
of training loss, say L̄ and choose the maximum learning rate Lmax to be just below L̄, where the
loss is still decreasing. We then tune Lmin such that 0 < Lmin < Lmax. Note that there is no
extra tuning cost of Lmin and Lmax in comparison to state-of-the-art deterministic LR schedulers
since all LR schedulers such as cosine, knee, cyclic, require an LR range test to set the parame-
ters. Specifically, cosine LR scheduler requires the parameters minimum learning rate, frequency
of restarts and a multiplicative factor; cyclic LR scheduler requires a base learning rate, maximum
learning rate, mode of operation and the number of iterations to reach the maximum learning rate;
knee LR scheduler requires the peak learning rate, number of explore iterations and the number of
warmup iterations. In comparison, for our proposed probabilistic learning rate scheduler, we only
require Lmin and Lmax.

5.1 RESULTS ON IMAGE CLASSIFICATION TASKS

We run experiments for 500 epochs for the CIFAR datasets, for 100 epochs for the Tiny ImageNet
dataset, and for 60 epochs on the ImageNet-1K dataset using the SGD optimizer for all schedulers
2. We also set all other regularization parameters, such as weight decay and dampening, to zero. We
use a batch size of 64 for DenseNet-40-12, 50 for ResNet-50, and 128 for the others.

Scheduler VGG-16 WRN-28-10
Max acc. Mean acc. (S.D.) Max acc. Mean acc. (S.D.)

Cosine 96.87 96.09 (0.78) 92.03 91.90 (0.13)
Knee 96.87 96.35 (0.45) 92.04 91.64 (0.63)
One-cycle 90.62 89.06 (1.56) 87.76 87.37 (0.35)
Constant 96.09 96.06 (0.05) 92.04 92.00 (0.08)
Multi-step 92.97 92.45 (0.90) 88.94 88.80 (0.21)
PLRS (ours) 97.66 96.09 (1.56) 94.00 93.97 (0.07)

Table 1: Maximum and mean (with standard deviation) test accuracies over 3 runs for CIFAR-10.

Results on CIFAR-10 We consider VGG-16 (Simonyan & Zisserman, 2015) and WRN-28-10
(Zagoruyko & Komodakis, 2016) architectures for training CIFAR-10 and use Lmin = 0.07 and
Lmax = 0.1; and Lmin = 0.09 and Lmax = 0.1 respectively. We record the maximum and mean
test accuracies across different LR schedulers in Table 1. The highest accuracy across schedulers is
recorded in bold. For the VGG-16 network, we rank the highest in terms of maximum test accuracy.
In terms of the mean test accuracy over 3 runs, the knee scheduler outperforms the rest. Note that
the second highest mean test accuracy is achieved by both PLRS and the cosine annealing sched-
ulers. Unsurprisingly, the constant scheduler has the lowest standard deviation. In the WRN-28-10
network, PLRS ranks the highest both in terms of maximum and mean test accuracies, with a 1.96%
improvement over the state-of-the-art Knee and constant LR schedulers in maximum test accuracy
achieved. Further, we observe from the training loss plots that PLRS achieves fast convergence
when compared to other schedulers. We give the plots in Appendix G.1.

2We provide results without momentum to be consistent with our theoretical framework. When we used the
SGD optimizer with momentum for PLRS, we obtain results better than those reported without momentum.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Scheduler ResNet-110 DenseNet-40-10
Max acc. Mean acc. (S.D.) Max acc. Mean acc. (S.D.)

Cosine 74.22 72.66 (1.56) 64.34 64.10 (0.28)
Knee 75.78 72.39 (2.96) 65.18 64.83 (0.30)
One-cycle 71.09 70.05 (1.19) 64.21 59.21 (4.32)
Constant 69.53 66.67 (2.51) 64.8 64.49 (0.27)
Multi-step 63.28 61.20 (2.39) 29.14 29.01 (0.17)
PLRS (ours) 77.34 74.61 (2.95) 65.92 65.57 (0.31)

Table 2: Maximum and mean (with standard deviation) test accuracies over 3 runs for CIFAR-100.

Tiny ImageNet
Scheduler Max acc. Mean acc. (S.D)

Cosine 62.13 62.03 (0.15)
Knee 61.93 61.50 (0.42)

One-cycle 52.24 51.99 (0.22)
Constant 61.59 61.11 (0.42)

Multi-step 61.28 61.20 (0.08)
PLRS (ours) 62.34 61.90 (0.73)

ImageNet-1K
Scheduler Top-1 acc. Top-5 acc.

Baseline (Knee) 65.21 85.78
PLRS (ours) 68.01 88.08

Table 3: Maximum and mean (with standard de-
viation) test accuracies over 3 runs for Tiny Im-
ageNet; top-1 and top-5 accuracy for ImageNet-
1K.

0 20 40 60 80 100
Epochs

0

1

2

3

4

5

Tr
ai

n
lo

ss

Constant
Cosine
Multi-step
One-cycle
Knee
PLRS

Figure 1: Training loss vs epochs for ResNet-50
with Tiny ImageNet.

Results on CIFAR-100 For training CIFAR-100, we consider the networks ResNet-110 (He et al.,
2016) and DenseNet-40-12 (Huang et al., 2017), and use Lmin = 0.07 and Lmax = 0.1 for the
former, and Lmin = 0.1 and Lmax = 0.2 for the latter. The maximum and the mean test ac-
curacies (with standard deviation) across 3 runs are provided in Table 2. For both ResNet-110 and
DenseNet-40-12 networks, PLRS consistently outperforms all the other LR schedulers both in terms
of maximum and mean test accuracies. Furthermore, from the training loss plots which are provided
in Appendix G.2, PLRS converges faster than the other LR schedulers to a low train loss value. It
does not have spikes (like the cosine LR scheduler), but converges in a smooth fashion to a low
value.

Results on Tiny ImageNet We consider the Resnet-50 (He et al., 2016) architecture for training
Tiny ImageNet and use Lmin = 0.35 and Lmax = 0.4. We present the maximum and mean test
accuracies in Table 3. We provide the plot of training loss in Figure 1. PLRS performs the best
in terms of maximum test accuracy. In terms of mean test accuracy, it ranks second next to cosine
annealing by a close margin. It can be observed that PLRS achieves the fastest convergence to the
lowest training loss compared to others. Moreover, it exhibits stable convergence, especially when
compared cosine annealing, which experiences multiple spikes due to warm restarts.

Results on ImageNet-1K We train on the ImageNet-1K (Russakovsky et al., 2015) dataset for 60
epochs with the ResNet-50 architecture using the SGD optimizer without momentum or weight
decay. With Lmin value of 0.05 and Lmax value of 0.11, and a batch size of 256, we achieve top-
1 accuracy of 68.01, considerably outperforming the knee LR scheduler by 2.79% under similar
settings as observed from Table 3.

Sensitivity analysis In order to determine how sensitive the maximum test accuracy is to the
choice of Lmin and Lmax, we conducted a hyper parameter sweep across a range of values for
Lmin (0.01,0.03,0.05,0.07, 0.09) and Lmax (0.1, 0.2,0.3,0.4,0.5) for WRN-28-10 on the CIFAR-10
dataset, with the maximum test accuracy as the metric of interest. The average value obtained was
93.42 with a standard deviation of 0.47 and an inter-quartile range of 0.385, indicating that the val-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Scheduler F1 score EM
Baseline 88.66 (0.032) 81.38 (0.02)

PLRS 87.55 (0.117) 79.775 (0.152)

Table 4: F1 score and Exact matches (EM) for
SQuAD v1.1 dataset trained on BERT for 2
epochs, averaged over 3 runs.

Scheduler BLEU Eval ppl.
Baseline 35.53 (0.06) 4.86 (0.02)

PLRS 35.37 (0.125) 4.83 (0.02)

Table 5: BLEU scores and evaluation per-
plexity comparison for IWSLT’14 trained
on Transformer averaged over 3 runs.

ues are not spread out. Specifically, we obtain the maximum test accuracy value around 93% with
multiple combinations of (Lmin, Lmax) such as (0.01, 0.1), (0.01, 0.2), (0.01, 0.3), etc. Hence, the
maximum test accuracy is relatively insensitive to Lmin and Lmax and tuning them, while recom-
mended, may not be critical. We give detailed results of the sensitivity analysis for WRN-28-10 on
CIFAR-10 as well as for DenseNet-40-12 on CIFAR-100 in Tables 6 and 7 of Appendix H.

5.2 RESULTS ON NLP TASKS

Results on SQuAD v1.1 We finetune the pretrained BERT model (Devlin et al., 2019) on the
SQuAD v1.1 dataset (Rajpurkar et al., 2016), which is a question-answer dataset. Using the AdamW
optimizer (Loshchilov & Hutter, 2017a) with momentum parameters β1 and β2 set as 0.9 and 0.999
respectively, with all other parameters set as in Iyer et al. (2023), we obtain comparable values of
F1-scores and exact matches (EM) to the state-of-the-art knee LR scheduler. With Lmin and Lmax

values of 2e-5 and 3e-5, respectively, we give our result with baseline comparison in Table 4 after 2
epochs of training.

Results on IWSLT’14 Experiments are conducted on the IWSLT’14 (DE-EN) dataset (Cettolo
et al., 2014), which is a German to English machine translation dataset with the Transformer model
(Vaswani et al., 2017). The transformer was trained with the AdamW optimizer with zero norm
clipping, β1 and β2 values of 0.9 and 0.999 respectively, 0.3 dropout and 1e-4 weight decay for 50
epochs. With Lmin and Lmax values of 1.5e-4 and 4.5e-4, respectively, we perform competitively
with the state-of-the-art knee LR scheduler as observed from Table 5.

5.3 RESULTS ON SPEECH RECOGNITION TASK

In order to evaluate our LR scheduler in the application of Automatic Speech Recognition, we
finetune the Whisper-small (Radford et al., 2023) model on the CommonVoice 11.0 Hindi dataset
(Ardila et al., 2020). We choose Hindi as it is the third most spoken language in the world 3. The
Whisper model is finetuned for a total of 5000 steps with training and evaluation batch sizes as
8, AdamW optimizer with β1 and β2 ad 0.9 and 0.999, and weight decay of 0.01 as per standard
settings (Radford et al., 2023). We outperform the two LR schedulers with state-of-the-art results
in Whisper finetuning, namely, linear decay (Radford et al., 2023) and cosine decay schedulers
(Sharma et al., 2025), both starting with a base learning rate of 1e-5. We set Lmin and Lmax as 1e-6
and 1e-5 respectively. With PLRS, we obtain a word error rate (WER) of 16.10(0.0002), which
is the mean (with standard deviation) of 3 runs, while we obtain a WER of 16.29(0.0015) and
16.35(0.0014) for the cosine and linear decay schedulers, respectively, outperforming them.

6 CONCLUDING REMARKS

We have proposed the novel idea of a probabilistic LR scheduler. The probabilistic nature of the
scheduler helped us provide the first theoretical convergence proofs for SGD using LR schedulers.
In our opinion, this is a significant step in the right direction to bridge the gap between theory and
practice in the LR scheduler domain. Our empirical results show that our proposed LR scheduler
performs competitively with the state-of-the-art cyclic schedulers, if not better, on a variety of image
classification datasets, as well as natural language processing and speech recognition applications.
This leads us to hypothesize that the proposed probabilistic LR scheduler acts as a super-class of LR
schedulers encompassing both probabilistic and deterministic schedulers. Future research directions
include further exploration of this hypothesis.

3https://www.icls.edu/blog/most-spoken-languages-in-the-world

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 REPRODUCIBILITY STATEMENT

For reproducibility, we provide the code as part of the supplementary material. Section 5 details the
hyperparameters of our proposed learning rate scheduler, while Appendix F lists the hyperparame-
ters used to obtain the baseline results. Additional information regarding the model architecture and
training parameters is also provided in Section 5.

