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ABSTRACT

In the realm of interpretability and out-of-distribution generalisation, the identifia-
bility of latent variable models has emerged as a captivating field of inquiry. In this
work, we delve into the identifiability of Switching Dynamical Systems, taking an
initial stride toward extending identifiability analysis to sequential latent variable
models. We first prove the identifiability of Markov Switching Models, which
commonly serve as the prior distribution for the continuous latent variables in
Switching Dynamical Systems. We present identification conditions for first-order
Markov dependency structures, whose transition distribution is parametrised via
non-linear Gaussians. We then establish the identifiability of the latent variables and
non-linear mappings in Switching Dynamical Systems up to affine transformations,
by leveraging identifiability analysis techniques from identifiable deep latent vari-
able models. We finally develop estimation algorithms for identifiable Switching
Dynamical Systems. Throughout empirical studies, we demonstrate the practicality
of identifiable Switching Dynamical Systems for segmenting high-dimensional
time series such as videos, and showcase the use of identifiable Markov Switching
Models for regime-dependent causal discovery in climate data.

1 INTRODUCTION

State-space models (SSMs) are well-established sequence modelling techniques where their linear
versions have been extensively studied (Lindgren, 1978; Poritz, 1982; Hamilton, 1989). Meanwhile,
recurrent neural networks (Hochreiter & Schmidhuber, 1997; Cho et al., 2014) have gained high
popularity for sequence modelling thanks to their abilities in capturing non-linear and long-term
dependencies. Nevertheless, significant progress has been made on fusing neural networks with
SSMs, with Gu et al. (2022) as one of the latest examples. Many of these advances focus on building
sequential latent variable models (LVMs) as flexible deep generative models (Chung et al., 2015; Li
& Mandt, 2018; Babaeizadeh et al., 2018; Saxena et al., 2021), where SSMs have been incorporated
as latent dynamical priors (Linderman et al., 2016; 2017; Fraccaro et al., 2017; Dong et al., 2020;
Ansari et al., 2021; Smith et al., 2023). Despite these efforts in designing flexible SSM priors and
developing stable training schemes, theoretical properties such as identifiability for theses sequential
generative models are less studied, contrary to early literature on linear SSMs.

Identifiability, in general, establishes a one-to-one correspondence between the data likelihood and
the model parameters (or latent variables), or an equivalence class of the latter. In causal discovery
(Peters et al., 2017), identifiability refers to whether the underlying causal structure can be correctly
pinpointed from infinite observational data. In independent component analysis (ICA, Comon
(1994)), identifiability analysis focuses on both the latent sources and the mapping from the latents
to the observed. While general non-linear ICA is ill-defined (Hyvärinen & Pajunen, 1999), recent
results show that identifiability can be achieved using conditional priors (Khemakhem et al., 2020).
Moreover, in a framework for deep (non-temporal) latent variable models, the required access to
auxiliary variables can be relaxed using a finite mixture prior Kivva et al. (2022). Recent works have
attempted to extend these results to sequential models using non-linear ICA (Hyvarinen & Morioka,
2017; Hyvarinen et al., 2019; Hälvä & Hyvarinen, 2020; Hälvä et al., 2021), or latent causal processes
(Yao et al., 2022a;b; Lippe et al., 2023b;a).

In this work, we develop an identifiability analysis for Switching Dynamical Systems (SDSs) – a
class of sequential LVMs with SSM priors that allow regime-switching behaviours, where their
associated inference methods have been explored recently (Dong et al., 2020; Ansari et al., 2021).
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Our approach differs fundamentally from non-linear ICA since the latent variables are no longer
independent. To address this challenge, we first construct the latent dynamical prior using Markov
Switching Models (MSMs) (Hamilton, 1989) – an extension of Hidden Markov Models (HMMs) with
autoregressive connections, for which we provide the first identifiability analysis of this model family
in non-linear transition settings. This also allows regime-dependent causal discovery (Saggioro et al.,
2020) thanks to having access to the transition derivatives. We then extend the identifiability results
to SDSs using recent identifiability analysis techniques for the non-temporal deep latent variable
models (Kivva et al., 2022). Importantly, the identifiability conditions we provide are less restrictive,
significantly broadening their applicability. In contrast,Yao et al. (2022a;b); Lippe et al. (2023a)
require auxiliary information to handle regime-switching effects or distribution shifts, and Hälvä et al.
(2021) imposes assumptions on the temporal correlations such as stationarity (Hyvarinen & Morioka,
2017) . Moreover, unlike the majority of existing works (Hälvä et al., 2021; Yao et al., 2022a;b), our
identifiability analysis does not require the injectivity of the decoder mapping. Below we summarise
our main contributions in both theoretical and empirical forms:

• We present conditions in which first-order MSMs with non-linear Gaussian transitions
are identifiable up to permutations (Section 3.1). We further provide the first analysis of
identifiability conditions for non-parametric first-order MSMs in Appendix B.

• We extend the previous result to SDSs, where we show conditions for identifiability up to
affine transformations of the latent variables and non-linear emission (Section 3.2).

• We demonstrate the effectiveness of identifiable SDSs on causal discovery and sequence
modelling tasks. These include discovery of time-dependent causal structures in climate
data (Section 6.2), and time-series segmentation in complex data, e.g., videos (Section 6.3).

2 BACKGROUND

2.1 IDENTIFIABLE LATENT VARIABLE MODELS

In the non-temporal case, many works explore identifiability of latent variable models (Khemakhem
et al., 2020; Kivva et al., 2022). Specifically, consider a generative model where its latent variables
z ∈ Rm are drawn from a Gaussian mixture prior with K components (K < +∞). Then z is
transformed via a (noisy) non-linear mapping to obtain the observation x ∈ Rn, n ≥ m:

x = f(z) + ϵ, z ∼ p(z) :=

K∑
k=1

p(s = k)N (z|µk,Σk) , ϵ ∼ N (0,Σ), (1)

Kivva et al. (2022) established that if the transformation f is weakly injective (see definition below),
the prior distribution p(z) is identifiable up to affine transformations1 from the observations. If we
further assume f is continuous and injective, both prior distribution p(z) and non-linear mapping
f are identifiable up to affine transformations. In Section 3.2 we extend these results to establish
identifiability for SDSs using similar proof strategies.
Definition 2.1. A mapping f : Rm → Rn is said to be weakly injective if (i) there exsists x0 ∈ Rn

and δ > 0 s.t. |f−1({x})| = 1 for every x ∈ B(x0, δ) ∩ f(Rm), and (ii) {x ∈ Rn : |f−1({x})| >
1} ⊆ f(Rm) has measure zero with respect to the Lebesgue measure on f(Rm).2

Definition 2.2. f is said to be injective if |f−1({x})| = 1 for every x ∈ f(Rm).

2.2 SWITCHING DYNAMICAL SYSTEMS

A Switching Dynamical System (SDS), with an example graphical model illustrated in Figure 1, is a
sequential latent variable model with its dynamics governed by both discrete and continuous latent
states, st ∈ {1, . . . ,K}, zt ∈ Rm, respectively. At each time step t, the discrete state st determines
the regime of the dynamical prior that the current continuous latent variable zt should follow, and
the observation xt is generated from zt using a (noisy) non-linear transformation. This gives the
following probabilistic model for the states and the observation variables:

pθ(x1:T , z1:T , s1:T ) = pθ(s1:T )pθ(z1:T |s1:T )
T∏

t=1

pθ(xt|zt). (2)

1See Def. 2.2 in Kivva et al. (2022) or the equivalent adapted to SDSs (Def. 3.3 and Rem. 3.1).
2B(x0, δ) = {x ∈ Rn : ||x− x0|| < δ}. We use the same notation as in Kivva et al. (2022), where we use

sets as inputs to functions. I.e. for a set B, we compute f(B) as {f(x) : x ∈ B} or f−1(B) as {x : f(x) ∈ B}.
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MSM

SDS

Figure 1: The generative model con-
sidered in this work, where the MSM
is indicated in green and the SDS is indi-
cated in red. The dashed arrows indicate
additional dependencies which are ac-
commodated by our theoretical results.

As computing the marginal pθ(x1:T ) is intractable, recent
works (Dong et al., 2020; Ansari et al., 2021) have devel-
oped inference techniques based on variational inference
(Kingma & Welling, 2014). These works consider an addi-
tional dependency on the switch st from xt to allow more
expressive segmentations, which we do not include in our
theoretical analysis for simplicity.

For the latent dynamic prior pθ(z1:T ), we consider a
Markov Switching Model (MSM) which has also been
referred to as autoregressive HMM (Ephraim & Roberts,
2005). This type of prior uses the latent “switch” st to
condition the distribution of zt at each time-step, and the
conditional dynamic model of z1:T given s1:T follows an
autoregressive process. Under first-order Markov assump-
tion for this conditional auto-regressive processes, this
leads to the following probabilistic model for the prior:

pθ(z1:T ) =
∑
s1:T

pθ(s1:T )pθ(z1:T |s1:T ), pθ(z1:T |s1:T ) = pθ(z1|s1)
T∏

t=2

pθ(zt|zt−1, st). (3)

Note that the structure of the discrete latent state prior pθ(s1:T ) is not specified, and the identifiability
results presented in the next section do not require further assumptions herein. As illustrated in
Figure 1 (solid lines), in experiments we use a first-order Markov process for pθ(s1:T ), described by a
transition matrix Q ∈ RK×K such that pθ(st = j|st−1 = i) = Qij , and an initial distribution pθ(s1).
In such case we also provide identifiability guarantees for the Q matrix and the initial distribution.

3 THEORETICAL CONSIDERATIONS

This section establishes the identifiability of the SDS model (Eq. (2)) with MSM latent prior (Eq. (3))
under suitable assumptions. We address this challenge by leveraging ideas from Kivva et al. (2022)
which uses finite mixture prior for static data generative models; importantly, this theory relies on the
use of identifiable finite mixture priors (up to mixture component permutations). Inspired by this
result, we first establish in Section 3.1 the identifiability of the Markov switching model pθ(z1:T ) as
a finite mixture prior, which then allows us to extend the results of Kivva et al. (2022) to the temporal
setting in Section 3.2 to prove identifiability of the SDS model. We drop the subscript θ for simplicity.

3.1 IDENTIFIABLE MARKOV SWITCHING MODELS

The MSM p(z1:T ) has an equivalent formulation as a finite mixture model which we will discuss
as follows. Suppose the discrete states satisfy st ∈ {1, ...,K} with K < +∞, then for any given
T < +∞, one can define a bijective path indexing function φ : {1, ...,KT } → {1, ...,K}T
such that each i ∈ {1, ...,KT } uniquely retrieves a set of states s1:T = φ(i). Then we can use
ci = p(s1:T = φ(i)) to represent the joint probability of the states s1:T = φ(i) under p. Let us
further define the family of initial and transition distributions for the continuous states zt:

ΠA := {pa(z1)|a ∈ A}, PA := {pa(zt|zt−1)|a ∈ A}. (4)

whereA is an index set satisfying mild measure-theoretic conditions (Appendix A). Note PA assumes
first-order Markov dynamics. Then, we can construct the family of first-order MSMs as

MT (ΠA,PA) :=

{
KT∑
i=1

cipai
1
(z1)

T∏
t=2

pai
t
(zt|zt−1) |K < +∞, pai

1
∈ ΠA, pai

t
∈ PA, t ≥ 2,

ait ∈ A, ai1:T ̸= aj1:T ,∀i ̸= j,

KT∑
i=1

ci = 1

}
. (5)

Since Eq. (5) requires ai1:T ̸= aj1:T for any i ̸= j, this also builds an injective mapping ϕ(i) = ai1:T
from i ∈ {1, ...,KT } to A. Combined with the path indexing function, this establishes an injective
mapping ϕ ◦ φ−1 to uniquely map a set of states s1:T to the a1:T indices, and we can view pai

1
(z1)

and pai
t
(zt|zt−1) as equivalent notations of p(z1|s1) and p(zt|zt−1, st) respectively for s1:T = φ(i).
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This notation shows that the MSM extends finite mixture models to temporal settings as a finite
mixture of KT trajectories composed by (conditional) distributions in ΠA and PA.

