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Emergent Specialization: Rare Token Neurons in Language Models

Abstract
Large language models struggle with representing and generating rare tokens despite their

importance in specialized domains. In this study, we identify neuron structures with exceptionally
strong influence on language model’s prediction of rare tokens, termed as rare token neurons, and
investigate the mechanism for their emergence and behavior. These neurons exhibit a characteristic
three-phase organization (plateau, power-law, and rapid decay) that emerges dynamically during
training, evolving from a homogeneous initial state to a functionally differentiated architecture. In
the activation space, rare token neurons form a coordinated subnetwork that selectively co-activates
while avoiding co-activation with other neurons. This functional specialization potentially correlates
with the development of heavy-tailed weight distributions, suggesting a statistical mechanical basis
for emergent specialization.

1. Introduction

While large language models (LLMs) have demonstrated remarkable capabilities in learning statis-
tical patterns of human language, they consistently struggle with representing and generating rare
tokens—words or phrases that appear infrequently in training data [14, 18, 32]. This challenge stems
from the power-law distributions inherent in natural language [30, 33], where a significant portion
of linguistic phenomena appears with extremely low frequency[5, 13]. Recent work has shown this
will lead to collapse when training on synthetic data that either truncates or narrows the tail of the
distribution [3, 8, 12].

While several extrinsic and operational methods have been proposed to address this limita-
tion—such as retrieval-augmented generation [16], in-context learning [9], and non-parametric
memory mechanisms [4]—the intrinsic, mechanistic question remains: do LLMs develop internal
mechanisms specialized for processing rare tokens during pre-training? This question parallels human
language acquisition, where children demonstrate remarkable "fast mapping" abilities—learning new
words after minimal exposure—from as young as 12 months of age [6, 20]. Cognitive neuroscience
explains this through the Complementary Learning Systems (CLS) theory [23, 24], which posits
that the brain employs two distinct neural systems: a neocortical system for gradual learning of
distributed representations, and a hippocampal system specialized for rapid encoding of specific
experiences, including rare events [15, 26].

Mechanistic interpretability research has revealed neurons encoding interpretable features ranging
from syntactic relationships [19] to semantic concepts [11], but has primarily focused on common
patterns. Stolfo et al. [27] discovered neurons that modulate token logits proportionally to frequency,
but specialized mechanisms for rare tokens remain underexplored. In this study, we focus on
decoder-only Transformer-based models and extend their work to focus on rare tokens and investigate
how individual neurons in the final MLP layer of transformer-based language models specialize in
processing rare tokens during training.
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Our analysis reveal three key findings: (i) LLMs develop dedicated "rare token neurons" that
disproportionately impact the prediction of infrequent tokens; (ii) These specialized neurons emerge
through distinct phase transitions during training; (iii) The emergence of specialized neuron groups
correlates with the development of heavy-tailed weight distributions, suggesting a statistical mechan-
ical basis for functional specialization.

2. Methodology

Inspired by prior work on confidence-regulating neurons [27], we hypothesize that certain neurons
in language models specialize in modulating token-level probabilities—particularly for rare tokens
that occur infrequently in the training data. To test this hypothesis, we conduct targeted ablation
experiments across several language models, including the Pythia family [2], with intermediate
checkpoints and training set available (The Pile [10]). Following the intervention approach of Stolfo
et al. [27], we assess each neuron’s influence by performing mean ablation experiments, that is, fixing
a specific neuron’s activation to its mean value over a reference dataset. We measure influence as the
expected absolute change in token-level loss after ablation. The mean values are computed from a
filtered dataset of 25,088 context-token pairs sampled from the C4 Corpus [25]. Experiment details
are reported in Appendix 5.3.1.

Figure 1a shows the distribution of per-neuron influence across training, measured as the absolute
change in token-level loss after ablation. The concentration of neurons near zero ∆loss, and a tail
with large ∆loss suggests that a small subset becomes particularly influential for rare tokens during
training. We refer to these as rare token neurons. Within this subset, we define boosting neurons as
those that increase the likelihood of rare tokens, and suppressing neurons as those that decrease it.