REFERENCES

Maksym Andriushchenko and Nicolas Flammarion. Understanding and improving fast adversarial
training. In Advances in Neural Information Processing Systems, volume 33, pp. 16048–16059,
2020.

Rosana Ardila, Megan Branson, Kelly Davis, Michael Kohler, Josh Meyer, Michael Henretty,
Reuben Morais, Lindsay Saunders, Francis Tyers, and Gregor Weber. Common voice: A
massively-multilingual speech corpus. In Proceedings of the Twelfth Language Resources and
Evaluation Conference, pp. 4218–4222, 2020.

Yossi Arjevani, Yair Carmon, John C Duchi, Dylan J Foster, Nathan Srebro, and Blake Woodworth.
Lower bounds for non-convex stochastic optimization. Mathematical Programming, 199(1):165–
214, 2023.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. Journal of
machine learning research, 13(2):281–305, 2012.

James Bergstra, Daniel Yamins, and David Cox. Making a science of model search: Hyperparameter
optimization in hundreds of dimensions for vision architectures. In International conference on
machine learning, pp. 115–123, 2013.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 9650–9660, 2021.

Mauro Cettolo, Jan Niehues, Sebastian Stüker, Luisa Bentivogli, and Marcello Federico. Report on
the 11th iwslt evaluation campaign. In Proceedings of the 11th International Workshop on Spoken
Language Translation: Evaluation Campaign, pp. 2–17, 2014.

Yann N Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli, and Yoshua
Bengio. Identifying and attacking the saddle point problem in high-dimensional non-convex op-
timization. In Advances in neural information processing systems, volume 27, pp. 2933–2941,
2014.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pp. 4171–4186, 2019.

Guneet Singh Dhillon, Pratik Chaudhari, Avinash Ravichandran, and Stefano Soatto. A baseline for
few-shot image classification. In International Conference on Learning Representations, 2020.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7):2121–2159, 2011.

Rong Ge, Furong Huang, Chi Jin, and Yang Yuan. Escaping from saddle points: Online stochastic
gradient for tensor decomposition. Journal of Machine Learning Research, 40:1–46, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Wassily Hoeffding. Probability inequalities for sums of bounded random variables. The collected
works of Wassily Hoeffding, pp. 409–426, 1994.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for text classification.
In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, pp.
328–339, Melbourne, Australia, 2018.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4700–4708, 2017.

Nikhil Iyer, V Thejas, Nipun Kwatra, Ramachandran Ramjee, and Muthian Sivathanu. Wide-minima
density hypothesis and the explore-exploit learning rate schedule. Journal of Machine Learning
Research, 24(65):1–37, 2023.

Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M Kakade, and Michael I Jordan. How to escape saddle
points efficiently. In International conference on machine learning, pp. 1724–1732. PMLR, 2017.

Chi Jin, Praneeth Netrapalli, Rong Ge, Sham M. Kakade, and Michael I. Jordan. On nonconvex
optimization for machine learning: Gradients, stochasticity, and saddle points. Journal of the
Association for Computing Machinery, 68(2):1–29, 2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Technical Report TR-2009, University of Toronto, Toronto, ON, Canada, 2009.

Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. [Online]. Available:
https://tinyimagenet.herokuapp.com, 2015.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2017a.

Ilya Loshchilov and Frank Hutter. SGDR: stochastic gradient descent with warm restarts. In 5th
International Conference on Learning Representations, 2017b.

Yurii Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Springer Publishing
Company, Incorporated, 2014.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever.
Robust speech recognition via large-scale weak supervision. In International conference on ma-
chine learning, pp. 28492–28518. PMLR, 2023.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions for
machine comprehension of text. In Proceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing. Association for Computational Linguistics, 2016.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision
(IJCV), 115(3):211–252, 2015.

Avinash Kumar Sharma, Manas Pandya, and Arpit Shukla. Fine-tuning whisper tiny for swahili
asr: Challenges and recommendations for low-resource speech recognition. In Proceedings of the
Sixth Workshop on African Natural Language Processing (AfricaNLP 2025), pp. 74–81, 2025.

K Simonyan and A Zisserman. Very deep convolutional networks for large-scale image recognition.
In 3rd International Conference on Learning Representations, 2015.

Leslie N Smith. Cyclical learning rates for training neural networks. In 2017 IEEE winter conference
on applications of computer vision, pp. 464–472, 2017.

Leslie N Smith and Nicholay Topin. Super-convergence: Very fast training of neural networks using
large learning rates. In Artificial intelligence and machine learning for multi-domain operations
applications, volume 11006, pp. 369–386, 2019.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1–9, 2015.

Thulasi Tholeti and Sheetal Kalyani. Tune smarter not harder: A principled approach to tuning
learning rates for shallow nets. IEEE Transactions on Signal Processing, 68:5063–5078, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Daniel Yiming Cao, August Y Chen, Karthik Sridharan, and Benjamin Tang. Efficiently escap-
ing saddle points under generalized smoothness via self-bounding regularity. arXiv e-prints, pp.
arXiv–2503, 2025.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In British Machine Vision
Conference 2016. British Machine Vision Association, 2016.

Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and Ming-
Hsuan Yang. Restormer: Efficient transformer for high-resolution image restoration. In Proceed-
ings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 5728–5739,
2022.

Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701,
2012.

Jingfeng Zhang, Bo Han, Laura Wynter, Bryan Kian Hsiang Low, and Mohan Kankanhalli. To-
wards robust resnet: a small step but a giant leap. In Proceedings of the 28th International Joint
Conference on Artificial Intelligence, pp. 4285–4291, 2019.

Yuchen Zhang, Percy Liang, and Moses Charikar. A hitting time analysis of stochastic gradient
langevin dynamics. In Conference on Learning Theory, pp. 1980–2022. PMLR, 2017.

Pan Zhou, Jiashi Feng, Chao Ma, Caiming Xiong, Steven Hoi, and E. Weinan. Towards theoretically
understanding why sgd generalizes better than adam in deep learning. In Advances in Neural
Information Processing Systems, pp. 16048–16059, 2020.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Appendix

A PROOF OF THEOREM 1

Theorem 4 (Theorem 1 restated). Under the assumptions A1 and A3 with Lmax < 1
β , for any point

xt with ∥∇f(xt)∥ ≥
√
3ηcβσ2 where

√
3ηcβσ2 < ϵ (satisfying B1), after one iteration we have,

E[f(xt+1)]− f(xt) ≤ −Ω̃(L2
max).

Proof. Using the second order Taylor series approximation for f(xt+1) around xt, where xt+1 =
xt − ηc∇f(xt)−wt, we have

f(xt+1)− f(xt) ≤ ∇f(xt)
T (xt+1 − xt) +

β

2
∥xt+1 − xt∥2 ,

following the result from (Nesterov, 2014, Lemma 1.2.3). Taking expectation w.r.t. wt,

E[f(xt+1)]− f(xt) ≤ ∇f(xt)
TE[xt+1 − xt] +

β

2
E[∥xt+1 − xt∥2]

= ∇f(xt)
TE[−ηc∇f(xt)−wt] +

β

2
E[∥−ηc∇f(xt)−wt∥2]

= −ηc ∥∇f(xt)∥2 +
β

2
E[η2c ∥∇f(xt)∥2 + ∥wt∥2],

(10)

since E[wt] = 0 due to the zero mean property in Lemma 1. We focus on the last term in the next
steps. Expanding ∥wt∥2,

∥wt∥2 = (ηcg(xt)− ηc∇f(xt) + ut+1g(xt))
T (ηcg(xt)− ηc∇f(xt) + ut+1g(xt))

= η2c ∥g(xt)∥2 − η2cg(xt)
T∇f(xt) + ηcut+1 ∥g(xt)∥2 − η2c∇f(xt)

T g(xt) + η2c ∥∇f(xt∥2

− ηcut+1∇f(xt)
T g(xt) + ηcut+1 ∥g(xt)∥2 − ηcut+1g(xt)

T∇f(xt) + u2
t+1 ∥g(xt)∥2 .

Taking expectation with respect to xt and noting that E[ut+1] = 0 and E[g(xt)] = ∇f(xt),4

E[∥wt∥2] = η2cE[∥g(xt)∥2]− η2c ∥∇f(xt)∥2 + E[u2
t+1]E[∥g(xt)∥2]. (11)

Now, as per assumption A3,

∥g(xt)−∇f(xt)∥2 ≤ Q2

∥g(xt)∥2 + ∥∇f(xt)∥2 − 2g(xt)
T∇f(xt) ≤ Q2

∥g(xt)∥2 ≤ Q2 − ∥∇f(xt)∥2 + 2g(xt)
T∇f(xt)

E[∥g(xt)∥2] ≤ E[Q2]− ∥∇f(xt)∥2 + 2 ∥∇f(xt)∥2 ≤ σ2 + ∥∇f(xt)∥2 , (12)

as E[Q2] ≤ σ2. Applying equation 12 to equation 11,

E[∥wt∥2] ≤ η2cσ
2 + η2c ∥∇f(xt)∥2 − η2c ∥∇f(xt)∥2 + E[u2

t+1]σ
2 + E[u2

t+1] ∥∇f(xt)∥2

= η2cσ
2 + E[u2

t+1]σ
2 + E[u2

t+1] ∥∇f(xt)∥2

= η2cσ
2 +

(Lmax − Lmin)
2σ2

12
+

(Lmax − Lmin)
2 ∥∇f(x0)∥2

12
,

(13)

4Note that there are two random variables in wt which are the stochastic gradient g(xt) and the uniformly
distributed LR ut+1 due to our proposed LR scheduler. Hence, the expectation is with respect to both these
variables. Also note that ut+1 and g(xt) are independent of each other.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

since the second moment of a uniformly distributed random variable in the interval [Lmin −
ηc, Lmax − ηc] is given by (Lmax−Lmin)

2

12 . Using equation 13 in equation 10 and ηc =
Lmin+Lmax

2 ,

E[f(xt+1)]− f(xt) ≤ −ηc ∥∇f(xt)∥2 +
β

2
η2c ∥∇f(xt)∥2 +

βη2cσ
2

2
+

β(Lmax − Lmin)
2σ2

24

+
β(Lmax − Lmin)

2 ∥∇f(xt)∥2

24

≤ −ηc ∥∇f(xt)∥2 +
β

2
η2c ∥∇f(xt)∥2 +

βη2cσ
2

2
+

βη2cσ
2

6
+

βη2c ∥∇f(x0)∥2

6

= −∥∇f(xt)∥2
(
ηc −

2βη2c
3

)
+

2βη2cσ
2

3

Now, applying our initial assumption that ∥∇f(xt)∥ ≥
√
3ηcβσ2, we have,

E[f(xt+1)]− f(xt) ≤ −3ηcβσ
2

(
ηc −

2βη2c
3

)
+

2βη2cσ
2

3
= −3η2cβσ

2 +
6β2η3cσ

2

3
+

2βη2cσ
2

3

Since Lmax < 1
β and ηc =

Lmin+Lmax

2 , we have ηcβ < Lmaxβ < 1. Finally,

E[f(xt+1)]− f(xt) ≤ −3η2cβσ
2 +

6βη2cσ
2

3
+

2βη2cσ
2

3
= −βη2cσ

2

3

= −Ω̃(η2c),

which proves the theorem.

B ADDITIONAL RESULTS NEEDED TO PROVE THEOREM 2

Here, we state and prove two lemmas that are instrumental in the proof of Theorem 2.

B.1 PROOF OF LEMMA 2

In the following Lemma, we prove that the gradients of a second order approximation of f are
probabilistically bounded for all t ≤ T and its iterates as we apply SGD-PLRS are also bounded
when the initial iterate x0 is a saddle point.