Having established the finite mixture model view of Markov switching models, we will use this
notation of MSM in the rest of Section 3.1, as we will use finite mixture modelling techniques to
establish its identifiability. In detail, we first define the identification ofMT (ΠA,PA) as follows.

Definition 3.1. The familyMT (ΠA,PA) that contains first-order MSMs is said to be identifiable

up to permutations, when for p1(z1:T ) =
∑KT

i=1 cipai
1
(z1)

∏T
t=2 pai

t
(zt|zt−1) and p2(z1:T ) =∑K̂T

i=1 ĉipâi
1
(z1)

∏T
t=2 pâi

t
(zt|zt−1), p1(z1:T ) = p2(z1:T ),∀z1:T ∈ RTm, if and only if K = K̂

and for each 1 ≤ i ≤ KT there is some 1 ≤ j ≤ K̂T s.t.

1. ci = ĉj;

3. pai
t
(zt|zt−1) = pâj

t
(zt|zt−1),∀t ≥ 2,

zt, zt−1 ∈ Rm;

2. if ait1 = ait2 for t1, t2 ≥ 2 and t1 ̸= t2,
then âjt1 = âjt2 ;

4. pai
1
(z1) = pâj

1
(z1), ∀z1 ∈ Rm.

We note that the 2nd requirement eliminates the permutation equivalence of e.g., s1:4 = (1, 2, 3, 2)
and ŝ1:4 = (3, 1, 2, 3) which would be valid in the finite mixture case with vector indexing.

For the purpose of building deep generative models, we seek to define identifiable parametric families
and defer the study of the non-parametric case in Appendix B. In particular we use a non-linear
Gaussian transition family as follows:

GA = {pa(zt|zt−1) = N (zt;m(zt−1, a),Σ(zt−1, a)) | a ∈ A, zt, zt−1 ∈ Rm}, (6)

where m(zt−1, a) and Σ(zt−1, a) are non-linear with respect to zt−1 and denote the mean and
covariance matrix of the Gaussian distribution. We further require the unique indexing assumption:

∀a ̸= a′ ∈ A, ∃zt−1 ∈ Rd, s.t.m(zt−1, a) ̸= m(zt−1, a
′) or Σ(zt−1, a) ̸= Σ(zt−1, a

′). (7)

In other words, for such zt−1 we have pa(zt|zt−1) and pa′(zt|zt−1) as two different Gaussian
distributions. We also introduce a family of initial distributions and assume unique indexing:

IA := {pa(z1) = N (z1;µ(a),Σ1(a)) | a ∈ A}, (8)

a ̸= a′ ∈ A ⇔ µ(a) ̸= µ(a′) or Σ1(a) ̸= Σ1(a
′). (9)

The above Gaussian distribution families paired with unique indexing assumptions satisfy conditions
which favour identifiability of first-order MSMs under non-linear Gaussian transitions.

Theorem 3.1. Define the following first-order Markov switching model family under the non-linear
Gaussian families,MT

NL =MT (IA,GA) with GA, IA defined by Eqs. (6), (8) respectively. Then,
the Markov switching model is identifiable in terms of Def. 3.1 under the following assumptions:

(a1) Unique indexing for GA and IA: Eqs. (7), (9) hold;

(a2) For any a ∈ A, the mean and covariance in GA, m(·, a) : Rm → Rm and Σ(·, a) : Rm →
Rm×m, are analytic functions.

Proof sketch: See Appendix B for the proof. The strategy can be summarised in 4 steps.

(i) Under the finite mixture model view of MSM, it suffices to show that {pai
1:T

(z1:T ) | ai1:T ∈
A× · · · × A} contains linearly independent functions (Yakowitz & Spragins, 1968).

(ii) Due to the conditional first-order Markov assumption on pai
1:T

(z1:T ), we just need to find
conditions for the linear independence of {pai

1:2
(z1:2)}, and then prove T ≥ 3 by induction.

(iii) To ensure linear independence of functions in {pai
1:2
(z1:2)}, we specify conditions on

PA = {pa(zt|zt−1)} and ΠA = {pa(z1)} in non-parametric case.

(iv) We show the Markov switching model family with (non-linear) Gaussian transitionsMT
NL =

MT (IA,GA) is a special case of (iii) when assuming (a1 - a2).
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Assumption (a2) allows parametrisations via e.g., polynomials and neural networks with analytic
activation functions (e.g. SoftPlus). In the latter case, the identifiability result applies to the functional
form only, since network weights do not uniquely index the functions that they parameterise. Note the
identifiability result holds independently of the choice of p(s1:T ). In our experiments, we consider a
stationary first-order Markov chain for p(s1:T ) and leave other cases to future work. We also state
the following identifiability result regarding the discrete state transitions for completeness.
Corollary 3.1. Consider an identifiable MSM from Def. 3.1, where the prior distribution of the
states p(s1:T ) follows a first-order stationary Markov chain, i.e p(s1:T ) = πs1Qs1,s2 . . . QsT−1,sT ,
where π denotes the initial distribution: p(s1 = k) = πk, and Q denotes the transition matrix:
p(st = k|st−1 = l) = Ql,k. Then, π and Q are identifiable up to permutations.

3.2 IDENTIFIABLE SWITCHING DYNAMICAL SYSTEMS

We now turn to the analysis of Switching Dynamical Systems, whose setup can be viewed as an
extension of the setup from Kivva et al. (2022) (Section 2.1) to the temporal case. Assume the
prior dynamic model p(z1:T ) belongs to the non-linear Gaussian MSM familyMT

NL specified by
Thm. 3.1. At each time step t, the latent zt ∈ Rm generates observed data xt ∈ Rn via a piece-wise
linear transformation f . The generation process of such SDS model can be expressed as follows:

xt = f(zt) + ϵt, z1:T ∼ p(z1:T ) ∈MT
NL, ϵt ∼ N (0,Σ). (10)

Note that we can also write the decoding process as x1:T = F(z1:T ) + E with E = (ϵ1, ..., ϵT )
⊤,

where F is a factored transformation composed by f as defined below. Importantly, this notion allows
F to inherit e.g., piece-wise linearity and (weakly) injectivity properties from f .
Definition 3.2. We say that a function F : RmT → RnT is factored if it is composed by f : Rm →
Rn, such that for any z1:T ∈ RmT , F(z1:T ) = (f(z1), . . . , f(zT ))

⊤.

from Kivva et
  al (2022)

from Khemakhem 
   et al.   (2020)

Figure 2: zt is transformed via f
with noise ϵt at each time-step t
independently. We view this as a
transformation on z1:T via a fac-
tored F with noise E .

Below we carry out the identifiability analysis of the SDS model
(Eq. (10)), which follows two steps (see Figure 2). (i) Follow-
ing Kivva et al. (2022), we establish the identifiability for a
prior p(z1:T ) ∈MT

NL from (F#p)(x1:T ) in the noiseless case.
Here F#p denotes the pushforward measure of p by F . (ii)
When the noise E distribution is known, F#p is identifiable
from (F#p)∗E using convolution tricks from Khemakhem et al.
(2020). In detail, we first define the notion of identifiability for
p(z1:T ) ∈MT (ΠA,PA) given noiseless observations.
Definition 3.3. Given a family of factored transformations F,
forF ∈ F the prior p ∈MT (ΠA,PA) is said to be identifiable
up to affine transformations, when for any F ′ ∈ F and p′ ∈
MT (ΠA,PA) s.t. F#p = F ′

#p
′, there exists an invertible

factored affine mapping H : RmT → RmT composed by h :
Rm → Rm, where p ≡ H#p

′.
Remark 3.1. For the factored F , identifiability up to affine transformations extends from Def. 2.2.1
in Kivva et al. (2022), which is defined on f . In this case, the fact that we have some mappings
f, f ′ such that f = (f ′ ◦ h), where h : Rm → Rm is an invertible affine transformation, implies
F = (F ′ ◦H), where the factored mappings F , F ′, andH are composed by f , f ′, and h respectively.

Now we state the following identifiability result for (non-linear) SDS and prove it in Appendix D.
Theorem 3.2. Assume there exists a latent variable model where observations are generated following
Eq. (10), the prior distribution p(z1:T ) belongs to the familyMT

NL =MT (IA,GA) and satisfies
(a1 - a2), and f is a piece-wise linear mapping. Then:

(i) If f , which composes F , is weakly injective (Def. 2.1), the prior p(z1:T ) is identifiable up to
affine transformations as defined in Def. 3.3.

(ii) If f , which composes F , is continuous and injective (Def. 2.2), both prior p(z1:T ) and f are
identifiable up to affine transformations, as defined in Def. 3.3 and Rem. 3.1.

This result allows us to design identifiable SDSs parametrised using e.g., SoftPlus networks for
pθ(zt|zt−1, st), and (Leaky) ReLU networks for pθ(xt|zt). Again, for neural networks identifiability
refers only to their functional form.
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Remark 3.2. For an invertible factored affine transformationH, we can show that p1 = H#p2 with
p1, p2 ∈MT

NL. Then, we can obtain the following relation between transition parameters.

m1(z, a) = Am2

(
A−1(z − b), σ(a)

)
+ b, z ∈ Rm, a ∈ A (11)

Σ1(z, a) = AΣ2

(
A−1 (z − b) , σ(a)

)
AT , z ∈ Rm, a ∈ A (12)

where σ(·) is a permutation over the set A, and we use the subscript to refer to functions of p1 or p2.
To see this, in Prop. C.1 we show that the MSM family is closed under factored affine transformations.
Furthermore, H is composed by h, which is affine, i.e h(z) = Az + b, z ∈ Rm. Finally, we can
leverage the previous identifiability up to permutations result (Thm. 3.1) to establish the above.

4 ESTIMATION

We consider two modelling choices for N sequences D = {x1:T } of length T : (a) the MSM model
(Eq. (3) with z1:T replaced by x1:T ) and (b) the SDS model with MSM latent prior (Eqs. (2),(3)).
Although our theory imposes no restrictions on the discrete latent state distribution, the methods are
implemented with a first-order stationary Markov chain, i.e., pθ(s1:T ) = pθ(s1)

∏T
t=2 pθ(st|st−1).

