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Abstract
Large language models struggle with representing and generating rare tokens despite their

importance in specialized domains. In this study, we identify neuron structures with exceptionally
strong influence on language model’s prediction of rare tokens, termed as rare token neurons, and
investigate the mechanism for their emergence and behavior. These neurons exhibit a characteristic
three-regime organization (plateau, power-law, and rapid decay) that emerges dynamically during
training, evolving from a homogeneous initial state to a functionally differentiated architecture. In
the activation space, rare token neurons form a coordinated subnetwork that selectively co-activates
while avoiding co-activation with other neurons. This functional specialization potentially correlates
with the development of heavy-tailed weight distributions, suggesting a statistical mechanical basis
for emergent specialization.

1. Introduction

While large language models (LLMs) have demonstrated remarkable capabilities in learning statis-
tical patterns of human language, they consistently struggle with representing and generating rare
tokens—words or phrases that appear infrequently in training data [13, 17, 31]. This challenge stems
from the power-law distributions inherent in natural language [29, 32], where a significant portion
of linguistic phenomena appears with extremely low frequency[4, 12]. Recent work has shown this
limitation can lead to collapse when training on synthetic data that either truncates or narrows the tail
of the distribution [2, 7, 11].

While several extrinsic and operational methods have been proposed to address this limita-
tion—such as retrieval-augmented generation [15], in-context learning [8], and non-parametric
memory mechanisms [3]—the intrinsic, mechanistic question remains: do LLMs develop internal
mechanisms specialized for processing rare tokens during pre-training? This question parallels human
language acquisition, where children demonstrate remarkable "fast mapping" abilities—learning new
words after minimal exposure—from as young as 12 months of age [5, 19]. Cognitive neuroscience
explains this through the Complementary Learning Systems (CLS) theory [22, 23], which posits
that the brain employs two distinct neural systems: a neocortical system for gradual learning of
distributed representations, and a hippocampal system specialized for rapid encoding of specific
experiences, including rare events [14, 25].

Mechanistic interpretability research has revealed neurons encoding interpretable features ranging
from syntactic relationships [18] to semantic concepts [10], but has primarily focused on common
patterns. Stolfo et al. [26] discovered neurons that modulate token logits proportionally to frequency,
but specialized mechanisms for rare tokens remain underexplored. In this study, we focus on
decoder-only Transformer-based models and extend their work to focus on rare tokens and investigate
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how individual neurons in the final MLP layer of transformer-based language models specialize in
processing rare tokens during training.

Our analysis reveal three key findings: (i) LLMs develop dedicated "rare token neurons" that
disproportionately impact the prediction of infrequent tokens; (ii) These specialized neurons emerge
through distinct regimes during training; (iii) The emergence of specialized neuron groups correlates
with the development of heavy-tailed weight distributions, suggesting a statistical mechanical basis
for functional specialization.

2. Methodology

Figure 1: Absolute ∆loss across training steps.

Inspired by prior work on confidence-regulating
neurons [26], we hypothesize that certain neu-
rons in language models specialize in modulat-
ing token-level probabilities—particularly for
rare tokens that occur infrequently in the train-
ing data. To test this hypothesis, we conduct
targeted ablation experiments across several lan-
guage models, including the Pythia family [1],
with intermediate checkpoints and training set
available (The Pile [9]). Following the interven-
tion approach of Stolfo et al. [26], we assess
each neuron’s influence by performing mean
ablation experiments, that is, fixing a specific
neuron’s activation to its mean value over a reference dataset. We measure influence as the ex-
pected absolute change in token-level loss after ablation, computed from a filtered dataset of 25,088
context-token pairs sampled from the C4 Corpus [24].

Specifically, for each neuron i, we compute the influence as:

∆loss(i) = Ex∼D

∣∣∣L(LM(x), x)− L(LM(x̃(i)), x)
∣∣∣ , (1)

where LM(x) denotes the model’s output after applying LayerNorm and decoding, and L represents
the token-level cross-entropy loss. The slope calculations for identifying structural transitions are
performed using finite difference methods with sliding windows, as detailed in Appendix 5.3.1.

