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ABSTRACT

Learning rate schedulers have shown great success in speeding up the convergence
of learning algorithms in practice. However, their convergence to a minimum has
not been theoretically proven. This difficulty mainly arises from the fact that,
while traditional convergence analysis prescribes to monotonically decreasing (or
constant) learning rates, schedulers opt for rates that often increase and decrease
through the training epochs. We aim to bridge this gap by proposing a probabilis-
tic learning rate scheduler (PLRS) that does not conform to the monotonically de-
creasing condition, while achieving provable convergence guarantees. To demon-
strate the practical effectiveness of our approach, we evaluate it on deep neural
networks across both vision and language tasks, showing competitive or superior
performance compared to state-of-the-art learning rate schedulers. Specifically,
our experiments include (a) image classification on CIFAR-10, CIFAR-100, Tiny
ImageNet, and ImageNet-1K using ResNet, WRN, VGG, and DenseNet architec-
tures, and (b) language model fine-tuning on the SQuAD v1.1 dataset with pre-
trained BERT. Notably, on ImageNet-1K with ResNet-50, our method surpasses
the leading knee scheduler by 2.79% in classification accuracy.

1 INTRODUCTION

Over the last two decades, there has been an increased interest in analyzing the convergence of gra-
dient descent-based algorithms. This can be majorly attributed to their extensive use in the training
of neural networks and their numerous derivatives. Stochastic Gradient Descent (SGD) and their
adaptive variants such as Adagrad (Duchi et al., 2011), Adadelta (Zeiler, 2012), and Adam (Kingma
& Ba, 2014) have been the choice of optimization algorithms for most machine learning practition-
ers, primarily due to their ability to process enormous amounts of data in batches. Even with the
introduction of adaptive optimization techniques that use a default learning rate, the use of stochastic
gradient descent with a tuned learning rate was quite prevalent, mainly due to its generalization prop-
erties (Zhou et al., 2020). However, tuning the learning rate of the network can be computationally
intensive and time consuming.

Various methods to efficiently choose the learning rate without excessive tuning have been explored.
One of the initial successes in this domain is the random search method (Bergstra & Bengio, 2012);
here, a learning rate is randomly selected from a specified interval across multiple trials, and the
best performing learning rate is ultimately chosen. Following this, more advanced methods such as
Sequential Model-Based Optimization (SMBO) (Bergstra et al., 2013) for the choice of learning rate
became prevalent in practice. SMBO represents a significant advancement over random search by
tracking the effectiveness of learning rates from previous trials and using this information to build
a model that suggests the next optimal learning rate. A tuning method for shallow neural networks
based on theoretical computation of the Hessian Lipschitz constant was proposed by Tholeti et al.
(Tholeti & Kalyani, 2020).

Several works on training deep neural networks prescribed the use of a decaying Learning Rate
(LR)1 scheduler (He et al., 2016; Zhang et al., 2019; Szegedy et al., 2015). Recently, much attention

1We abbreviate learning rate only in the context of learning rate scheduler as LR scheduler.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

has been paid to cyclically varying learning rates (Smith, 2017). By varying learning rates in a
triangular schedule within a predetermined range of values, the authors hypothesize that the optimal
learning rate lies within the chosen range, and the periodic high learning rate helps escape saddle
points. Although no theoretical backing has been provided, it was shown to be a valid hypothesis
owing to the presence of many saddle points in a typical high dimensional learning task (Dauphin
et al., 2014). Many variants of the cyclic LR scheduler have henceforth been used in various machine
learning tasks (Howard & Ruder, 2018; Dhillon et al., 2020; Andriushchenko & Flammarion, 2020).
A cosine-based cyclic LR scheduler proposed by Loshchilov et al. (Loshchilov & Hutter, 2017b)
has also found several applications, including Transformers (Zamir et al., 2022; Caron et al., 2021).
Following the success of the cyclic LR schedulers, a one-cycle LR scheduler proposed by Smith
et al. (Smith & Topin, 2019) has been observed to provide faster convergence empirically; this
was attributed to the injection of ‘good noise’ by higher learning rates which helps in convergence.
Although empirical validation and intuitions were provided to support the working of these LR
schedulers, a theoretical convergence guarantee has not been provided to the best of our knowledge.

There is extensive research on the convergence behavior of perturbed SGD methods, where noise
is added to the gradient during updates. In Jin et al. (Jin et al., 2017), the vanilla gradient descent
is perturbed by samples from a ball whose radius is fixed using the optimization function-specific
constants. They show escape from a saddle point by characterizing the distribution around a per-
turbed iterate as uniformly distributed over a perturbation ball along which the region corresponding
to being stuck at a saddle point is shown to be very small. In Ge at al. (Ge et al., 2015), the saddle
point escape for a perturbed stochastic gradient descent is proved using the second-order Taylor ap-
proximation of the optimization function, where the perturbation is applied from a unit ball to the
stochastic gradient descent update. Following Ge at al. (Ge et al., 2015), several works prove the
convergence of noisy stochastic gradient descent in the additive noise setting (Zhang et al., 2017; Jin
et al., 2021; Arjevani et al., 2023; Yiming Cao et al., 2025). In contrast to the above works which
operate in the additive noise setting, our proposed LR scheduler results in multiplicative noise. Ana-
lyzing the convergence behavior under the new multiplicative noise setting is fairly challenging and
results in a non-trivial addition to the literature.

1.1 MOTIVATION

Traditional convergence analysis of gradient descent algorithms and its variants requires the use
of a constant or a decaying learning rate (Nesterov, 2014). However, with the introduction of LR
schedulers, the learning rates are no longer monotonically decreasing. Rather, their values heavily
fluctuate, with the occasional use of very large learning rates. Although there are ample justifications
provided for the success of such methods, there are no theoretical results which prove that stochastic
gradient descent algorithms with fluctuating learning rates converge to a local minimum in a non-
convex setting. With the increase of emphasis on trustworthy artificial intelligence, we believe that
it is important to no longer treat optimization algorithms as black-box models, and instead provide
provable convergence guarantees while deviating from the proven classical implementation of the
descent algorithms. In this work, we aim to bridge the gap by providing rigorous mathematical proof
for the convergence of our proposed probabilistic LR scheduler with SGD.

1.2 OUR CONTRIBUTIONS

1. We propose a new Probabilistic Learning Rate Scheduler (PLRS) where we model the
learning rate as an instance of a random noise distribution.

2. We provide convergence proofs to show that SGD with our proposed PLRS converges to
a local minimum in Section 4. To the best of our knowledge, we are the first to theoret-
ically prove convergence of SGD with a LR scheduler that does not conform to constant
or monotonically decreasing rates. We show how our LR scheduler, in combination with
inherent SGD noise, speeds up convergence by escaping saddle points.

3. Our proposed probabilistic LR scheduler, while provably convergent, can be seamlessly
ported into practice without the knowledge of theoretical constants (like gradient and
Hessian-Lipschitz constants). We illustrate the efficacy of the PLRS through extensive
experimental validation, where we compare the accuracies with state-of-the-art schedulers
in Section 5. We show that the proposed method outperforms popular schedulers such as
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cosine annealing (Loshchilov & Hutter, 2017b), one-cycle (Smith & Topin, 2019), knee
(Iyer et al., 2023) and the multi-step scheduler when used with ResNet-110 on CIFAR-
100, DenseNet-40-12 on CIFAR-100, VGG-16 on CIFAR-10, WRN-28-10 on CIFAR-10
datasets and ResNet-50 on Tiny ImageNet datasets respectively, while performing com-
petitively with baselines when used on NLP datasets like SQuAD v1.1 and IWSLT’14
with BERT and Transformer respectively. Furthermore, we outperform the baseline results
on the CommonVoice 11.0 Hindi dataset with Whisper model on the Automatic Speech
Recognition application (ASR) application. We also observe lesser spikes in the training
loss across epochs which leads to a faster and more stable convergence. We provide our
base code with all the hyperparameters for reproducibility in the supplemental material.

2 PROBABILISTIC LEARNING RATE SCHEDULER

Let f : Rd → R be the function to be minimized. The unconstrained optimization, minx∈Rd f(x),
can be solved iteratively using stochastic gradient descent whose update equation at time step t is
given by

xt+1 = xt − ηt+1g(xt). (1)
Here, ηt+1 ∈ R is the learning rate and g(xt) is the stochastic gradient of f(x) at time t. In this
work, we propose a new LR scheduler, in which the learning rate ηt+1 is sampled from a uniform
random variable,

ηt+1 ∼ U [Lmin, Lmax], 0 < Lmin < Lmax < 1. (2)
Note that contrary to existing LR schedulers, which are deterministic functions, we propose that
the learning rate at each time instant be a realization of a uniformly distributed random variable.
Although the learning rate in our method is not scheduled, but is rather chosen as a random sample
at every time step, we call our proposed method Probabilistic LR scheduler to keep in tune with the
body of literature on LR schedulers. In order to represent our method in the conventional form of
the stochastic gradient descent update, we split the learning rate ηt+1 into a constant learning rate
ηc and a random component, as ηt+1 = ηc + ut+1, where ut+1 ∼ U [Lmin − ηc, Lmax − ηc]. The
stochastic gradient descent update using the proposed PLRS (referred to as SGD-PLRS) takes the
form

xt+1 = xt − (ηc + ut+1)g(xt) = xt − ηc∇f(xt)−wt, (3)
where we define wt as

wt = ηcg(xt)− ηc∇f(xt) + ut+1g(xt). (4)
Here, ∇f(xt) refers to the true gradient, i.e., ∇f(xt) = E[g(xt)]. Note that in equation 3, the term
xt − ηc∇f(xt) resembles the vanilla gradient descent update and wt encompasses the noise in the
update; the noise is inclusive of both the randomness due to the stochastic gradient as well as the
randomness from the proposed LR scheduler. We set ηc = Lmin+Lmax

2 so that the noise wt is zero
mean, which we prove later in Lemma 1.
Remark 1. Note that a periodic LR scheduler such as triangular, or cosine annealing based sched-
uler can be considered as a single instance of our proposed PLRS. The range of values assigned
to the learning rate ηt+1 is pre-determined in both cases. In fact, for any LR scheduler, the basic
mechanism is to vary the learning rate between a low and a high value - the high learning rates
help escape the saddle point by perturbing the iterate, whereas the low values help in convergence.
This pattern of switching between high and low values can be achieved through both stochastic
and deterministic mechanisms. While the current literature explores the deterministic route (without
providing analysis), we propose and explore the stochastic variant here and also provide a detailed
analysis.

3 PRELIMINARIES AND DEFINITIONS

We denote the Hessian of a function f : Rd → R at x ∈ Rd as H(x) := ∇2f(x) and the minimum
eigenvalue of the Hessian as λmin(H(x)) := λmin(∇2f(x)) respectively.
Definition 1. A function f : Rd → R is said to be β-smooth (also referred to as β-gradient
Lipschitz) if, ∃ β ≥ 0 such that,

∥∇f(x)−∇f(y)∥ ≤ β ∥x− y∥ , ∀x,y ∈ Rd. (5)
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Definition 2. A function f : Rd → R is said to be ρ-Hessian Lipschitz if, ∃ ρ ≥ 0 such that,

∥H(x)− H(y)∥ ≤ ρ ∥x− y∥ , ∀x,y ∈ Rd. (6)

Informally, a function is said to be gradient/Hessian Lipschitz, if the rate of change of the gradi-
ent/Hessian with respect to its input is bounded by a constant, i.e., the gradient/Hessian will not
change rapidly. We now proceed to define approximate first and second-order stationary points of a
given function f .
Definition 3. For a function f : Rd → R that is differentiable, we say x ∈ Rd is a ν- first-order
stationary point (ν-FOSP), if for a small positive value of ν, ∥∇f(x)∥ ≤ ν.

Before we define an ϵ-second order stationary point, we define a saddle point.
Definition 4. For a ρ-Hessian Lipschitz function f : Rd → R that is twice differentiable, we say
x ∈ Rd is a saddle point if,

∥∇f(x)∥ ≤ ν and λmin(H(x)) ≤ −γ,

where ν, γ > 0 are arbitrary constants.

For a convex function, it is sufficient if the algorithm is shown to converge to the ν-FOSP as it
would be the global minimum. However, in the case of a non-convex function, a point satisfying
the condition for a ν-FOSP may not necessarily be a local minimum, but could be a saddle point
or a local maximum. Hence, the Hessian of the function is required to classify it as a second-order
stationary point, as defined below. Note that, in our analysis, we prove convergence of SGD-PLRS
to the approximate second-order stationary point.
Definition 5. For a ρ-Hessian Lipschitz function f : Rd → R that is twice differentiable, we say
x ∈ Rd is a ν-second-order stationary point (ν-SOSP) if,

∥∇f(x)∥ ≤ ν and λmin(H(x)) ≥ −γ, (7)

where ν, γ > 0 are arbitrary constants.
Definition 6. A function f : Rd → R is said to possess the strict saddle property at all x ∈ Rd if
x fulfills any one of the following conditions: (i) ∥∇f(x)∥ ≥ ν, (ii) λmin(H(x)) ≤ −γ, (iii) x is
close to a local minimum.

The strict saddle property ensures that an iterate stuck at a saddle point has a direction of escape.
Definition 7. A function f : Rd → R is α−strongly convex if λmin(H(x)) ≥ α ∀x ∈ Rd.

We now provide the formal definitions of two common terms in time complexity.
Definition 8. A function f(s) is said to be O(g(s)) if ∃ a constant c > 0 such that |f(s)| ≤ c|g(s)|.
Here s ∈ S which is the domain of the functions f and g.
Definition 9. A function f(s) is said to be Ω(g(s)) if ∃ a constant c > 0 such that |f(s)| ≥ c|g(s)|.