Lemma 2. Let f satisfy Assumptions A1 - A4. Let f̃ be the second order Taylor approximation of
f and let x̃t be the iterate at time step t obtained using the SGD update equation as in equation 3
on f̃ ; let x̃0 = x0, ∥∇f(x0)∥ ≤ ϵ and the minimum eigenvalue of the Hessian of f at x0 be
λmin(H(x0)) = −γo where γo > 0. With probability at least 1− Õ(L

15/4
max), we have∥∥∥∇f̃(x̃t)

∥∥∥ ≤ Õ

(
1

L0.5
max

)
, ∥x̃t − x0∥ ≤ Õ

(
L3/8
max log

(
1

Lmax

))
∀t ≤ T = Õ

(
L−1/4
max

)
.

Proof. As f̃ is the second order Taylor series approximation of f , we have

f̃(x̃) = f(x0) +∇f(x0)
T (x̃ − x0) +

1

2
(x̃ − x0)

T H(x0)(x̃ − x0).

Taking derivative w.r.t. x̃, we have ∇f̃(x̃) = ∇f(x0)+H(x0)(x̃− x0). Now, note that ∇f̃(x̃t−1) =
∇f(x0) + H(x0)(x̃t−1 − x0) = K(x0) + H(x0)x̃t−1, where K(x0) = ∇f(x0) − H(x0)x0 =

∇f̃(x̃t−1)− H(x0)x̃t−1. Therefore,

∇f̃(x̃t) = K(x0) + H(x0)x̃t = ∇f̃(x̃t−1)− H(x0)x̃t−1 + H(x0)x̃t
= ∇f̃(x̃t−1) + H(x0)(x̃t − x̃t−1).

(14)

Next, using the SGD-PLRS update and rearranging,

∇f̃(x̃t) = ∇f̃(x̃t−1)− H(x0)(ηc∇f̃(x̃t−1) + w̃t−1)

= (I − ηcH(x0))∇f̃(x̃t−1)− H(x0)w̃t−1,
(15)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

where I denotes the d× d identity matrix. Next, unrolling the term ∇f̃(x̃t−1) recursively,

∇f̃(x̃t) = (I − ηcH(x0))t∇f̃(x̃0)− H(x0)

t−1∑
τ=0

(I − ηcH(x0))
t−τ−1w̃τ . (16)

Using the triangle and Cauchy-Schwartz inequalities,∥∥∥∇f̃(x̃t)
∥∥∥ ≤

∥∥∥(I − ηcH(x0))t∇f̃(x̃0)
∥∥∥+ ∥∥∥∥∥H(x0)

t−1∑
τ=0

(I − ηcH(x0))
t−τ−1w̃τ

∥∥∥∥∥
≤
∥∥(I − ηcH(x0))t

∥∥ ∥∥∥∇f̃(x̃0)
∥∥∥+ ∥H(x0)∥

∥∥∥∥∥
t−1∑
τ=0

(I − ηcH(x0))t−τ−1w̃τ

∥∥∥∥∥
(17)

Note that the norm over the matrices refers to the matrix-induced norm. Since H(x0) is a real
symmetric matrix, the induced norm gives the maximum eigenvalue of H(x0) i.e, λmax(H(x0)) ≤
β by our β-smoothness assumption A1. In the case of (I − ηcH(x0)) the induced norm gives
(1 − ηcλmin(H(x0)) which is (1 + ηcγo) as per our assumption that λmin(H(x0)) = −γo. Also
recall that

∥∥∥∇f̃(x̃0)
∥∥∥ ≤ ϵ. Now equation 17 becomes,

∥∥∥∇f̃(x̃t)
∥∥∥ ≤ (1 + ηcγo)

tϵ+ β

∥∥∥∥∥
t−1∑
τ=0

(I − ηcH(x0))
t−τ−1w̃τ

∥∥∥∥∥ ,
≤ (1 + ηcγo)

tϵ+ β

t−1∑
τ=0

(1 + ηcγo)
t−τ−1 ∥w̃τ∥ .

(18)

Now, expanding the noise term w̃τ ,∥∥∥∇f̃(x̃t)
∥∥∥ = (1 + ηcγo)

tϵ+ β

t−1∑
τ=0

(1 + ηcγo)
t−τ−1

∥∥∥ηcg̃(x̃τ)− ηc∇f̃(x̃τ) + uτ+1g̃(x̃τ)
∥∥∥

Now recall from our assumption A3 that
∥∥∥g̃(x̃τ)−∇f̃(x̃τ)

∥∥∥ ≤ Q̃. Hence,

∥∥∥∇f̃(x̃t)
∥∥∥ ≤ (1 + ηcγo)

tϵ+ β

t−1∑
τ=0

(1 + ηcγo)
t−τ−1

(
ηcQ̃+ |uτ+1|

∥∥∥g̃(x̃τ)−∇f̃(x̃τ) +∇f̃(x̃τ)
∥∥∥)

≤ (1 + ηcγo)
tϵ+ β

t−1∑
τ=0

(1 + ηcγo)
t−τ−1

(
ηcQ̃+ |uτ+1|

(
Q̃+

∥∥∥∇f̃(x̃τ)
∥∥∥))

Using
∥∥∥∇f̃(x̃0)

∥∥∥ ≤ ϵ and
∥∥∥∇f̃(x̃1)

∥∥∥ ≤ (1 + ηcγo)ϵ + ϵ + 2Q̃, it can be proved by induction that
the general expression for t ≥ 2 is given by,

∥∥∥∇f̃(x̃t)
∥∥∥ ≤ 10Q̃

t(t−1)
2∑

τ=0

(1 + ηcγo)
τ (19)

We give the proof of equation 19 by induction in Appendix E. Next, we prove the bound on x̃t − x̃0.
Using the SGD-PLRS update,

x̃t − x̃0 = −
t−1∑
τ=0

(
ηc∇f̃(x̃τ) + w̃τ

)

= −
t−1∑
τ=0

ηc

(I − ηcH(x0))
τ∇f̃(x̃0)− H(x0)

τ−1∑
τ ′=0

(I − ηcH(x0))τ−τ
′
−1w̃τ ′

+ w̃τ

 (20a)

= −
t−1∑
τ=0

ηc(I − ηcH(x0))
τ∇f(x0)−

t−1∑
τ=0

(I − ηcH(x0))t−τ−1w̃τ , (20b)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

where the equation equation 20a is obtained by using equation 16. We obtain equation 20b by using
the summation of geometric series as H(x0) is invertible by the strict saddle property. As x̃0 = x0,
we can write ∇f̃(x̃0) = ∇f(x0). Taking norm,

∥x̃t − x̃0∥ ≤

∥∥∥∥∥
t−1∑
τ=0

ηc(I − ηcH(x0))τ∇f(x0)

∥∥∥∥∥+
∥∥∥∥∥
t−1∑
τ=0

(I − ηcH(x0))
t−τ−1w̃τ

∥∥∥∥∥
≤

t−1∑
τ=0

∥ηc(I − ηcH(x0))
τ∇f(x0)∥+

t−1∑
τ=0

∥∥(I − ηcH(x0))
t−τ−1w̃τ

∥∥
≤ ηcϵ

t−1∑
τ=0

(1 + ηcγo)
τ +

t−1∑
τ=0

(1 + ηcγo)
t−τ−1 ∥w̃τ∥ .

(21)

In equation 21, it can be seen that the first term is arbitrarily small by the initial assumption and that
the second term decides the order of ∥x̃t − x̃0∥. Hence, in order to bound ∥x̃t − x̃0∥ probabilistically,
it is sufficient to bound the second term,

∑t−1
τ=0(1 + ηcγo)

t−τ−1 ∥w̃τ∥. Now,
t−1∑
τ=0

(1 + ηcγo)
t−τ−1 ∥w̃τ∥ =

t−1∑
τ=0

(1 + ηcγo)
t−τ−1

∥∥∥ηcg̃(x̃τ)− ηc∇f̃(x̃τ) + uτ+1g̃(x̃τ)
∥∥∥

=

t−1∑
τ=0

(1 + ηcγo)
t−τ−1

(
ηcQ̃+ |uτ+1|

∥∥∥g̃(x̃τ)−∇f̃(x̃τ) +∇f̃(x̃τ)
∥∥∥)

=

t−1∑
τ=0

(1 + ηcγo)
t−τ−1Q̃ (ηc + |uτ+1|) +

t−1∑
τ=0

(1 + ηcγo)
t−τ−1 |uτ+1|

∥∥∥∇f̃(x̃τ)
∥∥∥

Now, using
∥∥∥∇f̃(x̃0)

∥∥∥ ≤ ϵ,
∥∥∥∇f̃(x̃1)

∥∥∥ ≤ (1 + ηcγo)ϵ+ ϵ+ 2Q̃ and equation 19 we write,

t−1∑
τ=0

(1 + ηcγo)
t−τ−1 ∥w̃τ∥ ≤

t−1∑
τ=0

(1 + ηcγo)
t−τ−1Q̃ (ηc + |uτ+1|) + (1 + ηcγo)

t−1 |u1| ϵ+

(1 + ηcγo)
t−2 |u2|

(
(1 + ηcγo)ϵ+ ϵ+ 2Q̃

)
+

t−1∑
τ=2

(1 + ηcγo)
t−τ−1 |uτ+1| 10Q̃

τ(τ−1)
2∑

τ ′=0

(1 + ηcγo)
τ
′

(22)
It can be observed from equation 22 that the last term dominates the expression of and hence, it
determines the order of ∥x̃t − x̃0∥. We now apply Hoeffding’s inequality to derive a probabilistic
bound on ∥x̃t − x̃0∥. According to Hoeffding’s inequality for any summation Sn = X1 + · · · +
Xn such that ai ≤ Xi ≤ bi, P (Sn − E[Sn] ≥ δ) ≤ exp

(
−2δ2∑n

i=1(bi−ai)2

)
. Now, setting T =

Õ
(
L
−1/4
max

)
from equation 41 and assuming ηc ≤ ηmax ≤

√
2−1
γ′ , γo ≤ γ

′
, the squared bound

of the summation
∑t−1

τ=2(1 + ηcγo)
t−τ−1 |uτ+1| 10Q̃

∑ τ(τ−1)
2

τ ′=0
(1 + ηcγo)

τ
′

≤ Õ
(
L
3/4
max

)
, Setting

δ = Õ

(√
L
3/4
max log

(
1

Lmax

))
, for some t ≤ T ,

P

t−1∑
τ=2

(1 + ηcγo)
t−τ−1 |uτ+1| 10Q̃

τ(τ−1)
2∑

τ ′=0

(1 + ηcγo)
τ
′

≥ Õ

(
L3/8
max log

(
1

Lmax

))
≤ Õ(L4

max).

Taking the union bound over all t ≤ T ,

P

∀t ≤ T,

t−1∑
τ=2

(1 + ηcγo)
t−τ−1 |uτ+1| 10Q̃

τ(τ−1)
2∑

τ ′=0

(1 + ηcγo)
τ
′

≥ Õ

(
L3/8
max log

(
1

Lmax

))
≤ Õ

(
L15/4
max

)
,

which completes our proof.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

B.2 PROOF OF LEMMA 3

This lemma is used to derive an expression for a high probability upper bound of ∥xt − x̃t∥ and∥∥∥∇f(xt)−∇f̃(x̃t)
∥∥∥.

Lemma 3. Let f : Rd → R satisfy Assumptions A1 - A4. Let f̃ be the second order Taylor’s
approximation of f and let xt, x̃t be the iterates at time step t obtained using the SGD-PLRS update
on f , f̃ respectively; let x̃0 = x0 and ∥∇f(x0)∥ ≤ ϵ. Let the minimum eigenvalue of the Hessian at

x0 be λmin(∇2(f(x0))) = −γo, where γo > 0. Then ∀t ≤ T = O
(
L
−1/4
max

)
, with a probability of

at least 1− Õ(L
7/2
max),

∥xt − x̃t∥ ≤ O
(
L3/4
max

)
and

∥∥∥∇f(xt)−∇f̃(x̃t)
∥∥∥ ≤ O

(
L3/8
max log

1

Lmax

)
.