Figure 1 shows the distribution of per-neuron influence across training, measured as the absolute
change in token-level loss after ablation. The concentration of neurons near zero ∆loss, and a tail
with large ∆loss suggests that a small subset becomes particularly influential for rare tokens during
training. We refer to these as rare token neurons. Within this subset, we define boosting neurons as
those that increase the likelihood of rare tokens, and suppressing neurons as those that decrease it.

3. Results

3.1. Three-regime Structure in Neuron Influence

Ranking neurons by their ∆Loss reveals a consistent three-regime structure presented in log-log
scale across model scales and architectures (Figure 2b; more results in Figure 5.3.4). This structure
suggests a functional specialization composed of: i.) Influential plateau regime where a small
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(a) Absolute ∆loss distribution across training steps. (b) Three-regime structure of neuron influence.

Figure 2: (a) The green line shows the power-law prediction; influence declines faster on the right
and deviates on the left due to an emerging bias, though the slope remains within the
power-law regime. (b) Illustration of the three-regime structure.

fraction (1.7%) of neurons exhibit consistently large influence, forming a plateau in the leftmost
region; ii.) Power-law regime where the majority of influential neurons follow a power-law
relationship, which appears as a linear relation in log-log coordinates

log |∆Loss| ≈ −κ log(rank) + β, (2)

where the power-law exponent κ appears as the slope of a linear function; and iii.) Rapid decay
tail regime where the remaining neurons decay more rapidly than power-law predictions, indicating
negligible contribution to rare token prediction.

Power-Law to Rapid Decay Transition The transition from power-law to rapid decay can be
identified through the slope behavior of log |∆Loss| vs. log(rank). Using the finite difference method
detailed in Appendix 5.3.4), we estimate the local slope κ(r) with a sliding window approach.
As shown in Figure 3.1a, the first derivative starts to decrease around log(rank) ≈ 5, marking the
breakdown of the power-law and the onset of rapid decay. This characterizes a functional boundary
between moderately and minimally influential neurons.

(a) First derivative of the loss contribution in
log− log coordinates.

(b) Second derivative of the loss contribution in
log− log coordinates.
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Figure 3: Absolute ∆loss across training steps.

Emergence of the Plateau Regime Unlike
the rapid decay transition, the plateau regime is
not readily distinguishable by the first derivative
alone. Neurons in the range log(rank) ∈ (2, 5)
exhibit a relatively consistent power-law behav-
ior but with increased baseline influence. Such
increment is quantified by

δ := log |∆Loss| − (−κ log rank + β),

which measures to what extend the power-law
underestimates the influence of top-ranked neu-
rons. Figure 3 shows that the highly-influential plateau emerges progressively during train-
ing.—implying functional specialization through training.

Second-Order Derivative Analysis Our slope analysis reveals a notable feature in the derivative
structure. While the first derivative of log |∆Loss| versus log(rank) remains continuous, the second
derivative exhibits a discontinuity around the power-law to rapid decay transition (see Figure 3.1)b.
This pattern provides additional evidence for the structural transition between regimes.

The emergence of this three-regime organization during training suggests that language models
spontaneously develop specialized computational strategies for rare token processing, with different
neuron populations serving distinct functional roles.

3.2. Co-activation Patterns Through the Lens of Activation Space Geometry

We analyze the behavior of rare-token-influential neurons through the geometry of their activation
patterns. Despite being selected via individual ablation experiments, these neurons exhibit systematic
organizational structure that differs from random neuron groups: they co-activate strongly with each
other while systematically avoiding co-activation with neurons less involved in rare token prediction
as shown in within-group and cross-group correlations in Table 1. While the absolute correlation
values are modest, statistical testing reveals meaningful differences: for Pythia-410M, rare token
boosting neurons show within-group correlation of 0.036± 0.008 compared to 0.007± 0.003 for
random neurons (p < 0.001, Wilcoxon rank-sum test with Bonferroni correction). The cross-group
correlation between boosting and suppressing neurons (0.040±0.009) exceeds both individual group
correlations with random neurons, suggesting these functionally opposing groups operate within a
shared computational framework rather than independently.

To further investigate this structure, we construct high-dimensional activation vectors for each
neuron using context-token pairs from the C4 corpus [24]. We then examine the geometric patterns
with effective dimension and cosine similarity.