Markov Switching Models We use expectation maximisation (EM) for efficient estimation of
mixture models (Bishop, 2006). Below we discuss the M-step update of the transition distribution
parametrised by neural networks; more details (including polynomial parametrisations) can be found
in Appendix E. When considering analytic neural networks, we take a Generalised EM (GEM)
(Dempster et al., 1977) approach where a gradient ascent step is performed

θnew ← θold + η

T∑
t=2

K∑
k=1

γt,k∇θ log pθ(xt|xt−1, st = k), (13)

where γt,k = pθ(st = k|x1:T ) and the update rule can be computed using back-propagation. In the
equation we indicate the update rule for a single sample, but note that we use mini-batch stochastic
gradient ascent when N is large. Convergence is guaranteed for this approach to a local maximum of
the likelihood (Bengio & Frasconi, 1994; Hälvä & Hyvarinen, 2020).

Switching Dynamical Systems We adopt variational inference as presented in Ansari et al. (2021).
The parameters are learned by maximising the evidence lower bound (ELBO) (Kingma & Welling,
2014), and the proposed approximate posterior over the latent variables {z1:T , s1:T } incorporates the
exact posterior of the discrete latent states given the continuous latent variables:

qϕ,θ(z1:T , s1:T |x1:T ) = qϕ(z1|x1:T )

T∏
t=2

qϕ(zt|z1:t−1,x1:T )pθ(s1:T |z1:T ). (14)

As in Ansari et al. (2021) and Dong et al. (2020), the variational posterior over the continuous
variables qϕ(z1:T |x1:T ) simulates a smoothing process by first using a bi-directional RNN on x1:T ,
and then a forward RNN on the resulting embeddings. By introducing an exact posterior, the discrete
latent variables can be marginalised from the ELBO objective (see Appendix E.2 for details),

pθ(x1:T ) ≥ Eqϕ(z1:T |x1:T )

[
log pθ(x1:T |z1:T )

]
−KL

(
qϕ(z1:T |x1:T )||pθ(z1:T )

)
. (15)

We use Monte Carlo estimation with samples z1:T ∼ qϕ(z1:T |x1:T ) as well as the reparametriza-
tion trick for back-propagation (Kingma & Welling, 2014), and jointly learn the parameters using
stochastic gradient ascent on the ELBO objective. The prior distribution pθ(z1:T ) can be computed
exactly using the forward algorithm (Bishop, 2006) with messages {αt,k(z1:t) = pθ(z1:t, st = k)}
by marginalising out s1:T :

pθ(z1:T ) =

K∑
k=1

αT,k(z1:T ), α1,k(z1) = pθ(z1|s1 = k)pθ(s1 = k),

αt,k(z1:t) =

K∑
k′=1

pθ(zt|zt−1, st = k)pθ(st = k|st−1 = k′)αt−1,k′(z1:t−1).

(16)

An alternative approach for SDS posterior inference is presented in Dong et al. (2020), although
Ansari et al. (2021) outlines some disadvantages (see Appendix E.2 for a discussion). Note that
estimating parameters with ELBO maximisation has no consistency guarantees in general, and we
leave additional analyses regarding consistency for future work.
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5 RELATED WORK

Sequential generative models based on non-linear Switching Dynamical Systems have gained interest
over the recent years as they consider an expressive prior distribution that allows successful time
series segmentation and forecasting. Some works include soft-switching Kalman Filters (Fraccaro
et al., 2017), or recurrent SDSs (Dong et al., 2020) which can include explicit duration models on the
switches (Ansari et al., 2021). However, identifiability in such highly non-linear scenarios is rarely
studied. A similar situation is found for Markov Switching Models, which were first introduced by
Poritz (1982) as switching linear auto-regressive processes. This family of state-space models re-use
the forward-backward recursions (Rabiner, 1989) for tractable posterior estimation and have been
studied decades ago for speech analysis (Poritz, 1982; Ephraim & Roberts, 2005) and economics
(Hamilton, 1989). Frühwirth-Schnatter & Frèuhwirth-Schnatter (2006) review standard estimation
approaches and applications of the MSM family. Although the majority of the proposed approaches
estimate the parameters using tractable MLE solutions for their asymptotic properties, identifiability
for general high-order autoregressive MSMs has not been proved. The main complication arises
from the explicit dependency on the observed variables, which poses a great challenge to prove linear
independence of the joint distribution given the states under relaxed assumptions. To the best of our
knowledge, identifiability in MSMs has been explicitly studied in few occasions. An et al. (2013),
establishes results in the discrete case from the joint probability of four consecutive observations.

Regarding non-linear ICA for time series, identifiability results extend from Khemakhem et al. (2020)
where past values can be used as auxiliary information. Hyvarinen & Morioka (2017), Hyvarinen et al.
(2019), Klindt et al. (2021), Hälvä & Hyvarinen (2020), and Morioka et al. (2021) assume mutually
independent sources where the latter two introduce latent regime-switching sources via identifiable
HMMs (Gassiat et al., 2016). Similar to our work, Hälvä et al. (2021) allows SDSs by imposing
restrictions on the temporal correlations, despite having no identifiability of the latent transitions. For
latent causal processes (Yao et al., 2022a;b) recover time-delayed latent causal variables and identify
their dependencies. Their framework allows non-stationarity via distribution shifts or time-dependent
effects across regimes given auxiliary information. Other works identify latent causal variables from
multi-dimensional observations using intervention targets (Lippe et al., 2023b) or unknown binary
interactions with auxiliary regime information (Lippe et al., 2023a).

6 EXPERIMENTS

We evaluate the identifiable MSMs and SDSs with three experiments: (1) simulation studies with
ground truth available for verification of the identifiability results; (2) regime-dependent causal dis-
covery in climate data with identifiable MSMs; and (3) segmentation of high-dimensional sequences
of salsa dancing using MSMs and SDSs. Additional results are also presented in Appendix F.

6.1 SYNTHETIC EXPERIMENTS

Markov Switching Models We generate data using ground-truth MSMs and evaluate the estimated
functions upon them. We use fixed covariances and parametrise the transition means using random
cubic polynomials or networks with cosine/SoftPlus activations. When increasing dimensions, we
use locally connected networks (Zheng et al., 2018) to construct regime-dependent causal structures
for the grouth-truth MSMs, which encourage sparsity and stable data generation. The estimation
error is computed with L2 distance between grounth-truth and estimated transition mean functions,
after accounting for permutation equivalence and averaged over K components. We also estimate the
causal structure via thresholding the Jacobian of the estimated transition function, and compute the F1

score (again after accounting for permutation equivalence) to evaluate structure estimation accuracy.
See Appendices F.1 to F.4 for details regarding the experiment settings and metric computations.

As expected, Figure 3a shows increasing the sequence length generally reduces the L2 estimation
error. The polynomials are estimated with higher error for short sequences, which could be caused
by the high-frequency components from the cubic terms. Meanwhile the smoothness of the softplus
networks allows the MSM to achieve consistently better parameter estimates. Regarding scalability,
Figure 3b shows low estimation errors when increasing the number of dimensions and components.
For structure estimation acurracy, Figure 3c shows that the MSM with non-linear transitions is able
to maintain high F1 scores, despite the differences in L2 distance when increasing dimensions and
states (3b). Although the approach is restricted by first-order Markov assumptions, the synthetic
setting shows promising directions for high-dimensional regime-dependent causal discovery.
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Figure 3: Synthetic experiment results on MSMs. (a) L2 distance error using different transition
functions with varying T . (b) L2 distance error and (c) averaged F1 score of non-linear data (cosine
activations) with increasing states and dimensions.
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Figure 4: Reconstruction and segmentation (with ground truth) of a
video generated from 2D latent variables sampled from a MSM.

Table 1: Synthetic experi-
ment results on SDSs for in-
creasing xt dimensions.

Dims F1 score L2 dist.
2 0.997 0.015
5 0.996 0.006
10 0.997 0.020
50 0.998 0.031

100 0.997 0.005
(32,32,3) 0.988 0.309

Switching Dynamical Systems We use data from 2D MSMs with cosine activations and K = 3
components, and a random Leaky ReLU network to generate observations (with no additive noise).
For evaluation, we generate 1000 test samples and compute the F1 score of the state posterior
with respect the ground truth component. We also compute the L2 distance of m(z, ·) using Eq.
(11). Again both metrics are computed after accounting for permutation and affine transformation
equivalence (see Appendix F.1). We report the results in Table 1. The method is able to maintain
high F1 scores as well as a low L2 distance between the estimated and ground-truth transition mean
functions (modulo equivalences). To motivate the use of identifiable SDSs for real-world data, we
generate videos with frame size 32× 32 by treating the 2D latents as positions of a moving ball, and
show a reconstruction with the corresponding segmentation in Figure 4. This high-dimensional setting
increases the difficulty of accurate estimation as the reconstruction term of the ELBO out-weights the
KL term for learning the latent MSM (Appendix F.3). This results in an increased L2 distance from
the ground truth MSM. Still, the estimated model achieves high-fidelity reconstructions (with an
averaged pixel MSE of 8.89 · 10−5), and accurate structure estimation as indicated by the F1 score.

6.2 REGIME-DEPENDENT CAUSAL DISCOVERY 0.1

ENSO AIR

(a) linear effects

0.07

0.16

ENSO AIR
0.24

(b) non-linear effects

Figure 5: Regime-dependent graphs gener-
ated assuming (a) linear and (b) non-linear
effects. Green and blue lines indicate effects
in summer and winter months respectively.

We explore regime-dependent causal discovery us-
ing climate data from Saggioro et al. (2020). The
data consists on monthly observations of El Niño
Southern Oscillation (ENSO) and All India Rainfall
(AIR) from 1871 to 2016. We follow Saggioro et al.
(2020) and train identifiable MSMs with linear and
non-linear (softplus networks) transitions. Figure 5
shows the regime-dependent graphs extracted from both models, where the edge weights denote the
absolute value of the corresponding entries in the estimated transition function’s Jacobian (we keep
edges with weights ≥ 0.05). The MSMs capture regimes based on seasonality, as one component is
assigned to summer months (May - September), and the other is assigned to winter months (October -
April). In the linear case, the MSM discovers an effect from ENSO to AIR which occurs only during
Summer. This result is consistent with Saggioro et al. (2020) and Webster & Palmer (1997), which
suggests that ENSO has a direct effect on AIR during summer, but not in winter. For non-linear transi-
tions (Figure 5b), additional links are discovered which are yet to be supported by scientific evidence
in climate science. But because the flexibility of non-linear MSMs allows capturing correlations as
causal effects in disguise, finding additional links may imply the presence of confounders that have
an influence on both variables, which is often the case in scenarios with few observations.
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6.3 SEGMENTATION OF DANCING PATTERNS

iM
SM

 (o
ur

s)

Forward and
backward Turning around Double spinStanding in front

KV
AE

Figure 6: Posterior probability of a salsa
dancing sequence of our approach (iMSM)
and KVAE (Fraccaro et al., 2017) along with
several patterns distinguished in the example.

We consider salsa dancing sequences from the CMU
mocap data to demonstrate our models’ ability in
segmenting high-dimensional time-series. See Ap-
pendix for details on the data (F.6), training methods
(F.3), and additional datasets (F.7). We start from
key-point tracking data and present in Figure 6 the
segmentation results using both the identifiable MSM
(softplus networks) and a baseline KVAE (Fraccaro
et al., 2017). The iMSM assigns different dancing
patterns to different states, e.g., the major pattern
(forward-backward movements) is assigned to state
1. The iMSM also identifies this pattern at the end,
which KVAE fails to recognise. Additionally, KVAE
assigns a turning pattern into component 2, while
iMSM treats turning as in state 1 patterns, but then
jumps to component 2 consistently after observing
it. The iMSM also classifies other dancing patterns into state 0. For limitations, the soft-switching
mechanism restricts KVAE from confident component assignments. The iMSM’s first-order Markov
conditional transitions make it difficult to learn e.g., acceleration that would provide richer features
for better segmentation.