Proof. The expression for xt − x̃t can be written as,

xt − x̃t = (xt − x0)− (x̃t − x0)

= −
t−1∑
τ=0

(
ηc∇f(xτ) + wτ

)
−

(
−

t−1∑
τ=0

(
ηc∇f̃(x̃τ) + w̃τ

))
= −

t−1∑
τ=0

(ηc∆τ + (wτ − w̃τ)) .

(23)
where we define ∆t = ∇f(xt)−∇f̃(x̃t). Now in order to bound ∥xt − x̃t∥, we derive expressions
for both wτ − w̃τ and ∆τ . We initially focus on the term wτ − w̃τ .

wτ − w̃τ = ηcg(xτ)− ηc∇fτ + uτ+1g(xτ)−
(
ηcg̃(x̃τ)− ηc∇f̃(x̃τ) + uτ+1g̃(x̃τ)

)
= (uτ+1 + ηc)

((
g(xτ)−∇f(xτ)

)
−
(
g̃(x̃τ)−∇f̃(x̃τ)

))
+ uτ+1∆τ .

(24)

Taking norm on both sides,

∥wτ − w̃τ∥ ≤ |uτ+1 + ηc|
(
Q+ Q̃

)
+ |uτ+1| ∥∆τ∥ (25)

Using equation 24 and equation 25 in equation 23, and assumption A3 that stochastic noise is
bounded, and applying norm,

∥xt − x̃t∥ =

∥∥∥∥∥−
t−1∑
τ=0

(ηc∆τ + (wτ − w̃τ))

∥∥∥∥∥ ≤
t−1∑
τ=0

∥ηc∆τ + (wτ − w̃τ)∥

≤
t−1∑
τ=0

(ηc + |uτ+1|)
(
∥∆τ∥+Q+ Q̃

) (26)

Next, we focus on providing a bound for ∥∆t∥. Recall that ∆t = ∇f(xt) −∇f̃(x̃t). The gradient
can be written as (Nesterov, 2014),

∇f(xt) = ∇f(xt−1) + (xt − xt−1)

(∫ 1

0

H(xt−1 + v(xt − xt−1))dv

)
= ∇f(xt−1) + (xt − xt−1)

(∫ 1

0

(
H(xt−1 + v(xt − xt−1)) + H(xt−1)− H(xt−1)

)
dv

)
= ∇f(xt−1) + H(xt−1)(xt − xt−1) + θt−1,

where θt−1 =
(∫ 1

0

(
H(xt−1 + v(xt − xt−1))− H(xt−1)

)
dv
)
(xt − xt−1). Let H

′

t−1 = H(xt−1)−
H(x0). Using the SGD-PLRS update,

∇f(xt) = ∇f(xt−1)− (H
′

t−1 + H(x0))(ηc∇f(xt−1) + wt−1) + θt−1

= ∇f(xt−1)(I − ηcH(x0))− H(x0)wt−1 − ηcH
′

t−1∇f(xt−1)−H
′

t−1wt−1 + θt−1,
(27)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

From equation 14 in the proof of Lemma 2,

∇f̃(x̃t) = ∇f̃(x̃t−1) + H(x0)(x̃t − x̃t−1). (28)

Subtracting equation 28 from equation 27, we obtain ∆t as,

∆t = ∇f(xt−1)(I − ηcH(x0))− H(x0)wt−1 − ηcH
′

t−1∇f(xt−1)−H
′

t−1wt−1 + θt−1

−∇f̃(x̃t−1)− H(x0)(x̃t − x̃t−1)

= (I − ηcH(x0))∆t−1 − H(x0) (wt−1 − w̃t−1)−H
′

t−1

(
ηc∆t−1 + ηc∇f̃(x̃t−1)

)
−H

′

t−1wt−1 + θt−1,
(29)

We now have an expression for ∆t. However, the derived expression is recursive and contains ∆t−1.
We focus on eliminating the recursive dependence and obtain a stand-alone bound for ∥∆t∥ ∀t ≤ T .
Now, we bound each of the five terms (we term them T1, · · · , T5) of equation 29. First, let us define
the events,

Rt =

{
∀τ ≤ t,

∥∥∥∇f̃(x̃τ)
∥∥∥ ≤ Õ

(
1√
Lmax

)
, ∥x̃τ − x0∥ ≤ Õ

(
L3/8
max log

(
1

Lmax

))}
Ct =

{
∀τ ≤ t, ∥∆τ∥ ≤ µL3/8

max log

(
1

Lmax

)}
.

It can be seen that Rt ⊂ Rt−1 and Ct ⊂ Ct−1. Note that, from Lemma 2, we know the probabilistic
characterization of Rt. We comment on the parameter µ later in the proof. Now, we derive bounds
for each term of ∆t conditioned on the event Rt−1 ∩ Ct−1 for time t ≤ T = O

(
L
−1/4
max

)
.

T1 : ∥(I − ηcH(x0))∆t−1∥ ≤ ∥∆t−1∥+ ∥−ηcH(x0)∆t−1∥

≤ µL3/8
max log

(
1

Lmax

)
+ Õ

(
µL11/8

max log

(
1

Lmax

))
= Õ

(
µL3/8

max log

(
1

Lmax

))
,

(30)

where equation 30 follows from the definition of event Ct−1. Note that the first term in equation 30
governs the order of the expression (as 0 ≤ Lmax ≤ 1).

T2 : ∥H(x0) (wt−1 − w̃t−1)∥ ≤ ∥H(x0)∥ ∥wt−1 − w̃t−1∥

≤ ∥H(x0)∥
(
|uτ+1 + ηc|

(
Q+ Q̃

)
+ |uτ+1| ∥∆τ∥

)
≤ Õ(Lmax) + Õ

(
µL11/8

max log

(
1

Lmax

))
= Õ(Lmax),

where the substitution follows from equation 25. To bound T3 and T4, we first bound H
′

t−1,∥∥∥H ′

t−1

∥∥∥ = ∥H(xt−1)− H(x0)∥ ≤ ρ ∥xt−1 − x0∥ (31a)

≤ ρ (∥xt−1 − x̃t−1∥+ ∥x̃t−1 − x0∥)

≤ ρ

(
t−1∑
τ=0

(ηc + |uτ+1|)
(
∥∆τ∥+Q+ Q̃

))
+ ρÕ

(
L3/8
max log

1

Lmax

)
(31b)

= Õ

(
1

L
1/4
max

)
Õ

(
µL11/8

max log
1

Lmax

)
+ Õ

(
1

L
1/4
max

)
Õ(Lmax) + Õ

(
L3/8
max log

1

Lmax

)
(31c)

≤ Õ(L3/4
max) + Õ

(
L3/8
max log

1

Lmax

)
≤ Õ

(
L3/8
max log

1

Lmax

)
, (31d)

where equation 31a follows from the assumption A2 while equation 31b follows from equation 26.
We use the bounds defined for events Rt−1 ∩ Ct−1 in equation 31b and equation 31c. Now, using

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

the bound for
∥∥∥H ′

t−1

∥∥∥, T3 can be bounded as follows.

T3 :
∥∥∥H ′

t−1ηc(∆t−1 +∇f̃(x̃t−1))
∥∥∥ ≤ ηc

∥∥∥H ′

t−1∆t−1

∥∥∥+ ηc

∥∥∥H ′

t−1∇f̃(x̃t−1)
∥∥∥

≤ O(Lmax)Õ

(
L3/8
max log

1

Lmax

)
µL3/8

max log
1

Lmax

+O(Lmax)Õ

(
L3/8
max log

1

Lmax

)
Õ

(
1√
Lmax

)
= Õ

(
L7/8
max log

1

Lmax

)
,

where we use the bounds in the event Rt−1 ∩ Ct−1 and equation 31d.

T4 :
∥∥∥H ′

t−1wt−1

∥∥∥ ≤
∥∥∥H ′

t−1

∥∥∥ ∥wt−1∥ =
∥∥∥H ′

t−1

∥∥∥ ∥ηcg(xt−1)− ηc∇f(xt−1 + utg(xt)∥

≤
∥∥∥H ′

t−1

∥∥∥ (ηcQ+ |ut|Q+ |ut| ∥∇f(xt−1)∥) (32a)

= (ηc + |ut|)Q
∥∥∥H ′

t−1

∥∥∥+ |ut|
∥∥∥H ′

t−1

∥∥∥ ∥∆t−1∥+ |ut|
∥∥∥H ′

t−1

∥∥∥∥∥∥∇f̃(x̃t−1)
∥∥∥

= Õ

(
L11/8
max log

1

Lmax

)
+ Õ

(
µL14/8

max log
2 1

Lmax

)
+ Õ

(
L7/8
max log

1

Lmax

)
(32b)

= Õ

(
L7/8
max log

1

Lmax

)
,

where we use assumption A3 in equation 32a and the bounds of Rt−1 ∩ Ct−1 and equation 31d in
equation 32b.

T5 : ∥θt−1∥ =

∥∥∥∥(∫ 1

0

(
H(xt−1 + v(xt − xt−1))− H(xt−1)

)
dv

)
(xt − xt−1)

∥∥∥∥
≤
(∫ 1

0

ρ ∥xt−1 + v(xt − xt−1)− xt−1∥ dv

)
∥xt − xt−1∥ (33a)

≤ ρ

2
∥xt − xt−1∥2 ≤ ρ

2
∥−ηc∇f(xt−1)− wt−1∥2

≤ ρ

2
∥−ηc∇f(xt−1)− ηcg(xt−1) + ηc∇f(xt−1)− utg(xt−1)∥2

≤ ρ |ηc + ut|2

2

(
Q2 + ∥∇f(xt−1)∥2 + 2Q ∥∇f(xt−1)∥

)
=

ρ |ηc + ut|2

2

(
Q2 + ∥∆t−1∥2 +

∥∥∥∇f̃(x̃t−1)
∥∥∥2 + 2 ∥∆t−1∥

∥∥∥∇f̃(x̃t−1)
∥∥∥

+2Q ∥∆t−1∥+ 2Q
∥∥∥∇f̃(x̃t−1)

∥∥∥)
= Õ(L2

max) + Õ

(
µ2L11/4

max log
2 1

Lmax

)
+ Õ(Lmax) + Õ

(
µL15/8

max log
1

Lmax

)
+ Õ

(
µL19/8

max log
1

Lmax

)
+ Õ(L3/2

max) = Õ(Lmax). (33b)

Here, we use assumption A3 and the bounds of the event Rt−1∩Ct−1 in equation 33b. Note that we
have derived bounds so far conditioned on the event Rt−1∩Ct−1. We now include this conditioning
explicitly in our notations going forward.

To characterize ∥∆t∥2, we construct a supermartingale process; and to do so, we focus on finding
E[∥∆t∥2 1Rt−1∩Ct−1] using the bounds derived for the terms T1, · · · , T5. Later, we use the Azuma-

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Hoeffding inequality to obtain a probabilistic bound of ∥∆t∥.