Effective dimension analysis reveals that rare-token neurons lie on a significantly lower-
dimensional manifold than random neurons. Across model families, rare token neurons show 8-13%
reduction in effective dimensionality needed to explain 95% of activation variance. This compression
suggests that they activate in a more coordinated, structured manner rather than independently(see
results in Table 2).

Pairwise cosine similarity provides additional evidence for functional organization(see results
in Table 3). Random neuron pairs show near-zero similarity (mean ≈ 0.05), consistent with
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uncorrelated activation patterns. Rare-token boosting and suppressing neurons exhibit higher within-
group similarity (0.09− 0.17), indicating some degree of coordinated activation.

Notably, these two groups also show substantial cross-group similarity, despite their opposing
effects—suggesting they operate in coordinated, antagonistic roles.

3.3. Weight Eigenspectrum

Figure 4: Absolute ∆loss across training steps.

To investigate how the network progressively
develops functional differentiation, we apply
Heavy-Tailed Self-Regularization (HT-SR) the-
ory [20, 21] to analyze the eigenspectral prop-
erties of neuron groups. This analysis exam-
ines whether rare token neurons develop distinct
weight matrix characteristics compared to ran-
dom neuron populations.

For each neuron group G, we compute its
correlation matrix and then analyze the eigen-
value spectrum {λi} of ΞG to assess the internal
structure of the group’s learned representations.
To quantify spectral shape, we use the Hill es-
timator to measure the power-law exponent in the tail of the eigenvalue distribution. Details are
provided in Appendix 5.3.3

Figure 4 shows that specialized neurons consistently exhibit lower αHill values—i.e., heavier-
tailed distributions—compared to random neurons after the initial training phase. This pattern holds
across model families and sizes (see results in Table 4). This persistent separation provides strong
evidence for functional differentiation through implicit regularization. Despite fluctuations during
training, the fundamental pattern remains: neurons that significantly impact rare token prediction
consistently develop more pronounced heavy-tailed characteristics than neurons with random or
general functionality.

4. Discussion and Conclusion

Based on our empirical observations, we propose two mechanistic conjectures to explain the emer-
gence of rare token processing capabilities in language models:

Conjecture 4.1 (Dual-Regime Organization) The emergence of power-law regime and its distinc-
tion from the rapid decay regime suggest a spontaneous specialization of influential neurons. Among
the rare token neurons, the power-law structure, the αHill behavior, and the co-activation patterns
indicate self-organization phenomena that exceed random expectations.

Conjecture 4.2 (Parallel Mechanism Conjecture) The plateau regime emerges through a mech-
anism that parallels the mechanism for the emergence of power-law regime. Through training, it
further differentiates a small subset of neurons within the power-law group, by increasing their
influence to form the influential plateau.

The Dual-Regime Organization conjecture is motivated by the observation that the log∆loss–log rank
slope remains consistent across both the power-law and plateau regimes. This consistency suggests
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that an underlying power-law structure governs both regimes, with the plateau reflecting an additional,
distinct mechanism operating on top of this foundation. The Parallel Mechanism conjecture proposes
that rare token processing relies on two complementary computational strategies: a distributed
regime (power-law) for general rare token sensitivity and a specialized subnetwork (plateau) for
exceptional cases. This resembles the Complementary Learning Systems (CLS) theory in cognitive
neuroscience [14, 22], where general statistical learning coexists with specialized mechanisms for
encoding exceptions and novel experiences.

However, we emphasize that these conjectures are preliminary hypotheses based on our empirical
observations. The modest effect sizes in our coordination analyses and the indirect nature of our
weight eigenspectrum measurements suggest that stronger evidence would be needed to definitively
establish these mechanisms.

This paper presents a systematic investigation into the emergent neuronal mechanisms that
language models develop for processing rare tokens—a fundamental challenge requiring a balance
between learning and low-frequency generalization. Through ablation experiments and geometric
analysis, we identified neuron groups with disproportionate influence on rare token prediction,
organized through co-activation and heavy-tailed statistics. Our analysis revealed a three-regime
structure of influence: a specialized influential plateau regime, a power-law regime following
efficient coding principles, and a rapid decay regime with minimal contribution to rare token
processing. These regimes emerge progressively during training, suggesting spontaneous functional
differentiation rather than predetermined architectural specialization. While our evidence supports
the existence of rare token neurons and their organizational structure, we acknowledge that the
underlying mechanisms remain partially understood. The modest coordination effects and indirect
spectral measures indicate that stronger theoretical frameworks and measurement techniques are
needed to fully characterize these phenomena.

