Under review as a conference paper at ICLR 2026

RANDOMNESS HELPS RIGOR:
A PROBABILISTIC LEARNING RATE SCHEDULER
BRIDGING THEORY AND DEEP LEARNING PRACTICE

Anonymous authors
Paper under double-blind review

ABSTRACT

Learning rate schedulers have shown great success in speeding up the convergence
of learning algorithms in practice. However, their convergence to a minimum has
not been theoretically proven. This difficulty mainly arises from the fact that,
while traditional convergence analysis prescribes to monotonically decreasing (or
constant) learning rates, schedulers opt for rates that often increase and decrease
through the training epochs. We aim to bridge this gap by proposing a probabilis-
tic learning rate scheduler (PLRS) that does not conform to the monotonically de-
creasing condition, while achieving provable convergence guarantees. To demon-
strate the practical effectiveness of our approach, we evaluate it on deep neural
networks across both vision and language tasks, showing competitive or superior
performance compared to state-of-the-art learning rate schedulers. Specifically,
our experiments include (a) image classification on CIFAR-10, CIFAR-100, Tiny
ImageNet, and ImageNet-1K using ResNet, WRN, VGG, and DenseNet architec-
tures, and (b) language model fine-tuning on the SQuAD vl.1 dataset with pre-
trained BERT. Notably, on ImageNet-1K with ResNet-50, our method surpasses
the leading knee scheduler by 2.79% in classification accuracy.

1 INTRODUCTION

Over the last two decades, there has been an increased interest in analyzing the convergence of gra-
dient descent-based algorithms. This can be majorly attributed to their extensive use in the training
of neural networks and their numerous derivatives. Stochastic Gradient Descent (SGD) and their
adaptive variants such as Adagrad (Duchi et al.,2011), Adadelta (Zeiler, [2012)), and Adam (Kingma
& Bal 2014)) have been the choice of optimization algorithms for most machine learning practition-
ers, primarily due to their ability to process enormous amounts of data in batches. Even with the
introduction of adaptive optimization techniques that use a default learning rate, the use of stochastic
gradient descent with a tuned learning rate was quite prevalent, mainly due to its generalization prop-
erties (Zhou et al., 2020). However, tuning the learning rate of the network can be computationally
intensive and time consuming.

Various methods to efficiently choose the learning rate without excessive tuning have been explored.
One of the initial successes in this domain is the random search method (Bergstra & Bengio| [2012);
here, a learning rate is randomly selected from a specified interval across multiple trials, and the
best performing learning rate is ultimately chosen. Following this, more advanced methods such as
Sequential Model-Based Optimization (SMBO) (Bergstra et al.|[2013) for the choice of learning rate
became prevalent in practice. SMBO represents a significant advancement over random search by
tracking the effectiveness of learning rates from previous trials and using this information to build
a model that suggests the next optimal learning rate. A tuning method for shallow neural networks
based on theoretical computation of the Hessian Lipschitz constant was proposed by Tholeti et al.
(Tholeti & Kalyani, [2020).

Several works on training deep neural networks prescribed the use of a decaying Learning Rate
(LRﬂ scheduler (He et al.|[2016}; Zhang et al.|[2019; |Szegedy et al.,|2015). Recently, much attention

"We abbreviate learning rate only in the context of learning rate scheduler as LR scheduler.
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has been paid to cyclically varying learning rates (Smithl 2017). By varying learning rates in a
triangular schedule within a predetermined range of values, the authors hypothesize that the optimal
learning rate lies within the chosen range, and the periodic high learning rate helps escape saddle
points. Although no theoretical backing has been provided, it was shown to be a valid hypothesis
owing to the presence of many saddle points in a typical high dimensional learning task (Dauphin
et al.||2014). Many variants of the cyclic LR scheduler have henceforth been used in various machine
learning tasks (Howard & Ruder} 2018} Dhillon et al.,[2020; |/Andriushchenko & Flammarion, [2020).
A cosine-based cyclic LR scheduler proposed by Loshchilov et al. (Loshchilov & Hutter, 2017b))
has also found several applications, including Transformers (Zamir et al., 2022; |Caron et al.| [2021]).
Following the success of the cyclic LR schedulers, a one-cycle LR scheduler proposed by Smith
et al. (Smith & Topin, |2019) has been observed to provide faster convergence empirically; this
was attributed to the injection of ‘good noise’ by higher learning rates which helps in convergence.
Although empirical validation and intuitions were provided to support the working of these LR
schedulers, a theoretical convergence guarantee has not been provided to the best of our knowledge.

There is extensive research on the convergence behavior of perturbed SGD methods, where noise
is added to the gradient during updates. In Jin et al. (Jin et al,|2017), the vanilla gradient descent
is perturbed by samples from a ball whose radius is fixed using the optimization function-specific
constants. They show escape from a saddle point by characterizing the distribution around a per-
turbed iterate as uniformly distributed over a perturbation ball along which the region corresponding
to being stuck at a saddle point is shown to be very small. In Ge at al. (Ge et al., 2015), the saddle
point escape for a perturbed stochastic gradient descent is proved using the second-order Taylor ap-
proximation of the optimization function, where the perturbation is applied from a unit ball to the
stochastic gradient descent update. Following Ge at al. (Ge et al.| [2015)), several works prove the
convergence of noisy stochastic gradient descent in the additive noise setting (Zhang et al., 2017} Jin
et al.l 2021} |Arjevani et al.| 2023} [Yiming Cao et al., [2025). In contrast to the above works which
operate in the additive noise setting, our proposed LR scheduler results in multiplicative noise. Ana-
lyzing the convergence behavior under the new multiplicative noise setting is fairly challenging and
results in a non-trivial addition to the literature.

1.1 MOTIVATION

Traditional convergence analysis of gradient descent algorithms and its variants requires the use
of a constant or a decaying learning rate (Nesterovl [2014). However, with the introduction of LR
schedulers, the learning rates are no longer monotonically decreasing. Rather, their values heavily
fluctuate, with the occasional use of very large learning rates. Although there are ample justifications
provided for the success of such methods, there are no theoretical results which prove that stochastic
gradient descent algorithms with fluctuating learning rates converge to a local minimum in a non-
convex setting. With the increase of emphasis on trustworthy artificial intelligence, we believe that
it is important to no longer treat optimization algorithms as black-box models, and instead provide
provable convergence guarantees while deviating from the proven classical implementation of the
descent algorithms. In this work, we aim to bridge the gap by providing rigorous mathematical proof
for the convergence of our proposed probabilistic LR scheduler with SGD.

1.2 OUR CONTRIBUTIONS

1. We propose a new Probabilistic Learning Rate Scheduler (PLRS) where we model the
learning rate as an instance of a random noise distribution.

2. We provide convergence proofs to show that SGD with our proposed PLRS converges to
a local minimum in Section E} To the best of our knowledge, we are the first to theoret-
ically prove convergence of SGD with a LR scheduler that does not conform to constant
or monotonically decreasing rates. We show how our LR scheduler, in combination with
inherent SGD noise, speeds up convergence by escaping saddle points.

3. Our proposed probabilistic LR scheduler, while provably convergent, can be seamlessly
ported into practice without the knowledge of theoretical constants (like gradient and
Hessian-Lipschitz constants). We illustrate the efficacy of the PLRS through extensive
experimental validation, where we compare the accuracies with state-of-the-art schedulers
in Section[5] We show that the proposed method outperforms popular schedulers such as
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cosine annealing (Loshchilov & Hutter, [2017b)), one-cycle (Smith & Topin, [2019), knee
(Lyer et al., 2023) and the multi-step scheduler when used with ResNet-110 on CIFAR-
100, DenseNet-40-12 on CIFAR-100, VGG-16 on CIFAR-10, WRN-28-10 on CIFAR-10
datasets and ResNet-50 on Tiny ImageNet datasets respectively, while performing com-
petitively with baselines when used on NLP datasets like SQuAD vl1.1 and IWSLT’ 14
with BERT and Transformer respectively. Furthermore, we outperform the baseline results
on the CommonVoice 11.0 Hindi dataset with Whisper model on the Automatic Speech
Recognition application (ASR) application. We also observe lesser spikes in the training
loss across epochs which leads to a faster and more stable convergence. We provide our
base code with all the hyperparameters for reproducibility in the supplemental material.

2 PROBABILISTIC LEARNING RATE SCHEDULER

Let f : R? — R be the function to be minimized. The unconstrained optimization, minycpa f(x),
can be solved iteratively using stochastic gradient descent whose update equation at time step ¢ is
given by
Xe41 = Xt — Ne419(Xe). (1)
Here, n:11 € R is the learning rate and g(x;) is the stochastic gradient of f(x) at time ¢. In this
work, we propose a new LR scheduler, in which the learning rate 7, is sampled from a uniform
random variable,
Tt+1 ~ Z/[[Lmzn; Lmaa:]a 0< Lmin < Lma;v <L (2)
Note that contrary to existing LR schedulers, which are deterministic functions, we propose that
the learning rate at each time instant be a realization of a uniformly distributed random variable.
Although the learning rate in our method is not scheduled, but is rather chosen as a random sample
at every time step, we call our proposed method Probabilistic LR scheduler to keep in tune with the
body of literature on LR schedulers. In order to represent our method in the conventional form of
the stochastic gradient descent update, we split the learning rate 7,1 into a constant learning rate
7. and a random component, as 711 = 7 + usy1, where ug1 ~ U[Limin — Ney Limaz — 7). The
stochastic gradient descent update using the proposed PLRS (referred to as SGD-PLRS) takes the
form
Xe+1 = Xt — (e + u1)9(xe) = x¢ — 0V f(Xe) — Wy, 3)
where we define w; as
we = ncg(xe) = neV [ (%) + urr19(xe).- )
Here, V f(x;) refers to the true gradient, i.e., V f(x;) = E[g(x;)]. Note that in equation [3] the term
x; — 1V f(x;) resembles the vanilla gradient descent update and w; encompasses the noise in the
update; the noise is inclusive of both the randomness due to the stochastic gradient as well as the

randomness from the proposed LR scheduler. We set 7. = W so that the noise w; is zero
mean, which we prove later in Lemmam

Remark 1. Note that a periodic LR scheduler such as triangular, or cosine annealing based sched-
uler can be considered as a single instance of our proposed PLRS. The range of values assigned
to the learning rate 111 is pre-determined in both cases. In fact, for any LR scheduler, the basic
mechanism is to vary the learning rate between a low and a high value - the high learning rates
help escape the saddle point by perturbing the iterate, whereas the low values help in convergence.
This pattern of switching between high and low values can be achieved through both stochastic
and deterministic mechanisms. While the current literature explores the deterministic route (without
providing analysis), we propose and explore the stochastic variant here and also provide a detailed
analysis.

3 PRELIMINARIES AND DEFINITIONS

We denote the Hessian of a function f : RY — R at x € R? as H(x) := V2 f(x) and the minimum
eigenvalue of the Hessian as i, (H(X)) := A\nin (V2 f(x)) respectively.