E[∥∆t∥2 1Rt−1∩Ct−1
|St−1] ≤

[
(1 + ηcγo)

2 ∥∆t−1∥2 + Õ

(
µL3/8

max log
1

Lmax

)
Õ

(
L7/8
max log

1

Lmax

)
+ Õ

(
µL3/8

max log
1

Lmax

)
Õ(Lmax) + Õ(L2

max)

+ Õ

(
L7/8
max log

1

Lmax

)
Õ(Lmax) + Õ

(
L7/4
max log

2 1

Lmax

)]
1Rt−1∩Ct−1

≤

[
(1 + ηcγo)

2 ∥∆t−1∥2 + Õ

(
µL7/8

max log
1

Lmax

)]
1Rt−1∩Ct−1

(34)

Now, let

Gt = (1 + ηcγo)
−2t

[
∥∆t∥2 + Õ

(
µL7/8

max log
1

Lmax

)]
. (35)

Now, in order to prove the process Gt1Rt−1∩Ct−1 is a supermartingale, we prove that
E[Gt1Rt−1∩Ct−1 |St−1] ≤ Gt−11Rt−2∩Ct−2 . We define a filtration St = s{w0, . . . ,wt−1} where
s{.} denotes a sigma-algebra field.

E[Gt1Rt−1∩Ct−1
|St−1]

≤ (1 + ηcγo)
−2t

(
(1 + ηcγo)

2 ∥∆t−1∥2 + 2Õ

(
µL7/8

max log
1

Lmax

))
1Rt−1∩Ct−1

(36a)

≤ (1 + ηcγo)
−2t

(
(1 + ηcγo)

2 ∥∆t−1∥2 + 2(1 + ηcγo)
2Õ

(
µL7/8

max log
1

Lmax

))
1Rt−1∩Ct−1

(36b)

= (1 + ηcγo)
−2(t−1)

(
∥∆t−1∥2 + Õ

(
µL7/8

max log
1

Lmax

))
1Rt−1∩Ct−1

= Gt−11Rt−1∩Ct−1 ≤ Gt−11Rt−2∩Ct−2 .

To obtain equation 36a, we use equation 34 to find E[Gt1Rt−1∩Ct−1
|St−1]. In equation 36b, we

upper bound by the multiplication of a positive term (1 + ηcγo)
2. Therefore, Gt1Rt−1∩Ct−1

is a
supermartingale.

∥∆t∥2 − E[∥∆t∥2 |St−1]1Rt−1∩Ct−1 ≤ −2 ∥(I − ηcH(x0))∆t−1∥ ∥H(x0) (wt−1 − w̃t−1)∥

− 2 ∥(I − ηcH(x0))∆t−1∥
∥∥∥H ′

t−1wt−1

∥∥∥+ 2 ∥(I − ηcH(x0))∆t−1∥ ∥θt−1∥

+ ∥H(x0) (wt−1 − w̃t−1)∥2 +
∥∥∥H ′

t−1wt−1

∥∥∥2 + 2 ∥H(x0) (wt−1 − w̃t−1)∥
∥∥∥H ′

t−1wt−1

∥∥∥
+ 2 ∥H(x0) (wt−1 − w̃t−1)∥

∥∥∥H ′

t−1

(
ηc∆t−1 + ηc∇f̃(x̃t−1)

)∥∥∥
− 2 ∥H(x0) (wt−1 − w̃t−1)∥ ∥θt−1∥+ 2

∥∥∥H ′

t−1

(
ηc∆t−1 + ηc∇f̃(x̃t−1)

)∥∥∥ ∥∥∥H ′

t−1wt−1

∥∥∥
− 2

∥∥∥H ′

t−1

(
ηc∆t−1 + ηc∇f̃(x̃t−1)

)∥∥∥ ∥θt−1∥ − 2
∥∥∥H ′

t−1wt−1

∥∥∥ ∥θt−1∥+ ∥θt−1∥2

= Õ

(
µL11/8

max log
1

Lmax

)
+ Õ

(
µL10/8

max log
2 1

Lmax

)
+ Õ(L2

max) + Õ

(
L15/8
max log

1

Lmax

)
+ Õ

(
L7/4
max log

2 1

Lmax

)
≤ Õ

(
µL7/8

max log
1

Lmax

)
Note that the above expression is obtained by the observation that the only random terms of ∆t

conditioned on the filtration St−1 = s{w0,w1, . . . ,wt−2} are H(x0) (wt−1 − w̃t−1), H
′

t−1wt−1

and θt−1(see equation 33a). Hence, we cancel out the deterministic terms in ∥∆t∥2 and E ∥∆t∥2
and neglect the negative terms while upper bounding.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

The Azuma-Hoeffding inequality for martingales and supermartingales (Hoeffding, 1994) states that
if {Gt1Rt−1∩Ct−1

} is a supermartingale and |Gt1Rt−1∩Ct−1
−Gt−11Rt−2∩Ct−2

| ≤ ct almost surely,
then for all positive integers t and positive reals δ,

P(Gt1Rt−1∩Ct−1
−G01R−1∩C−1

≥ δ) ≤ exp

(
− δ2

2
∑t−1

τ=0 c
2
τ

)
.

The bound of |Gt1Rt−1∩Ct−1
−Gt−11Rt−2∩Ct−2

| can be obtained using the definition of the process
Gt in equation 35. Recollecting our assumption that ηc ≤ ηmax ≤

√
2−1
γ′ , γo ≤ γ

′
, we see that

(1 + ηcγo)
−2t ≤ Õ(1). Therefore,

|Gt1Rt−1∩Ct−1
− E[Gt1Rt−1∩Ct−1

|St−1]| = (1 + ηcγo)
−2t
∣∣∣∥∆t∥2 − E[∥∆t∥2 |St−1]

∣∣∣1Rt−1∩Ct−1

≤ Õ

(
µL7/8

max log
1

Lmax

)
.

We denote the bound obtained for |Gt1Rt−1∩Ct−1 − E[Gt1Rt−1∩Ct−1 |St−1]| as ct−1. Now, let

δ =
√∑t−1

τ=0 c
2
τ log

1
Lmax

in the Azuma-Hoeffding inequality. Now, for any t ≤ T = O
(
L
−1/4
max

)
,

δ =

√
O
(

1

L
1/4
max

)
Õ
(
µ2L

7/4
max log

2 1
Lmax

)
log 1

Lmax
= Õ

(
µL

3/4
max log

2 1
Lmax

)
.

P
(
Gt1Rt−1∩Ct−1 −G0.1 ≥ Õ

(
µL3/4

max log
2 1

Lmax

))
≤ exp

(
−Ω̃

(
log2

1

Lmax

))
≤ Õ(L4

max).

After taking union bound ∀ t ≤ T ,

P
(
∀ t ≤ T, Gt1Rt−1∩Ct−1

−G0 ≥ Õ

(
µL3/4

max log
2 1

Lmax

))
≤ Õ(L15/4

max).

We represent the hidden constants in Õ
(
µL

3/4
max log

2 1
Lmax

)
by c̃ and choose µ such that µ < c̃.

Then, the following equation holds true.

P
(
Gt1Rt−1∩Ct−1

−G0 ≥ µ2L3/4
max log

2 1

Lmax

)
≤ Õ(L15/4

max).

Hence we can write,

P
(
Rt−1 ∩ Ct−1 ∩

{
∥∆t∥ ≥ µL3/8

max log
1

Lmax

})
≤ Õ(L15/4

max). (37)

We need the probability of the event Ct, ∀t ≤ T in order to prove the lemma. From Lemma 2, we
get the probability of the event R̄t as Õ(L

15/4
max). Then,

P
(
Ct−1 ∩

{
∥∆t∥ ≥ µL3/8

max log
1

Lmax

})
= P

(
Rt−1 ∩ Ct−1 ∩

{
∥∆t∥ ≥ µL3/8

max log
1

Lmax

})
+ P

(
R̄t−1 ∩ Ct−1 ∩

{
∥∆t∥ ≥ µL3/8

max log
1

Lmax

})
≤ Õ(L15/4

max) + P(R̄t−1) ≤ Õ(L15/4
max),

(38)
where the first term of equation 38 follows from equation 37. The second term of equation 38 can
be bounded by P(R̄t−1) which is known by Lemma 2. Finally,

P(C̄t) = P
(
Ct−1 ∩

{
∥∆t∥ ≥ µL3/8

max log
1

Lmax

})
+ P(C̄t−1) ≤ Õ(L15/4

max) + P(C̄t−1).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

The probability P(C̄t−1) can be found as,

P(C̄t−1) = P
(
Ct−2 ∩

{
∥∆t−1∥ ≥ µL3/8

max log
1

Lmax

})
+ P(C̄t−2)

= P
(
Ct−2 ∩

{
∥∆t−1∥ ≥ µL3/8

max log
1

Lmax

})
+ . . .

+ P
(
C0 ∩

{
∥∆1∥ ≥ µL3/8

max log
1

Lmax

})
+ P(C̄0).

As T = O
(
L
−1/4
max

)
, P(C̄T) ≤ Õ

(
L
7/2
max

)
. From equation 26,

∥xt − x̃t∥ ≤
t−1∑
τ=0

(ηc + |uτ+1|)
(
∥∆τ∥+Q+ Q̃

)
≤ O

(
1

L
1/4
max

)(
Õ(Lmax)µL

3/8
max log

1

Lmax
+ Õ(Lmax)

)
= O

(
µL9/8

max log
1

Lmax

)
+ Õ(L3/4

max) ≤ Õ(L3/4
max)

This completes our proof.

C PROOF OF THEOREM 2

Theorem 5. (Theorem 2 restated) Consider f satisfying Assumptions A1 - A5. Let f̃ be the second
order Taylor approximation of f ; let {xt} and {x̃t} be the corresponding SGD iterates using PLRS,
with x̃0 = x0. Let x0 correspond to B2, i.e., ∥∇f(x0)∥ ≤ ϵ and λmin(H(x0)) ≤ −γ where ϵ, γ > 0.

Then, there exists a T = Õ
(
L
−1/4
max

)
such that with probability at least 1− Õ

(
L
7/2
max

)
,

E[f(xT)− f(x0)] ≤ −Ω̃
(
L3/4
max

)
.

Proof. In this proof, we consider the case when the initial iterate x0 is at a saddle point (correspond-
ing to B2). This theorem shows that the SGD-PLRS algorithm escapes the saddle point in T steps
where T = Õ

(
L
−1/4
max

)
.

We use the Taylor series approximation in order to make the problem tractable. Similar to the SGD-
PLRS updates for the function f , the SGD update on the function f̃ can be given as,

x̃t = x̃t−1 − ηc∇f̃(x̃t−1)− w̃t−1, w̃t−1 = ηcg̃(x̃t−1)− ηc∇f̃(x̃t−1) + utg̃(x̃t−1).

As the function f is ρ-Hessian, using (Nesterov, 2014, Lemma 1.2.4) and the Taylor series expansion
one obtains, f(x) ≤ f(x0) + ∇f(x0)

T (x − x0) + 1
2 (x − x0)T H(x0)(x − x0) + ρ

6 ∥x − x0∥3 . Let
κ̃ = x̃T − x0, κ = xT − x̃T . Note that κ̃+ κ = xT − x0. Then, replacing x by xT ,

f(xT)− f(x0) ≤ ∇f(x0)
T (xT − x0) +

1

2
(xT − x0)

T H(x0)(xT − x0) +
ρ

6
∥xT − x0∥3

= ∇f(x0)
T (κ̃+ κ) +

1

2
(κ̃+ κ)T H(x0)(κ̃+ κ) +

ρ

6
∥κ̃+ κ∥3

=

(
∇f(x0)T κ̃+

1

2
κ̃T H(x0)κ̃

)
+

(
∇f(x0)Tκ+ κ̃T H(x0)κ+

1

2
κT H(x0)κ

+
ρ

6
∥κ̃+ κ∥3

)
.

Let the first term be ζ̃ = ∇f(x0)
T κ̃ + 1

2 κ̃
T H(x0)κ̃ and the second term be ζ = ∇f(x0)Tκ +

κ̃T H(x0)κ + 1
2κ

T H(x0)κ + ρ
6 ∥κ̃+ κ∥3. Hence f(xT) − f(x0) ≤ ζ̃ + ζ. In order to prove the

theorem, we require an upper bound on E[f(xT)− f(x0)].