These results highlight the emergence of computational specialization in large language models,
with implications for interpretability, efficiency optimization, and targeted model improvement.
As language models continue to scale, understanding how they spontaneously develop specialized
capabilities will become increasingly important for both theoretical advancement and practical
applications.

Our findings also suggest new directions for interpretability research. Instead of examining
individual neurons in isolation, future work could investigate how specialized subnetworks coordinate
to handle low-frequency linguistic phenomena. The emergence of these structures during training
raises questions about whether similar specialization occurs for other phenomena beyond rare tokens.
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5. Appendix

5.1. Limitations

Our study has several limitations.
First, the observed coordination effects, are modest in magnitude. The correlation values and

similarity measures suggest weak-to-moderate coordination rather than the strong coupling that
might be expected from highly specialized circuits. However, the consistency of these patterns
across multiple models, measures, and statistical tests provides evidence for systematic organization
that exceeds random expectations. This may reflect the distributed nature of neural computation
in transformers, where even modest coordination across many neurons can produce significant
functional effects.

Future work incorporating more sophisticated measures of functional connectivity, such as
mutual information or causal intervention analysis, could provide stronger evidence for the proposed
specialization mechanisms.

Additionally, we focus exclusively on neurons in the final MLP layer, while rare token processing
likely involves multiple components and mechanisms throughout the model architecture. A compre-
hensive analysis of these distributed mechanisms could provide deeper insights into how language
models handle infrequent tokens.

What’s more, we lack a precise theoretical framework for quantifying neuron effects and instead
rely on ablation-based proxies such as change in loss. More principled measures of individual neuron
contributions would strengthen our mechanistic understanding and enable more robust conclusions
about functional specialization.

Finally, our analysis centers on next-token prediction in language modeling contexts. Investigat-
ing rare token processing in downstream tasks such as question-answering, reasoning, or domain-
specific applications would illuminate the practical implications of these specialized mechanisms
and their role in real-world model performance.

5.2. Background

5.2.1. TRANSFORMER ARCHITECTURE

In this study, we focus on the Multi-Layer Perceptron (MLP) sublayers. Given a normalized hidden
state x ∈ Rdmodel from the residual stream, the MLP transformation is defined as:

MLP(x) = Woutϕ(Winx+ bin) + bout, (3)

where Win ∈ Rdmlp×dmodel and Wout ∈ Rdmodel×dmlp are learned weight matrices, and bin, bout are biases.
The nonlinearity ϕ is typically a GeLU activation. We refer to individual entries in the hidden activa-
tion vector ϕ(Winx+bin) as neurons, indexed by their layer and position (e.g., <layer>.<index>).
The activations n represent post-activation values of these neurons. We selected the last layer as
it directly projects into the unembedding matrix that produces token probabilities, which creates a
computational bottleneck where feature integration must occur [28].

5.2.2. HEAVY-TAILED SELF-REGULARIZATION (HT-SR) THEORY

Heavy-Tailed Self-Regularization (HT-SR) theory offers a spectral lens on neural network generalization[6,
16, 20, 21]. Specifically, consider a neural network with L layers, let Wi denote a weight matrix
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extracted from the i-th layer, where Wi ∈ Rm×n and m ≥ n. We define the correlation matrix
associated with Wi as:

Xi := W⊤
i Wi ∈ Rn×n,

which is a symmetric, positive semi-definite matrix. The empirical spectral distribution (ESD) of Xi

is defined as:

µXi :=
1

n

n∑
j=1

δλj(Xi),

where λ1(Xi) ≤ · · · ≤ λn(Xi) are the eigenvalues of Xi, and δ is the Dirac delta function. The
ESD µXi represents a probability distribution over the eigenvalues of the weight correlation matrix,
characterizing its spectral geometry.