Instead of evaluating the identifiable SDS on key-point trajectories, we generate videos by rendering
3D meshes from them using the renderer from Mahmood et al. (2019) to demonstrate identifiable
SDS’s applicability to videos. Figure 7 shows the corresponding video reconstructions and segmenta-
tion results, indicating similar interpretations: one component is more prominent and used for the
majority of the forward and backward patterns; and the other components are used to model spinning
and other dancing patterns. Quantitatively, our approach successfully reconstructs the sequences with
an averaged pixel MSE of 2.26 · 10−4, computed from a held out dataset of 560 sequences.

7 CONCLUSIONS

We present identifiability analysis regarding Markov Switching Models and Switching Dynamical
Systems. Key to our contribution is the use of Gaussian transitions with analytic functions, which
helps establish identifiability of MSMs, independently of the dynamic prior for the discrete states.
We further extend the results to develop identifiable SDSs fully parameterised by neural networks.
We empirically verify our theoretical results with synthetic experiments, and motivate our approach
for regime-dependent causal discovery and high-dimensional time series segmentation with real data.

While our work focuses on identifiability analysis, in practice accurate estimation is also key to the
success of causal discovery/representation learning from real data. Specifically, the current estimation
methods are highly sensitive to hyper-parameter tuning, especially in modelling high-dimensional
data where many estimation approaches are prone to state collapse. Also variational learning for
sequential LVMs has no consistency guarantees unless assuming universal approximations of the
q posterior (Gong et al., 2023), which disagrees with the popular choices of Gaussian encoders.
Future work should address these challenges in order to further scale SDSs for real-world causal

Figure 7: Reconstructions and segmentations of salsa dancing videos, where different colours indicate
different components (brown: moving forward-backward, green: spinning, blue: others).
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discovery. Other future directions include extending the identifiability results to higher-order MSMs,
and designing efficient estimation methods for non-stationary discrete latent state priors.
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A NON-PARAMETRIC FINITE MIXTURE MODELS

We use the following existing result on identifying finite mixtures (Yakowitz & Spragins, 1968), which
introduces the concept of linear independence to the identification of finite mixtures. Specifically,
consider a distribution family that contains functions defined on x ∈ Rd:

FA := {Fa(x)|a ∈ A} (17)

where Fa(x) is an d-dimensional CDF and A is a measurable index set such that Fa(x) as a function
of (x, a) is measurable on Rd ×A. In this paper, we assume this measure theoretic assumption on A
is satisfied. Now consider the following finite mixture distribution family by linearly combining the
CDFs in F :

HA := {H(x) =

N∑
i=1

ciFai(x)|N < +∞, ai ∈ A, ai ̸= aj ,∀i ̸= j,

N∑
i=1

ci = 1}. (18)

Then we specify the definition of identifiable finite mixture family as follows:

Definition A.1. The finite mixture familyH is said to be identifiable up to permutations, when for
any two finite mixtures H1(x) =

∑M
i=1 ciFai(x) and H2(x) =

∑M
i=1 ĉiFâi(x), H1(x) = H2(x)

for all x ∈ Rd, if and only if M = N and for each 1 ≤ i ≤ N there is some 1 ≤ j ≤M such that
ci = ĉj and Fai

(x) = Fâj
(x) for all x ∈ Rd.

Then Yakowitz & Spragins (1968) proved the identifiability results for finite mixtures. To see this,
we first introduce the concept of linearly independent functions under finite mixtures as follows.

Definition A.2. A family of functions F = {fa(x)|a ∈ A} is said to contain linearly independent
functions under finite mixtures, if for anyA0 ⊂ A such that |A0| < +∞, the functions in {fa(x)|a ∈
A0} are linearly independent.

This is a weaker requirement of linear independence on function classes as it allows linear dependency
by representing one function as the linear combination of infinitely many other functions. With this
relaxed definition of linear independence we state the identifiability result of finite mixture models as
follows.

Proposition A.1. (Yakowitz & Spragins, 1968) The finite mixture distribution familyH is identifiable
up to permutations, iff. functions in F are linearly independent under the finite mixture model.

B PROOF OF THEOREM 3.1

We follow the strategy described in the main text.

B.1 IDENTIFIABILITY VIA LINEAR INDEPENDENCE

Proposition A.1 can be directly generalised to CDFs defined on z1:T ∈ RTm. Furthermore, if we
have a family of PDFs3, e.g. PT

A := ΠA ⊗ (⊗T
t=2PA), with linearly independent components, then

their corresponding Tm-dimensional CDFs are also linearly independent (and vice versa). Therefore
we have the following result as a direct extension of Proposition A.1.

Proposition B.1. Consider the distribution family given by Eq. 5. Then the joint distribution
in MT (ΠA,PA) is identifiable up to permutations if and only if functions in PT

A are linearly
independent under finite mixtures.

The above assumption of linear independence under finite mixtures over the joint distribution implies
the following identifiability result.

Theorem B.1. Assume the functions in PT
A := ΠA ⊗ (⊗T

t=2PA) are linearly independent under
finite mixtures, then the distribution familyMT (ΠA,PA) is identifiable as defined in Definition 3.1.

3In this case we assume that the probability measures are dominated by the Lebesgue measure on RTm and
the CDFs are differentiable.
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Proof. From proposition B.1 we see that, PT
A being linearly independent implies identifiability up to

permutation forMT (ΠA,PA) in the finite mixture sense (Definition A.1). This means for p1(z1:T )
and p2(z1:T ) defined in Definition 3.1, we have K = K̂ and for every 1 ≤ i ≤ KT , there exists
1 ≤ j ≤ K̂T such that ci = ĉj and

pai
1
(z1)

T∏
t=2

pai
t
(zt|zt−1) = pâj

1
(z1)

T∏
t=2

pâj
t
(zt|zt−1), ∀z1:T ∈ RTm.

This also indicates that pai
t
(zt|zt−1) = pâj

t
(zt|zt−1) for all t ≥ 2, zt, zt−1 ∈ Rm, which can

be proved by noticing that pa(zt|zt−1) are conditional PDFs. To see this, notice that as the joint
distributions on z1:T are equal, then the marginal distributions on z1:T−1 are also equal:

pai
1
(z1)

T−1∏
t=2

pai
t
(zt|zt−1) = pâj

1
(z1)

T−1∏
t=2

pâj
t
(zt|zt−1), ∀z1:T−1 ∈ R(T−1)m,

which immediately implies pai
T
(zT |zT−1) = pâj

T
(zT |zT−1),∀zT−1,xT ∈ Rm. Similar logic

applies to the other time indices t ≥ 1, which also implies pai
1
(z1) = pâj

1
(z1) for all x1 ∈ Rm.

Lastly, if there exists t1 ̸= t2 such that ait1 = ait2 but âjt1 ̸= âjt2 , then the proved fact that, for any
α,β ∈ Rm,

pâj
t1

(zt1 = β|zt1−1 = α) = pai
t1
(zt1 = β|zt1−1 = α)

= pai
t2
(zt2 = β|zt2−1 = α)

= pâj
t2

(zt2 = β|zt2−1 = α),

implies linear dependence of PA, which contradicts to the assumption that PT
A are linearly indepen-

dent under finite mixtures.

We show the contradiction by assuming the case where Pt−1
A is linearly independent for some t > 1,

and then we consider the linear independence on Pt
A. We should have∑

i,j

γijpai
1:t−1

(z1:t−1)paj
t
(zt|zt−1) = 0, ∀z1:t ∈ R(t−1)m × Rm,

with γij = 0,∀i, j. We can swap the summations to observe that from linear dependence of PA, we
can get γij ̸= 0,∀i and some j such that

∑
j γijpaj

t
(zt|zt−1) = 0.

∑
i

∑
j

γijpaj
t
(zt|zt−1)

 pai
1:t−1

(z1:t−1) = 0, ∀z1:t ∈ R(t−1)m × Rm,

which satisfies the equation with γij ̸= 0 for some i and j and thus contradicts with the linear
independence of Pt

A.

B.2 LINEAR INDEPENDENCE FOR T = 2

Following the strategy as described in the main text, the next step requires us to start from linear
independence results for T = 2, and then extend to T > 2. We therefore prove the following linear
independence result.
Lemma B.1. Consider two families UI := {ui(y,x)|i ∈ I} and VJ := {vj(z,y)|j ∈ J} with
x ∈ X ,y ∈ Rdy and z ∈ Rdz . We further assume the following assumptions:

(b1) Positive function values: ui(y,x) > 0 for all i ∈ I, (y,x) ∈ Rdy × X . Similar positive
function values assumption applies to VJ : vj(z,y) > 0 for all j ∈ J, (z,y) ∈ Rdz × Rdy .

(b2) Unique indexing: for UI , i ̸= i′ ∈ I ⇔ ∃ x,y s.t. ui(x,y) ̸= ui′(x,y). Similar unique
indexing assumption applies to VJ ;
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(b3) Linear independence under finite mixtures on specific non-zero measure subsets for UI : for
any non-zero measure subset Y ⊂ Rdy , UI contains linearly independent functions under
finite mixtures on (y,x) ∈ Y × X .

(b4) Linear independence under finite mixtures on specific non-zero measure subsets for VJ :
there exists a non-zero measure subset Y ⊂ Rdy , such that for any non-zero measure subsets
Y ′ ⊂ Y and Z ⊂ Rdz , VJ contains linearly independent functions under finite mixtures on
(z,y) ∈ Z × Y ′;

(b5) Linear dependence under finite mixtures for subsets of functions in VJ implies repeating
functions: for any β ∈ Rdy , any non-zero measure subset Z ⊂ Rdz and any subset J0 ⊂ J
such that |J0| < +∞, {vj(z,y = β)|j ∈ J0} contains linearly dependent functions on
z ∈ Z only if ∃ j ̸= j′ ∈ J0 such that vj(z,β) = vj′(z,β) for all z ∈ Rdz .

(b6) Continuity for VJ : for any j ∈ J , vj(z,y) is continuous in y ∈ Rdy .

Then for any non-zero measure subset Z ⊂ Rdz , UI ⊗ VJ := {vj(z,y)ui(y,x)|i ∈ I, j ∈ J}
contains linear independent functions defined on (x,y, z) ∈ X × Rdy ×Z .

Proof. Assume this sufficiency statement is false, then there exist a non-zero measure subset Z ⊂
Rdz , S0 ⊂ I × J with |S0| < +∞ and a set of non-zero values {γij ∈ R|(i, j) ∈ S0}, such that∑

(i,j)∈S0

γijvj(z,y)ui(y,x) = 0, ∀(x,y, z) ∈ X × Rdy ×Z. (19)

Note that the choices of S0 and γij are independent of any x,y, z values, but might be dependent
on Z . By assumptions (b1), the index set S0 contains at least 2 different indices (i, j) and (i′, j′).
In particular, S0 contains at least 2 different indices (i, j) and (i′, j′) with j ̸= j′, otherwise we can
extract the common term vj(z,y) out:

∑
(i,j)∈S0

γijvj(z,y)ui(y,x) = vj(z,y)

 ∑
i:(i,j)∈S0

γijui(y,x)

 = 0, ∀(x,y, z) ∈ X×Rdy×Z,

and as there exist at least 2 different indices (i′, j) and (i, j) in S0, we have at least one i′ ̸= i, and
the above equation contradicts to assumptions (b1) - (b3).