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Now, we introduce two mutually exclusive events Ct and C̄t so that E[f(xT)−f(x0)] can be written
in terms of events Ct and C̄t as,

E[f(xT)− f(x0)] = E[f(xT)− f(x0)](E[1CT
] + E[1C̄T

])

= E[(f(xT)− f(x0))1CT
] + E[(f(xT)− f(x0))1C̄T

]

≤ E[ζ̃1CT
] + E[ζ1CT

] + E[(f(xT)− f(x0))1C̄T
]

= E[ζ̃] + E[ζ1CT
] + E[(f(xT)− f(x0))1C̄T

]− E[ζ̃1C̄T
].

Let K1 = E[ζ̃], K2 = E[ζ1CT
] and K3 = E[(f(xT) − f(x0))1C̄T

] − E[ζ̃1C̄T
]. In the remainder

of the proof, we focus on deriving the bounds for individual terms, K1, K2 and K3, and then finally
put them together to obtain the result of the theorem.

C.1 BOUNDING K1

Using equation 20b from the proof of Lemma 2 in Appendix B.1, we obtain the bound for the term
K1 = E[ζ̃] as,

E[ζ̃] = E
[
∇f(x0)T (x̃T − x0) +

1

2
(x̃T − x0)

T H(x0)(x̃T − x0)

]
= E

[
∇f(x0)T

(
−

T−1∑
τ=0

ηc(I − ηcH(x0))τ∇f(x0)−
T−1∑
τ=0

(I − ηcH(x0))T−τ−1w̃τ

)]

+
1

2
E

[(
−

T−1∑
τ=0

ηc(I − ηcH(x0))τ∇f(x0)−
T−1∑
τ=0

(I − ηcH(x0))
T−τ−1w̃τ

)T

H(x0)(
−

T−1∑
τ=0

ηc(I − ηcH(x0))τ∇f(x0)−
T−1∑
τ=0

(I − ηcH(x0))T−τ−1w̃τ

)]
.

Since w̃τ = 0, all the terms with E[w̃τ] will go to zero. Hence we obtain,

E[ζ̃] = ∇f(x0)T
(
−

T−1∑
τ=0

ηc(I − ηcH(x0))
τ∇f(x0)

)
+

1

2

(
−

T−1∑
τ=0

ηc(I − ηcH(x0))τ∇f(x0)

)T

H(x0)

(
−

T−1∑
τ=0

ηc(I − ηcH(x0))
τ∇f(x0)

)

+
1

2
E

[(
−

T−1∑
τ=0

(I − ηcH(x0))T−τ−1w̃τ

)T

H(x0)

(
−

T−1∑
τ=0

(I − ηcH(x0))T−τ−1w̃τ

)]
.

Let λ1, . . . , λd be the eigenvalues of the Hessian matrix at x0, H(x0). Now, we simplify similar to
Ge et al. (Ge et al., 2015) as,

E[ζ̃] = −
d∑

i=1

T−1∑
τ=0

ηc(1− ηcλi)
τ |∇if(x0)|2 +

1

2

d∑
i=1

λi

T−1∑
τ=0

η2c (1− ηcλi)
2τ |∇if(x0)|2

+
1

2

d∑
i=1

λi

T−1∑
τ=0

(1− ηcλi)
2(T−τ−1)E[|w̃τ,i|2].

Note that for the case of very small gradients (as per our initial conditions), |∇if(x0)|2 ≤
∥∇f(x0)∥ ≤ ϵ. Therefore, the first and second terms can be made arbitrarily small so that they do
not contribute to the order of the equation. Hence, we focus on the third term. We first characterize
E[|w̃τ,i|2] as follows. Since the norm of the stochastic noise is bounded as per the assumption A3,

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

we assume that g̃i(x̃t)−∇if̃(x̃t) ≤ q̃ and E[q̃] ≤ σ̃2.

w̃τ,i = ηcg̃i(x̃t)− ηc∇if̃(x̃t) + ut+1g̃i(x̃t)

≤ ηcq̃ + ut+1

(
g̃i(x̃t)−∇if̃(x̃t) +∇if̃(x̃t)

)
≤ q̃(ηc + ut+1) + ut+1∇if̃(x̃t)

|w̃τ,i|2 ≤
(
q̃(ηc + ut+1) + ut+1∇if̃(x̃t)

)2
= q̃2(η2c + 2ηcut+1 + u2

t+1) + 2q̃ηcut+1∇if̃(x̃t) + 2q̃u2
t+1∇if̃(x̃t) + u2

t+1

∣∣∣∇if̃(x̃t)
∣∣∣2 .

Taking expectation with respect to q̃ and the uniformly distributed random variable ut+1 and recall-
ing that E[ut+1] = 0, we set expectation over linear functions of ut+1 to zero.

E[|w̃τ,i|2] ≤ σ̃2η2c + σ̃2E[u2
t+1] + 2σ̃2E[u2

t+1]∇if̃(x̃t) + E[u2
t+1]

∣∣∣∇if̃(x̃t)
∣∣∣2

≤ Õ(L2
max) + Õ(L2

max) + Õ(L2
max)Õ

(
1√
Lmax

)
+ Õ(L2

max)Õ

(
1

Lmax

)
= Õ(L2

max) + Õ(L1.5
max) + Õ(Lmax) = Õ(Lmax).

(39)

Here, we use E[u2
t+1] =

(Lmax−Lmin)
2

12 = Õ(L2
max). From equation 19 in the proof of Lemma 2

(Appendix B.1),
∥∥∥∇f̃(x̃t)

∥∥∥ ≤ 10Q̃
∑ t(t−1)

2
τ=0 (1 + ηcγo)

τ = Õ
(

1√
Lmax

)
as t ≤ T = Õ

(
L
−1/4
max

)
.

Also, note that q̃ and ut+1 are independent of each other. As λmin(H(x0)) = −γo,

1

2

d∑
i=1

λi

T−1∑
τ=0

(1− ηcλi)
2(T−τ−1)E[|w̃τ,i|2]

≤ 1

2

d∑
i=1

λi

T−1∑
τ=0

(1 + ηcγo)
2τE[|w̃τ,i|2] ≤

Õ(Lmax)

2

d∑
i=1

λi

T−1∑
τ=0

(1 + ηcγo)
2τ (40a)

=
Õ(Lmax)

2

(
− γo

T−1∑
τ=0

(1 + ηcγo)
2τ + (d− 1)λmax(H(x0))

T−1∑
τ=0

(1 + ηcγo)
2τ

)
, (40b)

where we use the upper bound of E[|w̃τ,i|2] obtained from equation 39 in equation 40a. We use the
fact that one of the eigenvalues of H(x0) is −γo and then upper bound the other eigenvalues by the
maximum eigenvalue λmax(H(x0)) in equation 40b.

Let ηc ≤ ηmax ≤
√
2−1
γ′ where γ ≤ γo ≤ γ

′
. As

∑T−1
τ=0 (1 + ηcγo)

2τ is a monotonically increas-

ing sequence, we choose the smallest T that satisfies d

η
1/4
c γo

≤
∑T−1

τ=0 (1 + ηcγo)
2τ . Therefore,∑T−2

τ=0 (1 + ηcγo)
2τ ≤ d

η
1/4
c γo

. Now,

T−1∑
τ=0

(1 + ηcγo)
2τ = 1 + (1 + ηcγo)

2
T−2∑
τ=0

(1 + ηcγo)
2τ ≤ 1 +

2d

η
1/4
c γo

,

which follows from our constraints that ηc <
√
2−1
γ′ and γo ≤ γ

′
making (1 + ηcγ)

2 ≤(
1 +

√
2−1
γ′ γ

′
)2

≤ 2. Further using ηcγo ≤ η
1/4
c γo ≤

√
2−1
γ′ γ

′
< d,

d

η
1/4
c γo

≤
T−1∑
τ=0

(1 + ηcγo)
2τ ≤ 1 +

2d

η
1/4
c γo

≤ 3d

η
1/4
c γo

(41)

Hence the order of T is given by T = O
(

log d

L
1/4
maxγo

)
. We hide the dependence on d when we use

T = Õ
(
L
−1/4
max

)
. Using equation 41 it can be proved that,

1

2

d∑
i=1

λi

T−1∑
τ=0

(1− ηcλi)
2(T−τ−1)E[|w̃τ,i|2] ≤ −Õ(L3/4

max).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

C.2 BOUNDING K2 AND K3

We define the event CT as, CT =
{
∀t ≤ T, ∥κ̃∥ ≤ Õ

(
L
3/8
max log

1
Lmax

)
, ∥κ∥ ≤ Õ(L

3/4
max)

}
. From

Lemma 2 and Lemma 3 in Appendix B.1 and B.2 respectively, we know that with probability
P(CT) ≥ 1 − Õ

(
L
7/2
max

)
, the term ∥κ̃∥ can be bounded by Õ

(
L
3/8
max log

1
Lmax

)
and ∥κ∥ can

be bounded by Õ(L
3/4
max), ∀t ≤ T = O

(
L
−1/4
max

)
.

Now, to complete the proof of Theorem 2, we need to show that the term K1 dominates both K2

and K3. Hence, we obtain the bound for the term K2 as,

E[ζ1CT
] = E

[
∇f(x0)Tκ+ κ̃T H(x0)κ+

1

2
κT H(x0)κ+

ρ

6
∥κ̃+ κ∥3

]
P(CT)

≤ Õ

(
L3/8
max log

1

Lmax

)
Õ(L3/4

max)P(CT) = Õ

(
L9/8
max log

1

Lmax

)
P(CT).

Finally, we bound the term K3 as follows.

E[(f(xT)− f(x0))1C̄T
]− E[ζ̃1C̄T

] ≤ Õ(1)P(C̄T) ≤ Õ
(
L7/2
max

)
,

where the inequality arises from the boundedness of the function. Comparing the bounds of the
terms K1, K2, and K3, we find that K1 dominates, which completes the proof.

D PROOF OF THEOREM 3

Theorem 6. (Theorem 3 restated) Consider f satisfying the assumptions A1-A6. Let the initial
iterate x0 be δ close to a local minimum x∗ such that ∥x0 − x∗∥ ≤ Õ(

√
Lmax) < δ. With probability

at least 1− ξ, ∀t ≤ T where T = Õ
(

1
L2

max
log 1

ξ

)
,

∥xt − x∗∥ ≤ Õ

(√
Lmax log

1

Lmaxξ

)
< δ

Proof. This theorem handles the case when the iterate is close to the local minimum (case B3).
We aim to show that the iterate does not leave the neighbourhood of the minimum for t ≤
Õ
(

1
L2

max
log 1

ξ

)
. By assumption A6, if xt is δ close to the local minimum x∗, the function is locally

α- strongly convex. We define event Dt = {∀τ ≤ t, ∥xτ − x∗∥ ≤ µ
√
Lmax log

1
Lmaxξ

< δ}.

Let Lmax < r
log ξ−1 where r < log ξ−1. It can be seen that Dt−1 ⊂ Dt. Conditioned on event

Dt, and using α−strong convexity of f , (∇f(xt) − ∇f(x∗))T (xt − x∗)1Dt
≥ α ∥xt − x∗∥2 1Dt

.