HT-SR theory proposes that successful neural network training exhibits heavy-tailed spectral
behavior in the ESDs of certain weight matrices, due to self-organization toward a critical regime
between order and chaos. This phenomenon is quantitatively captured through Shape metrics, which
quantify the geometry of the ESD through PL αHill (our primary metric), PL α̂, Spectral entropy,
and Stable rank. Among these, the power-law (PL) exponent αHill is particularly informative, as it
estimates the tail-heaviness of the eigenvalue distribution using a robust Hill estimator. Low values
of αHill (typically α < 2) indicate heavy-tailed behavior, often interpreted as signs of functional
specialization and self-organized criticality [30]. A formal definition of αHill and the associated
estimation procedure is provided in Section 3.3.

5.3. Details on rare token neuron analysis framework

5.3.1. ABLATION EXPERIMENT

Formally, let i ∈ {1, 2, . . . , dmlp} index a neuron in the MLP layer, and let ni ∈ R denote its
activation. For a given input x ∈ X , let x represent the final hidden state (i.e., the output of the last
transformer block). The mean-ablated hidden state x̃(i) is then given by:

x̃(i) = x+ (n̄i − ni)w
(i)
out, (4)

where n̄i is the mean activation of neuron i across a reference subset of inputs, and w
(i)
out is the

corresponding output weight vector.
The neuron effects are computed as:

∆loss(i) = Ex∼D

∣∣∣L(LM(x), x)− L(LM(x̃(i)), x)
∣∣∣ , (5)

where LM(x) denotes the model’s output after applying LayerNorm and decoding, and L represents
the token-level cross-entropy loss.

To filter the tokens, we implement a two-stage filtering process: at stage one, we retain tokens
below the 50th percentile in the unigram frequency distribution of the training set; then at stage two,
we restrict our analysis to valid, correctly spelled English words1, eliminating potential noise from
malformed tokens. This is mainly due to our primary focus on rare tokens.

1. Token was filtered with pyspellchecker library: https://pypi.org/project/pyspellchecker/
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5.3.2. GEOMETRIC ANALYSIS STATISTICS

Analysis details For each neuron pair (i, j), we first calculate the Pearson correlation coefficient
ρij between their activation vectors, then transform it into a distance metric:

Dij = 1− |ρij |, (6)

which captures dissimilarity while remaining agnostic to the direction of correlation.
We apply hierarchical agglomerative clustering with Ward linkage to this distance matrix. Specif-

ically, we measure the number of distinct clusters that emerge at a distance threshold of t = 0.5. A
larger number of clusters would indicate greater functional modularity within the rare-token neuron
population, while fewer clusters would suggest more globally coordinated behavior.

Firstly, we introduce the effective dimensionality of each neuron’s activation distribution using
Principal Component Analysis (PCA). Formally, the effective dimension deff is defined as the smallest
d such that the cumulative variance explained exceeds a fixed threshold τ :

deff = min

{
d :

∑d
i=1 λi∑N
j=1 λj

≥ τ

}
,

where λi denotes the i-th eigenvalue of the activation covariance matrix.
The second statistic is the pairwise cosine similarity between the activation vectors, measuring

the activation similarity between neurons, regardless of their activation intensities. Let hi,hj ∈ RT

denote activation traces across T token contexts:

cos(θij) =
hi · hj

∥hi∥∥hj∥
.

Analysis results We analyze multiple models with differnet parameter sizes and the results exhibit
the higher activation correlation within the selected neuron groups while no such effect in the random
control group.

Table 1: Activation correlation within and between neuron groups (group_size=50)

Model Model size boost suppress random b v.s. r s v.s. r b v.s. s r1 v.s. r2

Pythia-70M 70M 0.028 0.045 0.011 0.002 0.005 0.027 0.009
Pythia-410M 410M 0.036 0.052 0.007 0.005 0.006 0.040 0.007
GPT2-Small 124M 0.017 0.019 0.017 -0.001 -0.001 0.021 0.023
GPT2-Large 774M 0.004 0.011 0.012 -0.004 -0.004 0.010 0.016
GPT2-XL 1.5B 0.036 0.016 -0.007 0.003 -0.0004 0.020 0.008

We also found consistently higher effective dimension proportion in the random baseline group
compared with the selected neuron group as shown in table 2.