Definition 1. A function f : R? — R is said to be B-smooth (also referred to as (B-gradient
Lipschitz) if, 3 8 > 0 such that,

IVf(x) = Vi) <Blx—yl, VvxyeR™. (5)
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Definition 2. A function f : R® — R is said to be p-Hessian Lipschitz if. 3 p > 0 such that,
IH(x) —Hy)| < pllx -yl VxyeR" 6)

Informally, a function is said to be gradient/Hessian Lipschitz, if the rate of change of the gradi-
ent/Hessian with respect to its input is bounded by a constant, i.e., the gradient/Hessian will not
change rapidly. We now proceed to define approximate first and second-order stationary points of a
given function f.

Definition 3. For a function f : R? — R that is differentiable, we say x € R% is a v- first-order
stationary point (v-FOSP), if for a small positive value of v, ||V f(x)| < v.

Before we define an e-second order stationary point, we define a saddle point.
Definition 4. For a p-Hessian Lipschitz function f : R® — R that is twice differentiable, we say
x € R? is a saddle point if

Vi) <v and  Apin(H(x)) < =7,

where v,~y > 0 are arbitrary constants.

For a convex function, it is sufficient if the algorithm is shown to converge to the v-FOSP as it
would be the global minimum. However, in the case of a non-convex function, a point satisfying
the condition for a v-FOSP may not necessarily be a local minimum, but could be a saddle point
or a local maximum. Hence, the Hessian of the function is required to classify it as a second-order
stationary point, as defined below. Note that, in our analysis, we prove convergence of SGD-PLRS
to the approximate second-order stationary point.

Definition 5. For a p-Hessian Lipschitz function f : R® — R that is twice differentiable, we say
x € R4 is a v-second-order stationary point (v-SOSP) if,

IVfx)| <v and Amin(H(x)) > —7, @)
where v,y > 0 are arbitrary constants.
Definition 6. A function f : R? — R is said to possess the strict saddle property at all x € R? if
x fulfills any one of the following conditions: (i) |V f(x)|| > v, (ii) Apin(H(x)) < —, (iii) x is
close to a local minimum.
The strict saddle property ensures that an iterate stuck at a saddle point has a direction of escape.
Definition 7. A function f : R — R is a—strongly convex if Apin (H(x)) > o Vx € R4,

We now provide the formal definitions of two common terms in time complexity.

Definition 8. A function f(s) is said to be O(g(s)) if 3 a constant ¢ > 0 such that | f(s)| < ¢|g(s)|.
Here s € S which is the domain of the functions f and g.

Definition 9. A function f(s) is said to be Q(g(s)) if 3 a constant ¢ > 0 such that | f(s)| > c|g(s)|.

In our analysis, we introduce the notations O() and Q() which hide all factors (including 3, p, d,
and «) except 1¢, Liin and Ly,q, in O and € respectively.

4 PROOF OF CONVERGENCE

We present our convergence proofs to theoretically show that the proposed PLRS method converges
to a v-SOSP in finite time. We first state the assumptions that are instrumental for our proofs.

Assumptions 1. We now state the assumptions regarding the function f : R? — R that we require
for proving the theorems.

Al The function f is 3-smooth.
A2 The function f is p-Hessian Lipschitz.

A3 The norm of the stochastic gradient noise is bounded i.e, ||g(x;) — Vf(x,)|| < Q Vt > 0.

Further, E[Q?] < o2
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A4 The function f has strict saddle property.

A5 The function f is bounded i.e., | f(x)| < B, Vx € R%

A6 The function f is locally a—strongly convex i.e, in the 6-neighborhood of a locally optimal
point X* for some § > 0.

Remark 2. IfV f(X;) and §(X;) are the gradient and stochastic gradient of the second order Taylor
<

approximation of f about the iterate Xy, from Assumption it is implied that H g(x:) =V f (X¢t)
Q. Further, E[Q?] < &2.

Note that these assumptions are similar to those in the perturbed gradient literature (Ge et al., 2015;
Jin et al.l [2017; |2021). We call attention to two significant differences in our approach compared
to other perturbed gradient methods such as (Jin et al., 2017} |Ge et al., 2015} Jin et al.l [2021): (i)
In contrast to the isotropic additive perturbation commonly added to the SGD update, we introduce
randomness in our learning rate, manifested as multiplicative noise in the update. This makes the
characterization of the total noise dependent on the gradient, making the analysis challenging. (ii)
The magnitude of noise injected is computed through the smoothness constants in the work by Jin
et al. (Jin et al.} 2017;2021); instead, we treat the parameters L,,;, and L,,,, as hyperparameters
to be tuned. This enables our PLRS method to be easily applied to training deep neural networks
where the computation of these smoothness constants could be infeasible due to sheer computational
complexity.

We reiterate the update equations of the proposed SGD-PLRS.

Xt+1 = Xt — ﬂCVf(Xt) — W¢. @])
Wi = 1cg(Xt) — 0V f(Xe) + urr19(Xe). @
Note that the term w; has zero mean and we state this formally in the lemma below.
Lemma 1 (Zero mean property). The mean of wy_1 Vt > 1is 0.

Proof.
Elwi—1] = E [necg(x¢-1) = neVf(xe-1)] + E [urg(x¢-1)] ®)
=0 vt > 1.
This follows as E[u;] = Zmintlme=20e — 0 and E [g(x;_1)] = V f(x¢_1). O

For a function satisfying the Assumptions[ATHA6] there are three possibilities for the iterate x; with
respect to the function’s gradient and Hessian, namely, B1: Gradient is large; B2: Gradient is small
and iterate is around a saddle point; B3: Gradient is small and iterate is around a v-SOSP.

We now present three theorems corresponding to each of these cases. Our first result pertains to the
case[BI] where the gradient of the iterate is large.

Theorem 1. Under the assumptionsand With Lypaz < %,for any point x; with |V f (x)|| >
\/3ncB0? where \/31.802 < €, after one iteration, we have

E[f (xe41)] — f(x¢) < —QUL2,00)-

This theorem suggests that, for any iterate x; for which the gradient is large, the expected functional
value of the subsequent iterate f(x:,1) decreases, and the corresponding decrease E[f(x:41)] —
f(x¢) is in the order of (L2, ). The formal proof for this theorem can be found in Appendix

The next theorem corresponds to the case[B2| where the gradient is small and the Hessian is negative.
Theorem 2. Consider f satisfying Assumptions - Let {x;} be the SGD iterates of the
function f using PLRS. Let ||V f(x0)|| < v/31:002 < € and Apin(H(x0)) < —v where €, > 0.

Then, there exists a'l = 10) (L;L}l{f) such that with probability at least 1 — 0) (Lz,{azx),

E[f(er) — fxo)] < = (L3, )
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The formal proof of this theorem is provided in Appendix [C] The sketch of the proof is given below.

Proof Sketch This theorem shows that the iterates obtained using PLRS escape from a saddle point
Xo (where the gradient is small, and the Hessian has atleast one negative eigenvalue), i.e, it shows

the decrease in the expected value of the function f after T' = 0) (L;L}Iéf) iterations. Note that for
a p—Hessian smooth function,

fxr) < f(x0) + Vf(x0)" (X7 — %0) + %(XT —x0) H(xo) (X7 — Xo) + g %z —xol* . (9)
To evaluate E[f(x7) — f(Xo)] from equation [9] we require an analytical expression for X7 — Xo,
which is not tractable. Hence, we employ the second-order Taylor approximation of the function
f, which we denote as f. We then apply SGD-PLRS on f to obtain X7. Following this, we write
X7 —Xg = (X7 — X7) + (X7 — Xo) and derive expressions for upper bounds on X1 — X and X7 — X
which hold with high probability in Lemmas[2]and 3] respectively (given in Appendix [B.T]and[B.2).

We split the quadratic term in equation [9)into two parts corresponding to X7 — Xq and X7 — X7. We
further decompose the term, say ) = (X7 — xo) T H(xo) (X7 — Xo) into its eigenvalue components
along each dimension with corresponding eigenvalues Aq, ..., Aq of H(Xp). Our main result in
this theorem proves that the term ) dominates over all the other terms of equation @ and that it
is bounded by a negative value, thereby, proving E[f(x7)] < f(X¢). This main result uses a two-
pronged proof. Firstly, we use our assumption that the initial iterate X is at a saddle point and hence
at least one of A;, 1 < ¢ < d is negative. We formally show that the eigenvector corresponding
to this eigenvalue points to the direction of escape. Secondly, we use the second order statistics
of our noise, to show that the magnitude of ) is large enough to dominate over the other terms of
equation[9] Note that our noise term involves the stochasticity in the gradient and the probabilistic
learning rate. Hence, we have shown that the negative eigenvalue of the Hessian at a saddle point and
the unique characterization of the noise is sufficient to force a descent along the negative curvature
safely out of the region of the saddle point within 7 iterations. |

As each SGD-PLRS update is noisy, we need to ensure that once we escape a saddle point and
move towards a local minimum (case @]), we do not overshoot the minimum but rather, stay in the
d—neighborhood of an SOSP, with high probability. We formalize this in Theorem [3]

Theorem 3. Consider f satisfying the assumptions[AIIfA6] Let the initial iterate xo be 0 close to a
local minimum x* such that ||xg — x*|| < O(v/Limaz) < 6. With probability at least 1 — &, ¥Vt < T

where T = O (L%log %)

~ 1
—x*| <O (\/Liasl 5
e =1 < 0 (s tor ) <

This theorem deals with the case that the initial iterate X is d-close to a local minimum x* (case[B3).
We prove that the subsequent iterates are also in the same neighbourhood, i.e., § close to the local
minimum, with high probability. In other words, we prove that the sequence {||x; — x*||} is bounded
by ¢ for ¢t < T'. In the neighbourhood of the local minimum, gradients are small and subsequently,
the change in iterates, X; — X;—1 are minute. Therefore, the iterates stay near the local minimum
with high probability. It is worth noting that the nature of the noise, which is comprised of stochastic
gradients (whose stochasticity is bounded by () multiplied with a bounded uniform random variable
(owing to PLRS), aids in proving our result. We provide the formal proof in Appendix

5 EMPIRICAL EVALUATION

We conduct extensive empirical evaluations across diverse modalities and tasks, including: (a) im-
age classification on benchmarks such as CIFAR-10, CIFAR-100 (Krizhevsky et al. [2009), and
Tiny ImageNet (Le & Yang, 2015)); (b) large-scale image classification on the ImageNet-1K dataset
(Russakovsky et al., 2015)); (c) natural language processing tasks, comprising question answering
on SQuAD vl.1 (Rajpurkar et al.,|2016) and machine translation on the IWSLT’ 14 dataset (Cettolo
et al., 2014); and (d) automatic speech recognition on the CommonVoice 11.0 (Ardila et al., [2020)
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Hindi dataset. We compare with the following baseline learning rate schedulers wherever applica-
ble: (i) cosine annealing with warm restarts (Loshchilov & Hutter, |2017b), (ii) one-cycle scheduler
(Smith & Topin, 2019), (iii) knee scheduler (Iyer et al., 2023), (iv) constant learning rate and (v)
multi-step decay scheduler. We choose the parameters for these baseline schedulers as suggested in
the original papers (further details of parameters are provided in Appendix [F).

Further, in order to compare our proposed PLRS against the noisy SGD mechanism proposed by
Ge et al. (Ge et al) [2015), we provide convergence results on the online tensor decomposition
problem using the code provided by the authors in Appendix [l We conduct all our experiments on
one NVIDIA GeForce RTX 2080 12GB GPU card and one NVIDIA A100 30GB GPU card.