As ∇f(x∗) = 0, it becomes, ∇f(xt)
T (xt − x∗)1Dt ≥ α ∥xt − x∗∥2 1Dt . We define a filtration

St = s{w0, . . . ,wt−1} in order to construct a supermartingale and use the Azuma-Hoeffding in-
equality where s{.} denotes a sigma-algebra field. Now, assuming Lmax < α

β2 ,

E[∥xt − x∗∥2 1Dt−1 |St−1] = E[∥xt−1 − ηc∇f(xt−1)− wt−1 − x∗∥2 |St−1]1Dt−1

= E[∥(xt−1 − x∗)− ηc∇f(xt−1)− wt−1∥2 |St−1]1Dt−1

= [∥xt−1 − x∗∥2 − 2ηc(xt−1 − x∗)T∇f(xt−1) + η2c ∥∇f(xt−1)∥2 + E[∥wt−1∥2]]1Dt−1
(42a)

≤ [∥xt−1 − x∗∥2 − 2ηcα ∥xt−1 − x∗∥2 + η2cβ
2 ∥xt−1 − x∗∥2 + E[∥wt−1∥2]]1Dt−1

(42b)

We use E[wt] = 0 in equation 42a. We use the β-smoothness and α−convexity assumptions of f in
equation 42b. Now, using wt−1 = ηcg(xt−1)− ηc∇f(xt−1) + utg(xt−1), we compute E[∥wt−1∥2]

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

as,

E[∥wt−1∥2]

= E
[
η2c ∥g(xt−1)−∇f(xt−1)∥2 + 2ηcut

(
g(xt−1)−∇f(xt−1)

)T
g(xt−1) + u2

t ∥g(xt−1)∥2
]

≤ η2cσ
2 + E[u2

t]E[∥g(xt−1)∥2] ≤ η2cσ
2 + E[u2

t](σ
2 + ∥∇f(xt−1)∥2)

≤ η2cσ
2 + E[u2

t]σ
2 + E[u2

t]β
2 ∥xt−1 − x∗∥2

≤ σ2

(
η2c +

2L2
max

3
− 2Lmaxηc

3

)
+ β2 ∥xt−1 − x∗∥2

(
2L2

max

3
− 2Lmaxηc

3

)
.

(43)
As ηc = Lmin+Lmax

2 , Lmin = 2ηc − Lmax. Hence, we write E[u2
t] = (Lmax−Lmin)

2

12 =
4(Lmax−ηc)

2

12 =
L2

max+η2
c−2Lmaxηc

3 <
2L2

max

3 − 2Lmaxηc

3 in equation 43. Using equation 43 in
equation 42b,

E[∥xt − x∗∥2 1Dt−1
|St−1] ≤

[
∥xt−1 − x∗∥2

(
1− 2ηcα+ η2cβ

2 +
2L2

maxβ
2

3
− 2Lmaxηcβ

2

3

)
+σ2

(
η2c +

2L2
max

3
− 2Lmaxηc

3

)]
1Dt−1

≤
[
∥xt−1 − x∗∥2

(
1 + ηcα+

2Lmaxα

3

)
+ σ2

(
L2
max +

2L2
max

3

)]
1Dt−1

≤
[
∥xt−1 − x∗∥2

(
1 + Lmaxα+

2Lmaxα

3

)
+ σ2

(
L2
max +

2L2
max

3

)]
1Dt−1

=

[
∥xt−1 − x∗∥2

(
1 +

5Lmaxα

3

)
+

5L2
maxσ

2

3

]
1Dt−1 .

We use Lmax < α
β2 . Let Jt =

(
1 + 5αLmax

3

)−t
(
∥xt − x∗∥2 + Lmaxσ

2

α

)
. We prove Jt1Dt−1

is a
supermartingale process as follows.

E

[(
1 +

5αLmax

3

)−t (
∥xt − x∗∥2 + Lmaxσ

2

α

) ∣∣∣∣St−1

]
1Dt−1

≤

(
1 +

5αLmax

3

)−t [
∥xt−1 − x∗∥2

(
1 +

5Lmaxα

3

)
+

5L2
maxσ

2

3
+

Lmaxσ
2

α

]
1Dt−1

=

(
1 +

5αLmax

3

)−(t−1) [
∥xt−1 − x∗∥2 + Lmaxσ

2

α

]
1Dt−1 = Jt−11Dt−1 ≤ Jt−11Dt−2 .

Hence Jt1Dt−1
is a supermartingale. In order to use the Azuma-Hoeffding inequality, we bound

|Jt1Dt−1
− E[Jt1Dt−1

|St−1]| as,

|Jt1Dt−1 − E[Jt1Dt−1 |St−1]| =
(
1 +

5αLmax

3

)−t [
∥xt − x∗∥2 − E[∥xt − x∗∥2 |St−1]

]
1Dt−1

≤
(
1 +

5αLmax

3

)−t [
2 ∥xt−1 − ηc∇f(xt−1)− x∗∥ ∥wt−1∥+ ∥wt−1∥2 +

σ2

(
η2c +

2L2
max

3
− 2Lmaxηc

3

)
+ β2 ∥xt−1 − x∗∥2

(
2L2

max

3
− 2Lmaxηc

3

)]
1Dt−1 ,

(44)
where we use equation 43 in equation 44 for the term E[∥wt−1∥2]. Now, we compute ∥wt−1∥ using
assumption A3 as follows.

∥wt−1∥ = ∥ηcg(xt−1)− ηc∇f(xt−1) + utg(xt−1)∥
≤ ηcQ+ |ut|(Q+ ∥∇f(xt−1)∥) ≤ Q(ηc + |ut|) + |ut|β ∥xt−1 − x∗∥ . (45)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Using equation 45 in equation 44 and the bound of the event Dt−1,
|Jt1Dt−1

− E[Jt1Dt−1
|St−1]|

≤
(
1 +

5αLmax

3

)−t [
2 ∥xt−1 − x∗∥ (Q(ηc + |ut|) + |ut|β ∥xt−1 − x∗∥)

+ (Q(ηc + |ut|) + |ut|β ∥xt−1 − x∗∥)2 + σ2

(
η2c +

2L2
max

3
− 2Lmaxηc

3

)
+ β2 ∥xt−1 − x∗∥2

(
2L2

max

3
− 2Lmaxηc

3

)]
1Dt−1

=

(
1 +

5αLmax

3

)−t [
Õ

(
µL1.5

max log
0.5 1

Lmaxξ

)
+ Õ

(
µ2L2

max log
1

Lmaxξ

)
+ 2Õ(L2

max)

+ Õ

(
µL2.5

max log
0.5 1

Lmaxξ

)
+ 2Õ

(
µ2L3

max log
1

Lmaxξ

)]
≤
(
1 +

5αLmax

3

)−t

Õ

(
µL1.5

max log
0.5 1

Lmaxξ

)
= dt

We denote the bound of |Jt1Dt−1 − E[Jt1Dt−1 |St−1]| as dt.

Let bt =
√∑t

τ=1 d
2
τ =

√∑t
τ=1

(
1 + 5αLmax

3

)−2τ
Õ
(
µL1.5

max log
0.5 1

Lmaxξ

)
. Now,√√√√ t∑

τ=1

(
1 +

5αLmax

3

)−2τ

Õ

(
µL1.5

max log
0.5 1

Lmaxξ

)

≤
√

1

1−
(
1 + 5αLmax

3

)−2 Õ

(
µL1.5

max log
0.5 1

Lmaxξ

)

=

√
Õ(1)

Õ(Lmax)
Õ

(
µL1.5

max log
0.5 1

Lmaxξ

)
= Õ

(
µLmax log

0.5 1

Lmaxξ

)
.

Hence bt is of the order Õ
(
µLmax log

0.5 1
Lmaxξ

)
. By the Azuma Hoeffding inequality,

P
(
Jt1Dt−1

− J0 ≥ bt log
0.5 1

Lmaxξ

)
≤ exp

(
−Ω̃

(
log

1

Lmaxξ

))
≤ Õ(L3

maxξ),

which leads to,

P
(
Jt1Dt−1 − J0 ≥ Õ

(
µLmax log

1

Lmaxξ

))
≤ Õ(L3

maxξ).

Hence we can write,

P
(
Dt−1 ∩

{
∥xt − x∗∥2 ≥ Õ

(
µLmax log

1

Lmaxξ

)})
≤ Õ(L3

maxξ)

For some constant b̃ independent of Lmax and ξ we can write,

P
(
Dt−1 ∩

{
∥xt − x∗∥2 ≥ b̃µLmax log

1

Lmaxξ

})
≤ Õ(L3

maxξ)

By choosing µ < b̃,

P
(
Dt−1 ∩

{
∥xt − x∗∥ ≥ µ

√
Lmax log

1

Lmaxξ

})
≤ Õ(L3

maxξ)

P(D̄t) = P
(
Dt−1 ∩

{
∥xt − x∗∥ ≥ µ

√
Lmax log

1

Lmaxξ

})
+ P(D̄t−1)

≤ Õ(L3
maxξ) + P(D̄t−1)

Iteratively unrolling the above equation, we obtain P(D̄t) ≤ tÕ(L3
maxξ). Choosing t =

Õ
(

1
L2

max
log 1

ξ

)
, P(D̄t) ≤ Õ

(
Lmaxξ log

1
ξ

)
. As Lmax < Õ

(
1

log 1
ξ

)
, P(D̄t) ≤ Õ(ξ).

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

E PROOF USING INDUCTION

In the proof of Lemma 2 in Appendix B.1, we state that equation 19 can be proved by induction for
t ≥ 2. We restate the equation here and provide the corresponding proof by induction.

Induction hypothesis:
∥∥∥∇f̃(x̃t)

∥∥∥ ≤ 10Q̃

t(t−1)
2∑

τ=0

(1 + ηcγo)
τ . (46)

Recollect from that equation 15 that ∇f̃(x̃t) = (I − ηcH(x0))∇f̃(x̃t−1) − H(x0)w̃t−1. Taking
matrix induced norm on both sides,∥∥∥∇f̃(x̃t+1)

∥∥∥ ≤ (1 + ηcγo)
∥∥∥∇f̃(x̃t)

∥∥∥+ β ∥w̃t∥

= ((1 + ηcγo) + β |ut+1|)
∥∥∥∇f̃(x̃t)

∥∥∥+ βQ̃(ηc + |ut+1|),
(47)

since,
∥∥∥g̃(x̃t)−∇f̃(x̃t)

∥∥∥ ≤ Q̃. Note that
∥∥∥∇f̃(x̃t)

∥∥∥ ≤ ϵ, |ut| ≤ Lmax and βLmax < 1 hold for all
t. Therefore, at t = 1,∥∥∥∇f̃(x̃1)

∥∥∥ ≤ ((1 + ηcγo) + β |u1|) ϵ+ βQ̃(ηc + |u1|) ≤ (1 + ηcγo)ϵ+ ϵ+ 2Q̃.

Now, we prove the hypothesis in equation 46 for t = 2. From equation 47, for an arbitrarily small ϵ,∥∥∥∇f̃(x̃2)
∥∥∥ ≤ ((1 + ηcγo) + β |u2|)

∥∥∥∇f̃(x̃1)
∥∥∥+ βQ̃(ηc + |u2|)

≤ (1 + ηcγo)
2ϵ+ 2(1 + ηcγo)ϵ+ ϵ+ 2Q̃(1 + ηcγo) + 4Q̃

≤ 2ϵ

2∑
τ=0

(1 + ηcγo)
τ + 4Q̃

1∑
τ=0

(1 + ηcγo)
τ ≤ 10Q̃

2(2−1)
2∑

τ=0

(1 + ηcγo)
τ .