In our analysis, we introduce the notations Õ(.) and Ω̃(.) which hide all factors (including β, ρ, d,
and α) except ηc, Lmin and Lmax in O and Ω respectively.

4 PROOF OF CONVERGENCE

We present our convergence proofs to theoretically show that the proposed PLRS method converges
to a ν-SOSP in finite time. We first state the assumptions that are instrumental for our proofs.
Assumptions 1. We now state the assumptions regarding the function f : Rd → R that we require
for proving the theorems.

A1 The function f is β-smooth.

A2 The function f is ρ-Hessian Lipschitz.

A3 The norm of the stochastic gradient noise is bounded i.e, ∥g(xt)−∇f(xt)∥ ≤ Q ∀t ≥ 0.
Further, E[Q2] ≤ σ2.

4
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A4 The function f has strict saddle property.

A5 The function f is bounded i.e., |f(x)| ≤ B, ∀x ∈ Rd.

A6 The function f is locally α−strongly convex i.e, in the δ-neighborhood of a locally optimal
point x∗ for some δ > 0.

Remark 2. If ∇f̃(x̃t) and g̃(x̃t) are the gradient and stochastic gradient of the second order Taylor

approximation of f about the iterate x̃t, from Assumption A3, it is implied that
∥∥∥g̃(x̃t)−∇f̃(x̃t)

∥∥∥ ≤
Q̃. Further, E[Q̃2] ≤ σ̃2.

Note that these assumptions are similar to those in the perturbed gradient literature (Ge et al., 2015;
Jin et al., 2017; 2021). We call attention to two significant differences in our approach compared
to other perturbed gradient methods such as (Jin et al., 2017; Ge et al., 2015; Jin et al., 2021): (i)
In contrast to the isotropic additive perturbation commonly added to the SGD update, we introduce
randomness in our learning rate, manifested as multiplicative noise in the update. This makes the
characterization of the total noise dependent on the gradient, making the analysis challenging. (ii)
The magnitude of noise injected is computed through the smoothness constants in the work by Jin
et al. (Jin et al., 2017; 2021); instead, we treat the parameters Lmin and Lmax as hyperparameters
to be tuned. This enables our PLRS method to be easily applied to training deep neural networks
where the computation of these smoothness constants could be infeasible due to sheer computational
complexity.

We reiterate the update equations of the proposed SGD-PLRS.

xt+1 = xt − ηc∇f(xt)−wt. (3)

wt = ηcg(xt)− ηc∇f(xt) + ut+1g(xt). (4)

Note that the term wt has zero mean and we state this formally in the lemma below.
Lemma 1 (Zero mean property). The mean of wt−1 ∀t ≥ 1 is 0.

Proof.
E[wt−1] = E [ηcg(xt−1)− ηc∇f(xt−1)] + E [utg(xt−1)]

= 0 ∀t ≥ 1.
(8)

This follows as E[ut] =
Lmin+Lmax−2ηc

2 = 0 and E [g(xt−1)] = ∇f(xt−1).

For a function satisfying the Assumptions A1-A6, there are three possibilities for the iterate xt with
respect to the function’s gradient and Hessian, namely, B1: Gradient is large; B2: Gradient is small
and iterate is around a saddle point; B3: Gradient is small and iterate is around a ν-SOSP.

We now present three theorems corresponding to each of these cases. Our first result pertains to the
case B1 where the gradient of the iterate is large.
Theorem 1. Under the assumptions A1 and A3 with Lmax < 1

β , for any point xt with ∥∇f(xt)∥ ≥√
3ηcβσ2 where

√
3ηcβσ2 < ϵ, after one iteration, we have

E[f(xt+1)]− f(xt) ≤ −Ω̃(L2
max).

This theorem suggests that, for any iterate xt for which the gradient is large, the expected functional
value of the subsequent iterate f(xt+1) decreases, and the corresponding decrease E[f(xt+1)] −
f(xt) is in the order of Ω̃(L2

max). The formal proof for this theorem can be found in Appendix A.

The next theorem corresponds to the case B2 where the gradient is small and the Hessian is negative.
Theorem 2. Consider f satisfying Assumptions A1 - A5. Let {xt} be the SGD iterates of the
function f using PLRS. Let ∥∇f(x0)∥ ≤

√
3ηcβσ2 < ϵ and λmin(H(x0)) ≤ −γ where ϵ, γ > 0.

Then, there exists a T = Õ
(
L
−1/4
max

)
such that with probability at least 1− Õ

(
L
7/2
max

)
,

E[f(xT )− f(x0)] ≤ −Ω̃
(
L3/4
max

)
.

5
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The formal proof of this theorem is provided in Appendix C. The sketch of the proof is given below.

Proof Sketch This theorem shows that the iterates obtained using PLRS escape from a saddle point
x0 (where the gradient is small, and the Hessian has atleast one negative eigenvalue), i.e, it shows
the decrease in the expected value of the function f after T = Õ

(
L
−1/4
max

)
iterations. Note that for

a ρ−Hessian smooth function,

f(xT ) ≤ f(x0) +∇f(x0)
T (xT − x0) +

1

2
(xT − x0)

T H(x0)(xT − x0) +
ρ

6
∥xT − x0∥3 . (9)

To evaluate E[f(xT ) − f(x0)] from equation 9, we require an analytical expression for xT − x0,
which is not tractable. Hence, we employ the second-order Taylor approximation of the function
f , which we denote as f̃ . We then apply SGD-PLRS on f̃ to obtain x̃T . Following this, we write
xT − x0 = (xT − x̃T )+ (x̃T − x0) and derive expressions for upper bounds on x̃T − x0 and xT − x̃T
which hold with high probability in Lemmas 2 and 3, respectively (given in Appendix B.1 and B.2).

We split the quadratic term in equation 9 into two parts corresponding to x̃T − x0 and xT − x̃T . We
further decompose the term, say Y = (x̃T − x0)

T H(x0)(x̃T − x0) into its eigenvalue components
along each dimension with corresponding eigenvalues λ1, . . . , λd of H(x0). Our main result in
this theorem proves that the term Y dominates over all the other terms of equation 9, and that it
is bounded by a negative value, thereby, proving E[f(xT )] ≤ f(x0). This main result uses a two-
pronged proof. Firstly, we use our assumption that the initial iterate x0 is at a saddle point and hence
at least one of λi, 1 ≤ i ≤ d is negative. We formally show that the eigenvector corresponding
to this eigenvalue points to the direction of escape. Secondly, we use the second order statistics
of our noise, to show that the magnitude of Y is large enough to dominate over the other terms of
equation 9. Note that our noise term involves the stochasticity in the gradient and the probabilistic
learning rate. Hence, we have shown that the negative eigenvalue of the Hessian at a saddle point and
the unique characterization of the noise is sufficient to force a descent along the negative curvature
safely out of the region of the saddle point within T iterations.

As each SGD-PLRS update is noisy, we need to ensure that once we escape a saddle point and
move towards a local minimum (case B3), we do not overshoot the minimum but rather, stay in the
δ−neighborhood of an SOSP, with high probability. We formalize this in Theorem 3.

Theorem 3. Consider f satisfying the assumptions A1-A6. Let the initial iterate x0 be δ close to a
local minimum x∗ such that ∥x0 − x∗∥ ≤ Õ(

√
Lmax) < δ. With probability at least 1− ξ, ∀t ≤ T

where T = Õ
(

1
L2

max
log 1

ξ

)
,

∥xt − x∗∥ ≤ Õ

(√
Lmax log

1

Lmaxξ

)
< δ

This theorem deals with the case that the initial iterate x0 is δ-close to a local minimum x∗ (case B3).
We prove that the subsequent iterates are also in the same neighbourhood, i.e., δ close to the local
minimum, with high probability. In other words, we prove that the sequence {∥xt − x∗∥} is bounded
by δ for t ≤ T . In the neighbourhood of the local minimum, gradients are small and subsequently,
the change in iterates, xt − xt−1 are minute. Therefore, the iterates stay near the local minimum
with high probability. It is worth noting that the nature of the noise, which is comprised of stochastic
gradients (whose stochasticity is bounded by Q) multiplied with a bounded uniform random variable
(owing to PLRS), aids in proving our result. We provide the formal proof in Appendix D.

5 EMPIRICAL EVALUATION

We conduct extensive empirical evaluations across diverse modalities and tasks, including: (a) im-
age classification on benchmarks such as CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009), and
Tiny ImageNet (Le & Yang, 2015); (b) large-scale image classification on the ImageNet-1K dataset
(Russakovsky et al., 2015); (c) natural language processing tasks, comprising question answering
on SQuAD v1.1 (Rajpurkar et al., 2016) and machine translation on the IWSLT’14 dataset (Cettolo
et al., 2014); and (d) automatic speech recognition on the CommonVoice 11.0 (Ardila et al., 2020)

6
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Hindi dataset. We compare with the following baseline learning rate schedulers wherever applica-
ble: (i) cosine annealing with warm restarts (Loshchilov & Hutter, 2017b), (ii) one-cycle scheduler
(Smith & Topin, 2019), (iii) knee scheduler (Iyer et al., 2023), (iv) constant learning rate and (v)
multi-step decay scheduler. We choose the parameters for these baseline schedulers as suggested in
the original papers (further details of parameters are provided in Appendix F).

Further, in order to compare our proposed PLRS against the noisy SGD mechanism proposed by
Ge et al. (Ge et al., 2015), we provide convergence results on the online tensor decomposition
problem using the code provided by the authors in Appendix I. We conduct all our experiments on
one NVIDIA GeForce RTX 2080 12GB GPU card and one NVIDIA A100 30GB GPU card.

Hyperparameter tuning To determine the parameters Lmin and Lmax for PLRS, we perform a
range test, where we observe the training loss for a range of learning rates as is done in state-of-
the-art LR schedulers such as one-cycle (Smith & Topin, 2019) and knee schedulers (Iyer et al.,
2023). As the learning rate is gradually increased, we first observe a steady decrease in the training
loss, then followed by a drastic increase. We note the learning rate at which there is an increase
of training loss, say L̄ and choose the maximum learning rate Lmax to be just below L̄, where the
loss is still decreasing. We then tune Lmin such that 0 < Lmin < Lmax. Note that there is no
extra tuning cost of Lmin and Lmax in comparison to state-of-the-art deterministic LR schedulers
since all LR schedulers such as cosine, knee, cyclic, require an LR range test to set the parame-
ters. Specifically, cosine LR scheduler requires the parameters minimum learning rate, frequency
of restarts and a multiplicative factor; cyclic LR scheduler requires a base learning rate, maximum
learning rate, mode of operation and the number of iterations to reach the maximum learning rate;
knee LR scheduler requires the peak learning rate, number of explore iterations and the number of
warmup iterations. In comparison, for our proposed probabilistic learning rate scheduler, we only
require Lmin and Lmax.

5.1 RESULTS ON IMAGE CLASSIFICATION TASKS

We run experiments for 500 epochs for the CIFAR datasets, for 100 epochs for the Tiny ImageNet
dataset, and for 60 epochs on the ImageNet-1K dataset using the SGD optimizer for all schedulers
2. We also set all other regularization parameters, such as weight decay and dampening, to zero. We
use a batch size of 64 for DenseNet-40-12, 50 for ResNet-50, and 128 for the others.

Scheduler VGG-16 WRN-28-10
Max acc. Mean acc. (S.D.) Max acc. Mean acc. (S.D.)

Cosine 96.87 96.09 (0.78) 92.03 91.90 (0.13)
Knee 96.87 96.35 (0.45) 92.04 91.64 (0.63)
One-cycle 90.62 89.06 (1.56) 87.76 87.37 (0.35)
Constant 96.09 96.06 (0.05) 92.04 92.00 (0.08)
Multi-step 92.97 92.45 (0.90) 88.94 88.80 (0.21)
PLRS (ours) 97.66 96.09 (1.56) 94.00 93.97 (0.07)

Table 1: Maximum and mean (with standard deviation) test accuracies over 3 runs for CIFAR-10.

Results on CIFAR-10 We consider VGG-16 (Simonyan & Zisserman, 2015) and WRN-28-10
(Zagoruyko & Komodakis, 2016) architectures for training CIFAR-10 and use Lmin = 0.07 and
Lmax = 0.1; and Lmin = 0.09 and Lmax = 0.1 respectively. We record the maximum and mean
test accuracies across different LR schedulers in Table 1. The highest accuracy across schedulers is
recorded in bold. For the VGG-16 network, we rank the highest in terms of maximum test accuracy.
In terms of the mean test accuracy over 3 runs, the knee scheduler outperforms the rest. Note that
the second highest mean test accuracy is achieved by both PLRS and the cosine annealing sched-
ulers. Unsurprisingly, the constant scheduler has the lowest standard deviation. In the WRN-28-10
network, PLRS ranks the highest both in terms of maximum and mean test accuracies, with a 1.96%
improvement over the state-of-the-art Knee and constant LR schedulers in maximum test accuracy
achieved. Further, we observe from the training loss plots that PLRS achieves fast convergence
when compared to other schedulers. We give the plots in Appendix G.1.

2We provide results without momentum to be consistent with our theoretical framework. When we used the
SGD optimizer with momentum for PLRS, we obtain results better than those reported without momentum.
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Scheduler ResNet-110 DenseNet-40-10
Max acc. Mean acc. (S.D.) Max acc. Mean acc. (S.D.)

Cosine 74.22 72.66 (1.56) 64.34 64.10 (0.28)
Knee 75.78 72.39 (2.96) 65.18 64.83 (0.30)
One-cycle 71.09 70.05 (1.19) 64.21 59.21 (4.32)
Constant 69.53 66.67 (2.51) 64.8 64.49 (0.27)
Multi-step 63.28 61.20 (2.39) 29.14 29.01 (0.17)
PLRS (ours) 77.34 74.61 (2.95) 65.92 65.57 (0.31)

Table 2: Maximum and mean (with standard deviation) test accuracies over 3 runs for CIFAR-100.