(a) Absolute ∆loss distribution across training steps. (b) Three-phase structure of neuron influence.

Figure 1: Neuron influence in Pythia-410M model. (a) Most neurons cluster near zero ∆loss, with a
long tail of high-impact neurons. (b) Log-log plot reveals three phases: a plateau of highly
influential neurons), a power-law mid-phase, and a steep decay phase.

3. Results

3.1. Phase Structure in Neuron Influence

Ranking neurons by their ∆Loss reveals a consistent three-phase structure presented in log-log
scale across model scales and architectures (Figure 1b; more results in Figure 5.3.4). This structure
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suggests a functional specialization composed of: i.) Influential plateau phase where a small fraction
(1.7%) of neurons exhibit consistently large influence, forming a plateau in the leftmost region; ii.)
Power-law regime where the majority of influential neurons follow a power-law relationship, which
turns into a linear relation in log-log coordinates

log |∆Loss| ≈ −κ log(rank) + β, (1)

where the power-law exponent κ appears as the slope of a linear function; and iii.) Rapid decay tail
where the remaining neurons decay more rapidly than power-law predictions, indicating negligible
contribution to rare token prediction.

(a) Neuron slope distributions. (b) Difference in power-law exponents (αHill).

Figure 2: Parallel emergence of functional specialization and statistical heavy-tailedness during
model training. (a) The slope distribution evolves to form distinct neuronal regimes at
higher training steps. (b) Specialized neurons develop increasingly heavy-tailed weight
distributions compared to random neurons, suggesting a potential link between functional
differentiation and statistical properties.

The power-law and rapid decay phases The transition from power-law to rapid decay can be
identified through the slope behavior of log |∆Loss| vs. log(rank). As shown in Figure 2a, the first
derivative drops sharply around log(rank) ≈ 5, marking the breakdown of the power-law and the
onset of rapid decay. This characterizes a functional boundary between moderately and minimally
influential neurons.

Emergence of the Plateau Phase Unlike the rapid decay transition, the plateau phase is not readily
distinguishable by the first derivative. Neurons in the range log(rank) ∈ (2, 5) exhibit a relatively flat
derivative, indicating consistent power-law behavior but increased baseline influence. Such increment
is quantified by

δ := log |∆Loss| − (−κ log rank + β),

which measures to what extend the power-law underestimates the influence of top-ranked neurons.
Figure 3b shows that the highly-influential plateau emerges progressively during training.—implying
functional specialization through training.
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A hidden singularity and possible second-order phase transition As shown in Figure 2a, we
observe a singularity of the slope function. While the first derivative remains continuous, the second
derivative exhibits a discontinuity (Figure 2a). This is analogues to second-order phase transitions in
statistical physics. This finding suggests that the observed transition reflects an information-theoretic
phase shift and potential neural network optimization, where critical points in the loss landscape can
induce structural reorganization of representational geometry [1].

(a) Power-law and its failure on both ends.
(b) Emergence of plateau phase through additional

bias term.

Figure 3: (a) The green line shows the power-law prediction; influence declines faster on the right
and deviates on the left due to an emerging bias, though the slope remains within the
power-law regime. (b) Training dynamics of top-ranked neurons’ deviation δ from power-
law: early training (blue) fits well, while later steps show growing plateau deviations.

3.2. Co-activation Patterns Through the Lens of Activation Space Geometry

We analyze the behavior of rare-token-influential neurons through the geometry of their activation
patterns. Despite being selected via individual ablation—these neurons exhibit strikingly coordinated
behavior: they co-activate strongly with each other while systematically avoiding co-activation
with neurons less involved in rare token prediction(see results in Table 1). This structure is absent
in random neuron groups, suggesting emergent organization. To probe this, we construct high-
dimensional activation vectors for each neuron using context-token pairs from the C4 corpus [25].
We then investigate the geometric patterns with effective dimension and cosine similarity.