Now define J0 = {j ∈ A|∃(i, j) ∈ S0} the set of all possible j indices that appear in S0, and from
|S0| < +∞ we have |J0| < +∞ as well. We rewrite the linear combination equation (Eq. (19)) for
any β ∈ Rdy as

∑
j∈J0

 ∑
i:(i,j)∈S0

γijui(y = β,x)

 vj(z,y = β) = 0, ∀(x, z) ∈ X × Z. (20)

From assumption (b3) we know that the set Y0 := {β ∈ Rdy |
∑

i:(i,j)∈S0
γijui(y = β,x) =

0,∀x ∈ X} can only have zero measure in Rdy . Write Y ⊂ Rdy the non-zero measure subset defined
by assumption (b4), we have Y1 := Y\Y0 ⊂ Y also has non-zero measure and satisfies assumption
(b4). Combined with assumption (b1), we have for each β ∈ Y1, there exists x ∈ X such that∑

i:(i,j)∈S0
γijui(y = β,x) ̸= 0 for at least two j indices in J0. This means for each β ∈ Y1,

{vj(z,y = β)|j ∈ J0} contains linearly dependent functions on z ∈ Z . Now under assumption
(b5), we can split the index set J0 into subsets indexed by k ∈ K(β) as follows, such that within
each index subset Jk(β) the functions with the corresponding indices are equal:

J0 = ∪k∈K(β)Jk(β), Jk(β) ∩ Jk′(β) = ∅,∀k ̸= k′ ∈ K(β),

j ̸= j′ ∈ Jk(β) ⇔ vj(z,y = β) = vj′(z,y = β), ∀z ∈ Z.
(21)

Then we can rewrite Eq. (20) for any β ∈ Y1 as

∑
k∈K(β)

 ∑
j∈Jk(β)

∑
i:(i,j)∈S0

γijui(y = β,x)vj(z,y = β)

 = 0, ∀(x, z) ∈ X × Z. (22)
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Recall from Eq. (21) that vj(z,y = β) and vj′(z,y = β) are the same functions on z ∈ Z
iff. j ̸= j′ are in the same index set Jk(β). This means if Eq. (19) holds, then for any β ∈ Y1, under
assumptions (b1) and (b5),∑

j∈Jk(β)

∑
i:(i,j)∈S0

γijui(y = β,x) = 0, ∀x ∈ Rd, k ∈ K(β). (23)

Define C(β) = mink |Jk(β)| the minimum cardinality count for j indices in the Jk(β) subsets.
Choose β∗ ∈ argminβ∈Y1 C(β):

1. We have C(β∗) < |J0| and |K(β∗)| ≥ 2. Otherwise for all j ̸= j′ ∈ J0 we have
vj(z,y = β) = vj′(z,y = β) for all z ∈ Z and β ∈ Y1, so that they are linearly
dependent on (z,y) ∈ Z × Y1, a contradiction to assumption (b4) by setting Y ′ = Y1.

2. Now assume |J1(β∗)| = C(β∗) w.l.o.g.. From assumption (b5), we know that for any
j ∈ J1(β

∗) and j′ ∈ J0\J1(β∗), vj(z,y = β) = vj′(z,y = β) only on zero measure
subset of Z at most. Then as |J0| < +∞ and Z ⊂ Rdz has non-zero measure, there exist
z0 ∈ Z and δ > 0 such that

|vj(z = z0,y = β∗)− vj′(z = z0,y = β∗)| ≥ δ, ∀j ∈ J1(β
∗),∀j′ ∈ J0\J1(β∗).

Under assumption (b6), there exists ϵ(j) > 0 such that we can construct an ϵ-ball Bϵ(j)(β
∗)

using ℓ2-norm, such that

|vj(z = z0,y = β∗)− vj(z = z0,y = β)| ≤ δ/3, ∀β ∈ Bϵ(j)(β
∗).

Choosing a suitable 0 < ϵ ≤ minj∈J0 ϵ(j) (note that minj∈J0 ϵ(j) > 0 as |J0| < +∞)
and constructing an ℓ2-norm-based ϵ-ball Bϵ(β

∗) ⊂ Y1, we have for all j ∈ J1(β
∗), j′ ∈

J0\J1(β∗), j′ /∈ J1(β) for all β ∈ Bϵ(β
∗) due to

|vj(z = z0,y = β)− vj′(z = z0,y = β)| ≥ δ/3, ∀β ∈ Bϵ(β
∗).

So this means for the split {Jk(β)} of any β ∈ Bϵ(β
∗), we have J1(β) ⊂ J1(β

∗)
and therefore |J1(β)| ≤ |J1(β∗)|. Now by definition of β∗ ∈ argminβ∈Y C(β) and
|J1(β∗)| = C(β∗), we have J1(β) = J1(β

∗) for all β ∈ Bϵ(β
∗).

3. One can show that |J1(β∗)| = 1, otherwise by definition of the split (Eq. (21)) and the
above point, there exists j ̸= j′ ∈ J1(β

∗) such that vj(z,y = β) = vj′(z,y = β) for all
z ∈ Z and β ∈ Bϵ(β

∗), a contradiction to assumption (b4) by setting Y ′ = Bϵ(β
∗). Now

assume that j ∈ J1(β
∗) is the only index in the subset, then the fact proved in the above

point that J1(β) = J1(β
∗) for all β ∈ Bϵ(β

∗) means∑
i:(i,j)∈S0

γijui(y = β,x) = 0, ∀x ∈ X , ∀β ∈ Bϵ(β
∗),

again a contradiction to assumption (b3) by setting Y = Bϵ(β
∗).

The above 3 points indicate that Eq. (23) cannot hold for all β ∈ Y1 (and therefore for all β ∈ Y)
under assumptions (b3) - (b6), therefore a contradiction is reached.

B.3 LINEAR INDEPENDENCE IN THE NON-PARAMETRIC CASE

The previous result can be used to show conditions for the linear independence of the joint distribution
family PT

A in the non-parametric case.
Theorem B.2. Define the following joint distribution family{

pa1,a2:T
(z1:T ) = pa1(z1)

T∏
t=2

pat(zt|zt−1), pa1 ∈ ΠA, pat ∈ PA, t = 2, ..., T

}
,

and assume ΠA and PA satisfy assumptions (b1)-(b6) as follows,

(c1) ΠA and PA satisfy (b1) and (b2): positive function values and unique indexing,
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(c2) ΠA satisfies (b3), and

(c3) PA satisfies (b4)-(b6).

Then the following statement holds: For any T ≥ 2 and any subset Z ⊂ Rm The joint distribution
family contains linearly independent distributions for (z1:T−1, zT ) ∈ R(T−1)m ×Z .

Proof. We proceed to prove the statement by induction as follows. Here we set I = J = A.

(1) T = 2: The result can be proved using Lemma B.1 by setting in the proof, ui(y = z1,x = z0) =
πi(z1), i ∈ A and vj(z = z2,y = z1) = pj(z2|z1), j ∈ A.

(2) T > 2: Assume the statement holds for the joint distribution family when T = τ − 1. Note that
we can write pa1:τ

(z1:τ ) as

pa1:τ (z1:τ ) = pa1,a2:τ−1(x1:τ−1)paτ (zτ |zτ−1).

Then the statement for T = τ can be proved using Lemma B.1 by setting ui(y = zτ−1,x =
z1:τ−2) = pa1:τ−1

(z1:τ−1), i = a1:τ−1, and vj(z = zτ ,y = zτ−1) = paτ
(zτ |zτ−1), j = aτ . Note

that the family spanned with pa1:τ−1
(z1:τ−1), i = a1:τ−1 satisfies (b1) and (b2) from ΠA and PA

directly, and (b3) from the induction hypothesis.

With the result above, one can construct identifiable Markov Switching Models as long as the initial
and transition distributions are consistent with assumptions (c1)-(c3).

B.4 LINEAR INDEPENDENCE IN THE NON-LINEAR GAUSSIAN CASE

As described, in the final step of the proof we explore properties of the Gaussian transition and initial
distribution families (Eqs. (6) and (8) respectively). The unique indexing assumption of the Gaussian
transition family (Eq. (7)) implies linear independence as shown below.

Proposition B.2. Functions in GA are linearly independent on variables (zt, zt−1) if the unique
indexing assumption (Eq. (7)) holds.

Proof. Assume the statement is false, then there exists A0 ⊂ A and a set of non-zero values
{γa|a ∈ A0}, such that∑

a∈A0

γaN (zt;m(zt−1, a),Σ(zt−1, a)) = 0, ∀zt, zt−1 ∈ Rm.

In particular, this equality holds for any zt−1 ∈ Rm, meaning that a weighted sum of Gaussian
distributions (defined on zt) equals to zero. Note that Yakowitz & Spragins (1968) proved that
multivariate Gaussian distributions with different means and/or covariances are linearly independent.
Therefore the equality above implies for any zt−1

m(zt−1, a) = m(zt−1, a
′) and Σ(zt−1, a) = Σ(zt−1, a

′) ∀a, a′ ∈ A0, a ̸= a′,

a contradiction to the unique indexing assumption.

We now draw some connections from the previous Gaussian families to assumptions (b1-b6) in
Lemma B.1.

Proposition B.3. The conditional Gaussian distribution family GA (Eq. (6), under the unique
indexing assumption (Eq. (7), satisfies assumptions (b1), (b2) and (b5) in Lemma B.1, if we define
VJ := GA, z := zt and y := zt−1.

Proposition B.4. The initial Gaussian distribution family IA (Eq. (8), under the unique indexing
assumption (Eq. (9), satisfies assumptions (b1), (b2) and (b3) in Lemma B.1, if we define UI :=
IA,y := z1 and x = X = ∅.

To see why GA satisfies (b5), notice Gaussian densities are analytic in zt. Similar ideas apply to show
that IA satisfies (b3). With the previous results, we can rewrite the previous result for the non-linear
Gaussian case.
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Theorem B.3. Define the following joint distribution family under the non-linear Gaussian model

PT
A =

{
pa1,a2:T

(z1:T ) = pa1(z1)

T∏
t=2

pat(zt|zt−1),

at ∈ A, pa1 ∈ IA, pat ∈ GA, t = 2, ..., T

}
, (24)

with GA, IA defined by Eqs. (6), (8) respectively. Assume:

(d1) Unique indexing for GA and IA: Eqs. (7), (9) hold;

(d2) Continuity for the conditioning input: distributions in GA are continuous w.r.t. zt−1 ∈ Rm;

(d3) Zero-measure intersection in certain region: there exists a non-zero measure set X0 ⊂ Rm

s.t. {zt−1 ∈ X0|m(zt−1, a) = m(zt−1, a
′),Σ(zt−1, a) = Σ(zt−1, a

′)} has zero measure,
for any a ̸= a′;

Then, the joint distribution family contains linearly independent distributions for (z1:T−1, zT ) ∈
R(T−1)m × Rm.