Hyperparameter tuning To determine the parameters L,,;, and L,,,, for PLRS, we perform a
range test, where we observe the training loss for a range of learning rates as is done in state-of-
the-art LR schedulers such as one-cycle (Smith & Topin, [2019) and knee schedulers (Iyer et al.,
2023). As the learning rate is gradually increased, we first observe a steady decrease in the training
loss, then followed by a drastic increase. We note the learning rate at which there is an increase
of training loss, say L and choose the maximum learning rate L,,,,, to be just below L, where the
loss is still decreasing. We then tune L,,;,, such that 0 < L,,;, < Lpq.. Note that there is no
extra tuning cost of L,,;, and L,,,, in comparison to state-of-the-art deterministic LR schedulers
since all LR schedulers such as cosine, knee, cyclic, require an LR range test to set the parame-
ters. Specifically, cosine LR scheduler requires the parameters minimum learning rate, frequency
of restarts and a multiplicative factor; cyclic LR scheduler requires a base learning rate, maximum
learning rate, mode of operation and the number of iterations to reach the maximum learning rate;
knee LR scheduler requires the peak learning rate, number of explore iterations and the number of
warmup iterations. In comparison, for our proposed probabilistic learning rate scheduler, we only
require Ly, and Ly, g,

5.1 RESULTS ON IMAGE CLASSIFICATION TASKS

We run experiments for 500 epochs for the CIFAR datasets, for 100 epochs for the Tiny ImageNet
dataset, and for 60 epochs on the ImageNet-1K dataset using the SGD optimizer for all schedulers
ﬂ We also set all other regularization parameters, such as weight decay and dampening, to zero. We
use a batch size of 64 for DenseNet-40-12, 50 for ResNet-50, and 128 for the others.

Scheduler VGG-16 WRN-28-10
Max acc. Mean acc. (S.D.) | Max acc. Mean acc. (S.D.)

Cosine 96.87 96.09 (0.78) 92.03 91.90 (0.13)
Knee 96.87 96.35 (0.45) 92.04 91.64 (0.63)
One-cycle 90.62 89.06 (1.56) 87.76 87.37 (0.35)
Constant 96.09 96.06 (0.05) 92.04 92.00 (0.08)
Multi-step 92.97 92.45 (0.90) 88.94 88.80 (0.21)
PLRS (ours) 97.66 96.09 (1.56) 94.00 93.97 (0.07)

Table 1: Maximum and mean (with standard deviation) test accuracies over 3 runs for CIFAR-10.

Results on CIFAR-10 We consider VGG-16 (Simonyan & Zisserman, [2015) and WRN-28-10
(Zagoruyko & Komodakis, 2016) architectures for training CIFAR-10 and use L,,;, = 0.07 and
Lo, = 0.1; and Ly, = 0.09 and L,y,4, = 0.1 respectively. We record the maximum and mean
test accuracies across different LR schedulers in Table[T] The highest accuracy across schedulers is
recorded in bold. For the VGG-16 network, we rank the highest in terms of maximum test accuracy.
In terms of the mean test accuracy over 3 runs, the knee scheduler outperforms the rest. Note that
the second highest mean test accuracy is achieved by both PLRS and the cosine annealing sched-
ulers. Unsurprisingly, the constant scheduler has the lowest standard deviation. In the WRN-28-10
network, PLRS ranks the highest both in terms of maximum and mean test accuracies, with a 1.96%
improvement over the state-of-the-art Knee and constant LR schedulers in maximum test accuracy
achieved. Further, we observe from the training loss plots that PLRS achieves fast convergence
when compared to other schedulers. We give the plots in Appendix [G.I}

2We provide results without momentum to be consistent with our theoretical framework. When we used the
SGD optimizer with momentum for PLRS, we obtain results better than those reported without momentum.
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Scheduler ResNet-110 DenseNet-40-10
Max acc. Mean acc. (S.D.) | Max acc. Mean acc. (S.D.)

Cosine 74.22 72.66 (1.56) 64.34 64.10 (0.28)
Knee 75.78 72.39 (2.96) 65.18 64.83 (0.30)
One-cycle 71.09 70.05 (1.19) 64.21 59.21 (4.32)
Constant 69.53 66.67 (2.51) 64.8 64.49 (0.27)
Multi-step 63.28 61.20 (2.39) 29.14 29.01 (0.17)
PLRS (ours) 77.34 74.61 (2.95) 65.92 65.57 (0.31)

Table 2: Maximum and mean (with standard deviation) test accuracies over 3 runs for CIFAR-100.

Tiny ImageNet 5
Scheduler Max acc. Mean acc. (S.D) — Constant
Cosine 62.13 62.03 (0.15) 4 Cosine
Knee 61.93 61.50 (0.42) — Multi-step
One-cycle 52.24 51.99 (0.22) "
Constant 61.59 61.11 (0.42) 23 — One-cycle
Multi-step 61.28 61.20 (0.08) = — Knee
PLRS (ours) 62.34 61.90 (0.73) i 2 —— PLRS
ImageNet-1K =
Scheduler Top-1 acc. Top-5 acc.
Baseline (Knee) 65.21 85.78 1
PLRS (ours) 68.01 88.08
0 0 20 40 60 80 100

Epochs

Table 3: Maximum and mean (with standard de- Figure 1: Training loss vs epochs for ResNet-50
viation) test accuracies over 3 runs for Tiny Im- with Tiny ImageNet.

ageNet; top-1 and top-5 accuracy for ImageNet-

1K.

Results on CIFAR-100 For training CIFAR-100, we consider the networks ResNet-110 (He et al.,
2016) and DenseNet-40-12 (Huang et al., 2017), and use L,,;, = 0.07 and L,,,, = 0.1 for the
former, and L,,;,, = 0.1 and L,,,, = 0.2 for the latter. The maximum and the mean test ac-
curacies (with standard deviation) across 3 runs are provided in Table[2] For both ResNet-110 and
DenseNet-40-12 networks, PLRS consistently outperforms all the other LR schedulers both in terms
of maximum and mean test accuracies. Furthermore, from the training loss plots which are provided
in Appendix [G.2] PLRS converges faster than the other LR schedulers to a low train loss value. It
does not have spikes (like the cosine LR scheduler), but converges in a smooth fashion to a low
value.

Results on Tiny ImageNet We consider the Resnet-50 (He et al., [2016) architecture for training
Tiny ImageNet and use L,,;, = 0.35 and L4, = 0.4. We present the maximum and mean test
accuracies in Table [3] We provide the plot of training loss in Figure [l PLRS performs the best
in terms of maximum test accuracy. In terms of mean test accuracy, it ranks second next to cosine
annealing by a close margin. It can be observed that PLRS achieves the fastest convergence to the
lowest training loss compared to others. Moreover, it exhibits stable convergence, especially when
compared cosine annealing, which experiences multiple spikes due to warm restarts.

Results on ImageNet-1K We train on the ImageNet-1K (Russakovsky et al., [2015) dataset for 60
epochs with the ResNet-50 architecture using the SGD optimizer without momentum or weight
decay. With L,,;, value of 0.05 and L,,, value of 0.11, and a batch size of 256, we achieve top-
1 accuracy of 68.01, considerably outperforming the knee LR scheduler by 2.79% under similar
settings as observed from Table 3]

Sensitivity analysis In order to determine how sensitive the maximum test accuracy is to the
choice of L,,;, and L,,4., we conducted a hyper parameter sweep across a range of values for
Lyin (0.01,0.03,0.05,0.07, 0.09) and L4, (0.1, 0.2,0.3,0.4,0.5) for WRN-28-10 on the CIFAR-10
dataset, with the maximum test accuracy as the metric of interest. The average value obtained was
93.42 with a standard deviation of 0.47 and an inter-quartile range of 0.385, indicating that the val-
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Scheduler F1 score EM Scheduler BLEU Eval ppl.
Baseline  88.66 (0.032) 81.38 (0.02) Baseline 35.53(0.06) 4.86(0.02)
PLRS 87.55(0.117)  79.775 (0.152) PLRS 35.37(0.125) 4.83 (0.02)

Table 4: F1 score and Exact matches (EM) for Table 5: BLEU scores and evaluation per-
SQuAD vl.1 dataset trained on BERT for 2 plexity comparison for IWSLT 14 trained
epochs, averaged over 3 runs. on Transformer averaged over 3 runs.

ues are not spread out. Specifically, we obtain the maximum test accuracy value around 93% with
multiple combinations of (Lyyin, Limas) such as (0.01,0.1), (0.01,0.2), (0.01,0.3), etc. Hence, the
maximum test accuracy is relatively insensitive to L,,;, and L,,,, and tuning them, while recom-
mended, may not be critical. We give detailed results of the sensitivity analysis for WRN-28-10 on
CIFAR-10 as well as for DenseNet-40-12 on CIFAR-100 in Tables [6] and [7] of Appendix

5.2 RESULTS ON NLP TASKS

Results on SQuAD v1.1 We finetune the pretrained BERT model (Devlin et al.l [2019) on the
SQuAD vl1.1 dataset (Rajpurkar et al.| 2016), which is a question-answer dataset. Using the AdamW
optimizer (Loshchilov & Hutter,2017a) with momentum parameters 3; and 32 set as 0.9 and 0.999
respectively, with all other parameters set as in [[yer et al|(2023), we obtain comparable values of
Fl1-scores and exact matches (EM) to the state-of-the-art knee LR scheduler. With L,,,;,, and L, 4
values of 2e-5 and 3e-5, respectively, we give our result with baseline comparison in Table ] after 2
epochs of training.

Results on IWSLT’14 Experiments are conducted on the IWSLT’ 14 (DE-EN) dataset (Cettolo
et al.| 2014)), which is a German to English machine translation dataset with the Transformer model
(Vaswanti et al.| |2017). The transformer was trained with the AdamW optimizer with zero norm
clipping, 51 and B3 values of 0.9 and 0.999 respectively, 0.3 dropout and 1e-4 weight decay for 50
epochs. With L,,;, and L, values of 1.5e-4 and 4.5e-4, respectively, we perform competitively
with the state-of-the-art knee LR scheduler as observed from Table 3

5.3 RESULTS ON SPEECH RECOGNITION TASK

In order to evaluate our LR scheduler in the application of Automatic Speech Recognition, we
finetune the Whisper-small (Radford et al., [2023)) model on the CommonVoice 11.0 Hindi dataset
(Ardila et al., 2020). We choose Hindi as it is the third most spoken language in the worldﬂ The
Whisper model is finetuned for a total of 5000 steps with training and evaluation batch sizes as
8, AdamW optimizer with 5 and 2 ad 0.9 and 0.999, and weight decay of 0.01 as per standard
settings (Radford et al., 2023). We outperform the two LR schedulers with state-of-the-art results
in Whisper finetuning, namely, linear decay (Radford et al. |2023) and cosine decay schedulers
(Sharma et al.,[2025)), both starting with a base learning rate of le-5. We set L,,,;,, and L,,,, as le-6
and le-5 respectively. With PLRS, we obtain a word error rate (WER) of 16.10(0.0002), which
is the mean (with standard deviation) of 3 runs, while we obtain a WER of 16.29(0.0015) and
16.35(0.0014) for the cosine and linear decay schedulers, respectively, outperforming them.