Tiny ImageNet
Scheduler Max acc. Mean acc. (S.D)

Cosine 62.13 62.03 (0.15)
Knee 61.93 61.50 (0.42)

One-cycle 52.24 51.99 (0.22)
Constant 61.59 61.11 (0.42)

Multi-step 61.28 61.20 (0.08)
PLRS (ours) 62.34 61.90 (0.73)

ImageNet-1K
Scheduler Top-1 acc. Top-5 acc.

Baseline (Knee) 65.21 85.78
PLRS (ours) 68.01 88.08

Table 3: Maximum and mean (with standard de-
viation) test accuracies over 3 runs for Tiny Im-
ageNet; top-1 and top-5 accuracy for ImageNet-
1K.
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Figure 1: Training loss vs epochs for ResNet-50
with Tiny ImageNet.

Results on CIFAR-100 For training CIFAR-100, we consider the networks ResNet-110 (He et al.,
2016) and DenseNet-40-12 (Huang et al., 2017), and use Lmin = 0.07 and Lmax = 0.1 for the
former, and Lmin = 0.1 and Lmax = 0.2 for the latter. The maximum and the mean test ac-
curacies (with standard deviation) across 3 runs are provided in Table 2. For both ResNet-110 and
DenseNet-40-12 networks, PLRS consistently outperforms all the other LR schedulers both in terms
of maximum and mean test accuracies. Furthermore, from the training loss plots which are provided
in Appendix G.2, PLRS converges faster than the other LR schedulers to a low train loss value. It
does not have spikes (like the cosine LR scheduler), but converges in a smooth fashion to a low
value.

Results on Tiny ImageNet We consider the Resnet-50 (He et al., 2016) architecture for training
Tiny ImageNet and use Lmin = 0.35 and Lmax = 0.4. We present the maximum and mean test
accuracies in Table 3. We provide the plot of training loss in Figure 1. PLRS performs the best
in terms of maximum test accuracy. In terms of mean test accuracy, it ranks second next to cosine
annealing by a close margin. It can be observed that PLRS achieves the fastest convergence to the
lowest training loss compared to others. Moreover, it exhibits stable convergence, especially when
compared cosine annealing, which experiences multiple spikes due to warm restarts.

Results on ImageNet-1K We train on the ImageNet-1K (Russakovsky et al., 2015) dataset for 60
epochs with the ResNet-50 architecture using the SGD optimizer without momentum or weight
decay. With Lmin value of 0.05 and Lmax value of 0.11, and a batch size of 256, we achieve top-
1 accuracy of 68.01, considerably outperforming the knee LR scheduler by 2.79% under similar
settings as observed from Table 3.

Sensitivity analysis In order to determine how sensitive the maximum test accuracy is to the
choice of Lmin and Lmax, we conducted a hyper parameter sweep across a range of values for
Lmin (0.01,0.03,0.05,0.07, 0.09) and Lmax (0.1, 0.2,0.3,0.4,0.5) for WRN-28-10 on the CIFAR-10
dataset, with the maximum test accuracy as the metric of interest. The average value obtained was
93.42 with a standard deviation of 0.47 and an inter-quartile range of 0.385, indicating that the val-
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Scheduler F1 score EM
Baseline 88.66 (0.032) 81.38 (0.02)

PLRS 87.55 (0.117) 79.775 (0.152)

Table 4: F1 score and Exact matches (EM) for
SQuAD v1.1 dataset trained on BERT for 2
epochs, averaged over 3 runs.

Scheduler BLEU Eval ppl.
Baseline 35.53 (0.06) 4.86 (0.02)

PLRS 35.37 (0.125) 4.83 (0.02)

Table 5: BLEU scores and evaluation per-
plexity comparison for IWSLT’14 trained
on Transformer averaged over 3 runs.

ues are not spread out. Specifically, we obtain the maximum test accuracy value around 93% with
multiple combinations of (Lmin, Lmax) such as (0.01, 0.1), (0.01, 0.2), (0.01, 0.3), etc. Hence, the
maximum test accuracy is relatively insensitive to Lmin and Lmax and tuning them, while recom-
mended, may not be critical. We give detailed results of the sensitivity analysis for WRN-28-10 on
CIFAR-10 as well as for DenseNet-40-12 on CIFAR-100 in Tables 6 and 7 of Appendix H.

5.2 RESULTS ON NLP TASKS

Results on SQuAD v1.1 We finetune the pretrained BERT model (Devlin et al., 2019) on the
SQuAD v1.1 dataset (Rajpurkar et al., 2016), which is a question-answer dataset. Using the AdamW
optimizer (Loshchilov & Hutter, 2017a) with momentum parameters β1 and β2 set as 0.9 and 0.999
respectively, with all other parameters set as in Iyer et al. (2023), we obtain comparable values of
F1-scores and exact matches (EM) to the state-of-the-art knee LR scheduler. With Lmin and Lmax

values of 2e-5 and 3e-5, respectively, we give our result with baseline comparison in Table 4 after 2
epochs of training.

Results on IWSLT’14 Experiments are conducted on the IWSLT’14 (DE-EN) dataset (Cettolo
et al., 2014), which is a German to English machine translation dataset with the Transformer model
(Vaswani et al., 2017). The transformer was trained with the AdamW optimizer with zero norm
clipping, β1 and β2 values of 0.9 and 0.999 respectively, 0.3 dropout and 1e-4 weight decay for 50
epochs. With Lmin and Lmax values of 1.5e-4 and 4.5e-4, respectively, we perform competitively
with the state-of-the-art knee LR scheduler as observed from Table 5.

5.3 RESULTS ON SPEECH RECOGNITION TASK

In order to evaluate our LR scheduler in the application of Automatic Speech Recognition, we
finetune the Whisper-small (Radford et al., 2023) model on the CommonVoice 11.0 Hindi dataset
(Ardila et al., 2020). We choose Hindi as it is the third most spoken language in the world 3. The
Whisper model is finetuned for a total of 5000 steps with training and evaluation batch sizes as
8, AdamW optimizer with β1 and β2 ad 0.9 and 0.999, and weight decay of 0.01 as per standard
settings (Radford et al., 2023). We outperform the two LR schedulers with state-of-the-art results
in Whisper finetuning, namely, linear decay (Radford et al., 2023) and cosine decay schedulers
(Sharma et al., 2025), both starting with a base learning rate of 1e-5. We set Lmin and Lmax as 1e-6
and 1e-5 respectively. With PLRS, we obtain a word error rate (WER) of 16.10(0.0002), which
is the mean (with standard deviation) of 3 runs, while we obtain a WER of 16.29(0.0015) and
16.35(0.0014) for the cosine and linear decay schedulers, respectively, outperforming them.

6 CONCLUDING REMARKS

We have proposed the novel idea of a probabilistic LR scheduler. The probabilistic nature of the
scheduler helped us provide the first theoretical convergence proofs for SGD using LR schedulers.
In our opinion, this is a significant step in the right direction to bridge the gap between theory and
practice in the LR scheduler domain. Our empirical results show that our proposed LR scheduler
performs competitively with the state-of-the-art cyclic schedulers, if not better, on a variety of image
classification datasets, as well as natural language processing and speech recognition applications.
This leads us to hypothesize that the proposed probabilistic LR scheduler acts as a super-class of LR
schedulers encompassing both probabilistic and deterministic schedulers. Future research directions
include further exploration of this hypothesis.

3https://www.icls.edu/blog/most-spoken-languages-in-the-world
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7 REPRODUCIBILITY STATEMENT

For reproducibility, we provide the code as part of the supplementary material. Section 5 details the
hyperparameters of our proposed learning rate scheduler, while Appendix F lists the hyperparame-
ters used to obtain the baseline results. Additional information regarding the model architecture and
training parameters is also provided in Section 5.
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Appendix

A PROOF OF THEOREM 1

Theorem 4 (Theorem 1 restated). Under the assumptions A1 and A3 with Lmax < 1
β , for any point

xt with ∥∇f(xt)∥ ≥
√
3ηcβσ2 where

√
3ηcβσ2 < ϵ (satisfying B1), after one iteration we have,

E[f(xt+1)]− f(xt) ≤ −Ω̃(L2
max).

Proof. Using the second order Taylor series approximation for f(xt+1) around xt, where xt+1 =
xt − ηc∇f(xt)−wt, we have

f(xt+1)− f(xt) ≤ ∇f(xt)
T (xt+1 − xt) +

β

2
∥xt+1 − xt∥2 ,

following the result from (Nesterov, 2014, Lemma 1.2.3). Taking expectation w.r.t. wt,

E[f(xt+1)]− f(xt) ≤ ∇f(xt)
TE[xt+1 − xt] +

β

2
E[∥xt+1 − xt∥2]

= ∇f(xt)
TE[−ηc∇f(xt)−wt] +

β

2
E[∥−ηc∇f(xt)−wt∥2]

= −ηc ∥∇f(xt)∥2 +
β

2
E[η2c ∥∇f(xt)∥2 + ∥wt∥2],

(10)

since E[wt] = 0 due to the zero mean property in Lemma 1. We focus on the last term in the next
steps. Expanding ∥wt∥2,

∥wt∥2 = (ηcg(xt)− ηc∇f(xt) + ut+1g(xt))
T (ηcg(xt)− ηc∇f(xt) + ut+1g(xt))

= η2c ∥g(xt)∥2 − η2cg(xt)
T∇f(xt) + ηcut+1 ∥g(xt)∥2 − η2c∇f(xt)

T g(xt) + η2c ∥∇f(xt∥2

− ηcut+1∇f(xt)
T g(xt) + ηcut+1 ∥g(xt)∥2 − ηcut+1g(xt)

T∇f(xt) + u2
t+1 ∥g(xt)∥2 .

Taking expectation with respect to xt and noting that E[ut+1] = 0 and E[g(xt)] = ∇f(xt),4

E[∥wt∥2] = η2cE[∥g(xt)∥2]− η2c ∥∇f(xt)∥2 + E[u2
t+1]E[∥g(xt)∥2]. (11)

Now, as per assumption A3,

∥g(xt)−∇f(xt)∥2 ≤ Q2

∥g(xt)∥2 + ∥∇f(xt)∥2 − 2g(xt)
T∇f(xt) ≤ Q2

∥g(xt)∥2 ≤ Q2 − ∥∇f(xt)∥2 + 2g(xt)
T∇f(xt)

E[∥g(xt)∥2] ≤ E[Q2]− ∥∇f(xt)∥2 + 2 ∥∇f(xt)∥2 ≤ σ2 + ∥∇f(xt)∥2 , (12)

as E[Q2] ≤ σ2. Applying equation 12 to equation 11,

E[∥wt∥2] ≤ η2cσ
2 + η2c ∥∇f(xt)∥2 − η2c ∥∇f(xt)∥2 + E[u2

t+1]σ
2 + E[u2

t+1] ∥∇f(xt)∥2

= η2cσ
2 + E[u2

t+1]σ
2 + E[u2

t+1] ∥∇f(xt)∥2

= η2cσ
2 +

(Lmax − Lmin)
2σ2

12
+

(Lmax − Lmin)
2 ∥∇f(x0)∥2

12
,

(13)

4Note that there are two random variables in wt which are the stochastic gradient g(xt) and the uniformly
distributed LR ut+1 due to our proposed LR scheduler. Hence, the expectation is with respect to both these
variables. Also note that ut+1 and g(xt) are independent of each other.
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since the second moment of a uniformly distributed random variable in the interval [Lmin −
ηc, Lmax − ηc] is given by (Lmax−Lmin)

2

12 . Using equation 13 in equation 10 and ηc =
Lmin+Lmax

2 ,

E[f(xt+1)]− f(xt) ≤ −ηc ∥∇f(xt)∥2 +
β

2
η2c ∥∇f(xt)∥2 +

βη2cσ
2

2
+

β(Lmax − Lmin)
2σ2

24

+
β(Lmax − Lmin)

2 ∥∇f(xt)∥2

24

≤ −ηc ∥∇f(xt)∥2 +
β

2
η2c ∥∇f(xt)∥2 +

βη2cσ
2

2
+

βη2cσ
2

6
+

βη2c ∥∇f(x0)∥2

6

= −∥∇f(xt)∥2
(
ηc −

2βη2c
3

)
+

2βη2cσ
2

3

Now, applying our initial assumption that ∥∇f(xt)∥ ≥
√
3ηcβσ2, we have,

E[f(xt+1)]− f(xt) ≤ −3ηcβσ
2

(
ηc −

2βη2c
3

)
+

2βη2cσ
2

3
= −3η2cβσ

2 +
6β2η3cσ

2

3
+

2βη2cσ
2

3

Since Lmax < 1
β and ηc =

Lmin+Lmax

2 , we have ηcβ < Lmaxβ < 1. Finally,

E[f(xt+1)]− f(xt) ≤ −3η2cβσ
2 +

6βη2cσ
2

3
+

2βη2cσ
2

3
= −βη2cσ

2

3

= −Ω̃(η2c ),

which proves the theorem.

B ADDITIONAL RESULTS NEEDED TO PROVE THEOREM 2

Here, we state and prove two lemmas that are instrumental in the proof of Theorem 2.

B.1 PROOF OF LEMMA 2

In the following Lemma, we prove that the gradients of a second order approximation of f are
probabilistically bounded for all t ≤ T and its iterates as we apply SGD-PLRS are also bounded
when the initial iterate x0 is a saddle point.