Effective dimension analysis reveals that rare-token neurons lie on a significantly lower-
dimensional manifold than random neurons. This compression suggests that they activate in a
more coordinated, structured manner rather than independently(see results in Table 2).

Pairwise cosine similarity(see results in Table 3) reveals clear distinctions in activation patterns
across neuron groups. Random neurons show near-zero similarity, indicating uncorrelated activity.
In contrast, rare-token boosting and suppressing neurons exhibit strong within-group similarity,
reflecting functional specialization. Surprisingly, these two groups also show substantial cross-group
similarity, despite their opposing effects—suggesting they operate in coordinated, antagonistic roles.

3.3. Weight Eigenspectrum

To track how the network progressively develops functional differentiation, we apply Heavy-Tailed
Self-Regularization (HT-SR) Theory on the selected neuron group. Specifically, we compute the
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Hill estimator difference between selected neuron groups and a random baseline to measure the
change of power-law exponent αHill in the tail of the eigenvalue. Figure 2b shows that specialized
neurons consistently exhibit lower αHill values—i.e., heavier-tailed distributions—compared to
random neurons after the initial training phase. This pattern holds across model families and
sizes (see results in Table 4). This persistent separation provides strong evidence for functional
differentiation through implicit regularization. Despite fluctuations during training, the fundamental
pattern remains: neurons that significantly impact rare token prediction consistently develop more
pronounced heavy-tailed characteristics than neurons with random or general functionality.

4. Discussion and Conclusion

Based on our empirical observations, we propose two mechanistic conjectures:

Conjecture 4.1 (Dual-Regime Organization) The emergence of power-law phase and its distinc-
tion from the rapid decay phase suggest a spontaneous specialization of influential neurons. Among
the rare token neurons, the power-law structure, the αHill behavior, and the co-activation patterns
indicate self-organization phenomena.

Conjecture 4.2 (Parallel Mechanism Conjecture) The plateau phase emerges through a mecha-
nism that parallels the mechanism for the emergence of power-law phase. Through the training
process, it further differentiates a small subset of neurons within the power-law group, by increasing
their influence to form the influential plateau.

The Dual-Regime Organization conjecture is motivated by the observation that the log∆loss–log rank
slope remains consistent across both the power-law and plateau phases. Such consistency suggests
that the power-law structure underlies both phases, with the plateau reflecting an additional, distinct
mechanism. The Parallel Mechanism conjecture proposes that rare token processing relies on two
complementary systems: a distributed regime (power-law) and a specialized subnetwork (plateau).
This resembles the Complementary Learning Systems (CLS) theory in human memory [15, 23],
where general statistical learning coexists with mechanisms for handling exceptions. Analogously,
the plateau neurons might function as a specialized memory system for encoding rare linguistic
patterns that would otherwise be overwhelmed by the statistics of other tokens.

This paper presents a systematic investigation into the emergent neuronal mechanisms that
language models develop for processing rare tokens—a key task for language models, requiring
a balance between learning and low-frequency generalization. Through ablation and geometric
analysis, we identified a group of neurons with disproportionate influence on rare token prediction,
organized through co-activation and heavy-tailed statistics. Our temporal analysis revealed a three-
phase structure of influence, consisting of a specialized influential plateau phase, a power-law phase
following efficient coding principles, and a rapid decay phase with minimal contribution to rare
token processing. Based on these findings, we proposed the Dual-Regime Organization conjecture,
suggesting qualitatively different computational regimes across neuron groups, and the Parallel
Mechanism conjecture, positing that rare token processing involves both distributed and specialized
computation analogous to complementary learning systems in human memory system.

These results highlight emergent subnetwork specialization, with implications for interpretability,
efficiency, and targeted adaptation. However, our analysis primarily focus on the effect of neurons in
the final MLP layer of decoder-only transformer models, specifically on language modeling tasks.
Future work could expand the analysis across downstream tasks and model architectures.
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5. Appendix

5.1. Limitations

Our study has several limitations. First, we focus exclusively on neurons in the final MLP layer,
while rare token processing likely involves multiple components and mechanisms throughout the
model architecture. A comprehensive analysis of these distributed mechanisms could provide deeper
insights into how language models handle infrequent tokens.