6 CONCLUDING REMARKS

We have proposed the novel idea of a probabilistic LR scheduler. The probabilistic nature of the
scheduler helped us provide the first theoretical convergence proofs for SGD using LR schedulers.
In our opinion, this is a significant step in the right direction to bridge the gap between theory and
practice in the LR scheduler domain. Our empirical results show that our proposed LR scheduler
performs competitively with the state-of-the-art cyclic schedulers, if not better, on a variety of image
classification datasets, as well as natural language processing and speech recognition applications.
This leads us to hypothesize that the proposed probabilistic LR scheduler acts as a super-class of LR
schedulers encompassing both probabilistic and deterministic schedulers. Future research directions
include further exploration of this hypothesis.

3https://www.icls.edu/blog/most-spoken-languages-in-the-world
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7 REPRODUCIBILITY STATEMENT

For reproducibility, we provide the code as part of the supplementary material. Section [5]details the
hyperparameters of our proposed learning rate scheduler, while Appendix |H lists the hyperparame-
ters used to obtain the baseline results. Additional information regarding the model architecture and
training parameters is also provided in Section 3}
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Appendix

A PROOF OF THEOREM [I]

Theorem 4 (Theoremrestated). Under the assumptionsand With Lpar < % for any point
x; with |V f(x,)|| > /31602 where \/3n.602 < € (satisfying|BI)), after one iteration we have,
E[f(xt+1)] - f(xt) < _Q(vanax)'

Proof. Using the second order Taylor series approximation for f(x;41) around x;, where x;11 =
x¢ — 1.V f(x¢) — wy, we have

Sxep1) = f(xe) S VFxe)T (k041 — %) + g et — x|,

following the result from (Nesterov, |2014, Lemma 1.2.3). Taking expectation w.r.t. wy,
E[f(xe41)] — f(x¢) < V(%) Elxer1 — x¢] + g]E[HXtH —x¢||°]
= Vf(x)TE[-n.V f(x¢) — wi] + gE[II—chf(Xt) — wi|’] (10)

B
= 0 IV £GP + SEZ 19 £Ge)l? + well)
since E[w;] = 0 due to the zero mean property in Lemma We focus on the last term in the next
steps. Expanding ||w,||?,
[will* = (neg(e) = neV £ (x0) + wr19(x0)) " (neg (1) = neV f(x0) + wi19(x1))
=12 lg(xo)|* = n2g(ee) "V (1) + merte lg(xo)|* = n2V f (xe) g (o¢e) + 112 |V £ (e
— et 11V F(x0)T9(x0) + netws g l9(xo)1* = mewsp19(x0) "V F(x0) +ui oy g
Taking expectation with respect to x; and noting that E[us11] = 0 and E[g(x;)] = V f (xt)ﬂ
E[[[we]*] = nZElllg(x)lI”) = nZ |V f (x) | + Elug 1 JE[llg(xo)[|]- (11)
Now, as per assumption [A3]
lg(xe) = Vf(xo)[* < @
lgGee) I* + V£ (xe) |* = 29(x) "V f(x) < Q
lgxe)I* < Q% = V£ () |* + 29(x0) "V f (x2)
Ellg(xe)|”] < E[Q? — [V Ge)I* + 2V £ (o) |* < 0® + [V ()17, (12)
as E[Q?] < o2. Applying equation[12]to equation |1 1]
E([[wel*] < n2o® + 2 IV (xo)lI* = 2 |V (x)|* + Eluzya]o® + Elugi] [ V£ (x|

2
=n20% + Elufy]o” + Eluf ][V f (x| (13)
2
2 2 (Lma:v - Lmin)202 (Lmaw - Lmin)2 va(XO)”
=Nt 12 * 12 ’

“Note that there are two random variables in w; which are the stochastic gradient g(x¢) and the uniformly
distributed LR u:41 due to our proposed LR scheduler. Hence, the expectation is with respect to both these
variables. Also note that u;1 and g(x;) are independent of each other.

13
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since the second moment of a uniformly distributed random variable in the interval Ly, —
Nes Limaz — Me) is given by w Using equationin equationand Ne = %,

20° Limaz — Limin 252
B[ ()] — £060) < e [VFG0) [ + 2 [V foe) | 4 27 g HlEmar — Lmin)

ﬁ(Lmaz_ mm) ||Vf( )H

- 24
2 2 2 2 2 V 2
< =1 ||Vf(xt)|| + ||Vf(Xt H _'_577;0 +ﬁ7780 +ﬂ77c || g(XO)H
2 2
:_||Vf(xt)|2<77c— o) 1 20

Now, applying our initial assumption that ||V f(x;)|| > \/3770602, we have,

2
E[f(x¢41)] — f(x¢) < —3n.80> (770 B 253770) N 2Bnto

26 n 662773‘72 + 25773‘72
3 3 3
Lmint+Lima
2

maz we have 1,8 < Lyaz3 < 1. Finally,

2 2 2 2 2 2
E[f(XtJrl)] _ f(xt) S _377350_2 + 657750- + 267700- _ _67700

) 3 3 3
= —Q(ﬂ3)7

which proves the theorem. O

Since Lypar < % and Ne =

B ADDITIONAL RESULTS NEEDED TO PROVE THEOREM
Here, we state and prove two lemmas that are instrumental in the proof of Theorem [2]

B.1 PROOF OF LEMMA[Z]

In the following Lemma, we prove that the gradients of a second order approximation of f are
probabilistically bounded for all ¢ < T and its iterates as we apply SGD-PLRS are also bounded
when the initial iterate X is a saddle point.

Lemma 2. Let f satisfy Assumptions - Let f be the second order Taylor approximation of
f and let x; be the iterate at time step t obtained using the SGD update equation as in equation

on f; let ¥y = xo, V(x| < € and the minimum eigenvalue of the Hessian of f at xo be
Amin(H(x0)) = —7, where 7y, > 0. With probability at least 1 — O(L,l,%if) we have

- i i i 1 o
[vieofl <0 (). tr-mi <0 (st (7)) wsT=0 (k).

Proof. As f is the second order Taylor series approximation of f, we have
- . 1. -
f(X) = f(x0) + Vf(x0)T (X —x0) + §(x —x0)TH(x0) (X — Xo).

Taking derivative w.r.t. X, we have V f(X) = V f(xo) 4+ H(xo) (X — Xo). Now, note that V f (%;_1)
Vf(x0) + H(Xo)(Xt—1 — Xo) = K(xo) + H(x0)X;—1, where K(xo) = V f(x0) — H(x0)xo
Vf(Xi—1) — H(x0)X;—1. Therefore,

Vi) = K(xo) + H(xo)% = VF(X;_1) — H(x0)%_1 + H(x0)%;

- L (14)
=V f(Xe—1) + H(x0) (Xt — X¢—1).
Next, using the SGD-PLRS update and rearranging,
V(&) = Vf(Xe-1) = H(x0) 0V f(Xe—1) + Wi 1) 15)

= (I — 1H(x0))V f(%—1) — H(X0)W;_1,

14
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where I denotes the d x d identity matrix. Next, unrolling the term V f(X,_, ) recursively,

t—1
V(&) = (I - 1.H(x0))'V f(%0) — H(x0) Y (I — 1.H(x0))! "W, 6)
7=0
Using the triangle and Cauchy-Schwartz inequalities,
t—1
HVf(it)H < H(I - ncH(Xo))tVf(iO)H + ||H XO) Z(I _ ncH(XO))t_T_IWT
=0
t—1 a7

< | = neB(xo))'|| ||V F%o)|| + IH(x0)]

Z(I —nH(x0)) 7w,
0

Note that the norm over the matrices refers to the matrix-induced norm. Since H(x() is a real
symmetric matrix, the induced norm gives the maximum eigenvalue of H(X¢) i.e, Anaz (H(Xg)) <
B by our B-smoothness assumption In the case of (I — n.H(X()) the induced norm gives
(1 = NeAmin(H(Xg)) which is (1 + ncfyoils per our assumption that \.,;, (H(x0)) = —7,. Also

recall that HV f (X0) H < e. Now equation |17|becomes,

va(it) < (1 +n:7) e+ I —nH(xo)! " tw, ||,
- 1_ (18)
<@+ 77070)t€ + B Z(l + UCVO)t7T71 W~ .
7=0

Now, expanding the noise term w..,

ncg(ir) - ncvf(ir) + uT-‘rlg(iT)

HVf(it)H = (1+n7) e + ﬁ§(1 +ere)t T ‘
=0

Now recall from our assumptionthat H §(%;) — Vf(%,)|| < Q. Hence,

|vic| <a et B Y14 nere) (90 + ursal | 3(5r) = VI (Re) + V(&)
=0

)

Using HVf(io)H < e and HVf(il)H < (14 neyo)e + € 4 2Q, it can be proved by induction that
the general expression for t > 2 is given by,

t—1

< (L mer)'e+ B Y (1 +m9) " (0:Q + ur| (Q+ [V (%)

=0

t(t—1)

Vi) <10Q S (1t n) (19)
=0

We give the proof of equation[I9by induction in Appendix [E] Next, we prove the bound on X; — X.
Using the SGD-PLRS update,

t—1
R - %=y (V%) + W)
7=0
t—1 T—1 ,
:—Z ne | (I =nH(x0))"V f(Xo) — H(xo) Y (I = ncH(x0))™ 7 "W, | +w, | (200)
7=0 7 =0
t—1
= —ch I —1cH(x0)) "V f(%0) = > (I = neH(x0))" 7 'wr, (20b)
7=0
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where the equation equation [20a)is obtained by using equation[I6] We obtain equation[20b] by using
the summation of geometric series as H(xg) is invertible by the strict saddle property. As Xy = X,

we can write V f(Xo) = V f(Xo). Taking norm,

-1 t—1
HXNt — )~(0|| < Z 770([ — ncH(Xo))TVf(Xo) Z([ _ ncH(XO))t—’T—l"i]T
7=0 7=0
-1 t—1
< S el = neH(x0) V£ (x0)]| + 3 (1 = neH(xo))™ .|| D)
7=0 =0
t—1 t—1
<nee Y (L +7me70)" + D (1 +7e70) T W]
7=0 7=0

In equation [21] it can be seen that the first term is arbitrarily small by the initial assumption and that
the second term decides the order of ||X; — Xo||. Hence, in order to bound ||X; — X|| probabilistically,

it is sufficient to bound the second term, S 0_¢ (1 + 17,)" 7~ ||W.||. Now,

t—1 t—1
Z(l +0e%0) T e || = Z(l +1e70) T ‘ ned(Xr) — chf(ir) + ur419(Xr) ‘
=0 7=0
t—1
=2 (1 m) T (1€ + lursal |3(%) = V%) + V(o))
t—1
= Z 1+ nc70)t T 1Q (nc + |u7+1 + Z + Uc%)t 7! |UT+1| va X-r
= =0

Now, using HVf iO)H <, )H < (14 nevo)e+e+ 2Q and equationHwe write,

t—1 t—1

Z(l +1e70) T W || < Z(l +1%) TR (e + [urga ) + (1 +1e70)' ™ [ua| e+
7=0 7=0

T(r—1)

t—1 I ,

(1+ 7ev0) 2 fuz] ((1+nc%>e+e+2cz) Y (4 00%0) T | 10Q > (14 mev0)”
T=2 /=0

(22)
It can be observed from equation [22] that the last term dominates the expression of and hence, it
determines the order of ||X; — Xo||. We now apply Hoeffding’s inequality to derive a probabilistic
bound on ||X; — Xg||. According to Hoeffding’s inequality for any summation S,, = X; + -+ +