Lemma 2. Let f satisfy Assumptions A1 - A4. Let f̃ be the second order Taylor approximation of
f and let x̃t be the iterate at time step t obtained using the SGD update equation as in equation 3
on f̃ ; let x̃0 = x0, ∥∇f(x0)∥ ≤ ϵ and the minimum eigenvalue of the Hessian of f at x0 be
λmin(H(x0)) = −γo where γo > 0. With probability at least 1− Õ(L

15/4
max), we have∥∥∥∇f̃(x̃t)

∥∥∥ ≤ Õ

(
1

L0.5
max

)
, ∥x̃t − x0∥ ≤ Õ

(
L3/8
max log

(
1

Lmax

))
∀t ≤ T = Õ

(
L−1/4
max

)
.

Proof. As f̃ is the second order Taylor series approximation of f , we have

f̃(x̃) = f(x0) +∇f(x0)
T (x̃ − x0) +

1

2
(x̃ − x0)

T H(x0)(x̃ − x0).

Taking derivative w.r.t. x̃, we have ∇f̃(x̃) = ∇f(x0)+H(x0)(x̃− x0). Now, note that ∇f̃(x̃t−1) =
∇f(x0) + H(x0)(x̃t−1 − x0) = K(x0) + H(x0)x̃t−1, where K(x0) = ∇f(x0) − H(x0)x0 =

∇f̃(x̃t−1)− H(x0)x̃t−1. Therefore,

∇f̃(x̃t) = K(x0) + H(x0)x̃t = ∇f̃(x̃t−1)− H(x0)x̃t−1 + H(x0)x̃t
= ∇f̃(x̃t−1) + H(x0)(x̃t − x̃t−1).

(14)

Next, using the SGD-PLRS update and rearranging,

∇f̃(x̃t) = ∇f̃(x̃t−1)− H(x0)(ηc∇f̃(x̃t−1) + w̃t−1)

= (I − ηcH(x0))∇f̃(x̃t−1)− H(x0)w̃t−1,
(15)

14
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where I denotes the d× d identity matrix. Next, unrolling the term ∇f̃(x̃t−1) recursively,

∇f̃(x̃t) = (I − ηcH(x0))t∇f̃(x̃0)− H(x0)

t−1∑
τ=0

(I − ηcH(x0))
t−τ−1w̃τ . (16)

Using the triangle and Cauchy-Schwartz inequalities,∥∥∥∇f̃(x̃t)
∥∥∥ ≤

∥∥∥(I − ηcH(x0))t∇f̃(x̃0)
∥∥∥+ ∥∥∥∥∥H(x0)

t−1∑
τ=0

(I − ηcH(x0))
t−τ−1w̃τ

∥∥∥∥∥
≤
∥∥(I − ηcH(x0))t

∥∥ ∥∥∥∇f̃(x̃0)
∥∥∥+ ∥H(x0)∥

∥∥∥∥∥
t−1∑
τ=0

(I − ηcH(x0))t−τ−1w̃τ

∥∥∥∥∥
(17)

Note that the norm over the matrices refers to the matrix-induced norm. Since H(x0) is a real
symmetric matrix, the induced norm gives the maximum eigenvalue of H(x0) i.e, λmax(H(x0)) ≤
β by our β-smoothness assumption A1. In the case of (I − ηcH(x0)) the induced norm gives
(1 − ηcλmin(H(x0)) which is (1 + ηcγo) as per our assumption that λmin(H(x0)) = −γo. Also
recall that

∥∥∥∇f̃(x̃0)
∥∥∥ ≤ ϵ. Now equation 17 becomes,

∥∥∥∇f̃(x̃t)
∥∥∥ ≤ (1 + ηcγo)

tϵ+ β

∥∥∥∥∥
t−1∑
τ=0

(I − ηcH(x0))
t−τ−1w̃τ

∥∥∥∥∥ ,
≤ (1 + ηcγo)

tϵ+ β

t−1∑
τ=0

(1 + ηcγo)
t−τ−1 ∥w̃τ∥ .

(18)

Now, expanding the noise term w̃τ ,∥∥∥∇f̃(x̃t)
∥∥∥ = (1 + ηcγo)

tϵ+ β

t−1∑
τ=0

(1 + ηcγo)
t−τ−1

∥∥∥ηcg̃(x̃τ )− ηc∇f̃(x̃τ ) + uτ+1g̃(x̃τ )
∥∥∥

Now recall from our assumption A3 that
∥∥∥g̃(x̃τ )−∇f̃(x̃τ )

∥∥∥ ≤ Q̃. Hence,

∥∥∥∇f̃(x̃t)
∥∥∥ ≤ (1 + ηcγo)

tϵ+ β

t−1∑
τ=0

(1 + ηcγo)
t−τ−1

(
ηcQ̃+ |uτ+1|

∥∥∥g̃(x̃τ )−∇f̃(x̃τ ) +∇f̃(x̃τ )
∥∥∥)

≤ (1 + ηcγo)
tϵ+ β

t−1∑
τ=0

(1 + ηcγo)
t−τ−1

(
ηcQ̃+ |uτ+1|

(
Q̃+

∥∥∥∇f̃(x̃τ )
∥∥∥))

Using
∥∥∥∇f̃(x̃0)

∥∥∥ ≤ ϵ and
∥∥∥∇f̃(x̃1)

∥∥∥ ≤ (1 + ηcγo)ϵ + ϵ + 2Q̃, it can be proved by induction that
the general expression for t ≥ 2 is given by,

∥∥∥∇f̃(x̃t)
∥∥∥ ≤ 10Q̃

t(t−1)
2∑

τ=0

(1 + ηcγo)
τ (19)

We give the proof of equation 19 by induction in Appendix E. Next, we prove the bound on x̃t − x̃0.
Using the SGD-PLRS update,

x̃t − x̃0 = −
t−1∑
τ=0

(
ηc∇f̃(x̃τ ) + w̃τ

)

= −
t−1∑
τ=0

ηc

(I − ηcH(x0))
τ∇f̃(x̃0)− H(x0)

τ−1∑
τ ′=0

(I − ηcH(x0))τ−τ
′
−1w̃τ ′

+ w̃τ

 (20a)

= −
t−1∑
τ=0

ηc(I − ηcH(x0))
τ∇f(x0)−

t−1∑
τ=0

(I − ηcH(x0))t−τ−1w̃τ , (20b)
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where the equation equation 20a is obtained by using equation 16. We obtain equation 20b by using
the summation of geometric series as H(x0) is invertible by the strict saddle property. As x̃0 = x0,
we can write ∇f̃(x̃0) = ∇f(x0). Taking norm,

∥x̃t − x̃0∥ ≤

∥∥∥∥∥
t−1∑
τ=0

ηc(I − ηcH(x0))τ∇f(x0)

∥∥∥∥∥+
∥∥∥∥∥
t−1∑
τ=0

(I − ηcH(x0))
t−τ−1w̃τ

∥∥∥∥∥
≤

t−1∑
τ=0

∥ηc(I − ηcH(x0))
τ∇f(x0)∥+

t−1∑
τ=0

∥∥(I − ηcH(x0))
t−τ−1w̃τ

∥∥
≤ ηcϵ

t−1∑
τ=0

(1 + ηcγo)
τ +

t−1∑
τ=0

(1 + ηcγo)
t−τ−1 ∥w̃τ∥ .

(21)

In equation 21, it can be seen that the first term is arbitrarily small by the initial assumption and that
the second term decides the order of ∥x̃t − x̃0∥. Hence, in order to bound ∥x̃t − x̃0∥ probabilistically,
it is sufficient to bound the second term,

∑t−1
τ=0(1 + ηcγo)

t−τ−1 ∥w̃τ∥. Now,
t−1∑
τ=0

(1 + ηcγo)
t−τ−1 ∥w̃τ∥ =

t−1∑
τ=0

(1 + ηcγo)
t−τ−1

∥∥∥ηcg̃(x̃τ )− ηc∇f̃(x̃τ ) + uτ+1g̃(x̃τ )
∥∥∥

=

t−1∑
τ=0

(1 + ηcγo)
t−τ−1

(
ηcQ̃+ |uτ+1|

∥∥∥g̃(x̃τ )−∇f̃(x̃τ ) +∇f̃(x̃τ )
∥∥∥)

=

t−1∑
τ=0

(1 + ηcγo)
t−τ−1Q̃ (ηc + |uτ+1|) +

t−1∑
τ=0

(1 + ηcγo)
t−τ−1 |uτ+1|

∥∥∥∇f̃(x̃τ )
∥∥∥

Now, using
∥∥∥∇f̃(x̃0)

∥∥∥ ≤ ϵ,
∥∥∥∇f̃(x̃1)

∥∥∥ ≤ (1 + ηcγo)ϵ+ ϵ+ 2Q̃ and equation 19 we write,

t−1∑
τ=0

(1 + ηcγo)
t−τ−1 ∥w̃τ∥ ≤

t−1∑
τ=0

(1 + ηcγo)
t−τ−1Q̃ (ηc + |uτ+1|) + (1 + ηcγo)

t−1 |u1| ϵ+

(1 + ηcγo)
t−2 |u2|

(
(1 + ηcγo)ϵ+ ϵ+ 2Q̃

)
+

t−1∑
τ=2

(1 + ηcγo)
t−τ−1 |uτ+1| 10Q̃

τ(τ−1)
2∑

τ ′=0

(1 + ηcγo)
τ
′

(22)
It can be observed from equation 22 that the last term dominates the expression of and hence, it
determines the order of ∥x̃t − x̃0∥. We now apply Hoeffding’s inequality to derive a probabilistic
bound on ∥x̃t − x̃0∥. According to Hoeffding’s inequality for any summation Sn = X1 + · · · +
Xn such that ai ≤ Xi ≤ bi, P (Sn − E[Sn] ≥ δ) ≤ exp

(
−2δ2∑n

i=1(bi−ai)2

)
. Now, setting T =

Õ
(
L
−1/4
max

)
from equation 41 and assuming ηc ≤ ηmax ≤

√
2−1
γ′ , γo ≤ γ

′
, the squared bound

of the summation
∑t−1

τ=2(1 + ηcγo)
t−τ−1 |uτ+1| 10Q̃

∑ τ(τ−1)
2

τ ′=0
(1 + ηcγo)

τ
′

≤ Õ
(
L
3/4
max

)
, Setting

δ = Õ

(√
L
3/4
max log

(
1

Lmax

))
, for some t ≤ T ,

P

t−1∑
τ=2

(1 + ηcγo)
t−τ−1 |uτ+1| 10Q̃

τ(τ−1)
2∑

τ ′=0

(1 + ηcγo)
τ
′

≥ Õ

(
L3/8
max log

(
1

Lmax

))
≤ Õ(L4

max).

Taking the union bound over all t ≤ T ,

P

∀t ≤ T,

t−1∑
τ=2

(1 + ηcγo)
t−τ−1 |uτ+1| 10Q̃

τ(τ−1)
2∑

τ ′=0

(1 + ηcγo)
τ
′

≥ Õ

(
L3/8
max log

(
1

Lmax

))
≤ Õ

(
L15/4
max

)
,

which completes our proof.
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B.2 PROOF OF LEMMA 3

This lemma is used to derive an expression for a high probability upper bound of ∥xt − x̃t∥ and∥∥∥∇f(xt)−∇f̃(x̃t)
∥∥∥.

Lemma 3. Let f : Rd → R satisfy Assumptions A1 - A4. Let f̃ be the second order Taylor’s
approximation of f and let xt, x̃t be the iterates at time step t obtained using the SGD-PLRS update
on f , f̃ respectively; let x̃0 = x0 and ∥∇f(x0)∥ ≤ ϵ. Let the minimum eigenvalue of the Hessian at

x0 be λmin(∇2(f(x0))) = −γo, where γo > 0. Then ∀t ≤ T = O
(
L
−1/4
max

)
, with a probability of

at least 1− Õ(L
7/2
max),

∥xt − x̃t∥ ≤ O
(
L3/4
max

)
and

∥∥∥∇f(xt)−∇f̃(x̃t)
∥∥∥ ≤ O

(
L3/8
max log

1

Lmax

)
.

Proof. The expression for xt − x̃t can be written as,

xt − x̃t = (xt − x0)− (x̃t − x0)

= −
t−1∑
τ=0

(
ηc∇f(xτ ) + wτ

)
−

(
−

t−1∑
τ=0

(
ηc∇f̃(x̃τ ) + w̃τ

))
= −

t−1∑
τ=0

(ηc∆τ + (wτ − w̃τ )) .

(23)
where we define ∆t = ∇f(xt)−∇f̃(x̃t). Now in order to bound ∥xt − x̃t∥, we derive expressions
for both wτ − w̃τ and ∆τ . We initially focus on the term wτ − w̃τ .

wτ − w̃τ = ηcg(xτ )− ηc∇fτ + uτ+1g(xτ )−
(
ηcg̃(x̃τ )− ηc∇f̃(x̃τ ) + uτ+1g̃(x̃τ )

)
= (uτ+1 + ηc)

((
g(xτ )−∇f(xτ )

)
−
(
g̃(x̃τ )−∇f̃(x̃τ )

))
+ uτ+1∆τ .