Second, we lack a precise theoretical framework for quantifying neuron effects and instead rely
on ablation-based proxies such as change in loss. More principled measures of individual neuron
contributions would strengthen our mechanistic understanding and enable more robust conclusions
about functional specialization.

Finally, our analysis centers on next-token prediction in language modeling contexts. Investigat-
ing rare token processing in downstream tasks such as question-answering, reasoning, or domain-
specific applications would illuminate the practical implications of these specialized mechanisms
and their role in real-world model performance.

5.2. Background

5.2.1. TRANSFORMER ARCHITECTURE

In this study, we focus on the Multi-Layer Perceptron (MLP) sublayers. Given a normalized hidden
state x ∈ Rdmodel from the residual stream, the MLP transformation is defined as:

MLP(x) = Woutϕ(Winx+ bin) + bout, (2)

where Win ∈ Rdmlp×dmodel and Wout ∈ Rdmodel×dmlp are learned weight matrices, and bin, bout are biases.
The nonlinearity ϕ is typically a GeLU activation. We refer to individual entries in the hidden activa-
tion vector ϕ(Winx+bin) as neurons, indexed by their layer and position (e.g., <layer>.<index>).
The activations n represent post-activation values of these neurons. We selected the last layer as
it directly projects into the unembedding matrix that produces token probabilities, which creates a
computational bottleneck where feature integration must occur [29].

5.2.2. HEAVY-TAILED SELF-REGULARIZATION (HT-SR) THEORY

Heavy-Tailed Self-Regularization (HT-SR) theory offers a spectral lens on neural network generalization[7,
17, 21, 22]. Specifically, consider a neural network with L layers, let Wi denote a weight matrix
extracted from the i-th layer, where Wi ∈ Rm×n and m ≥ n. We define the correlation matrix
associated with Wi as:

Xi := W⊤
i Wi ∈ Rn×n,

which is a symmetric, positive semi-definite matrix. The empirical spectral distribution (ESD) of Xi

is defined as:

µXi :=
1

n

n∑
j=1

δλj(Xi),

where λ1(Xi) ≤ · · · ≤ λn(Xi) are the eigenvalues of Xi, and δ is the Dirac delta function. The
ESD µXi represents a probability distribution over the eigenvalues of the weight correlation matrix,
characterizing its spectral geometry.
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HT-SR theory proposes that successful neural network training exhibits heavy-tailed spectral
behavior in the ESDs of certain weight matrices, due to self-organization toward a critical regime
between order and chaos. This phenomenon is quantitatively captured through Shape metrics, which
quantify the geometry of the ESD through PL αHill (our primary metric), PL α̂, Spectral entropy,
and Stable rank. Among these, the power-law (PL) exponent αHill is particularly informative, as it
estimates the tail-heaviness of the eigenvalue distribution using a robust Hill estimator. Low values
of αHill (typically α < 2) indicate heavy-tailed behavior, often interpreted as signs of functional
specialization and self-organized criticality [31]. A formal definition of αHill and the associated
estimation procedure is provided in Section 3.3.

5.3. Details on rare token neuron analysis framework

5.3.1. ABLATION EXPERIMENT

Formally, let i ∈ {1, 2, . . . , dmlp} index a neuron in the MLP layer, and let ni ∈ R denote its
activation. For a given input x ∈ X , let x represent the final hidden state (i.e., the output of the last
transformer block). The mean-ablated hidden state x̃(i) is then given by:

x̃(i) = x+ (n̄i − ni)w
(i)
out, (3)

where n̄i is the mean activation of neuron i across a reference subset of inputs, and w
(i)
out is the

corresponding output weight vector.
The neuron effects are computed as:

∆loss(i) = Ex∼D

∣∣∣L(LM(x), x)− L(LM(x̃(i)), x)
∣∣∣ , (4)

where LM(x) denotes the model’s output after applying LayerNorm and decoding, and L represents
the token-level cross-entropy loss.