The cosine similarity also show the mostly positive alignment within the same neuron group
while negative alignment between the random baseline and the selected neuron group.
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Table 2: Proportion of effective dimensions across neuron groups (group_size=50)

Model Model size boost suppress random

Pythia-70M 70M 33.5 32.6 36.2
Pythia-410M 410M 33 32.2 37.3
GPT2-Small 124M 37 40 45
GPT2-Large 774M 43 43 46
GPT2-XL 1.5B 40 42 46

Table 3: Cosine similarity between and within neuron groups (group_size=50)

Model Model size boost suppress random b v.s. r s v.s. r b v.s. s r1 v.s. r2

Pythia-70M 70M 0.141 0.165 0.021 -0.017 -0.014 0.146 0.021
Pythia-410M 410M 0.107 0.133 0.054 -0.032 -0.041 0.114 0.058
GPT2-Small 124M 0.109 0.122 0.089 -0.100 -0.105 0.120 0.099
GPT2-Large 774M 0.028 0.092 0.041 -0.034 -0.063 0.054 0.052
GPT2-XL 1.5B 0.095 0.095 0.009 -0.010 -0.015 0.090 0.012

5.3.3. WEIGHT EIGENSPECTRUM

To understand the emergence of specialized neuron groups, we analyze model checkpoints across
different training steps. This analysis enables us to track how the network progressively develops
functional differentiation through the lens of Heavy-Tailed Self-Regularization (HT-SR) theory.

HT-SR theory, introduced in Section 5.2.2 suggests that heavy-tailed structures emerge from
feature learning, where useful correlations are extracted during optimization. Neuron groups with
more heavy-tailed ESDs which contain more learned signals, are assigned lower sparsity, while
neuron groups with light-tailed ESDs are assigned higher sparsity. In practice, for each neuron group
G, we compute its correlation matrix as

ΞG =
1

d
WGW

⊤
G ,

where WG ∈ R|G|×d denotes the slice of the weight matrix corresponding to the group G. We then
analyze the eigenvalue spectrum {λi} of ΞG to assess the internal dimensionality and structure of
the group’s learned representations.

To quantify the spectral shape, we use the Hill estimator to measure the power-law exponent
αHill in the tail of the eigenvalue distribution:

αHill =

[
1

k

k∑
i=1

log

(
λi

λk

)]−1

, (7)

where k is a tunable parameter that adjusts the lower eigenvalue threshold λmin for (truncated)
PL estimation. Following prior work on layer-wise pruning [16], we apply the Fix-finger method
[30] to select the k, which sets k to align λmin with the peak of the ESD. By tracking the evolution of
αHill across training, we can infer how specialized substructures or subnetworks progressively form
and adapt.
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Table 4: Alpha hills of neuron groups (group_size=50)

Model Model size boost suppress random

Pythia-70M 70M 4.30 3.97 6.37
Pythia-410M 410M 3.80 3.43 7.56
GPT2-Small 124M 2.12 1.57 6.74
GPT2-Large 774M 3.30 1.84 8.31
GPT2-XL 1.5B 2.01 1.68 9.33

5.3.4. REGIME TRANSITION DETAILS

Regime identification To precisely identify regime boundaries and track their evolutions during
training, it is critical to understand the power-law exponent, appearing as a slope. We employ the
finite difference method with a sliding window for estimating this slope:

−κ(r) ≈ − log |∆Loss(r · e)| − log |∆fLoss(r)|
log(e)

(8)

where r is the rank and e is Euler’s number. This finite-difference approximation provides a
robust estimate of the local slope in log-log space, thus enabling the identification of the behavior
of −κ(r), in particular transition points where it changes significantly. The three regimes are then
identified using an automated change point detection algorithm [27] applied to the κ(r) curve, which
identifies transition points where the slope changes dramatically. We validate these automatically
detected boundaries through manual inspections for distribution differences on either side of the
boundaries.

Plateau regime identification We characterize the plateau regime by calculating the difference
between observed influence values log |∆Loss(r)| and the power-law prediction (−κ log(r) + β):

δ(r) = log |∆Loss(r)| − (−κ log(r) + β) (9)

where κ and β are parameters estimated from the power-law regime region. The quantity δ(r)
illustrates how much the ranked neuron r deviates from the power-law prediction. A plateau regime
is therefore characterized as a log rank range where δ(r) is bounded above a positive value, hence
the name “plateau".
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Neuron slope distributions of gpt2 model family
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