(24)

Taking norm on both sides,

∥wτ − w̃τ∥ ≤ |uτ+1 + ηc|
(
Q+ Q̃

)
+ |uτ+1| ∥∆τ∥ (25)

Using equation 24 and equation 25 in equation 23, and assumption A3 that stochastic noise is
bounded, and applying norm,

∥xt − x̃t∥ =

∥∥∥∥∥−
t−1∑
τ=0

(ηc∆τ + (wτ − w̃τ ))

∥∥∥∥∥ ≤
t−1∑
τ=0

∥ηc∆τ + (wτ − w̃τ )∥

≤
t−1∑
τ=0

(ηc + |uτ+1|)
(
∥∆τ∥+Q+ Q̃

) (26)

Next, we focus on providing a bound for ∥∆t∥. Recall that ∆t = ∇f(xt) −∇f̃(x̃t). The gradient
can be written as (Nesterov, 2014),

∇f(xt) = ∇f(xt−1) + (xt − xt−1)

(∫ 1

0

H(xt−1 + v(xt − xt−1))dv

)
= ∇f(xt−1) + (xt − xt−1)

(∫ 1

0

(
H(xt−1 + v(xt − xt−1)) + H(xt−1)− H(xt−1)

)
dv

)
= ∇f(xt−1) + H(xt−1)(xt − xt−1) + θt−1,

where θt−1 =
(∫ 1

0

(
H(xt−1 + v(xt − xt−1))− H(xt−1)

)
dv
)
(xt − xt−1). Let H

′

t−1 = H(xt−1)−
H(x0). Using the SGD-PLRS update,

∇f(xt) = ∇f(xt−1)− (H
′

t−1 + H(x0))(ηc∇f(xt−1) + wt−1) + θt−1

= ∇f(xt−1)(I − ηcH(x0))− H(x0)wt−1 − ηcH
′

t−1∇f(xt−1)−H
′

t−1wt−1 + θt−1,
(27)
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From equation 14 in the proof of Lemma 2,

∇f̃(x̃t) = ∇f̃(x̃t−1) + H(x0)(x̃t − x̃t−1). (28)

Subtracting equation 28 from equation 27, we obtain ∆t as,

∆t = ∇f(xt−1)(I − ηcH(x0))− H(x0)wt−1 − ηcH
′

t−1∇f(xt−1)−H
′

t−1wt−1 + θt−1

−∇f̃(x̃t−1)− H(x0)(x̃t − x̃t−1)

= (I − ηcH(x0))∆t−1 − H(x0) (wt−1 − w̃t−1)−H
′

t−1

(
ηc∆t−1 + ηc∇f̃(x̃t−1)

)
−H

′

t−1wt−1 + θt−1,
(29)

We now have an expression for ∆t. However, the derived expression is recursive and contains ∆t−1.
We focus on eliminating the recursive dependence and obtain a stand-alone bound for ∥∆t∥ ∀t ≤ T .
Now, we bound each of the five terms (we term them T1, · · · , T5) of equation 29. First, let us define
the events,

Rt =

{
∀τ ≤ t,

∥∥∥∇f̃(x̃τ )
∥∥∥ ≤ Õ

(
1√
Lmax

)
, ∥x̃τ − x0∥ ≤ Õ

(
L3/8
max log

(
1

Lmax

))}
Ct =

{
∀τ ≤ t, ∥∆τ∥ ≤ µL3/8

max log

(
1

Lmax

)}
.

It can be seen that Rt ⊂ Rt−1 and Ct ⊂ Ct−1. Note that, from Lemma 2, we know the probabilistic
characterization of Rt. We comment on the parameter µ later in the proof. Now, we derive bounds
for each term of ∆t conditioned on the event Rt−1 ∩ Ct−1 for time t ≤ T = O

(
L
−1/4
max

)
.

T1 : ∥(I − ηcH(x0))∆t−1∥ ≤ ∥∆t−1∥+ ∥−ηcH(x0)∆t−1∥

≤ µL3/8
max log

(
1

Lmax

)
+ Õ

(
µL11/8

max log

(
1

Lmax

))
= Õ

(
µL3/8

max log

(
1

Lmax

))
,

(30)

where equation 30 follows from the definition of event Ct−1. Note that the first term in equation 30
governs the order of the expression (as 0 ≤ Lmax ≤ 1).

T2 : ∥H(x0) (wt−1 − w̃t−1)∥ ≤ ∥H(x0)∥ ∥wt−1 − w̃t−1∥

≤ ∥H(x0)∥
(
|uτ+1 + ηc|

(
Q+ Q̃

)
+ |uτ+1| ∥∆τ∥

)
≤ Õ(Lmax) + Õ

(
µL11/8

max log

(
1

Lmax

))
= Õ(Lmax),

where the substitution follows from equation 25. To bound T3 and T4, we first bound H
′

t−1,∥∥∥H ′

t−1

∥∥∥ = ∥H(xt−1)− H(x0)∥ ≤ ρ ∥xt−1 − x0∥ (31a)

≤ ρ (∥xt−1 − x̃t−1∥+ ∥x̃t−1 − x0∥)

≤ ρ

(
t−1∑
τ=0

(ηc + |uτ+1|)
(
∥∆τ∥+Q+ Q̃

))
+ ρÕ

(
L3/8
max log

1

Lmax

)
(31b)

= Õ

(
1

L
1/4
max

)
Õ

(
µL11/8

max log
1

Lmax

)
+ Õ

(
1

L
1/4
max

)
Õ(Lmax) + Õ

(
L3/8
max log

1

Lmax

)
(31c)

≤ Õ(L3/4
max) + Õ

(
L3/8
max log

1

Lmax

)
≤ Õ

(
L3/8
max log

1

Lmax

)
, (31d)

where equation 31a follows from the assumption A2 while equation 31b follows from equation 26.
We use the bounds defined for events Rt−1 ∩ Ct−1 in equation 31b and equation 31c. Now, using
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the bound for
∥∥∥H ′

t−1

∥∥∥, T3 can be bounded as follows.

T3 :
∥∥∥H ′

t−1ηc(∆t−1 +∇f̃(x̃t−1))
∥∥∥ ≤ ηc

∥∥∥H ′

t−1∆t−1

∥∥∥+ ηc

∥∥∥H ′

t−1∇f̃(x̃t−1)
∥∥∥

≤ O(Lmax)Õ

(
L3/8
max log

1

Lmax

)
µL3/8

max log
1

Lmax

+O(Lmax)Õ

(
L3/8
max log

1

Lmax

)
Õ

(
1√
Lmax

)
= Õ

(
L7/8
max log

1

Lmax

)
,

where we use the bounds in the event Rt−1 ∩ Ct−1 and equation 31d.

T4 :
∥∥∥H ′

t−1wt−1

∥∥∥ ≤
∥∥∥H ′

t−1

∥∥∥ ∥wt−1∥ =
∥∥∥H ′

t−1

∥∥∥ ∥ηcg(xt−1)− ηc∇f(xt−1 + utg(xt)∥

≤
∥∥∥H ′

t−1

∥∥∥ (ηcQ+ |ut|Q+ |ut| ∥∇f(xt−1)∥) (32a)

= (ηc + |ut|)Q
∥∥∥H ′

t−1

∥∥∥+ |ut|
∥∥∥H ′

t−1

∥∥∥ ∥∆t−1∥+ |ut|
∥∥∥H ′

t−1

∥∥∥∥∥∥∇f̃(x̃t−1)
∥∥∥

= Õ

(
L11/8
max log

1

Lmax

)
+ Õ

(
µL14/8

max log
2 1

Lmax

)
+ Õ

(
L7/8
max log

1

Lmax

)
(32b)

= Õ

(
L7/8
max log

1

Lmax

)
,

where we use assumption A3 in equation 32a and the bounds of Rt−1 ∩ Ct−1 and equation 31d in
equation 32b.

T5 : ∥θt−1∥ =

∥∥∥∥(∫ 1

0

(
H(xt−1 + v(xt − xt−1))− H(xt−1)

)
dv

)
(xt − xt−1)

∥∥∥∥
≤
(∫ 1

0

ρ ∥xt−1 + v(xt − xt−1)− xt−1∥ dv

)
∥xt − xt−1∥ (33a)

≤ ρ

2
∥xt − xt−1∥2 ≤ ρ

2
∥−ηc∇f(xt−1)− wt−1∥2

≤ ρ

2
∥−ηc∇f(xt−1)− ηcg(xt−1) + ηc∇f(xt−1)− utg(xt−1)∥2

≤ ρ |ηc + ut|2

2

(
Q2 + ∥∇f(xt−1)∥2 + 2Q ∥∇f(xt−1)∥

)
=

ρ |ηc + ut|2

2

(
Q2 + ∥∆t−1∥2 +

∥∥∥∇f̃(x̃t−1)
∥∥∥2 + 2 ∥∆t−1∥

∥∥∥∇f̃(x̃t−1)
∥∥∥

+2Q ∥∆t−1∥+ 2Q
∥∥∥∇f̃(x̃t−1)

∥∥∥)
= Õ(L2

max) + Õ

(
µ2L11/4

max log
2 1

Lmax

)
+ Õ(Lmax) + Õ

(
µL15/8

max log
1

Lmax

)
+ Õ

(
µL19/8

max log
1

Lmax

)
+ Õ(L3/2

max) = Õ(Lmax). (33b)

Here, we use assumption A3 and the bounds of the event Rt−1∩Ct−1 in equation 33b. Note that we
have derived bounds so far conditioned on the event Rt−1∩Ct−1. We now include this conditioning
explicitly in our notations going forward.

To characterize ∥∆t∥2, we construct a supermartingale process; and to do so, we focus on finding
E[∥∆t∥2 1Rt−1∩Ct−1 ] using the bounds derived for the terms T1, · · · , T5. Later, we use the Azuma-
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1038
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Hoeffding inequality to obtain a probabilistic bound of ∥∆t∥.

E[∥∆t∥2 1Rt−1∩Ct−1
|St−1] ≤

[
(1 + ηcγo)

2 ∥∆t−1∥2 + Õ

(
µL3/8

max log
1

Lmax

)
Õ

(
L7/8
max log

1

Lmax

)
+ Õ

(
µL3/8

max log
1

Lmax

)
Õ(Lmax) + Õ(L2

max)

+ Õ

(
L7/8
max log

1

Lmax

)
Õ(Lmax) + Õ

(
L7/4
max log

2 1

Lmax

)]
1Rt−1∩Ct−1

≤

[
(1 + ηcγo)

2 ∥∆t−1∥2 + Õ

(
µL7/8

max log
1

Lmax

)]
1Rt−1∩Ct−1

(34)

Now, let

Gt = (1 + ηcγo)
−2t

[
∥∆t∥2 + Õ

(
µL7/8

max log
1

Lmax

)]
. (35)

Now, in order to prove the process Gt1Rt−1∩Ct−1 is a supermartingale, we prove that
E[Gt1Rt−1∩Ct−1 |St−1] ≤ Gt−11Rt−2∩Ct−2 . We define a filtration St = s{w0, . . . ,wt−1} where
s{.} denotes a sigma-algebra field.

E[Gt1Rt−1∩Ct−1
|St−1]

≤ (1 + ηcγo)
−2t

(
(1 + ηcγo)

2 ∥∆t−1∥2 + 2Õ

(
µL7/8

max log
1

Lmax

))
1Rt−1∩Ct−1

(36a)

≤ (1 + ηcγo)
−2t

(
(1 + ηcγo)

2 ∥∆t−1∥2 + 2(1 + ηcγo)
2Õ

(
µL7/8

max log
1

Lmax

))
1Rt−1∩Ct−1

(36b)

= (1 + ηcγo)
−2(t−1)

(
∥∆t−1∥2 + Õ

(
µL7/8

max log
1

Lmax

))
1Rt−1∩Ct−1

= Gt−11Rt−1∩Ct−1 ≤ Gt−11Rt−2∩Ct−2 .

To obtain equation 36a, we use equation 34 to find E[Gt1Rt−1∩Ct−1
|St−1]. In equation 36b, we

upper bound by the multiplication of a positive term (1 + ηcγo)
2. Therefore, Gt1Rt−1∩Ct−1

is a
supermartingale.

∥∆t∥2 − E[∥∆t∥2 |St−1]1Rt−1∩Ct−1 ≤ −2 ∥(I − ηcH(x0))∆t−1∥ ∥H(x0) (wt−1 − w̃t−1)∥

− 2 ∥(I − ηcH(x0))∆t−1∥
∥∥∥H ′

t−1wt−1

∥∥∥+ 2 ∥(I − ηcH(x0))∆t−1∥ ∥θt−1∥

+ ∥H(x0) (wt−1 − w̃t−1)∥2 +
∥∥∥H ′

t−1wt−1

∥∥∥2 + 2 ∥H(x0) (wt−1 − w̃t−1)∥
∥∥∥H ′

t−1wt−1

∥∥∥
+ 2 ∥H(x0) (wt−1 − w̃t−1)∥

∥∥∥H ′

t−1

(
ηc∆t−1 + ηc∇f̃(x̃t−1)

)∥∥∥
− 2 ∥H(x0) (wt−1 − w̃t−1)∥ ∥θt−1∥+ 2

∥∥∥H ′

t−1

(
ηc∆t−1 + ηc∇f̃(x̃t−1)

)∥∥∥ ∥∥∥H ′

t−1wt−1

∥∥∥
− 2

∥∥∥H ′

t−1

(
ηc∆t−1 + ηc∇f̃(x̃t−1)

)∥∥∥ ∥θt−1∥ − 2
∥∥∥H ′

t−1wt−1

∥∥∥ ∥θt−1∥+ ∥θt−1∥2

= Õ

(
µL11/8

max log
1

Lmax

)
+ Õ

(
µL10/8

max log
2 1

Lmax

)
+ Õ(L2

max) + Õ

(
L15/8
max log

1

Lmax

)
+ Õ

(
L7/4
max log

2 1

Lmax

)
≤ Õ

(
µL7/8

max log
1

Lmax

)
Note that the above expression is obtained by the observation that the only random terms of ∆t

conditioned on the filtration St−1 = s{w0,w1, . . . ,wt−2} are H(x0) (wt−1 − w̃t−1), H
′

t−1wt−1

and θt−1(see equation 33a). Hence, we cancel out the deterministic terms in ∥∆t∥2 and E ∥∆t∥2
and neglect the negative terms while upper bounding.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

The Azuma-Hoeffding inequality for martingales and supermartingales (Hoeffding, 1994) states that
if {Gt1Rt−1∩Ct−1

} is a supermartingale and |Gt1Rt−1∩Ct−1
−Gt−11Rt−2∩Ct−2

| ≤ ct almost surely,
then for all positive integers t and positive reals δ,

P(Gt1Rt−1∩Ct−1
−G01R−1∩C−1

≥ δ) ≤ exp

(
− δ2

2
∑t−1

τ=0 c
2
τ

)
.