Proof. Note that assumptions (b1) - (b3) and (b5) are satisfied due to Propositions B.3 and B.4, and
assumptions (b6) and (d2) are equivalent, and assumption (b4) holds due to assumption (d3). To
show (d3) =⇒ (b4), We first define VJ := GA, z := zt, and y := zt−1 from Prop. B.3. From
(d3), Y := X0 and note that VJ contains linear independent functions on (z,y) ∈ M ⊂ Z × Y if
M ≠ Z × D, where D denotes the set where intersection of moments happen within Y . Also by
(d3), D has measure zero and thus, (b4) holds since Y ′ is a non-zero measure set.

Then, the statement holds by Theorem B.2.

B.5 CONCLUDING THE PROOF

Below we formally state the proof for Theorem 3.1 by further assuming parametrisations of the
Gaussian moments via analytic functions, i.e. assumption (a2).

Proof. (a1) and (d1) are equivalent. Following (a2), let m(·, a) : Rm → Rm be a multivariate
analytic function, which allows a multivariate Taylor expansion. The corresponding Taylor expansion
of m(·, a) implies (d2). Similar logic applies to Σ(·, a). To show (d3), we note for any a ̸= a′ the set
of intersection of moments, i.e. {z ∈ Rm|m(z, a) = m(z, a′),Σ(zt−1, a) = Σ(zt−1, a

′)} can be
separated as the intersection of the sets {z ∈ Rm|m(x, a) = m(z, a′)} and {z ∈ Rm|Σ(zt−1, a) =
Σ(zt−1, a

′)}. Wlog, the set {z ∈ Rm|m(z, a) = m(z, a′)} is the zero set of an analytic function
f := m(·, a)−m(·, a′). Proposition 0 in Mityagin (2015) shows that the zero set of a real analytic
function on Rm has zero measure unless f is identically zero. Hence, the intersection of moments
has zero measure from our premise of unique indexing.

Since (d1-d3) are satisfied, by Theorem B.3 we have linear independence of the joint distribution
family, which by Theorem B.1 implies identifiability of the MSM in the sense of Def. 3.1.

C PROPERTIES OF THE MSM

In this section, we present some results involving MSMs for convenience. First, we start with the
result on first-order stationary Markov chains presented in section 3.1.

Corollary C.1. Consider an identifiable MSM from Def. 3.1, where the prior distribution of the
states p(s1:T ) follows a first-order stationary Markov chain, i.e p(s1:T ) = πs1Qs1,s2 . . . QsT−1,sT ,
where π denotes the initial distribution: p(s1 = k) = πk, and Q denotes the transition matrix:
p(st = k|st−1 = l) = Ql,k. Then, π and Q are identifiable up to permutations.

19



Under review as a conference paper at ICLR 2024

Proof. From Def. 3.1, we have K = K̂ and for every 1 ≤ i ≤ KT there is some 1 ≤ j ≤ K̂T such
that ci = ĉj . Now writing s1:T = (si1, ..., s

i
T ) = φ(i) and ŝ1:T = (ŝj1, ..., ŝ

j
T ) = φ(j), we have

ci = πsi1
Qsi1,s

i
2
. . . QsiT−1,s

i
T
= π̂ŝj1

Q̂ŝj1,ŝ
j
2
. . . Q̂ŝjT−1,ŝ

j
T
= ĉj .

Since the joint distributions are equal on s1:T , they must also be equal on s1:T−1. Therefore, we have
QsiT−1,s

i
T
= Q̂ŝjT−1,ŝ

j
T

. Similar logic applies to t ≥ 1, which also implies πsi1
= π̂ŝj1

.

For t = 1, the above implies that for each i ∈ {1, ...,K}, there exists some j ∈ {1, ...,K}, such that
πi = π̂j . This indicates permutation equivalence. We denote σ(·) as such permutation function, so
that for all i ∈ {1, ...,K} and the corresponding j, πi = π̃j = πσ(j).

For t > 1, the previous implication gives us that for i, j ∈ {1, . . . ,K},∃k, l ∈ {1, . . . ,K} such
that Qi,j = Q̂k,l. Following the previous logic, we can define permutations that match Q and Q̂:
i = σ1(k), j = σ2(l). We observe from the second requirement in Def. 3.1 that if i = j, then k = l
and since σ1(k) = σ2(l), we have that the permutations σ1(·) and σ2(·) must be equal. Therefore,
we have Qi,j = Q̂k,l = Qσ1(k),σ1(l).

Finally, we can use the second requirement in Def. 3.1 to see that σ(·) and σ1(·) must be equal.

Proposition C.1. The joint distribution of the Markov Switching Model with Gaussian analytic
transitions and Gaussian initial distributions is closed under factored invertible affine transformations,
z′
1:T = H(z1:T ): z′

t = Azt + b, 1 ≤ t ≤ T .

Proof. Consider the following affine transformation z′
t = Azt + b for 1 ≤ t ≤ T , and the joint

distribution of a Markov Switching Model with T timesteps

p(z1:T ) =
∑
s1:T

p(s1:T )p(z1|s1)
T∏

t=2

p(zt|zt−1, st),

where we denote the initial distribution as p(z1|s1 = i) = N (z1;µ(i),Σ1(i)) and the transition
distribution as p(zt|zt−1, st = i) = N (zt;m(zt−1, i),Σ(zt−1, i)). We need to show that the
distribution still consists of Gaussian initial distributions and Gaussian analytic transitions. Let us
consider the change of variables rule, which we apply to p(z1:T )

pz′
1:T

(z′
1:T ) =

pz1:T

(
A−1

1:T (z′
1:T − b1:T )

)
det(A1:T )

,

where we use the subscript z′
1:T to indicate the probability distribution in terms of z′

1:T , but we drop
it for simplicity. Note that the inverse of a block diagonal matrix can be computed as the inverse of
each block, and we use similar properties for the determinant, i.e. det(A1:T ) = det(A) · · · det(A).
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The distribution in terms of the transformed variable is expressed as follows:

p(z′
1:T ) =

∑
s1:T

p(s1:T )
p
(
A−1 (z′

1 − b) |s1
)

det(A)

T∏
t=2

p
(
A−1 (z′

t − b) |
(
A−1

(
z′
t−1 − b

))
, st
)

det(A)

=
∑

i1,...,iT

p (s1:T = {i1, . . . , iT })N
(
z′
1;Aµ(i1) + b, AΣ1(i1)A

T
)

T∏
t=2

1√
(2π)

m
det
(
AΣ

(
A−1

(
z′
t−1 − b

)
, it
)
AT
)

exp

(
− 1

2

(
A−1 (z′

t − b)−m
(
A−1

(
z′
t−1 − b

)
, it
) )T

Σ
(
A−1

(
z′
t−1 − b

)
, it

)−1(
A−1 (z′

t − b)−m
(
A−1

(
z′
t−1 − b

)
, it
) ))

=
∑

i1,...,iT

p (s1:T = {i1, . . . , iT })N
(
z′
1;Aµ(i1) + b, AΣ1(i1)A

T
)

T∏
t=2

1√
(2π)

m
det
(
AΣ

(
A−1

(
z′
t−1 − b

)
, it
)
AT
)

exp

(
− 1

2

(
z′
t −Am

(
A−1

(
z′
t−1 − b

)
, it
)
− b

)T
A−1Σ

(
A−1

(
z′
t−1 − b

)
, it

)−1

A−T
(
z′
t −Am

(
A−1

(
z′
t−1 − b

)
, it
)
− b

))
=

∑
i1,...,iT

p (s1:T = {i1, . . . , iT })N
(
z′
1;Aµ(i1) + b, AΣ1(i1)A

T
)

T∏
t=2

N
(
z′
t;Am

(
A−1

(
z′
t−1 − b

)
, it
)
+ b, AΣ

(
A−1

(
z′
t−1 − b

)
, it

)
AT
)

We observe that the resulting distribution is a Markov Switching Model with changes in the Gaus-
sian initial and transition distributions, where the analytic transitions are transformed as follows:
m′(z′

t−1, it) = Am
(
A−1

(
z′
t−1 − b

)
, it
)
+ b, and Σ′(z′

t−1, it) = AΣ
(
A−1

(
z′
t−1 − b

)
, it

)
AT

for any it ∈ {1, . . . ,K}.

D PROOF OF SDS IDENTIFIABILITY

D.1 PRELIMINARIES

We need to introduce some definitions and results that will be used in the proof. These have been
previously defined in Kivva et al. (2022).

Definition D.1. Let D0 ⊆ D ⊆ Rn be open sets. Let f0 : D0 → R. We say that an analytic function
f : D → R is an analytic continuation of f0 onto D if f(x) = f0(x) for every x ∈ D0.

Definition D.2. Let x0 ∈ Rm and δ > 0. Let p : B(x0, δ)→ R. Define

Ext(p) : Rm → R

to be the unique analytic continuation of p on the entire space Rm if such a continuation exists, and
to be 0 otherwise.

Definition D.3. Let D0 ⊂ D and p : D → R be a function. We define p|D0
: D → R to be a

restriction of p to D0, namely a function that satisfies p|D0(x) = p(x) for every x ∈ D0.
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Definition D.4. Let f : Rm → Rn be a piece-wise affine function. We say that a point x ∈ f(Rm) ⊆
Rn is generic with respect to f if the pre-image f−1({x}) is finite and there exists δ > 0, such that
f : B(z, δ)→ Rn is affine for every z ∈ f−1({x}).
Lemma D.1. If f : Rm → Rn is a piece-wise affine function such that {x ∈ Rn : |f−1({x})| >
1} ⊆ f(Rm) has measure zero with respect to the Lebesgue measure on f(Rm), then dim(f(Rm)) =
m and almost every point in f(Rm) is generic with respect to f .

D.2 PROOF OF THEOREM 3.2.(I)

We extend the results from Kivva et al. (2022) to using our MSM family as prior distribution for z1:T .
The strategy requires finding some open set where the transformations F and G from two equally
distributed SDSs are invertible, and then use analytic function properties to establish the identifiability
result. First, we need to show that the points in the pre-image of a piece-wise factored mapping F
can be computed using the MSM prior.

Lemma D.2. Consider a random variable z1:T which follows a Markov Switching Model distribution.
Let us consider f : Rm → Rm, a piece-wise affine mapping which generates the random variable
x1:T = F(z1:T ) as xt = f(zt), 1 ≤ t ≤ T . Also, consider x(0) ∈ Rm a generic point with respect
to f . Then, x(0)

1:T = {x(0), . . . ,x(0)} ∈ RTm is also a generic point with respect to F and the
number of points in the pre-image F−1({x(0)

1:T }) can be computed as∣∣∣F−1
({

x
(0)
1:T

})∣∣∣ = lim
δ→0

∫
x1:T∈RTm

Ext
(
p|

B(x
(0)
1:T ,δ)

)
dx1:T

Proof. If x(0) ∈ Rm is a generic point with respect to f , x(0)
1:T is also a generic point with respect toF

since the pre-image is F({x(0)
1:T }) now larger but still finite. In other words, F({x(0)

1:T }) is the Carte-
sian productZ×Z×· · ·×Z , whereZ = {z1, z2, . . . ,zn} are the points in the pre-image f({x(0)}).
Considering this, we have well defined affine mappings Gi1,...,iT : B({zi1 , . . . ,ziT }, ϵ) → Rm,
it ∈ {1, . . . , n} for 1 ≤ t ≤ T , such that Gi1,...,iT = F(z1:T ),∀z1:T ∈ B({zi1 , . . . ,ziT }, ϵ). This
affine mapping Gi1,...,iT is factored as follows:

git(zt) = f(zt), ∀zt ∈ B(zi, ϵ)

Gi1,...,iT =

Ai1 . . . 0
...