We have shown that the induction hypothesis holds for t = 2. Now, assuming that it holds for any t,
we need to prove that it holds for t+1. We know from equation 47, when the hypothesis is assumed
to hold for t,∥∥∥∇f̃(x̃t+1)

∥∥∥ ≤ ((1 + ηcγo) + β |ut+1|) 10Q̃

t(t−1)
2∑

τ=0

(1 + ηcγo)
τ + βQ̃(ηc + |ut+1|)

≤ (1 + ηcγo)10Q̃

t(t−1)
2∑

τ=0

(1 + ηcγo)
τ + 10Q̃

t(t−1)
2∑

τ=0

(1 + ηcγo)
τ + βQ̃(ηc + |ut+1|)

≤ 20Q̃

t(t−1)
2 +1∑
τ=0

(1 + ηcγo)
τ

If we prove 20Q̃
∑ t(t−1)

2 +1
τ=0 (1+ηcγo)

τ ≤ 10Q̃
∑ t(t+1)

2
τ=0 (1+ηcγo)

τ , the induction proof is complete.
Now, we need to prove

20Q̃

t2−t
2 +1∑
τ=0

(1 + ηcγo)
τ ≤ 10Q̃

t2+t
2∑

τ=0

(1 + ηcγo)
τ

≤ 10Q̃

t2−t
2 +1∑
τ=0

(1 + ηcγo)
τ + 10Q̃

t2+t
2∑

τ= t2−t
2 +2

(1 + ηcγo)
τ .

Therefore we need to show that,
t2−t

2 +1∑
τ=0

(1 + ηcγo)
τ

︸ ︷︷ ︸
S1

≤

t2+t
2∑

τ= t2−t
2 +2

(1 + ηcγo)
τ

︸ ︷︷ ︸
S2

. (48)

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Now, summing up the geometric series S1,
∑ t2−t

2 +1
τ=0 (1+ηcγo)

τ = (1+ηcγo)
t2−t

2
+2−1

ηcγo
. Using change

of variable in S2 of equation 48 as m = τ −
(

t2−t
2 + 2

)
,

t−2∑
m=0

(1 + ηcγo)
t2−t

2 +m+2 = (1 + ηcγo)
t2−t

2 +2 (1 + ηcγo)
t−1 − 1

ηcγo
.

Therefore, we now need to prove,

(1 + ηcγo)
t2−t

2 +2 − 1 ≤ (1 + ηcγo)
t2−t

2 +2
(
(1 + ηcγo)

t−1 − 1
)

⇒ 2(1 + ηcγo)
t2−t

2 +2 ≤ (1 + ηcγo)
t2−t

2 +t+1 + 1
(49)

We further prove equation 49 by induction as follows. For t = 2, 2(1 + ηcγo)
3 ≤ (1 + ηcγo)

4 + 1.
Let us assume the following expression holds for time step t.

2(1 + ηcγo)
t2−t

2 +2 ≤ (1 + ηcγo)
t2−t

2 +t+1 (50)

Now, we prove for the time step t+ 1,

2(1 + ηcγo)
t(t+1)

2 +2 = 2(1 + ηcγo)
t(t−1)

2 +t+2 ≤ (1 + ηcγo)
t2−t

2 +t+1+t

= (1 + ηcγo)
t(t+1)

2 +t+1 ≤ (1 + ηcγo)
t(t+1)

2 +t+2,
(51)

where we use t(t−1)
2 + t = t(t+1)

2 and apply our assumption equation 50 in equation 51. We have

proved 2(1 + ηcγo)
t2−t

2 +2 ≤ (1 + ηcγo)
t2−t

2 +t+1 ≤ (1 + ηcγo)
t2−t

2 +t+1 + 1. This concludes our
proof of equation 46.

F CHOICE OF PARAMETERS FOR OTHER LR SCHEDULERS

1. Cosine annealing (Loshchilov & Hutter, 2017b): There are 3 parameters namely, initial
restart interval, a multiplicative factor and minimum learning rate. The authors propose an
initial restart interval of 1, a factor of 2 for subsequent restarts, with a minimum learning
rate of 1e− 4, which we use in our comparisons.

2. Knee (Iyer et al., 2023): The total number of epochs is divided into those that correspond to
the ”explore” epochs and ”exploit” epochs. During the explore epochs, the learning rate is
kept at a constant high value, while from the beginning of the exploit epochs, it is linearly
decayed. We use the suggested setting of 100 initial explore epochs with a learning rate of
0.1 followed by a linear decay for the rest of the epochs. For training ImageNet-1K, we use
the suggested setting of 30 explore epochs. For fine-tuning BERT on SQuAD v1.1 dataset,
we use a base learning rate of 3e − 5 for 1 explore epoch and then decay, for a total of 2
epochs. For training the Transformer model on the IWSLT’14 dataset, a seed learning rate
of 3e− 4 is used for 40 explore epochs.

3. One cycle (Smith & Topin, 2019): We perform the learning rate range test for our networks
as suggested by the authors. For the range test, the learning rate is gradually increased
during which the training loss explodes. The learning rate at which it explodes is noted
and the maximum learning rate (the learning rate at the middle of the triangular cycle) is
fixed to be before that. We linearly increase the learning rate for the initial 45% of the total
epochs up to the maximum learning rate determined by the range test, followed by a linear
decay for the next 45% of the total epochs. We then decay it further up to a divisive factor
of 10 for the rest of the epochs, which is the suggested setting. Note that the one cycle LR
scheduler relies heavily on regularization parameters like weight decay and momentum.

4. Constant: To compare with a constant learning rate, we choose 0.05 for the VGG-16 archi-
tecture and 0.1 for the remaining architectures as done in our other baselines(Smith, 2017;
Loshchilov & Hutter, 2017b).

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

5. Multi step: For the multi-step decay scheduler, our choice of the decay rate and time is
based on the standard repositories for the architectures. 5. Specifically, we decay the learn-
ing rate by a factor of 10 at the the epochs 100 and 150 for ResNet-110 and ResNet-50. In
the case of DenseNet-40-12, we decay by a factor of 10 at the epochs 150 and 225. For
VGG-16, we decay by a factor of 10 every 30 epochs. In the case of WRN, we fix a learn-
ing rate of 0.2 for the initial 60 epochs, decay it by 0.22 for the next 60 epochs, and by 0.23

for the rest of the epochs.

G TRAIN LOSS PLOTS

G.1 PLOTS OF CIFAR-10

To study the convergence of the schedulers we plot the training loss across epochs in Figure 2. We
observe that our proposed PLRS achieves one of the fastest rates of convergence in terms of the
training loss compared across all the schedulers for both networks. Note that the cosine annealing
scheduler records several spikes across the training.

0 100 200 300 400 500
Epochs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Tr
ai

n
lo

ss

Constant
Cosine
Knee
Multi-step
One-cycle
PLRS

(a) VGG-16

0 100 200 300 400 500
Epochs

0.0

0.5

1.0

1.5

2.0

Tr
ai

n
lo

ss

Constant
Cosine
Knee
Multi-step
One-cycle
PLRS

(b) WRN-28-10

Figure 2: Training loss vs epochs for VGG-16 and WRN-28-10 for CIFAR-10.

G.2 PLOTS OF CIFAR-100

We plot the training loss in Figure 3. For ResNet-110, both PLRS and knee LR scheduler converge to
a low training loss around 150 epochs. While cosine annealing LR scheduler also seems to converge
fast, it experiences sharp spikes along the curve during the restarts. For DenseNet-40-12, PLRS
converges faster to a lower training loss compared to the other schedulers. Specifically, the train loss
converges around 150 and 200 epochs for ResNet-110 and DenseNet-40-12 respectively.

5ResNet:https://github.com/akamaster/pytorch resnet cifar10,
DenseNet:https://github.com/andreasveit/densenet-pytorch,
VGG:https://github.com/chengyangfu/pytorch-vgg-cifar10,
WRN:https://github.com/meliketoy/wide-resnet.pytorch

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

0 100 200 300 400 500
Epochs

0

1

2

3

4

5

Tr
ai

n
lo

ss

Constant
Cosine
Multi-step
One-cycle
Knee
PLRS

(a) ResNet-110

0 100 200 300 400 500
Epochs

0

1

2

3

4

Tr
ai

n
lo

ss

Constant
Cosine
Multi-step
One-cycle
Knee
PLRS

(b) DenseNet-40-12

Figure 3: Training loss vs epochs for ResNet-110 and DenseNet-40-12 on CIFAR-100.

H SENSITIVITY ANALYSIS

We perform sensitivity analysis of the parameters Lmin and Lmax on the maximum test accuracy.
We vary the parameters and record the highest test accuracy achieved for various combinations of
Lmin and Lmax for the WRN-28-10 network trained on the CIFAR-10 dataset and the DenseNet-40-
10 network trained on the CIFAR-100 dataset respectively and give a subset of the results in Tables
6 and 7. It can be observed that over a range of combinations of Lmin and Lmax, the maximum test
accuracy remains ∼ 93 for CIFAR-10 and ∼ 65 for CIFAR-100, indicating that even if the settings
of Lmin and Lmax are not tuned extensively, one can still achieve state-of-the-art results.

Lmax Lmin Max acc.
0.1 0.01 93.77
0.1 0.03 93.31
0.1 0.05 93.58
0.2 0.01 93.87
0.2 0.03 93.29
0.2 0.05 92.73
0.3 0.01 93.55
0.3 0.03 93.63
0.3 0.05 93.57

Table 6: Sensitivity analysis
for WRN-28-10 on CIFAR-10

Lmax Lmin Max acc.
0.5 0.09 65.83
0.5 0.07 64.32
0.5 0.05 65.41
0.5 0.01 65.18
0.4 0.07 65.72
0.4 0.05 65.72
0.4 0.01 64.39
0.3 0.03 64.39
0.3 0.01 64.94

Table 7: Sensitivity anal-
ysis for DenseNet-40-10 on
CIFAR-100.

I ONLINE TENSOR DECOMPOSITION

We follow the experimental setup in (Ge et al., 2015), where their proposed projected noisy gradient
descent is applied to orthogonal tensor decomposition. A brief description of the online tensor
decomposition problem is given below.

Consider a tensor T which has an orthogonal decomposition,

T =

d∑
i=1

a⊗4
i , (52)

where ai’s are orthonormal vectors. The goal of performing the tensor decomposition is to find the
orthonormal components, given the tensor. The objective function is defined to reduce the correla-
tion between the components:

min
∀i,∥ui∥=1

∑
i̸=j

T (ui, ui, uj , uj) (53)

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

We plot the normalized reconstruction error,
∥∥∥T −

∑d
i=1 u

⊗4
i

∥∥∥2
F
/ ∥T∥2F in Figure 4, where ∥.∥F

denotes the Frobenius norm.

0 2000 4000 6000 8000 10000

Iterations

0

0.5

1

1.5

R
e

c
o

n
s
tr

u
c
ti
o

n
 e

rr
o

r

SGD[9]

PLRS

Figure 4: Reconstruction error for online tensor decomposition

We tune the learning rate parameters Lmin and Lmax to 0.007 and 0.01 respectively to obtain the
convergence plot with PLRS. We compare against the plot in Figure 1.a of (Ge et al., 2015). We
note that the proposed Uniform LR produces faster and smoother convergence when compared to
the unit sphere noise proposed in the Noisy SGD algorithm. As mentioned in (Ge et al., 2015), the
plot may vary depending on the instance of initialization; however, it converges consistently across
all runs.

Additionally, we implemented stochastic gradient descent with additive noise in the neural network
setting. However, its performance was suboptimal even with extensive tuning of hyperparameters.

J LLM USAGE

We make use of LLMs for grammar, punctuation and phrasing suggestions.

32

	Introduction
	Motivation
	Our contributions

	Probabilistic learning rate scheduler
	Preliminaries and definitions
	Proof of convergence
	Empirical evaluation
	Results on Image classification tasks
	Results on NLP tasks
	Results on Speech recognition task

	Concluding remarks
	Reproducibility statement
	Proof of Theorem 1
	Additional results needed to prove Theorem 2
	Proof of Lemma 2
	Proof of Lemma 3

	Proof of Theorem 2
	Bounding K1
	Bounding K2 and K3

	Proof of Theorem 3
	Proof using induction
	Choice of parameters for other LR schedulers
	Train loss plots
	Plots of CIFAR-10
	Plots of CIFAR-100

	Sensitivity analysis
	Online tensor decomposition
	LLM usage