The bound of |Gt1Rt−1∩Ct−1
−Gt−11Rt−2∩Ct−2

| can be obtained using the definition of the process
Gt in equation 35. Recollecting our assumption that ηc ≤ ηmax ≤

√
2−1
γ′ , γo ≤ γ

′
, we see that

(1 + ηcγo)
−2t ≤ Õ(1). Therefore,

|Gt1Rt−1∩Ct−1
− E[Gt1Rt−1∩Ct−1

|St−1]| = (1 + ηcγo)
−2t
∣∣∣∥∆t∥2 − E[∥∆t∥2 |St−1]

∣∣∣1Rt−1∩Ct−1

≤ Õ

(
µL7/8

max log
1

Lmax

)
.

We denote the bound obtained for |Gt1Rt−1∩Ct−1 − E[Gt1Rt−1∩Ct−1 |St−1]| as ct−1. Now, let

δ =
√∑t−1

τ=0 c
2
τ log

1
Lmax

in the Azuma-Hoeffding inequality. Now, for any t ≤ T = O
(
L
−1/4
max

)
,

δ =

√
O
(

1

L
1/4
max

)
Õ
(
µ2L

7/4
max log

2 1
Lmax

)
log 1

Lmax
= Õ

(
µL

3/4
max log

2 1
Lmax

)
.

P
(
Gt1Rt−1∩Ct−1 −G0.1 ≥ Õ

(
µL3/4

max log
2 1

Lmax

))
≤ exp

(
−Ω̃

(
log2

1

Lmax

))
≤ Õ(L4

max).

After taking union bound ∀ t ≤ T ,

P
(
∀ t ≤ T, Gt1Rt−1∩Ct−1

−G0 ≥ Õ

(
µL3/4

max log
2 1

Lmax

))
≤ Õ(L15/4

max).

We represent the hidden constants in Õ
(
µL

3/4
max log

2 1
Lmax

)
by c̃ and choose µ such that µ < c̃.

Then, the following equation holds true.

P
(
Gt1Rt−1∩Ct−1

−G0 ≥ µ2L3/4
max log

2 1

Lmax

)
≤ Õ(L15/4

max).

Hence we can write,

P
(
Rt−1 ∩ Ct−1 ∩

{
∥∆t∥ ≥ µL3/8

max log
1

Lmax

})
≤ Õ(L15/4

max). (37)

We need the probability of the event Ct, ∀t ≤ T in order to prove the lemma. From Lemma 2, we
get the probability of the event R̄t as Õ(L

15/4
max). Then,

P
(
Ct−1 ∩

{
∥∆t∥ ≥ µL3/8

max log
1

Lmax

})
= P

(
Rt−1 ∩ Ct−1 ∩

{
∥∆t∥ ≥ µL3/8

max log
1

Lmax

})
+ P

(
R̄t−1 ∩ Ct−1 ∩

{
∥∆t∥ ≥ µL3/8

max log
1

Lmax

})
≤ Õ(L15/4

max) + P(R̄t−1) ≤ Õ(L15/4
max),

(38)
where the first term of equation 38 follows from equation 37. The second term of equation 38 can
be bounded by P(R̄t−1) which is known by Lemma 2. Finally,

P(C̄t) = P
(
Ct−1 ∩

{
∥∆t∥ ≥ µL3/8

max log
1

Lmax

})
+ P(C̄t−1) ≤ Õ(L15/4

max) + P(C̄t−1).
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The probability P(C̄t−1) can be found as,

P(C̄t−1) = P
(
Ct−2 ∩

{
∥∆t−1∥ ≥ µL3/8

max log
1

Lmax

})
+ P(C̄t−2)

= P
(
Ct−2 ∩

{
∥∆t−1∥ ≥ µL3/8

max log
1

Lmax

})
+ . . .

+ P
(
C0 ∩

{
∥∆1∥ ≥ µL3/8

max log
1

Lmax

})
+ P(C̄0).

As T = O
(
L
−1/4
max

)
, P(C̄T ) ≤ Õ

(
L
7/2
max

)
. From equation 26,

∥xt − x̃t∥ ≤
t−1∑
τ=0

(ηc + |uτ+1|)
(
∥∆τ∥+Q+ Q̃

)
≤ O

(
1

L
1/4
max

)(
Õ(Lmax)µL

3/8
max log

1

Lmax
+ Õ(Lmax)

)
= O

(
µL9/8

max log
1

Lmax

)
+ Õ(L3/4

max) ≤ Õ(L3/4
max)

This completes our proof.

C PROOF OF THEOREM 2

Theorem 5. (Theorem 2 restated) Consider f satisfying Assumptions A1 - A5. Let f̃ be the second
order Taylor approximation of f ; let {xt} and {x̃t} be the corresponding SGD iterates using PLRS,
with x̃0 = x0. Let x0 correspond to B2, i.e., ∥∇f(x0)∥ ≤ ϵ and λmin(H(x0)) ≤ −γ where ϵ, γ > 0.

Then, there exists a T = Õ
(
L
−1/4
max

)
such that with probability at least 1− Õ

(
L
7/2
max

)
,

E[f(xT )− f(x0)] ≤ −Ω̃
(
L3/4
max

)
.

Proof. In this proof, we consider the case when the initial iterate x0 is at a saddle point (correspond-
ing to B2). This theorem shows that the SGD-PLRS algorithm escapes the saddle point in T steps
where T = Õ

(
L
−1/4
max

)
.

We use the Taylor series approximation in order to make the problem tractable. Similar to the SGD-
PLRS updates for the function f , the SGD update on the function f̃ can be given as,

x̃t = x̃t−1 − ηc∇f̃(x̃t−1)− w̃t−1, w̃t−1 = ηcg̃(x̃t−1)− ηc∇f̃(x̃t−1) + utg̃(x̃t−1).

As the function f is ρ-Hessian, using (Nesterov, 2014, Lemma 1.2.4) and the Taylor series expansion
one obtains, f(x) ≤ f(x0) + ∇f(x0)

T (x − x0) + 1
2 (x − x0)T H(x0)(x − x0) + ρ

6 ∥x − x0∥3 . Let
κ̃ = x̃T − x0, κ = xT − x̃T . Note that κ̃+ κ = xT − x0. Then, replacing x by xT ,

f(xT )− f(x0) ≤ ∇f(x0)
T (xT − x0) +

1

2
(xT − x0)

T H(x0)(xT − x0) +
ρ

6
∥xT − x0∥3

= ∇f(x0)
T (κ̃+ κ) +

1

2
(κ̃+ κ)T H(x0)(κ̃+ κ) +

ρ

6
∥κ̃+ κ∥3

=

(
∇f(x0)T κ̃+

1

2
κ̃T H(x0)κ̃

)
+

(
∇f(x0)Tκ+ κ̃T H(x0)κ+

1

2
κT H(x0)κ

+
ρ

6
∥κ̃+ κ∥3

)
.

Let the first term be ζ̃ = ∇f(x0)
T κ̃ + 1

2 κ̃
T H(x0)κ̃ and the second term be ζ = ∇f(x0)Tκ +

κ̃T H(x0)κ + 1
2κ

T H(x0)κ + ρ
6 ∥κ̃+ κ∥3. Hence f(xT ) − f(x0) ≤ ζ̃ + ζ. In order to prove the

theorem, we require an upper bound on E[f(xT )− f(x0)].
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Now, we introduce two mutually exclusive events Ct and C̄t so that E[f(xT )−f(x0)] can be written
in terms of events Ct and C̄t as,

E[f(xT )− f(x0)] = E[f(xT )− f(x0)](E[1CT
] + E[1C̄T

])

= E[(f(xT )− f(x0))1CT
] + E[(f(xT )− f(x0))1C̄T

]

≤ E[ζ̃1CT
] + E[ζ1CT

] + E[(f(xT )− f(x0))1C̄T
]

= E[ζ̃] + E[ζ1CT
] + E[(f(xT )− f(x0))1C̄T

]− E[ζ̃1C̄T
].

Let K1 = E[ζ̃], K2 = E[ζ1CT
] and K3 = E[(f(xT ) − f(x0))1C̄T

] − E[ζ̃1C̄T
]. In the remainder

of the proof, we focus on deriving the bounds for individual terms, K1, K2 and K3, and then finally
put them together to obtain the result of the theorem.

C.1 BOUNDING K1

Using equation 20b from the proof of Lemma 2 in Appendix B.1, we obtain the bound for the term
K1 = E[ζ̃] as,

E[ζ̃] = E
[
∇f(x0)T (x̃T − x0) +

1

2
(x̃T − x0)

T H(x0)(x̃T − x0)

]
= E

[
∇f(x0)T

(
−

T−1∑
τ=0

ηc(I − ηcH(x0))τ∇f(x0)−
T−1∑
τ=0

(I − ηcH(x0))T−τ−1w̃τ

)]

+
1

2
E

[(
−

T−1∑
τ=0

ηc(I − ηcH(x0))τ∇f(x0)−
T−1∑
τ=0

(I − ηcH(x0))
T−τ−1w̃τ

)T

H(x0)(
−

T−1∑
τ=0

ηc(I − ηcH(x0))τ∇f(x0)−
T−1∑
τ=0

(I − ηcH(x0))T−τ−1w̃τ

)]
.

Since w̃τ = 0, all the terms with E[w̃τ ] will go to zero. Hence we obtain,

E[ζ̃] = ∇f(x0)T
(
−

T−1∑
τ=0

ηc(I − ηcH(x0))
τ∇f(x0)

)
+

1

2

(
−

T−1∑
τ=0

ηc(I − ηcH(x0))τ∇f(x0)

)T

H(x0)

(
−

T−1∑
τ=0

ηc(I − ηcH(x0))
τ∇f(x0)

)

+
1

2
E

[(
−

T−1∑
τ=0

(I − ηcH(x0))T−τ−1w̃τ

)T

H(x0)

(
−

T−1∑
τ=0

(I − ηcH(x0))T−τ−1w̃τ

)]
.

Let λ1, . . . , λd be the eigenvalues of the Hessian matrix at x0, H(x0). Now, we simplify similar to
Ge et al. (Ge et al., 2015) as,

E[ζ̃] = −
d∑

i=1

T−1∑
τ=0

ηc(1− ηcλi)
τ |∇if(x0)|2 +

1

2

d∑
i=1

λi

T−1∑
τ=0

η2c (1− ηcλi)
2τ |∇if(x0)|2

+
1

2

d∑
i=1

λi

T−1∑
τ=0

(1− ηcλi)
2(T−τ−1)E[|w̃τ,i|2].

Note that for the case of very small gradients (as per our initial conditions), |∇if(x0)|2 ≤
∥∇f(x0)∥ ≤ ϵ. Therefore, the first and second terms can be made arbitrarily small so that they do
not contribute to the order of the equation. Hence, we focus on the third term. We first characterize
E[|w̃τ,i|2] as follows. Since the norm of the stochastic noise is bounded as per the assumption A3,
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we assume that g̃i(x̃t)−∇if̃(x̃t) ≤ q̃ and E[q̃] ≤ σ̃2.

w̃τ,i = ηcg̃i(x̃t)− ηc∇if̃(x̃t) + ut+1g̃i(x̃t)

≤ ηcq̃ + ut+1

(
g̃i(x̃t)−∇if̃(x̃t) +∇if̃(x̃t)

)
≤ q̃(ηc + ut+1) + ut+1∇if̃(x̃t)

|w̃τ,i|2 ≤
(
q̃(ηc + ut+1) + ut+1∇if̃(x̃t)

)2
= q̃2(η2c + 2ηcut+1 + u2

t+1) + 2q̃ηcut+1∇if̃(x̃t) + 2q̃u2
t+1∇if̃(x̃t) + u2

t+1

∣∣∣∇if̃(x̃t)
∣∣∣2 .

Taking expectation with respect to q̃ and the uniformly distributed random variable ut+1 and recall-
ing that E[ut+1] = 0, we set expectation over linear functions of ut+1 to zero.

E[|w̃τ,i|2] ≤ σ̃2η2c + σ̃2E[u2
t+1] + 2σ̃2E[u2

t+1]∇if̃(x̃t) + E[u2
t+1]

∣∣∣∇if̃(x̃t)
∣∣∣2

≤ Õ(L2
max) + Õ(L2

max) + Õ(L2
max)Õ

(
1√
Lmax

)
+ Õ(L2

max)Õ

(
1

Lmax

)
= Õ(L2

max) + Õ(L1.5
max) + Õ(Lmax) = Õ(Lmax).

(39)

Here, we use E[u2
t+1] =

(Lmax−Lmin)
2

12 = Õ(L2
max). From equation 19 in the proof of Lemma 2

(Appendix B.1),
∥∥∥∇f̃(x̃t)

∥∥∥ ≤ 10Q̃
∑ t(t−1)

2
τ=0 (1 + ηcγo)

τ = Õ
(

1√
Lmax

)
as t ≤ T = Õ

(
L
−1/4
max

)
.