. . .
...

0 . . . AiT


z1

...
zT

+

bi1
...

biT


Let δ0 > 0 such that

B(x
(0)
1:T , δ0) ⊆

n⋂
i1,...,iT

Gi1,...,iT (B({zi1 , . . . ,ziT }, ϵ))

we can compute the likelihood for every x1:T ∈ B(x
(0)
1:T , δ

′) with 0 < δ′ < δ0 using Prop. C.1 where
the MSM is closed under factored affine transformations.

p|
B(x

(0)
1:T ,δ)

=

n∑
i1,...,iT

K∑
j1,...,jT

p (s1:T = {j1, . . . , jT })N
(
x1;Ai1µ(j1) + bi1 , Ai1Σ1(j1)A

T
i1

)
T∏

t=2

N
(
xt;Aitm

(
A−1

it−1

(
xt−1 − bit−1

)
, jt

)
+ bit , AitΣ

(
A−1

it

(
xt−1 − bit−1

)
, jt

)
AT

it

)
Where the previous density is an analytic function which is defined on an open neighbourhood of
x
(0)
1:T . Then from the identity theorem of analytic functions the resulting density defines the analytic
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extension of p|
B(x

(0)
1:T ,δ)

on Rm. Then, we have∫
x1:T∈RTm

Ext
(
p|

B(x
(0)
1:T ,δ)

)
dx1:T

=

s∑
i1,...,iT

K∑
j1,...,jT

p (s1:T = {j1, . . . , jT })N
(
x1;Ai1µ(j1) + bi1 , Ai1Σ1(j1)A

T
i1

)
T∏

t=2

N

(
xt;Aitm

(
A−1

it−1

(
xt−1 − bit−1

)
, jt

)
+ bit , AitΣ

(
A−1

it−1

(
xt−1 − bit−1

)
, jt

)
AT

it

)

=

n∑
i1,...,iT

∫
x1:T∈RTm

K∑
j1,...,jT

p (s1:T = {j1, . . . , jT })N
(
x1;Ai1µ(j1) + bi1 , Ai1Σ1(j1)A

T
i1

)
T∏

t=2

N

(
xt;Aitm

(
A−1

it−1

(
xt−1 − bit−1

)
, jt

)
+ bit ,

AitΣ
(
A−1

it−1

(
xt−1 − bit−1

)
, jt

)
AT

it

)
dx1:T

=

n∑
i1,...,iT

1 = nT =
∣∣∣F−1({x(0)

1:T })
∣∣∣

We can deduce the following corollary as in Kivva et al. (2022).
Corollary D.1. Let F , G : RTm → RTn be factored piece-wise affine mappings, with xt := f(zt)
and x′

t := g(z′
t), for 1 ≤ t ≤ T . Assume f and g are weakly-injective (Def. 2.1). Let z1:T and z′

1:T
be distributed according to the identifiable MSM family. Assume F(z1:T ) and G(z′

1:T ) are equally
distributed. Assume that for x0 ∈ Rn and δ > 0, f is invertible on B(x0, 2δ) ∩ f(Rm).

Then, for x(0)
1:T = {x0, . . . ,x0} ∈ RTn there exists x(1)

1:T ∈ B(x
(0)
1:T , δ) and δ1 > 0 such that both F

and G are invertible on B(x
(1)
1:T , δ1) ∩ F(RTm).

Proof. First, we observe that since F is a factored mapping, if f is invertible on B(x0, 2δ)∩ f(Rm),
we can compute the inverse of F on B(x

(0)
1:T , 2δ) ∩ F(Rm) for x(0)

1:T = {x0, . . . ,x0} ∈ RTn as
F−1(x1:T ) = {f−1(x1), . . . , f

−1(xT )} ∈ RTm, for xt ∈ B(x0, 2δ) ∩ f(Rm), 1 ≤ t ≤ T . Then,
F is invertible on B(x

(0)
1:T , 2δ) ∩ F(Rm).

By Lemma D.1, almost every point x ∈ B(x(0), δ) ∩ f(Rm) is generic with respect to f and g, as
both mappings are weakly injective. As discussed previously, if x(0) ∈ f(Rm) is a generic point
with respect to f , the point x(0)

1:T = {x(0), . . . ,x(0)} ∈ F(RTm) is also generic with respect to F , as
the finite points in the preimage f−1({x(0)}) extend to finite points in the preimage F−1({x(0)

1:T }).
Then, almost every point x1:T ∈ B(x

(0)
1:T , δ) ∩ F(RTm) is generic with respect to F and G.

Consider now x
(1)
1:T = {x(1), . . . ,x(1)} ∈ B(x

(0)
1:T , δ) such a generic point. From the invertibility

of F on B(x
(1)
1:T , δ), we have |F−1({x(1)

1:T })| = 1. By Lemma D.2, we have that |G−1({x(1)
1:T })| =

1, as x
(1)
1:T is generic with respect to F and G. Then, there exists, δ > δ1 > 0 such that on(

B(x
(1)
1:T , δ1) ∩ F(RTm)

)
⊂
(
B(x

(0)
1:T , 2δ) ∩ F(RTm)

)
the function G is invertible.

We need an additional result to prepare the proof for Theorem 3.2.(i).
Theorem D.1. Let F , G : RTm → RTn be factored piece-wise affine mappings, with xt := f(zt)
and x′

t := g(z′
t), for 1 ≤ t ≤ T . Let z1:T and z′

1:T be distributed according to the identifiable MSM
family. Assume F(z1:T ) and G(z′

1:T ) are equally distributed, and that there exists x(0)
1:T ∈ RTn and
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δ > 0 such that F and G are invertible on B(x
(0)
1:T , δ) ∩ f(RTm). Then there exists an invertible

factored affine transformationH such thatH(z1:T ) = z′
1:T .

Proof. From the invertibility of F and G in B(x
(0)
1:T , δ) ∩ f(RTm) we can find a Tm-dimensional

affine subspace B(x
(1)
1:T , δ1) ∩ L, where δ1 > 0, B(x

(1)
1:T , δ1) ⊆ B(x

(0)
1:T , δ), and L ⊆ RTn such that

HF ,HG : RTm → L are a pair of invertible affine functions where H−1
F and H−1

G coincide with
F−1 and G−1 on B(x1, δ1)∩L respectively. The fact that F and G are factored implies thatHF ,HG
are also factored. To see this, we observe that the inverse of a block diagonal matrix is the inverse of
each block, as an example for F , we first have thatH−1

F must be forcibly factored since it needs to
coincide with F−1.

H−1
F (x1:T ) =

Ãf . . . 0
...

. . .
...

0 . . . Ãf


x1

...
xT

+

b̃f
...
b̃f

 =

f−1(x1)
...

f−1(xT )


then we can take the inverse to obtain the factoredHF .

HF =

Ã−1
f . . . 0
...

. . .
...

0 . . . Ã−1
f


z1

...
zT

−
Ã−1

f . . . 0
...

. . .
...

0 . . . Ã−1
f


b̃f

...
b̃f



=

Af . . . 0
...

. . .
...

0 . . . Af


z1

...
zT

+

bf
...
bf

 , where Af = Ã−1
f , and bf = −Ã−1

f b̃f

Since F(z1:T ) and G(z′
1:T ) are equally distributed, we have that HF (z1:T ) and HG(z

′
1:T ) are

equally distributed on B(x
(1)
1:T , δ1) ∩ L. From Prop C.1, we know thatHF (z1:T ) andHG(z

′
1:T ) are

distributed according to the identifiable MSM family, which implies HF (z1:T ) = HG(z
′
1:T ), and

alsoH−1
G (HF (z1:T )) = z′

1:T , whereH = H−1
G ◦ HF is an affine transformation.

From the previous result and Theorem 3.1, there exists a permutation σ(·), such that mfg(z
′, k) =

m′(z′, σ(k)) for 1 ≤ k ≤ K.

m′(z′, σ(k)) = mfg(z
′, k) = A−1

g mf (Agz
′ + bg, k)−A−1

g bg

= A−1
g Afm

(
A−1

f Agz
′ +A−1

f (bg − bf ) , k
)
+A−1

g (bf − bg)

= Am
(
A−1(z′ − b), k

)
+ b,

where A = A−1
g Af and b = A−1

g (bf − bg). Similar implications apply for Σ(z, a), a ∈ A, which
we indicate in Rem. 3.2.

Now we have all the elements to prove Theorem 3.2.(i).

Proof. We assume there exists another model that generates the same distribution from Eq.(10),
whith a prior p′ ∈MT

NL under assumptions (a1-a2), and non-linear emmision F ′, composed by f
which is weakly injective and piece-wise linear: i.e. (F#p)(x1:T ) = (F ′#p′)(x1:T ).

From weakly-injectiveness, at least for some x0 ∈ Rn and δ > 0, f is invertible on B(x0, 2δ) ∩
f(Rm). This satisfies the preconditions from Corollary D.1, which implies there exists x

(1)
1:T ∈

B(x
(0)
1:T , δ) and δ1 > 0 such that both F and F ′ are invertible on B(x

(1)
1:T , δ1) ∩ F(RTm). Thus, by

Theorem D.1, there exists an affine transformationH such thatH(z1:T ) = z′
1:T , which means that

p ∈MT
NL is identifiable up to affine transformations.

D.3 PROOF OF THEOREM 3.2.(II)

So far we have proved the identifiability of the transition function on the latent MSM distribution
up to affine transformations. By further assuming injectivity of the piece-wise mapping F , we can
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prove identifiability of F up to affine transformations by re-using results from Kivva et al. (2022).
We begin by stating the following known result.

Lemma D.3. Let Z ∼
∑J

j=1 λjN (µj ,Σj) where Z is a GMM (in reduced form). Assume that
f : Rm → Rm is a continuous piecewise affine function such that f(Z) ∼ Z. Then f is affine.

We can state the identification of F .
Theorem D.2. Let F ,G : RmT → RnT be continuous invertible factored piecewise affine functions.
Let z1:T , z′

1:T be random variables distributed according to MSMs. Suppose that F(z1:T ) and
G(z′

1:T ) are equally distributed.

Then there exists a factored affine transformationH : RmT → RmT such thatH(z1:T ) = z′
1:T and

G = F ◦ H−1.