X, such that a; < X; < b;, P(S, —E[S,] >0) < exp (ﬁ‘siap) Now, setting T =
=1\~ @i
O (Lr_n}#) from equation and assuming 7. < Nmar < \/571,% < 7” the squared bound

771

of the summation 3" "% (1 4 7e70)" ™! |ur 41| 10Q 2 1+ nc%)Tl <O ( mw) Setting

50( i{fmlog( )),forsometh,

7(7 1)

t—1
~ 1
P Z(l +0%0) T g 10Q Z 1+ 77070) >0 (L%SI log (L ))
max

T=2 7' =0
< O(Lpnas)

Taking the union bound over all ¢t < T,

-1 ’7'(7' 1) ) 1
P(vt<T, (14 1c70) "1 urga] 10 o) >0 (L33 1

722 + NeYo) [ QZO 14 n0e7)7 > (maxog -

<0 (L),

which completes our proof. O
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B.2 PROOF OF LEMMA[3]

This lemma is used to derive an expression for a high probability upper bound of ||x; — X;|| and
|V - ViG]

Lemma 3. Let f : R? — R satisfy Assumptions - Let f be the second order Taylor’s
approximation of f and let x, X; be the iterates at time step t obtained using the SGD-PLRS update
on f, f respectively; let Xy = xo and ||V f (xo)|| < e. Let the minimum eigenvalue of the Hessian at

%0 b6 Ain(VA(J(x0))) = o where 7, > 0. Then ¥t < T = O (Lual' ) with a probability of
at least 1 — O(Lfr{im)
=)

o~ %l <O (L3h,)  and  |[Vre) - V)| <0 (L3/8 log

max max

Proof. The expression for x; — X; can be written as,

X, — X = (X — Xg) — (X¢ — Xp)

= — 2_: (ncvf(XT) + Wq—) - <_ X_: (chf(iT) + WT)> = — z_: ('r]CAT + (WT — ‘TVT)) .

7=0 =0 7=0
) (23)
where we define A; = V f(x;) — Vf(X:). Now in order to bound ||x; — X¢||, we derive expressions
for both w, — w, and A .. We initially focus on the term w, — w..

W, — W‘r = ncg(x‘r) - ncvf‘r + uT—‘rlg(XT) - (ncg(ir) - ncv.}g(i‘r) + U‘r—&—lg(ﬁ‘r))

_ (24)
= (e +10) (%) = VI(x2)) = (5(3) = VI(R0) ) + ur 1A
Taking norm on both sides,
Iwr =W | < s+l (Q+ Q) + fursa| 1A (25)

Using equation [24] and equation [23] in equation and assumption [AJ] that stochastic noise is
bounded, and applying norm,

t—1 t—1
||Xt - itH = ‘_ Z (nCAT + (W‘r - v~V‘r)) < Z ”ncA‘r + (W‘r - WT)H
tilT:O 7=0 (26)
<> e+ lursal) (1A + @ +Q)
7=0

Next, we focus on providing a bound for || A, ||. Recall that A; = V f(x;) — Vf(X;). The gradient
can be written as (Nesterov, 2014),

1

V(x) = V(%) + (% — %) ( H(xe 1 + v(x; — xt_mdv)

0

=Vf(xi—1) + (Xt —X¢—1) (/1 (H(x¢—1 + v(x¢ — X¢—1)) + H(x4—1) — H(xt_l))dv>

0
=Vf(xe—1) FH(x—1) (X —X¢—1) + 041,

where 6;_1 = (fol (H(x¢—1 4 v(Xs — X¢—1)) — H(xt,l))dv) (x¢ —X¢_1). Let H, | = H(x;_1) —
H(xg). Using the SGD-PLRS update,

V(%) = Vf(xe-1) — (Hy_y +H(x0)) 0oV f (Xe—1) + We1) + 01

= Vf(x-1)(I —nH(x0)) — H(x0)Wy_1 — 1 Hy NV f(Xe_1) — Hy_Wi_1 + 0,1,
27)

17
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From equation [[4]in the proof of Lemma[2]

Vi) = VI(&e—1) +H(xo)(X — %_1). (28)
Subtracting equation 28] from equation we obtain A; as,

’

A = Vf(xe—1)I — nH(x0)) — H(xo)Wi—1 — neHy_Vf(xe—1) — Hy_yWy_1 + 0,y
~ VF(%e—1) — H(x0) (X — X;—1)
= (I = neH(x0)) A1 — H(X0) (Wee1 — We1) — Hy_y (A1 + eV f(Xe—1))

—Hy ywi 1+ 01,
(29
We now have an expression for A;. However, the derived expression is recursive and contains A;_1.
We focus on eliminating the recursive dependence and obtain a stand-alone bound for || A || Vi < T
Now, we bound each of the five terms (we term them 77, - - - , T5) of equation@ First, let us define

the eventS,
m L'HL(ZIT

; 1
G = {vT <t A < L3, log (L> } .

It can be seen that R; C R;_1 and C; C Cy_1. Note that, from Lemma|2|, we know the probabilistic
characterization of R;. We comment on the parameter 4 later in the proof. Now, we derive bounds

for each term of A, conditioned on the event R;,_1 N C;_4 fortime t <T = O (L;@}l/f).

R, = {VT <t HVf(iT)

T (= ncH(x0))Av—rll < [|Ar-1] + [|=ncH(x0) A1
1 ~ 1
<ntfiton () 40 (urtiftos (7)) )

~ 1
=0 (pL3® log [ ——
</’[‘ max Og Lmam Y

where equation 30| follows from the definition of event C;_;. Note that the first term in equation [30]
governs the order of the expression (as 0 < L,q. < 1).

Tp: |H(xo) (Wimr = Wim) || < [[H(xo)[| [[Wi—1 — Wi ]

< B0 (Jurs1 + el (Q+ Q) + ursal 1A-1])

1 ~
Lmaw >> = O(Lmaz)a

where the substitution follows from equation To bound 735 and T}, we first bound H;_l,

< O(Lyaz) + O (uLi,%éﬁ log (

| = B = Bxo) | < p %1 = o (31a)
< pllixe—t =%t + %11 = xo])
t—1
- - ) 1
<p <Z(m + |tri1l]) (IIATII +Q + Q)) + pO <Lf,{ffx log L) (31b)
=0 max
—0(—2) 0 (uriB10g ——) + 0 (=) O(Lumas) + O ( L35, 1og —
- m Hlimaz 108 Lmax m maa:) maz 108 Lmax
(31c)
~ ~ 1 ~ 1
< O(Ljla,) + 0 (Li{z log L) <0 (L%ﬁz log L) : (31d)

where equation [31a] follows from the assumption [A2] while equation follows from equation 26]
We use the bounds defined for events R;_; N C;_; in equation [31b]and equation Now, using

18
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the bound for HH;_1

, T3 can be bounded as follows.

Ty | Hoine(e + VG )| < e

H;—lAt—lH + e

H, (Vi)

~ . 1 . 1
< O()0 (L tow o ) I3t o

max max

+ O(Lmax)o (L%Ew log

- 1
=0 (LIS
( ©8 Lmar ’

n) ()

where we use the bounds in the event R;_; N Cy;_1 and equation@

To: || Hawes | < [ H | Il = [ B Ing(-1) = 0oV (xes + urg ()|
< || oo | 0 + el @ + el 1V £ (ki) (322)
= (e + )@ |[Hiy | + o | 7G|

- 1 ~ 1 ~ 1
_ 11/8 14/8 1,2 7/8
0] (me log Lmaz) +0 (,ume log Lma:r) +0 (me log Lmam)
(32b)

|| 1A+

~ 1
=0 LI/8 log ——
( max Og Lmam ?

where we use assumption [A3]in equation [32a] and the bounds of R;_; N C;_1 and equation [31d)in

equation [32b]

1
(/ 1% ||Xt_1 + ’U(Xt — Xt—l) — Xt_1|| d’U> ||Xt — Xt_1|| (333)
0

5 e =i |* < Sl eV F(xim1) = wea |

7i: Joal= ([ (s 4 olx—xn)) — Hxe 1) ) 5=

IN

| 2

IN

S =0V T (k1) = meg(xi-1) + 1V F(xe1) = wag(x1-1)

< 2 (2 9 )+ 2Q 19 £ o))
_ ol ol (@18t V7| + 2l ¥ )|

+2Q [ A1 ] +2Q HVﬂ’N‘t*l)H)

~ ~ 1 ~ ~ 1
= O(L?nam) + 0 (:uszlnlé;l 1Og2 L) + O(Lmaw) + O (/J'Liri{g log L)
~ 1 ~ ~
+0 (uLiﬁ’éf log L) +O0(LY2,) = O(Limag)- (33b)

Here, we use assumption[AJ]and the bounds of the event R;_; N C}_; in equation[33b] Note that we
have derived bounds so far conditioned on the event R;_; N C;_1. We now include this conditioning
explicitly in our notations going forward.

To characterize ||A; %, we construct a supermartingale process; and to do so, we focus on finding
E[||A: H2 1R, .nc,_,] using the bounds derived for the terms 77, - - - , T5. Later, we use the Azuma-
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Hoeffding inequality to obtain a probabilistic bound of || A||.

E[|A® 1r,_yne,_|Si-1] <

X 1\ - 1
(1 +1e70) | A1 |* + O (uLi{ir log ) 0 (Lfr{fx log >

~ 1 = ~
+ O <IML§7{§1 log L) O(Lmax) + O(L'rQrLaJ,)

max

- 1\ =~ - 1
+ O <LZr{(§z log L) O(Lmaf) + O <LZ{;1$ 10g2 L > ‘| 1Rt—1ﬁct—1

max

~ 1
< (1770 A |* + O (uLZf{Sx log 7 ) ]IRt_mc,,_l
(34)
Now, let
_ ~ 1
Gr = (1+ne70) ™ {llAtH? +0 <uLZ{§x log )] : (35)
Now, in order to prove the process G:lgr, ,nc, , is a supermartingale, we prove that
E[Gi1gr,_,nc,_,|St-1] < Gi—1lR,_,nc,_,. We define a filtration S; = s{wg,...,W;_1} where
s{.} denotes a sigma-algebra field.
E[thRt—lmCt—l ‘St—l]
_ ~ 1
< (]- + 77670) 2 ((1 + 77c'70)2 ||At*1||2 + 20 <ML;/§1: log L)) ]‘Rt—lmct—l (3621)

_ = 1
< (Lt meyo) ™ ((1 +1%0)” A1 [ +2(1 4 170)*0 (uLz,{sx log )> M
(36b)

_o(t— ~ 1
= (1t (18l + 0 (L tow 1 ) ) T iy
=Gi-11r, ncy < Gi-11lR, 0, ,-

To obtain equation we use equation 34| to find E[G;1g, ,nc, ,|Si—1]. In equation [36b] we
upper bound by the multiplication of a positive term (1 + 7.7,)?. Therefore, Gi1g, ,nc,_, is a
supermartingale.