To filter the tokens, we implement a two-stage filtering process: at stage one, we retain tokens
below the 50th percentile in the unigram frequency distribution of the training set; then at stage two,
we restrict our analysis to valid, correctly spelled English words1, eliminating potential noise from
malformed tokens. This is mainly due to our primary focus on rare tokens.

5.3.2. GEOMETRIC ANALYSIS STATISTICS

Analysis details For each neuron pair (i, j), we first calculate the Pearson correlation coefficient
ρij between their activation vectors, then transform it into a distance metric:

Dij = 1− |ρij |, (5)

which captures dissimilarity while remaining agnostic to the direction of correlation.
We apply hierarchical agglomerative clustering with Ward linkage to this distance matrix. Specif-

ically, we measure the number of distinct clusters that emerge at a distance threshold of t = 0.5. A
larger number of clusters would indicate greater functional modularity within the rare-token neuron
population, while fewer clusters would suggest more globally coordinated behavior.

1. Token was filtered with pyspellchecker library: https://pypi.org/project/pyspellchecker/
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Firstly, we introduce the effective dimensionality of each neuron’s activation distribution using
Principal Component Analysis (PCA). Formally, the effective dimension deff is defined as the smallest
d such that the cumulative variance explained exceeds a fixed threshold τ :

deff = min

{
d :

∑d
i=1 λi∑N
j=1 λj

≥ τ

}
,

where λi denotes the i-th eigenvalue of the activation covariance matrix.
The second statistic is the pairwise cosine similarity between the activation vectors, measuring

the activation similarity between neurons, regardless of their activation intensities. Let hi,hj ∈ RT

denote activation traces across T token contexts:

cos(θij) =
hi · hj

∥hi∥∥hj∥
.

Analysis results We analyze multiple models with differnet parameter sizes and the results exhibit
the higher activation correlation within the selected neuron groups while no such effect in the random
control group.

Table 1: Activation correlation within and between neuron groups (group_size=50)

Model Model size boost suppress random b v.s. r s v.s. r b v.s. s r1 v.s. r2

Pythia-70M 70M 0.028 0.045 0.011 0.002 0.005 0.027 0.009
Pythia-410M 410M 0.036 0.052 0.007 0.005 0.006 0.040 0.007
GPT2-Small 124M 0.017 0.019 0.017 -0.001 -0.001 0.021 0.023
GPT2-Large 774M 0.004 0.011 0.012 -0.004 -0.004 0.010 0.016
GPT2-XL 1.5B 0.036 0.016 -0.007 0.003 -0.0004 0.020 0.008

We also found consistently higher effective dimension proportion in the random baseline group
compared with the selected neuron group as shown in table 2.

Table 2: Proportion of effective dimensions across neuron groups (group_size=50)

Model Model size boost suppress random

Pythia-70M 70M 33.5 32.6 36.2
Pythia-410M 410M 33 32.2 37.3
GPT2-Small 124M 37 40 45
GPT2-Large 774M 43 43 46
GPT2-XL 1.5B 40 42 46

The cosine similarity also show the mostly positive alignment within the same neuron group
while negative alignment between the random baseline and the selected neuron group.

5.3.3. WEIGHT EIGENSPECTRUM

To understand the emergence of specialized neuron groups, we analyze model checkpoints across
different training steps. This analysis enables us to track how the network progressively develops
functional differentiation through the lens of Heavy-Tailed Self-Regularization (HT-SR) theory.
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Table 3: Cosine similarity between and within neuron groups (group_size=50)