Also, note that q̃ and ut+1 are independent of each other. As λmin(H(x0)) = −γo,

1

2

d∑
i=1

λi

T−1∑
τ=0

(1− ηcλi)
2(T−τ−1)E[|w̃τ,i|2]

≤ 1

2

d∑
i=1

λi

T−1∑
τ=0

(1 + ηcγo)
2τE[|w̃τ,i|2] ≤

Õ(Lmax)

2

d∑
i=1

λi

T−1∑
τ=0

(1 + ηcγo)
2τ (40a)

=
Õ(Lmax)

2

(
− γo

T−1∑
τ=0

(1 + ηcγo)
2τ + (d− 1)λmax(H(x0))

T−1∑
τ=0

(1 + ηcγo)
2τ

)
, (40b)

where we use the upper bound of E[|w̃τ,i|2] obtained from equation 39 in equation 40a. We use the
fact that one of the eigenvalues of H(x0) is −γo and then upper bound the other eigenvalues by the
maximum eigenvalue λmax(H(x0)) in equation 40b.

Let ηc ≤ ηmax ≤
√
2−1
γ′ where γ ≤ γo ≤ γ

′
. As

∑T−1
τ=0 (1 + ηcγo)

2τ is a monotonically increas-

ing sequence, we choose the smallest T that satisfies d

η
1/4
c γo

≤
∑T−1

τ=0 (1 + ηcγo)
2τ . Therefore,∑T−2

τ=0 (1 + ηcγo)
2τ ≤ d

η
1/4
c γo

. Now,

T−1∑
τ=0

(1 + ηcγo)
2τ = 1 + (1 + ηcγo)

2
T−2∑
τ=0

(1 + ηcγo)
2τ ≤ 1 +

2d

η
1/4
c γo

,

which follows from our constraints that ηc <
√
2−1
γ′ and γo ≤ γ

′
making (1 + ηcγ)

2 ≤(
1 +

√
2−1
γ′ γ

′
)2

≤ 2. Further using ηcγo ≤ η
1/4
c γo ≤

√
2−1
γ′ γ

′
< d,

d

η
1/4
c γo

≤
T−1∑
τ=0

(1 + ηcγo)
2τ ≤ 1 +

2d

η
1/4
c γo

≤ 3d

η
1/4
c γo

(41)

Hence the order of T is given by T = O
(

log d

L
1/4
maxγo

)
. We hide the dependence on d when we use

T = Õ
(
L
−1/4
max

)
. Using equation 41 it can be proved that,

1

2

d∑
i=1

λi

T−1∑
τ=0

(1− ηcλi)
2(T−τ−1)E[|w̃τ,i|2] ≤ −Õ(L3/4

max).
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C.2 BOUNDING K2 AND K3

We define the event CT as, CT =
{
∀t ≤ T, ∥κ̃∥ ≤ Õ

(
L
3/8
max log

1
Lmax

)
, ∥κ∥ ≤ Õ(L

3/4
max)

}
. From

Lemma 2 and Lemma 3 in Appendix B.1 and B.2 respectively, we know that with probability
P(CT ) ≥ 1 − Õ

(
L
7/2
max

)
, the term ∥κ̃∥ can be bounded by Õ

(
L
3/8
max log

1
Lmax

)
and ∥κ∥ can

be bounded by Õ(L
3/4
max), ∀t ≤ T = O

(
L
−1/4
max

)
.

Now, to complete the proof of Theorem 2, we need to show that the term K1 dominates both K2

and K3. Hence, we obtain the bound for the term K2 as,

E[ζ1CT
] = E

[
∇f(x0)Tκ+ κ̃T H(x0)κ+

1

2
κT H(x0)κ+

ρ

6
∥κ̃+ κ∥3

]
P(CT )

≤ Õ

(
L3/8
max log

1

Lmax

)
Õ(L3/4

max)P(CT ) = Õ

(
L9/8
max log

1

Lmax

)
P(CT ).

Finally, we bound the term K3 as follows.

E[(f(xT )− f(x0))1C̄T
]− E[ζ̃1C̄T

] ≤ Õ(1)P(C̄T ) ≤ Õ
(
L7/2
max

)
,

where the inequality arises from the boundedness of the function. Comparing the bounds of the
terms K1, K2, and K3, we find that K1 dominates, which completes the proof.

D PROOF OF THEOREM 3

Theorem 6. (Theorem 3 restated) Consider f satisfying the assumptions A1-A6. Let the initial
iterate x0 be δ close to a local minimum x∗ such that ∥x0 − x∗∥ ≤ Õ(

√
Lmax) < δ. With probability

at least 1− ξ, ∀t ≤ T where T = Õ
(

1
L2

max
log 1

ξ

)
,

∥xt − x∗∥ ≤ Õ

(√
Lmax log

1

Lmaxξ

)
< δ

Proof. This theorem handles the case when the iterate is close to the local minimum (case B3).
We aim to show that the iterate does not leave the neighbourhood of the minimum for t ≤
Õ
(

1
L2

max
log 1

ξ

)
. By assumption A6, if xt is δ close to the local minimum x∗, the function is locally

α- strongly convex. We define event Dt = {∀τ ≤ t, ∥xτ − x∗∥ ≤ µ
√
Lmax log

1
Lmaxξ

< δ}.

Let Lmax < r
log ξ−1 where r < log ξ−1. It can be seen that Dt−1 ⊂ Dt. Conditioned on event

Dt, and using α−strong convexity of f , (∇f(xt) − ∇f(x∗))T (xt − x∗)1Dt
≥ α ∥xt − x∗∥2 1Dt

.

As ∇f(x∗) = 0, it becomes, ∇f(xt)
T (xt − x∗)1Dt ≥ α ∥xt − x∗∥2 1Dt . We define a filtration

St = s{w0, . . . ,wt−1} in order to construct a supermartingale and use the Azuma-Hoeffding in-
equality where s{.} denotes a sigma-algebra field. Now, assuming Lmax < α

β2 ,

E[∥xt − x∗∥2 1Dt−1 |St−1] = E[∥xt−1 − ηc∇f(xt−1)− wt−1 − x∗∥2 |St−1]1Dt−1

= E[∥(xt−1 − x∗)− ηc∇f(xt−1)− wt−1∥2 |St−1]1Dt−1

= [∥xt−1 − x∗∥2 − 2ηc(xt−1 − x∗)T∇f(xt−1) + η2c ∥∇f(xt−1)∥2 + E[∥wt−1∥2]]1Dt−1
(42a)

≤ [∥xt−1 − x∗∥2 − 2ηcα ∥xt−1 − x∗∥2 + η2cβ
2 ∥xt−1 − x∗∥2 + E[∥wt−1∥2]]1Dt−1

(42b)

We use E[wt] = 0 in equation 42a. We use the β-smoothness and α−convexity assumptions of f in
equation 42b. Now, using wt−1 = ηcg(xt−1)− ηc∇f(xt−1) + utg(xt−1), we compute E[∥wt−1∥2]
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as,

E[∥wt−1∥2]

= E
[
η2c ∥g(xt−1)−∇f(xt−1)∥2 + 2ηcut

(
g(xt−1)−∇f(xt−1)

)T
g(xt−1) + u2

t ∥g(xt−1)∥2
]

≤ η2cσ
2 + E[u2

t ]E[∥g(xt−1)∥2] ≤ η2cσ
2 + E[u2

t ](σ
2 + ∥∇f(xt−1)∥2)

≤ η2cσ
2 + E[u2

t ]σ
2 + E[u2

t ]β
2 ∥xt−1 − x∗∥2

≤ σ2

(
η2c +

2L2
max

3
− 2Lmaxηc

3

)
+ β2 ∥xt−1 − x∗∥2

(
2L2

max

3
− 2Lmaxηc

3

)
.

(43)
As ηc = Lmin+Lmax

2 , Lmin = 2ηc − Lmax. Hence, we write E[u2
t ] = (Lmax−Lmin)

2

12 =
4(Lmax−ηc)

2

12 =
L2

max+η2
c−2Lmaxηc

3 <
2L2

max

3 − 2Lmaxηc

3 in equation 43. Using equation 43 in
equation 42b,

E[∥xt − x∗∥2 1Dt−1
|St−1] ≤

[
∥xt−1 − x∗∥2

(
1− 2ηcα+ η2cβ

2 +
2L2

maxβ
2

3
− 2Lmaxηcβ

2

3

)
+σ2

(
η2c +

2L2
max

3
− 2Lmaxηc

3

)]
1Dt−1

≤
[
∥xt−1 − x∗∥2

(
1 + ηcα+

2Lmaxα

3

)
+ σ2

(
L2
max +

2L2
max

3

)]
1Dt−1

≤
[
∥xt−1 − x∗∥2

(
1 + Lmaxα+

2Lmaxα

3

)
+ σ2

(
L2
max +

2L2
max

3

)]
1Dt−1

=

[
∥xt−1 − x∗∥2

(
1 +

5Lmaxα

3

)
+

5L2
maxσ

2

3

]
1Dt−1 .

We use Lmax < α
β2 . Let Jt =

(
1 + 5αLmax

3

)−t
(
∥xt − x∗∥2 + Lmaxσ

2

α

)
. We prove Jt1Dt−1

is a
supermartingale process as follows.

E

[(
1 +

5αLmax

3

)−t (
∥xt − x∗∥2 + Lmaxσ

2

α

) ∣∣∣∣St−1

]
1Dt−1

≤

(
1 +

5αLmax

3

)−t [
∥xt−1 − x∗∥2

(
1 +

5Lmaxα

3

)
+

5L2
maxσ

2

3
+

Lmaxσ
2

α

]
1Dt−1

=

(
1 +

5αLmax

3

)−(t−1) [
∥xt−1 − x∗∥2 + Lmaxσ

2

α

]
1Dt−1 = Jt−11Dt−1 ≤ Jt−11Dt−2 .

Hence Jt1Dt−1
is a supermartingale. In order to use the Azuma-Hoeffding inequality, we bound

|Jt1Dt−1
− E[Jt1Dt−1

|St−1]| as,

|Jt1Dt−1 − E[Jt1Dt−1 |St−1]| =
(
1 +

5αLmax

3

)−t [
∥xt − x∗∥2 − E[∥xt − x∗∥2 |St−1]

]
1Dt−1

≤
(
1 +

5αLmax

3

)−t [
2 ∥xt−1 − ηc∇f(xt−1)− x∗∥ ∥wt−1∥+ ∥wt−1∥2 +

σ2

(
η2c +

2L2
max

3
− 2Lmaxηc

3

)
+ β2 ∥xt−1 − x∗∥2

(
2L2

max

3
− 2Lmaxηc

3

)]
1Dt−1 ,

(44)
where we use equation 43 in equation 44 for the term E[∥wt−1∥2]. Now, we compute ∥wt−1∥ using
assumption A3 as follows.

∥wt−1∥ = ∥ηcg(xt−1)− ηc∇f(xt−1) + utg(xt−1)∥
≤ ηcQ+ |ut|(Q+ ∥∇f(xt−1)∥) ≤ Q(ηc + |ut|) + |ut|β ∥xt−1 − x∗∥ . (45)
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Using equation 45 in equation 44 and the bound of the event Dt−1,
|Jt1Dt−1

− E[Jt1Dt−1
|St−1]|

≤
(
1 +

5αLmax

3

)−t [
2 ∥xt−1 − x∗∥ (Q(ηc + |ut|) + |ut|β ∥xt−1 − x∗∥)

+ (Q(ηc + |ut|) + |ut|β ∥xt−1 − x∗∥)2 + σ2

(
η2c +

2L2
max

3
− 2Lmaxηc

3

)
+ β2 ∥xt−1 − x∗∥2

(
2L2

max

3
− 2Lmaxηc

3

)]
1Dt−1

=

(
1 +

5αLmax

3

)−t [
Õ

(
µL1.5

max log
0.5 1

Lmaxξ

)
+ Õ

(
µ2L2

max log
1

Lmaxξ

)
+ 2Õ(L2

max)

+ Õ

(
µL2.5

max log
0.5 1

Lmaxξ

)
+ 2Õ

(
µ2L3

max log
1

Lmaxξ

)]
≤
(
1 +

5αLmax

3

)−t

Õ

(
µL1.5

max log
0.5 1

Lmaxξ

)
= dt

We denote the bound of |Jt1Dt−1 − E[Jt1Dt−1 |St−1]| as dt.

Let bt =
√∑t

τ=1 d
2
τ =

√∑t
τ=1

(
1 + 5αLmax

3

)−2τ
Õ
(
µL1.5

max log
0.5 1

Lmaxξ

)
. Now,√√√√ t∑

τ=1

(
1 +

5αLmax

3

)−2τ

Õ

(
µL1.5

max log
0.5 1

Lmaxξ

)

≤
√

1

1−
(
1 + 5αLmax

3

)−2 Õ

(
µL1.5

max log
0.5 1

Lmaxξ

)

=

√
Õ(1)

Õ(Lmax)
Õ

(
µL1.5

max log
0.5 1

Lmaxξ

)
= Õ

(
µLmax log

0.5 1

Lmaxξ

)
.

Hence bt is of the order Õ
(
µLmax log

0.5 1
Lmaxξ

)
. By the Azuma Hoeffding inequality,

P
(
Jt1Dt−1

− J0 ≥ bt log
0.5 1

Lmaxξ

)
≤ exp

(
−Ω̃

(
log

1

Lmaxξ

))
≤ Õ(L3

maxξ),

which leads to,

P
(
Jt1Dt−1 − J0 ≥ Õ

(
µLmax log

1

Lmaxξ

))
≤ Õ(L3

maxξ).