180~ BIAP St-a]L,inery < =217 = nH(x0) A | [H (o) Wiy — W)
= 2 (2 = ncH(%0)) A || ywis |+ 21( = ncH(x0)) A | 1611 |
+IH(R0) (Wt = o)+ 1w |+ 2 IBx0) (s = w0l 7w
+ 2| H(x0) (Wer = W) ||y (o1 + 0.V T (Re-0)) |
= 2[H(x0) (e = Weo)| 61| +2 ||y (neioy + eV F %) || i awec |

=2 7y (reee + 0V o) | 10l = 2| H w1001 + 1601

. 1 ~ 1 ~ ~ 1
=0 (uLi,L{i log L) +0 (uL:,%f log® L) +O(Liae) + O (L#?éﬁ log L)

max max max

- 1
) <0 <uLZ{§x log )

Note that the above expression is obtained by the observation that the only random terms of A,
conditioned on the filtration S;_; = s{wo, W1,...,Ws_o} are H(Xo) (We—1 — Wy_1), H,_ W1
and 0;_1(see equation [33a). Hence, we cancel out the deterministic terms in ||A;||* and E || A,
and neglect the negative terms while upper bounding.

e (L;{;. log?

max

20
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The Azuma-Hoeffding inequality for martingales and supermartingales (Hoeffding},|1994) states that
if {G:1R,_,nc,_, } is asupermartingale and |G;1g, ,nc,_, —Gi—11Rr,_,nc,_,| < c: almost surely,
then for all positive integers ¢ and positive reals ¢,

52
P(Gi1r, ,nc,., — Golr_,nc_, = 9) < exp (-) .

t—1
2 ZT:O C72'

The bound of |G11R, ,nc,_, —Gi—11R,_,nc,_,| can be obtained using the definition of the process

G in equation Recollecting our assumption that 7, < Nnee < \/3/—1 o < ’yl, we see that

(14 nev0) "2t < O(1). Therefore,
|thRtflmCt*1 - E[thRtflmCt—l ‘St*1]| = (1 + 770/70)_215 ’||At||2 - IE[”At”2 |St71]’ 1g, inc,y

~ 1
<0 uitue )

We denote the bound obtained for |Gilg,_,nc,_, — E[Gtlr,_,nc,_,|St—1]| as ct—1. Now, let
0= \/Zt;:lo c2log L,im in the Azuma-Hoeffding inequality. Now, for any ¢t < T = O <L;E/I4>,

§ = \/O (Ll%) 0) (,uQLZn/;lx log2 Llw) log —— = 1) ([J/L?r{;lx 10g2 %) .

maz max max

< 1 - 1
P <thRt_1mct_1 ~Gp.1>0 <,LL$,{§$ log? 7 >) < exp (Q (1og2 7 >)

After taking union bound V¢ < T,

. 1 .
P (w <T, Glpysner s —Co> 0 (uLi’;{;z log? L)) < O(LI/4).

max

We represent the hidden constants in O (uLf’,{fx log2 ) by ¢ and choose 4 such that 4 < ¢.

Lmaa

Then, the following equation holds true.

max max

P (thRthH — Go > p2L¥! log® ) < O(L¥/%y,

max

Hence we can write,

1
P (Rtl NCi_1 N {||At|| > uL3/8 log T

max
max

}) <O(L2IY). 37)

We need the probability of the event Cy, V¢ < T in order to prove the lemma. From Lemma[2] we
get the probability of the event R; as O(Li,%;L ). Then,

1 1
P (ctl n {nAtn > W35, log }) _p (RH NCiin {|At| > WIS, log })

Lmaw Lmaz

_ 1
+ P <Rt_1 n Ct—l n {”At” Z #Lfr{s.r IOgL})

max

< O(L}r?r{ﬁ) + P(Rt—l) < O(L}i{;l)a
(38)
where the first term of equation [38] follows from equation [37} The second term of equation 38| can

be bounded by P(R;_;) which is known by Lemma Finally,

_ 1 _ ~ _
P(C) = (Cioan {2 nE8fS s — | ) +P(Cims) < O(LELY + P(Cio)

max
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The probability P(C;_1) can be found as,

_ 1 _
P(Cy_1) = P <Ct2 n {nAm > WIS, log L}) L P(Cr_s)

1
<Ct 2m{|At1| ZNL%ZIO%L }) Tt
. 1 _
2 (Con 1Al 2 urifsog 2 }) + (G
<

AsT =0 (L;L};/f), IP’(C ) oL ( mat) From equation
t—1

I = %ell < - (e + fursa]) (1A + Q@+ Q)

7=0

1 ~ 1 ~
§ 0 <Ll/4> (O(Lmax) Lfn/asr log Li + O(Lmam)>

max

=0 (uLQ/S log Ll) +O(L3A ) < O(L¥2)

max max max
max

This completes our proof. O

C PROOF OF THEOREM [2]

Theorem 5. ( Theorem restated) Consider f satisfying Assumptions - Let f be the second
order Taylor approximation of f, let {x;} and {X;} be the corresponding SGD iterates using PLRS,
with Xo = xq. Let xq correspond to ie, ||V f(xo)| < eand Apin(H(xg)) < —7y where €,y > 0.

Then, there exists a'l' = 10) ( ma@“ such that with probability at least 1 — 0) (Lﬁ{(fz),
Bl (er) = f(x0)] <~ (L3, ) -

Proof. In this proof, we consider the case when the initial iterate X is at a saddle point (correspond-
ing to[B2)). This theorem shows that the SGD-PLRS algorithm escapes the saddle point in 7" steps

where T = O (L;L}L{f).
We use the Taylor series approximation in order to make the problem tractable. Similar to the SGD-
PLRS updates for the function f, the SGD update on the function f can be given as,

X =% 1 — 0V Xe1) = W1, W1 = 10§ (K1) — 1V F(Re1) + ued(Xe1).

As the function f is p-Hessian, using (Nesterovl 2014, Lemma 1.2.4) and the Taylor series expansion
one obtains, f(x) < f(xo) + V./(x0)7 (x — x0) + }(x — x0)"H(x0) (x — x0) + £ [}x — xo||” . Let
K = X7 — X, kK = X7 — X7. Note that K + kK = X7 — Xg. Then, replacing x by XT,

f(x7) — f(x0) < Vf(x0)T (xr — x0) + %(XT —x0)TH(x0) (X — X0) + g |x7 —%o*
= Vf(x)" (R + ) + %(f-@ + 7) H(x0) (R + &) + £ |7 + 5]
- (Vf(xO)Tf% + RTH(x0)R ) + <Vf(Xo)Tn +RTH(so)R + SRTH(s0)r

Pk 3)
+6 Ik +&l”).
Let the first term be ¢ = Vf(xo)"& + 1&TH(xo)& and the second term be ( = Vf(xo)"k +

rTH(x0)k + 2nTH(x0)m + 2|k + |?. Hence f(xr) — f(x0) < ¢ + ¢. In order to prove the
theorem, we require an upper bound onE[f(xr) — f(x0)].
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Now, we introduce two mutually exclusive events Cy; and C; so that E[f(x7) — f(Xo)] can be written
in terms of events C; and C; as,

E[f(xr) = f(x0)] = E[f(xr) — f(x0)}(E[1c,] + E[le,])
= E[(f(x2) = f(x0))1or] + E[(f(xr) — f(%0))1c,]
< E[(le,] + E[CLle,] + E[(f(xr) = f(x0))16,]
= E[(] + E[(1o,] + E[(f(xr) — f(x0))1e,] — El(16,].

Let K, = E[(], Ky = E[C1¢,] and K3 = E[(f(x7) — f(x0))1¢a,] — E[fl@T]. In the remainder
of the proof, we focus on deriving the bounds for individual terms, K7, K5 and K3, and then finally
put them together to obtain the result of the theorem.

C.1 BOUNDING K

Using equation from the proof of Lemma2]in Appendix we obtain the bound for the term
K, = E[(] as,

E[f] = E [Vf(xo)T(iT —xo)+ %(iT — xo)H(x0) (%1 — xo)}

=E |Vf(xo)" <— z_: ne(I — n-H(x0))"V f(X0) — i([ —nH(xp))T 77 1v~v7>]
=0 =0
1 T-1 T—1 T
+ZE ( S eI = ncH(%0))VF(x0) — > (1 - mH(xo))T”wT) H(x))
=0 =0

T-1 T-1
( > neI = neH(x0)) "V f(x0) = (I — mH(xO))T”vh)].
7=0

7=0

Since W, = 0, all the terms with E[w.] will go to zero. Hence we obtain,

T-1
B[] = V f(x0)" (Z o(I = nH(xo))” Vf<xO)>

7=0

T-1 T
1
3 ( - Z ne(I — nCH(XO))TVf(XO)> < Z Ne(I —ncH(x0))" Vf(Xo)>
7=0 7=0
1 T-1 T T-1
+3E ( - Z{)(I - nCH(xo))TTlvVT) H(xo) ( — ZO(I - ncH(xo))T”wTﬂ .
Let A1, ..., \q be the eigenvalues of the Hessian matrix at Xo, H(X(). Now, we simplify similar to
Ge et al. (Ge et al.,[2015) as,
d T-1
== > > ne(l—neX)T [Vif(xo)* + 5 ZA ch T |Vif (%))
=1 7=0

d T—1
1 AT—7—mrs |2
+5 ZlA Zo(l —ei) E[|W..i]?].

Note that for the case of very small gradients (as per our initial conditions), |V;f(xo)> <
IV f(x0)|| < e. Therefore, the first and second terms can be made arbitrarily small so that they do
not contribute to the order of the equation. Hence, we focus on the third term. We first characterize

E[|W-.;|*] as follows. Since the norm of the stochastic noise is bounded as per the assumption
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we assume that g;(X;) — Vif(f(t) < Gand E[g] < 5.
Wi = 0cGi(Xe) — 1V f (%e) + uer1Gi(%e)
< Ne + Utt1 (Qi(it) — Vif (%) + Vz‘f@t))
< G(ne + urs1) + w1 Vif (Xe)

~ 2
‘Wf,i‘Q < (97(7% + Ut+1) + ut+1Vif(it)>

- - _ 2
= (2 + 2ncuer + uiyy) + 20ncu Vi f (Xe) +2Gui Vi f (Re) + u7y ’Vif(xt)
Taking expectation with respect to ¢ and the uniformly distributed random variable u;, and recall-
ing that Eus11] = 0, we set expectation over linear functions of w1 to zero.