Model Model size boost suppress random b v.s. r s v.s. r b v.s. s r1 v.s. r2

Pythia-70M 70M 0.141 0.165 0.021 -0.017 -0.014 0.146 0.021
Pythia-410M 410M 0.107 0.133 0.054 -0.032 -0.041 0.114 0.058
GPT2-Small 124M 0.109 0.122 0.089 -0.100 -0.105 0.120 0.099
GPT2-Large 774M 0.028 0.092 0.041 -0.034 -0.063 0.054 0.052
GPT2-XL 1.5B 0.095 0.095 0.009 -0.010 -0.015 0.090 0.012

HT-SR theory, introduced in Section 5.2.2 suggests that heavy-tailed structures emerge from
feature learning, where useful correlations are extracted during optimization. Neuron groups with
more heavy-tailed ESDs which contain more learned signals, are assigned lower sparsity, while
neuron groups with light-tailed ESDs are assigned higher sparsity. In practice, for each neuron group
G, we compute its correlation matrix as

ΞG =
1

d
WGW

⊤
G ,

where WG ∈ R|G|×d denotes the slice of the weight matrix corresponding to the group G. We then
analyze the eigenvalue spectrum {λi} of ΞG to assess the internal dimensionality and structure of
the group’s learned representations.

To quantify the spectral shape, we use the Hill estimator to measure the power-law exponent
αHill in the tail of the eigenvalue distribution:

αHill =

[
1

k

k∑
i=1

log

(
λi

λk

)]−1

, (6)

where k is a tunable parameter that adjusts the lower eigenvalue threshold λmin for (truncated)
PL estimation. Following prior work on layer-wise pruning [17], we apply the Fix-finger method
[31] to select the k, which sets k to align λmin with the peak of the ESD. By tracking the evolution of
αHill across training, we can infer how specialized substructures or subnetworks progressively form
and adapt.

Table 4: Alpha hills of neuron groups (group_size=50)

Model Model size boost suppress random

Pythia-70M 70M 4.30 3.97 6.37
Pythia-410M 410M 3.80 3.43 7.56
GPT2-Small 124M 2.12 1.57 6.74
GPT2-Large 774M 3.30 1.84 8.31
GPT2-XL 1.5B 2.01 1.68 9.33
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EMERGENT SPECIALIZATION: RARE TOKEN NEURONS IN LANGUAGE MODELS

5.3.4. PHASE TRANSITION DETAILS

Phase identification To precisely identify phase boundaries and track their evolutions during
training, it is critical to understand the power-law exponent, appearing as a slope. We employ the
finite difference method with a sliding window for estimating this slope:

−κ(r) ≈ − log |∆Loss(r · e)| − log |∆fLoss(r)|
log(e)

(7)

where r is the rank and e is Euler’s number. This finite-difference approximation provides a
robust estimate of the local slope in log-log space, thus enabling the identification of the behavior
of −κ(r), in particular transition points where it changes significantly. The three phases are then
identified using an automated change point detection algorithm [28] applied to the κ(r) curve, which
identifies transition points where the slope changes dramatically. We validate these automatically
detected boundaries through manual inspections for distribution differences on either side of the
boundaries.

Plateau phase identification We characterize the plateau phase by calculating the difference
between observed influence values log |∆Loss(r)| and the power-law prediction (−κ log(r) + β):

δ(r) = log |∆Loss(r)| − (−κ log(r) + β) (8)

where κ and β are parameters estimated from the power-law phase region. The quantity δ(r)
illustrates how much the ranked neuron r deviates from the power-law prediction. A plateau phase is
therefore characterized as a log rank range where δ(r) is bounded above a positive value, hence the
name “plateau".

Neuron slope distributions of gpt2 model family

13


	Introduction
	Methodology
	Results
	Phase Structure in Neuron Influence
	Co-activation Patterns Through the Lens of Activation Space Geometry
	Weight Eigenspectrum

	Discussion and Conclusion
	Appendix
	Limitations
	Background
	Transformer architecture
	Heavy-Tailed Self-Regularization (HT-SR) Theory

	Details on rare token neuron analysis framework
	Ablation experiment
	Geometric analysis statistics
	Weight Eigenspectrum
	Phase transition details