Hence we can write,

P
(
Dt−1 ∩

{
∥xt − x∗∥2 ≥ Õ

(
µLmax log

1

Lmaxξ

)})
≤ Õ(L3

maxξ)

For some constant b̃ independent of Lmax and ξ we can write,

P
(
Dt−1 ∩

{
∥xt − x∗∥2 ≥ b̃µLmax log

1

Lmaxξ

})
≤ Õ(L3

maxξ)

By choosing µ < b̃,

P
(
Dt−1 ∩

{
∥xt − x∗∥ ≥ µ

√
Lmax log

1

Lmaxξ

})
≤ Õ(L3

maxξ)

P(D̄t) = P
(
Dt−1 ∩

{
∥xt − x∗∥ ≥ µ

√
Lmax log

1

Lmaxξ

})
+ P(D̄t−1)

≤ Õ(L3
maxξ) + P(D̄t−1)

Iteratively unrolling the above equation, we obtain P(D̄t) ≤ tÕ(L3
maxξ). Choosing t =

Õ
(

1
L2

max
log 1

ξ

)
, P(D̄t) ≤ Õ

(
Lmaxξ log

1
ξ

)
. As Lmax < Õ

(
1

log 1
ξ

)
, P(D̄t) ≤ Õ(ξ).
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E PROOF USING INDUCTION

In the proof of Lemma 2 in Appendix B.1, we state that equation 19 can be proved by induction for
t ≥ 2. We restate the equation here and provide the corresponding proof by induction.

Induction hypothesis:
∥∥∥∇f̃(x̃t)

∥∥∥ ≤ 10Q̃

t(t−1)
2∑

τ=0

(1 + ηcγo)
τ . (46)

Recollect from that equation 15 that ∇f̃(x̃t) = (I − ηcH(x0))∇f̃(x̃t−1) − H(x0)w̃t−1. Taking
matrix induced norm on both sides,∥∥∥∇f̃(x̃t+1)

∥∥∥ ≤ (1 + ηcγo)
∥∥∥∇f̃(x̃t)

∥∥∥+ β ∥w̃t∥

= ((1 + ηcγo) + β |ut+1|)
∥∥∥∇f̃(x̃t)

∥∥∥+ βQ̃(ηc + |ut+1|),
(47)

since,
∥∥∥g̃(x̃t)−∇f̃(x̃t)

∥∥∥ ≤ Q̃. Note that
∥∥∥∇f̃(x̃t)

∥∥∥ ≤ ϵ, |ut| ≤ Lmax and βLmax < 1 hold for all
t. Therefore, at t = 1,∥∥∥∇f̃(x̃1)

∥∥∥ ≤ ((1 + ηcγo) + β |u1|) ϵ+ βQ̃(ηc + |u1|) ≤ (1 + ηcγo)ϵ+ ϵ+ 2Q̃.

Now, we prove the hypothesis in equation 46 for t = 2. From equation 47, for an arbitrarily small ϵ,∥∥∥∇f̃(x̃2)
∥∥∥ ≤ ((1 + ηcγo) + β |u2|)

∥∥∥∇f̃(x̃1)
∥∥∥+ βQ̃(ηc + |u2|)

≤ (1 + ηcγo)
2ϵ+ 2(1 + ηcγo)ϵ+ ϵ+ 2Q̃(1 + ηcγo) + 4Q̃

≤ 2ϵ

2∑
τ=0

(1 + ηcγo)
τ + 4Q̃

1∑
τ=0

(1 + ηcγo)
τ ≤ 10Q̃

2(2−1)
2∑

τ=0

(1 + ηcγo)
τ .

We have shown that the induction hypothesis holds for t = 2. Now, assuming that it holds for any t,
we need to prove that it holds for t+1. We know from equation 47, when the hypothesis is assumed
to hold for t,∥∥∥∇f̃(x̃t+1)

∥∥∥ ≤ ((1 + ηcγo) + β |ut+1|) 10Q̃

t(t−1)
2∑

τ=0

(1 + ηcγo)
τ + βQ̃(ηc + |ut+1|)

≤ (1 + ηcγo)10Q̃

t(t−1)
2∑

τ=0

(1 + ηcγo)
τ + 10Q̃

t(t−1)
2∑

τ=0

(1 + ηcγo)
τ + βQ̃(ηc + |ut+1|)

≤ 20Q̃

t(t−1)
2 +1∑
τ=0

(1 + ηcγo)
τ

If we prove 20Q̃
∑ t(t−1)

2 +1
τ=0 (1+ηcγo)

τ ≤ 10Q̃
∑ t(t+1)

2
τ=0 (1+ηcγo)

τ , the induction proof is complete.
Now, we need to prove

20Q̃

t2−t
2 +1∑
τ=0

(1 + ηcγo)
τ ≤ 10Q̃

t2+t
2∑

τ=0

(1 + ηcγo)
τ

≤ 10Q̃

t2−t
2 +1∑
τ=0

(1 + ηcγo)
τ + 10Q̃

t2+t
2∑

τ= t2−t
2 +2

(1 + ηcγo)
τ .

Therefore we need to show that,
t2−t

2 +1∑
τ=0

(1 + ηcγo)
τ

︸ ︷︷ ︸
S1

≤

t2+t
2∑

τ= t2−t
2 +2

(1 + ηcγo)
τ

︸ ︷︷ ︸
S2

. (48)
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Now, summing up the geometric series S1,
∑ t2−t

2 +1
τ=0 (1+ηcγo)

τ = (1+ηcγo)
t2−t

2
+2−1

ηcγo
. Using change

of variable in S2 of equation 48 as m = τ −
(

t2−t
2 + 2

)
,

t−2∑
m=0

(1 + ηcγo)
t2−t

2 +m+2 = (1 + ηcγo)
t2−t

2 +2 (1 + ηcγo)
t−1 − 1

ηcγo
.

Therefore, we now need to prove,

(1 + ηcγo)
t2−t

2 +2 − 1 ≤ (1 + ηcγo)
t2−t

2 +2
(
(1 + ηcγo)

t−1 − 1
)

⇒ 2(1 + ηcγo)
t2−t

2 +2 ≤ (1 + ηcγo)
t2−t

2 +t+1 + 1
(49)

We further prove equation 49 by induction as follows. For t = 2, 2(1 + ηcγo)
3 ≤ (1 + ηcγo)

4 + 1.
Let us assume the following expression holds for time step t.

2(1 + ηcγo)
t2−t

2 +2 ≤ (1 + ηcγo)
t2−t

2 +t+1 (50)

Now, we prove for the time step t+ 1,

2(1 + ηcγo)
t(t+1)

2 +2 = 2(1 + ηcγo)
t(t−1)

2 +t+2 ≤ (1 + ηcγo)
t2−t

2 +t+1+t

= (1 + ηcγo)
t(t+1)

2 +t+1 ≤ (1 + ηcγo)
t(t+1)

2 +t+2,
(51)

where we use t(t−1)
2 + t = t(t+1)

2 and apply our assumption equation 50 in equation 51. We have

proved 2(1 + ηcγo)
t2−t

2 +2 ≤ (1 + ηcγo)
t2−t

2 +t+1 ≤ (1 + ηcγo)
t2−t

2 +t+1 + 1. This concludes our
proof of equation 46.

F CHOICE OF PARAMETERS FOR OTHER LR SCHEDULERS

1. Cosine annealing (Loshchilov & Hutter, 2017b): There are 3 parameters namely, initial
restart interval, a multiplicative factor and minimum learning rate. The authors propose an
initial restart interval of 1, a factor of 2 for subsequent restarts, with a minimum learning
rate of 1e− 4, which we use in our comparisons.

2. Knee (Iyer et al., 2023): The total number of epochs is divided into those that correspond to
the ”explore” epochs and ”exploit” epochs. During the explore epochs, the learning rate is
kept at a constant high value, while from the beginning of the exploit epochs, it is linearly
decayed. We use the suggested setting of 100 initial explore epochs with a learning rate of
0.1 followed by a linear decay for the rest of the epochs. For training ImageNet-1K, we use
the suggested setting of 30 explore epochs. For fine-tuning BERT on SQuAD v1.1 dataset,
we use a base learning rate of 3e − 5 for 1 explore epoch and then decay, for a total of 2
epochs. For training the Transformer model on the IWSLT’14 dataset, a seed learning rate
of 3e− 4 is used for 40 explore epochs.

3. One cycle (Smith & Topin, 2019): We perform the learning rate range test for our networks
as suggested by the authors. For the range test, the learning rate is gradually increased
during which the training loss explodes. The learning rate at which it explodes is noted
and the maximum learning rate (the learning rate at the middle of the triangular cycle) is
fixed to be before that. We linearly increase the learning rate for the initial 45% of the total
epochs up to the maximum learning rate determined by the range test, followed by a linear
decay for the next 45% of the total epochs. We then decay it further up to a divisive factor
of 10 for the rest of the epochs, which is the suggested setting. Note that the one cycle LR
scheduler relies heavily on regularization parameters like weight decay and momentum.

4. Constant: To compare with a constant learning rate, we choose 0.05 for the VGG-16 archi-
tecture and 0.1 for the remaining architectures as done in our other baselines(Smith, 2017;
Loshchilov & Hutter, 2017b).
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5. Multi step: For the multi-step decay scheduler, our choice of the decay rate and time is
based on the standard repositories for the architectures. 5. Specifically, we decay the learn-
ing rate by a factor of 10 at the the epochs 100 and 150 for ResNet-110 and ResNet-50. In
the case of DenseNet-40-12, we decay by a factor of 10 at the epochs 150 and 225. For
VGG-16, we decay by a factor of 10 every 30 epochs. In the case of WRN, we fix a learn-
ing rate of 0.2 for the initial 60 epochs, decay it by 0.22 for the next 60 epochs, and by 0.23

for the rest of the epochs.

G TRAIN LOSS PLOTS

G.1 PLOTS OF CIFAR-10

To study the convergence of the schedulers we plot the training loss across epochs in Figure 2. We
observe that our proposed PLRS achieves one of the fastest rates of convergence in terms of the
training loss compared across all the schedulers for both networks. Note that the cosine annealing
scheduler records several spikes across the training.

0 100 200 300 400 500
Epochs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Tr
ai

n 
lo

ss

Constant
Cosine
Knee
Multi-step
One-cycle
PLRS

(a) VGG-16
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(b) WRN-28-10

Figure 2: Training loss vs epochs for VGG-16 and WRN-28-10 for CIFAR-10.

G.2 PLOTS OF CIFAR-100

We plot the training loss in Figure 3. For ResNet-110, both PLRS and knee LR scheduler converge to
a low training loss around 150 epochs. While cosine annealing LR scheduler also seems to converge
fast, it experiences sharp spikes along the curve during the restarts. For DenseNet-40-12, PLRS
converges faster to a lower training loss compared to the other schedulers. Specifically, the train loss
converges around 150 and 200 epochs for ResNet-110 and DenseNet-40-12 respectively.

5ResNet:https://github.com/akamaster/pytorch resnet cifar10,
DenseNet:https://github.com/andreasveit/densenet-pytorch,
VGG:https://github.com/chengyangfu/pytorch-vgg-cifar10,
WRN:https://github.com/meliketoy/wide-resnet.pytorch
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(b) DenseNet-40-12

Figure 3: Training loss vs epochs for ResNet-110 and DenseNet-40-12 on CIFAR-100.

H SENSITIVITY ANALYSIS

We perform sensitivity analysis of the parameters Lmin and Lmax on the maximum test accuracy.
We vary the parameters and record the highest test accuracy achieved for various combinations of
Lmin and Lmax for the WRN-28-10 network trained on the CIFAR-10 dataset and the DenseNet-40-
10 network trained on the CIFAR-100 dataset respectively and give a subset of the results in Tables
6 and 7. It can be observed that over a range of combinations of Lmin and Lmax, the maximum test
accuracy remains ∼ 93 for CIFAR-10 and ∼ 65 for CIFAR-100, indicating that even if the settings
of Lmin and Lmax are not tuned extensively, one can still achieve state-of-the-art results.

Lmax Lmin Max acc.
0.1 0.01 93.77
0.1 0.03 93.31
0.1 0.05 93.58
0.2 0.01 93.87
0.2 0.03 93.29
0.2 0.05 92.73
0.3 0.01 93.55
0.3 0.03 93.63
0.3 0.05 93.57

Table 6: Sensitivity analysis
for WRN-28-10 on CIFAR-10

Lmax Lmin Max acc.
0.5 0.09 65.83
0.5 0.07 64.32
0.5 0.05 65.41
0.5 0.01 65.18
0.4 0.07 65.72
0.4 0.05 65.72
0.4 0.01 64.39
0.3 0.03 64.39
0.3 0.01 64.94

Table 7: Sensitivity anal-
ysis for DenseNet-40-10 on
CIFAR-100.

I ONLINE TENSOR DECOMPOSITION

We follow the experimental setup in (Ge et al., 2015), where their proposed projected noisy gradient
descent is applied to orthogonal tensor decomposition. A brief description of the online tensor
decomposition problem is given below.

Consider a tensor T which has an orthogonal decomposition,

T =

d∑
i=1

a⊗4
i , (52)

where ai’s are orthonormal vectors. The goal of performing the tensor decomposition is to find the
orthonormal components, given the tensor. The objective function is defined to reduce the correla-
tion between the components:

min
∀i,∥ui∥=1

∑
i̸=j

T (ui, ui, uj , uj) (53)
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We plot the normalized reconstruction error,
∥∥∥T −

∑d
i=1 u

⊗4
i

∥∥∥2
F
/ ∥T∥2F in Figure 4, where ∥.∥F

denotes the Frobenius norm.
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Figure 4: Reconstruction error for online tensor decomposition

We tune the learning rate parameters Lmin and Lmax to 0.007 and 0.01 respectively to obtain the
convergence plot with PLRS. We compare against the plot in Figure 1.a of (Ge et al., 2015). We
note that the proposed Uniform LR produces faster and smoother convergence when compared to
the unit sphere noise proposed in the Noisy SGD algorithm. As mentioned in (Ge et al., 2015), the
plot may vary depending on the instance of initialization; however, it converges consistently across
all runs.

Additionally, we implemented stochastic gradient descent with additive noise in the neural network
setting. However, its performance was suboptimal even with extensive tuning of hyperparameters.

J LLM USAGE

We make use of LLMs for grammar, punctuation and phrasing suggestions.
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