E[|V~V'r,i|2] 77 + 02E[Ut+1] + 202E[ut+1] 1f~(it) + E[uerl] ’vzf(it)

1 ~ 1
<O(L O(L2 O(L2,,,)0 [ —=— ] +O(L%,,)0 [ —) 9
( maa:) J’_ ( maz) + ( ma:r) (m) + ( maz) ma
O( mam) + O(L71n5az) + O(Lmaﬂ?) = O(Lmam)
Here, we use E[ut 1) = M O(L2 ). From equation |19|in the proof of Lemma

max

V(%) H<10QZ (1t ) —O(ﬂl—) astSTZO(L;L%‘*).
Also, note that ¢ and Ugyq are 1ndependent of each other. As \p,in (H(X0)) = —7o0,

d T-1
1 e
3 2% 2 (1= eh T B

(Appendix

1 d T— O~( d T-1
<3 > Z (1 + 7e70) " E[| W4 ] < maz) > 2} (14 1e70)? (40a)
=1 =0 =1 T=
O~(L ) T-1 T-1
= % ( — Yo Z(l + 776'70)27— + (d - I)Amaz(H(XO)) Z(l + 77070)27—)7 (40b)
=0 =0

where we use the upper bound of E[|W, ;|*] obtained from equation [39|in equation @ We use the
fact that one of the eigenvalues of H(x() is —v, and then upper bound the other eigenvalues by the
maximum eigenvalue ). (H(Xo)) in equation [40b]

Let e < Mmaz < % where v < v, < ’yl. As 23;01 (14 np’yo)zT is a monotonically increas-

ing sequence, we choose the smallest 7' that satisfies 1/% < ZT o (1 + NeY0)?T. Therefore,
n Yo

277—:02(1 + 77670)27 < 771/47 Now,

o

c

T-1

N
|

2

2d
Z(l + 77070)27- =1+ (1 + 77070)2 ( + "7070)27- < L+ 1/4 ’
7=0 7=0 Nle "o
which follows from our constraints that 7. < \/’2;71 and 7, < 7, making (1 + ncy)Q <

!’ 2 ,
(1 + %’Y ) < 2. Further using 1.7, < 772/4% < %7 <d.

— 2d 3d
27’
1/4 Z 1+7e%)7 <1+ /4 < 1/4_

- 41
770 O =0 nc o 770 ’YO

Hence the order of T is given by T' = O (L}‘;Ed ) We hide the dependence on d when we use
maz Yo

T=0 ( magx ) Using equatlonit can be proved that,

d T—-1
. ) i
52 Y (1= X)) 2 TTVE WL )% < —O(LE1,).
i=1 =0
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C.2 BOUNDING K5 AND K3

We define the event C as, Cp = {Vt <T,|&| <O (L%Sx log me> sl < O(Li{fz)}. From
Lemma 2] and Lemma [3] in Appendix [B.T] and respectively, we know that with probability

P(Cr) > 1 — 1) (L%3x>, the term ||<|| can be bounded by 0) (L?,{sx log

be bounded by O(L¥a,), ¥t < T = O (L;LLCZ‘).

) and ||| can

Lmaz

Now, to complete the proof of Theorem 2, we need to show that the term K; dominates both Ky
and K 3. Hence, we obtain the bound for the term K> as,

E[(1e,] = E [Vﬂxw% +RTH(xo )+ L TH(o)R + £ [+ nnﬂ B(Cr)

- 1
<O (L8 1
(135108

max
max

) O(L3A YP(Cr) = O (L9/8 log - !

max max
max

)eccn).

Finally, we bound the term K5 as follows.

E[(f(xr) — f(%0))1¢,] — ElC1e,] < O(P(Cr) < O (LH2) |

where the inequality arises from the boundedness of the function. Comparing the bounds of the
terms K, K5, and K3, we find that Ky dominates, which completes the proof. O

D PROOF OF THEOREM [3]

Theorem 6. (Theorem [3] restated) Consider f satisfying the assumptions Let the initial
iterate xo be 6 close to a local minimum x* such that ||xo — x*|| < O(v/Linaz) < 0. With probability

atleast 1 — &, %t < T where T = O (L% log %)

max

~ 1
x; —x*|| <O Loz lo <4
e — x| ( : mef)

Proof. This theorem handles the case when the iterate is close to the local minimum (case [B3).
We aim to show that the iterate does not leave the neighbourhood of the minimum for ¢ <

0 ( L log %) By assumption if x; is d close to the local minimum x*, the function is locally

Liaw
a- strongly convex. We define event D; = {V7 < ¢,|x; — x*|| < py/Lmax logm < 0}
Let Lge < ﬁ where r < log £~ 1. It can be seen that D;_; C D,. Conditioned on event
D, and using a—strong convexity of f, (Vf(x;) — Vf(x*))T(x, — x*)1p, > a|x —x*||*1p,.
As Vf(x*) = 0, it becomes, V f(x;)T (x; — x*)1p, > a|x; —x*||*1p,. We define a filtration

St = s{wo,...,W;_1} in order to construct a supermartingale and use the Azuma-Hoeffding in-
equality where s{.} denotes a sigma-algebra field. Now, assuming L.,q, < %,

E[|lx; —x*||* 1p,_,[Si—1] = E[|x¢—1 — neVF (x—1) — Wiy — x*[|*[S-a]1p,

= E[[[(x¢—1 = X*) = 0V f(xe—1) — w1 ||* |Se-a]1p,

= [Ixe—1 = x*|* = 2ne(x¢—1 — X )TV F(xem1) + 12 [V (xe—1)|* + B Wi |[*]11p,_,  (42a)
< lxe-1 = X7 = 2near xe—1 = x|° + 128 xe -1 — x| * + E[|we 1 |*)]1p,_, (42b)

We use E|w;| = 0in equation We use the -smoothness and av—convexity assumptions of f in
equation Now, using Wy_1 = 1cg(x¢—1) — 7V f (X¢—1) + u¢g(x¢—1 ), we compute E[|[w,_1|*]

25



Under review as a conference paper at ICLR 2026

as,
2
Ellwe1
T
= B[ lg(xe-1) = V£ (xe-2) I + 20011 (9(x1-1) = VS (xe1) ) gxe1) + i g (xe1)
< 20 + Euf]Ellg(xi-1)|] < n2o? + Elu)(0® + |V (xi-1)II°)
< n20? + Efuflo? + E[uf] 8% |xi— — x|
2L2 2L mazm 2L2 2L ma2?
< 52 2 mar maz'/c 2 L —x* 2 mazr max’|c )
<o? (vt Ppen _ Zhmesle) 4 g,y — x|t (ipas 2t
(43)
2
As e = Lmintlmes [ . — 9. — Lq,. Hence, we write E[u?] = (Lmee—lmin). _

4(Lyaz—nc)* L 2—2Lmazne 212 el . . . .
(Ermaz—te)  — e slle < 2fmar _ 2Lmaslle jp equation 43| Using equation ¥43| in

12
equation 2B

Elllxe — x° 1p,_, [S1-1] < [nxt_l T (1 a4 2B +

207,05 2Lma1771052)

3 3
102 <77§ " 2L§1am _ 2Ln§zm770):| 1p, .
S [P (1 + e+ 2L”;)0‘> +o? (L?m + QL?,T)] 1p,_,
< -IIXH —x"||? (1 + Linaza + 2L7"3“‘”a> +0° <Lim + 2L§“m)] 1p, ,
_ :||Xt1 x| (1 N 5Ln§awa> N BL%SHUT 1o
We use Loz < % Let J, = (1 + M%)_t (th — X*||2 + L%“ﬁ) We prove J;1p, , isa

supermartingale process as follows.

5aLmaw - Lnum:a2
o) (i )
3 «

5aLmaz\ " L2 5L yman 5L2,,.0%2  Lmazo?
<1 + 3) {thl — x| (1 + 3 ) + 3 + o 1p, ,

E

St—1:| 1p, , <

504Lmaw -1 % Lﬂfwwsa-2
= (1 + 3) [xtl —x*|° + a} 1p,, = Jialp, , < Ji_1lp, ,.

Hence J:1p, , is a supermartingale. In order to use the Azuma-Hoeffding inequality, we bound
[Jilp, ., —E[Jidp, ,[Si-]| as,

S5alimaz

—t
22) [l - x| = Ells =17 151-1]] 1

|Jilp,_, — E[Jilp, ,[Si-1]] = (1 +

5aLmas\ " .
< (1 n ) [2 1ot — 1oV £ (1) — x°] W] + [Iwer | +

3
2L72 2L mazNe 202  2Lmaxe
2 2 max max'lc 2 %112 max mazTe
—~ - - 1
a <770 + 3 3 ) +/B ||Xt 1 X H ( 3 3 > :| Dt—l’

(44)
where we use equation43|in equationfor the term E[[|w;_1||*]. Now, we compute ||w;_1|| using
assumption [A3]as follows.

Weill = [[meg(X¢—1) = 1V f(X¢e—1) + urg(Xe—1) ||

< 1@+ [uel(@ + IV ) ) < Qe + ) + fuel B mes — 7). &
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Using equation [43]in equation [#4] and the bound of the event D;_1,
|Jt1Dt—1 - E[Jt]-Dt_l |St—1} |

S5al -t * *
< (14295} [2es = % Q ) + a3 s = %)

" 2L2 2L
+ (Q(nc + |Ut|) + |Ut|ﬁ ||Xt_1 —-X ”)2 + 0,2 <773 + maxr maa:nc)

3 3
* 2L$nar 2Lm{l$ C
N T—T ( _ 2omoat )]1%

3 3

5 Lmaz \ " s 1 - 1
= (14 22} 10 (ekiton®® ) + O (1L tog g ) +20(22,,0)
~ 1 ~ 1
1 — 2 23 1
+ O ( max Og Lmam£> + O < maz 08 Lmazé-) :l

5aLmaz\ " N |
<[1 ul, > log™ =

We denote the bound of | J;1p,_, — E[J;1p,_,|S:—1]| as d;.
Let bt \/ZT 1 .,_ \/ZT 1 1 + 5&L7na‘n)7 O (:u’Lmaz 10g0.5 Lmlazg)' NOW,

t —27
S5aLlmax ) 1
Z (1 + —3 ) O < Lin‘:’m logO 5 Lmazf)

1 1
< O (ML log”® )
- OLLTH,CL«’C _2 max
\/1 — (1 + 5 3 ) Lmafg
o(1) ( 05 _ 1 ) 5 ( 05 _ 1 )
=/ =——2—0( puL:> log" = O | pLmaazlog™ .
O(Lmaw) Hmaz 108 Lmaxf a s Lmaxf

Hence b, is of the order O (umec log

1 ~ 1
P (JtlDt_l — Jo > by log”?® meg) < exp (Q (log Lmaxf)) < O(L3,,.9),

which leads to,

) By the Azuma Hoeffding inequality,

~ 1
P (Jtlpt_1 —Jo>0 (,uLmaI log 7

max

;) <0k

Hence we can write,

P (Dtl N {”Xt — X H > O (MLma:r 108; £> }) O~ L%@ax&)

For some constant b independent of L,,,,. and £ we can write,

P (Dt—l N {||xt —X || > b,ume log

By choosing 11 < b,

IP)(Dtlm{”Xt_X I > [ Lmaz 10g Lok
_ 1 _
p(0) = (Dian { I - x°l1 2 M/LW log 5}) + (D)

<O(L3,,.€) +P(D;_1)

max

<O(L

mam )

o)) <00t
fe)):

Iteratively unrolling the above equation, we obtain P(D;) < (L3,..€). Choosing t

0 (108 1), B(D)) < O (Limastlog L) AS Lynas < O (L
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E PROOF USING INDUCTION

In the proof of Lemma[2)in Appendix we state that equation [I9]can be proved by induction for
t > 2. We restate the equation here and provide the corresponding proof by induction.

t(t—1)

Induction hypothesis: HVf(igH <10Q Z (14 1:7)"- (46)
7=0

Recollect from that equation (15| that V f(X;) = (I — n.H(x0))V f(%;_1) — H(xo)W;_. Taking
matrix induced norm on both sides,

|7t < @+ nere)

Vi)

[+ 8% )

= (14 n70) + Blursa]) [ V7o) | + BOe + ),

since, Hg(it) — Vf(it) <€ |ut| < Lipas and fLyq, < 1 hold for all

t. Therefore, att = 1,
[VFG|| < (130 + Bt} €+ BQEe + fur]) < (14 mero)e + € +2Q.
Now, we prove the hypothesis in equation[46|for ¢ = 2. From equation[#7] for an arbitrarily small ¢,
V7o) < (1 +nev0) + B lual) ||V F )| + B + ]
< (14 ne%0)%€ + 2(1 + nevo)e + € + 2Q(1 + 1evo) + 4Q

2(2 1)

<262 + NeYo)” +4QZ + NeYo)” <10QZ (L4 ne%)"

< Q. Note that “Vf(it)

We have shown that the 1nduct10n hypothesis holds for t = 2. Now, assuming that it holds for any ¢,
we need to prove that it holds for ¢ + 1. We know from equation[d7] when the hypothesis is assumed
to hold for ¢,

t(t—1)
2

|V 7 ern)|| < (14 mev0) + Bluesa) 10Q D7 (1 mevo)” + BQe + e
7=0
M t(t 1)

< (14 17)10Q Z (1+71e7)7 +10Q Z (14 0c70)™ + BQ1e + [us41])
7=0
t(t— 1)+1
<20Q Z (1+ne70)"
t(t— 1)+ t(f+1

If we prove 20Q > (1 +7e%0)™ < 10Q >3 (141:7)7, the induction proof is complete.
Now, we need to prove

+ 2—t+1 +2 +t
20Q Y (1+n7)" <10Q Z L+ 1e70)"
7=0
f%tﬂ o
<10Q Y (14+n03)7+10Q Y (1+71%)"
=0 r=5t 4
Therefore we need to show that,
2t t24¢
— t1 =
Yo 0+n7%) < Y. 1+me7)" (48)
=0 r=L5t 42
S1

Sa
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2t ,
— (141c70) 2

t2 ¢
. . . oty _ .
Now, summing up the geometric series S1, Y . 2, (14+7cY0)" P L Using change

of variable in Sy of equationas m=7T— <t277t + 2),

t—2 -1
Z (1 + UcVo)7t22_t+m+2 _ (1 + 77c'}/o) t22_"+2 (1 + 77070)t - 1.
m=0 TNeYo

Therefore, we now need to prove,

2o 2ot _
(1 + 7](:70)74_2 - 1 S (1 + Uc’Yo) 2 +2 ((1 + nc’Yo)t ! - 1)

t2—¢ 12 ¢ (49)
= 2(14+1%) 2 2 < (A 4+n09) 2 41

We further prove equationby induction as follows. For t = 2, 2(1 4+ 7¢7,)® < (1 4+ neyo)* + 1.
Let us assume the following expression holds for time step ¢.

2t

2_¢
2(1+0e%0) = 2 < (14 7e9) T T (50)
Now, we prove for the time step ¢ + 1,

t(t t(t

_ 5
2(1 + 77070) ;1)+2 = 2(1 + 77(:'70) 2 D t+2 < (1 + nc’YO)tizt+t+1+t

t(t t(t

+1) +1)
=(1+77%) 2 <A 4n0,) 2 T2

61V

t(t—1) _t(t+1)
S tt= "5

where we use and apply our assumption equation [S0|in equation We have

2 _ 2_, 2_,
proved 2(1 + 1eyo) 2 T2 < (14 70%) = T < (14 5ey,) 2 T 4 1. This concludes our
proof of equation

F CHOICE OF PARAMETERS FOR OTHER LR SCHEDULERS

1. Cosine annealing (Loshchilov & Hutter, 2017b): There are 3 parameters namely, initial
restart interval, a multiplicative factor and minimum learning rate. The authors propose an
initial restart interval of 1, a factor of 2 for subsequent restarts, with a minimum learning
rate of 1le — 4, which we use in our comparisons.

2. Knee (Iyer et al.,2023)): The total number of epochs is divided into those that correspond to
the “explore” epochs and exploit” epochs. During the explore epochs, the learning rate is
kept at a constant high value, while from the beginning of the exploit epochs, it is linearly
decayed. We use the suggested setting of 100 initial explore epochs with a learning rate of
0.1 followed by a linear decay for the rest of the epochs. For training ImageNet-1K, we use
the suggested setting of 30 explore epochs. For fine-tuning BERT on SQuAD v1.1 dataset,
we use a base learning rate of 3e — 5 for 1 explore epoch and then decay, for a total of 2
epochs. For training the Transformer model on the IWSLT’ 14 dataset, a seed learning rate
of 3e — 4 is used for 40 explore epochs.

3. One cycle (Smith & Topin, 2019): We perform the learning rate range test for our networks
as suggested by the authors. For the range test, the learning rate is gradually increased
during which the training loss explodes. The learning rate at which it explodes is noted
and the maximum learning rate (the learning rate at the middle of the triangular cycle) is
fixed to be before that. We linearly increase the learning rate for the initial 45% of the total
epochs up to the maximum learning rate determined by the range test, followed by a linear
decay for the next 45% of the total epochs. We then decay it further up to a divisive factor
of 10 for the rest of the epochs, which is the suggested setting. Note that the one cycle LR
scheduler relies heavily on regularization parameters like weight decay and momentum.

4. Constant: To compare with a constant learning rate, we choose 0.05 for the VGG-16 archi-
tecture and 0.1 for the remaining architectures as done in our other baselines(Smith} 2017
Loshchilov & Hutter, [2017D).
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5. Multi step: For the multi-step decay scheduler, our choice of the decay rate and time is
based on the standard repositories for the architectures. El Specifically, we decay the learn-
ing rate by a factor of 10 at the the epochs 100 and 150 for ResNet-110 and ResNet-50. In
the case of DenseNet-40-12, we decay by a factor of 10 at the epochs 150 and 225. For
VGG-16, we decay by a factor of 10 every 30 epochs. In the case of WRN, we fix a learn-
ing rate of 0.2 for the initial 60 epochs, decay it by 0.22 for the next 60 epochs, and by 0.23
for the rest of the epochs.

G TRAIN LOSS PLOTS

G.1 Prorts oF CIFAR-10

To study the convergence of the schedulers we plot the training loss across epochs in Figure 2] We
observe that our proposed PLRS achieves one of the fastest rates of convergence in terms of the
training loss compared across all the schedulers for both networks. Note that the cosine annealing
scheduler records several spikes across the training.

3.0
—— Constant —— Constant
2.5 Cosine 2.0 Cosine
—— Knee —— Knee
g 2.0 —— Multi-step §1.5 —— Multi-step
gl 5 —— One-cycle - —— One-cycle
@ —— PLRS T 1.0 —— PLRS
F10 =
0.5
0.5
0.0 e 0.0 L...ln.nl | n
' 0 100 200 300 400 500 0 100 200 300 400 500
Epochs Epochs
(a) VGG-16 (b) WRN-28-10

Figure 2: Training loss vs epochs for VGG-16 and WRN-28-10 for CIFAR-10.

G.2 Prorts oF CIFAR-100

We plot the training loss in Figure[3] For ResNet-110, both PLRS and knee LR scheduler converge to
a low training loss around 150 epochs. While cosine annealing LR scheduler also seems to converge
fast, it experiences sharp spikes along the curve during the restarts. For DenseNet-40-12, PLRS
converges faster to a lower training loss compared to the other schedulers. Specifically, the train loss
converges around 150 and 200 epochs for ResNet-110 and DenseNet-40-12 respectively.

SResNet:https://github.com/akamaster/pytorch_resnet_cifar10,
DenseNet:https://github.com/andreasveit/densenet-pytorch,
VGG:https://github.com/chengyangfu/pytorch-vgg-cifar10,
WRN:https://github.com/meliketoy/wide-resnet.pytorch
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Figure 3: Training loss vs epochs for ResNet-110 and DenseNet-40-12 on CIFAR-100.

H SENSITIVITY ANALYSIS

We perform sensitivity analysis of the parameters L,,;, and L,,,, on the maximum test accuracy.
We vary the parameters and record the highest test accuracy achieved for various combinations of
Lnin and L, 4. for the WRN-28-10 network trained on the CIFAR-10 dataset and the DenseNet-40-
10 network trained on the CIFAR-100 dataset respectively and give a subset of the results in Tables
|§| and It can be observed that over a range of combinations of L,,;, and L, 4., the maximum test
accuracy remains ~ 93 for CIFAR-10 and ~ 65 for CIFAR-100, indicating that even if the settings
of Ly and Ly, 4, are not tuned extensively, one can still achieve state-of-the-art results.

Limax Lmin Max acc. Limax Lmin Max acc.
0.1 0.01 93.77 0.5 0.09 65.83
0.1 0.03 93.31 0.5 0.07 64.32
0.1 0.05 93.58 0.5 0.05 65.41
0.2 0.01 93.87 0.5 0.01 65.18
0.2 0.03 93.29 0.4 0.07 65.72
0.2 0.05 92.73 0.4 0.05 65.72
0.3 0.01 93.55 0.4 0.01 64.39
0.3 0.03 93.63 0.3 0.03 64.39
0.3 0.05 93.57 0.3 0.01 64.94

Table 6: Sensitivity analysis Table 7: Sensitivity anal-
for WRN-28-10 on CIFAR-10 ysis for DenseNet-40-10 on
CIFAR-100.

I ONLINE TENSOR DECOMPOSITION

We follow the experimental setup in 2015)), where their proposed projected noisy gradient
descent is applied to orthogonal tensor decomposition. A brief description of the online tensor
decomposition problem is given below.

Consider a tensor 7" which has an orthogonal decomposition,

d
T = Z a®t, (52)
i=1
where a;’s are orthonormal vectors. The goal of performing the tensor decomposition is to find the
orthonormal components, given the tensor. The objective function is defined to reduce the correla-

tion between the components:

i \Iﬁliﬂfl ZT(’U,Z‘,’U,Z‘,UJ',U]‘) (53)
DI i
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We plot the normalized reconstruction error,

2
d 2 . .
‘T . u;®4HF /7% in FlgureH where ||.|| »
denotes the Frobenius norm.

1.5

————— SGDI[9]
PLRS
S
N
—_ \\
S 1 .
@ RN
c N
] N
c N
g 05 N
Q N
o N
0 L L I V\"\"'arf,
0 2000 4000 6000 8000 10000
Iterations

Figure 4: Reconstruction error for online tensor decomposition

We tune the learning rate parameters L,,;, and L., to 0.007 and 0.01 respectively to obtain the
convergence plot with PLRS. We compare against the plot in Figure 1.a of (Ge et al 2015). We
note that the proposed Uniform LR produces faster and smoother convergence when compared to
the unit sphere noise proposed in the Noisy SGD algorithm. As mentioned in (Ge et al.,[2015), the
plot may vary depending on the instance of initialization; however, it converges consistently across
all runs.

Additionally, we implemented stochastic gradient descent with additive noise in the neural network
setting. However, its performance was suboptimal even with extensive tuning of hyperparameters.

J  LLM USAGE

We make use of LLMs for grammar, punctuation and phrasing suggestions.
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