Proof. From Theorem D.1, there exists an invertible affine transformation H1 : RmT → RmT

such that H1(z1:T ) = z′
1:T . Then, F(z1:T ) ∼ G(H1(z1:T )). From the invertibility of G, we have

z1:T ∼ (H−1
1 ◦ G−1 ◦ F)(z1:T ). We note that H1,G,F are factored mappings, and structured as

follows (
H−1

1 ◦ G−1 ◦ F
)
(z1:T ) =


(
h−1
1 ◦ g−1 ◦ f

)
(z1)

...(
h−1
1 ◦ g−1 ◦ f

)
(zT )

 ∼
(z1)

...
(zT )

 ,

where the inverse ofH1 is also factored, as observed from previous results. Since the transformation
is equal for 1 ≤ t ≤ T , we can proceed for t = 1 considering z1 is distributed as a GMM (in reduced
form), as it corresponds to the initial distribution of the MSM. Then, by Lemma D.3, there exists an
affine mapping h2 : Rm → Rm such that h−1

1 ◦ g−1 ◦ f = h2. Then,

F =

f
...
f

 =

g ◦ h1 ◦ h2

...
g ◦ h1 ◦ h2

 = (G ◦ H) ,

where h = h1 ◦ h2. Considering the invertibility of G and the fact that F(z1:T ) and G(z′
1:T ) are

equally distributed, we also haveH(z1:T ) = z′
1:T .

We use the previous result to prove Theorem 3.2.(ii).

Proof. We assume there exists another model that generates the same distribution from Eq.(10),
whith a prior p′ ∈MT

NL under assumptions (a1-a2), and non-linear emmision F ′, composed by f
which is continuous, injective and piece-wise linear: i.e. (F#p)(x1:T ) = (F ′#p′)(x1:T ).

These are the preconditions to satisfy Theorem D.2, which implies there exists an affine transformation
H such that H(z1:T ) = z′

1:T and F = F ′ ◦ H. In other words, the prior p ∈ MT
NL, and f which

composes F are identifiable up to affine transformations.

E ESTIMATION DETAILS

We provide additional details from the descriptions in the main text.

E.1 EXPECTATION MAXIMISATION ON MSMS

For convenience, the expressions below are computed from samples {zb
1:T }Bb=1 for a batch of size B.

Recall we formulate our method in terms of the expectation maximisation (EM) algorithm. Given
some arrangement of the parameter values (θ′), the E-step computes the posterior distribution of the
latent variables pθ′(s1:T |z1:T ). This can then be used to compute the expected log-likelihood of the
complete data (latent variables and observations),

L(θ,θ′) :=
1

B

B∑
b=1

Epθ′ (sb1:T |zb
1:T )

[
log pθ(z

b
1:T , s

b
1:T )

]
. (25)
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Given a first-order stationary Markov chain, we denote the posterior probability pθ(s
b
t = k|zb

1:T ) as
γb
t,k, and the joint posterior of two consecutive states pθ(sbt = k, sbt−1 = l|zb

1:T ) as ξbt,k,l. For this
case, the result is equivalent to the HMM case and can be found in the literature, e.g. Bishop (2006).
We can then compute a more explicit form of Eq. (25),

L(θ,θ′) =
1

B

B∑
b=1

K∑
k=1

γb
1,k log πk +

1

B

B∑
b=1

T∑
t=2

K∑
k=1

K∑
l=1

ξbt,k,l logQlk+

1

B

B∑
b=1

K∑
k=1

γb
1,k log pθ(z

b
1|, sb1 = k) +

1

B

B∑
b=1

T∑
t=2

K∑
k=1

γb
t,k log pθ(z

b
t |zb

t−1, s
b
t = k), (26)

where π and Q denote the initial and transition distribution of the Markov chain. In the M-step,
the previous expression is maximised to calculate the update rules for the parameters, i.e. θnew =
argmaxθ L(θ,θ′). The updates for π and Q are also obtained using standard results for HMM
inference (again see Bishop (2006)). Assuming Gaussian initial and transition densities, we can
also use standard literature results for updating the initial mean and covariance. For the transition
densities, we consider a family with fixed covariance matrices, and only the means mθ(·, k) are
dependent on the previous observation. In this case, the standard results can also be used to update
the covariances of the transition distributions. We drop the subscript θ for convenience.

The updates for the mean parameters are dependent on the functions we choose. For multivariate
polynomials of degree P , we can recover an exact M-step by transforming the mapping into a
matrix-vector operation:

m(zt−1, k) =

C∑
c=1

Ak,cẑc,t−1, ẑT
t−1 =

(
1 zt−1,1 . . . zt−1,d z2t−1,1 zt−1,1zt−1,2 . . .

)
,

(27)
where ẑt−1 ∈ RC denotes the polynomial features of zt−1 up to degree P . The total number of
features is C =

(
P+d
d

)
and the exact update for Ak is

Ak ←

(
B∑

b=1

T∑
t=2

γb
t,kz

b
t (ẑ

b
t−1)

T

)(
B∑

b=1

T∑
t=2

γb
t,kẑ

b
t−1(ẑ

b
t−1)

T

)−1

. (28)

For exact updates such as the one above, we require B to be sufficiently large to ensure consistent
updates during training. In the main text, we already discussed the case where the transition means
are parametrised by neural networks.

E.2 VARIATIONAL INFERENCE FOR SDSS

We provide more details on the ELBO objective for SDSs.

log pθ(x1:T ) = log

∫ ∑
s1:T

pθ(x1:T , z1:T , s1:T )dz1:T (29)

≥ Eqϕ,θ(z1:T ,s1:T |x1:T )

[
log

pθ(x1:T , z1:T |s1:T )pθ(s1:T )
qϕ(z1:T , s1:T |x1:T )

]
(30)

≥ Eqϕ(z1:T |x1:T )

[
log

pθ(x1:T |z1:T )
qϕ(z1:T |x1:T )

+ Epθ(s1:T |z1:T )

[
log

pθ(z1:T |s1:T )pθ(s1:T )
pθ(s1:T |z1:T )

]]
(31)

≥ Eqϕ(z1:T |x1:T )

[
log

pθ(x1:T |z1:T )
qϕ(z1:T |x1:T )

+ log pθ(z1:T )

]
(32)

≈ log pθ(x1:T |z1:T ) + log pθ(z1:T )− log qϕ(z1:T |x1:T ), z1:T ∼ qϕ (33)
where as as mentioned, we compute the ELBO objective using Monte Carlo integration with samples
z1:T from qϕ, and pθ(z1:T ) is computed using Eq. (16). Alternatively, Dong et al. (2020) proposes
computing the gradients of the latent MSM using the following rule.

∇ log pθ(x1:T , z1:T ) = Epθ(s1:T |z1:T ) [∇ log pθ(x1:T , z1:T , s1:T ] (34)
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where the objective is similar to Eq.(13). Below we reflect on the main aspects of each method.

• Dong et al. (2020) computes the parameters of the latent MSM using a loss term similar
to Eq. (13). Although we need to compute the exact posteriors explicitly, we only take the
gradient with respect to log pθ(zt|zt−1, st = k) which is relatively efficient. Unfortunately,
the approach is prone to state collapse and additional loss terms with annealing schedules
need to be implemented.

• Ansari et al. (2021) does not require computing exact posteriors as the parameters of the
latent MSM are optimized using the forward algorithm. The main disadvantage is that
we require back-propagation to flow through the forward computations, which is more
inefficient. Despite this, the objective used is less prone to state collapse and optimisation
becomes simpler.

Although both approaches show good performance empirically, we observed that training becomes a
difficult task and requires careful hyper-parameter tuning and multiple initialisations. Note that the
methods are not (a priori) theoretically consistent with the previous identifiability results. Since exact
inference is not tractable in SDSs, one cannot design a consistent estimator such as MLE. Future
developments should focus on combining the presented methods with tighter variational bounds
(Maddison et al., 2017) to design consistent estimators for such generative models.

F EXPERIMENT DETAILS

F.1 METRICS

Markov Switching Models Consider K components, where as described the evaluation is per-
formed by computing the averaged sum of the distances between the estimated function components.
Since we have identifiability of the function forms up to permutations, we need to compute distances
with all the permutation configurations to resolve this indeterminacy. Therefore, we can quantify the
estimation error as follows

err := min
k=perm({1,...,K})

1

K

K∑
i=1

d(m(·, i), m̂(·, ki)), (35)

where d(·, ·) denotes the L2 distance between functions. We compute an approximate L2 distance by
evaluating the functions on points sampled from a random region of Rm and averaging the Euclidean
distance, more specifically we sample 105 in the [−1, 1]d interval for each evaluation.

d(f, g) :=

∫
x∈[−1,1]d

√∣∣∣∣f(x)− g(x)
∣∣∣∣2mx (36)

≈ 1

105

105∑
i=1

√∣∣∣∣f (x(i)
)
− g

(
x(i)

) ∣∣∣∣2, x(i) ∼ Uniform([−1, 1]m) (37)

Note that resolving the permutation indeterminacy has a cost of O(K!), which for K > 5 already
poses some problems in both monitoring performance during training and testing. To alleviate this
computational cost, we take a greedy approach, where for each estimated function component we pair
it with the ground truth function with the lowest L2 distance. Note that this can return a suboptimal
result when the functions are not estimated accurately, but the computational cost is reduced to
O(K2).

Switching Dynamical Systems To compute the L2 distance for the transitions means in SDSs, we
first need to resolve the linear transformation in Eq.(11). Thus, we compute the following

argmin
h

{
d
(
f, (f ′ ◦ h)

)}
(38)

where f ,f ′ compose the groundtruth F and estimated F ′ non-linear emissions respectively, and h
denotes the affine transformation. We compute the above L2 norm using 1000 generated observations
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from a held out test dataset. Finally, we compute the error as in Eq. (35), and with the following L2

norm.

d

(
m
(
·, i
)
, Am̂

(
A−1(z − b), σ(i)

)
+ b)

)
(39)

which is taken from Eq.(11). Similarly, we compute the norm using samples from the ground truth
latent variables, generated from the held out test dataset. To resolve the permutation σ(·), we first
compute the F1 score on the segmentation task as indicated, by counting the total true positives, false
negatives and false positives. Then, σ(·) is determined from the permutation with highest F1 score.

F.2 AVERAGED JACOBIAN AND CAUSAL STRUCTURE COMPUTATION

Regarding regime-dependent causal discovery, our approach can be considered as a functional causal
model-based method (see Glymour et al. (2019) for the complete taxonomy). In such methods,
the causal structure is usually estimated by inspecting the parameters that encode the dependencies
between data, rather than performing independence tests (Tank et al., 2021). In the linear case, we can
threshold the transition matrix to obtain an estimate of the causal structure (Pamfil et al., 2020). The
non-linear case is a bit more complex since the transition functions are not separable among variables,
and the Jacobian can differ considerably for different input values. With the help of locally connected
networks, Zheng et al. (2018) aim to encode the variable dependencies in the first layer, and perform
similar thresholding as in the linear case. To encourage that the causal structure is captured in the
first layer and prevent it from happening in the next ones, the weights in the first layer are regularised
with L1 loss to encourage sparsity, and all the weights in the network are regularised with L2 loss.

In our experiments, we observe this approach requires enormous finetuning with the potential to
sacrifice the flexibility of the network. Instead, we estimate the causal structure by thresholding
the averaged absolute-valued Jacobian with respect to a set of samples. We denote the Jacobian of
m̂(z, k) as Jm̂(·,k)(z). To ensure that the Jacobian captures the effects of the regime of interest, we
use samples from the data set and classify them with the posterior distribution. In other words, we
will create K sets of variables, where each set Zk with size NK = |Zk| contains variables that have
been selected using the posterior, i.e. z(i) ∈ Zk if k = argmax pθ(s

(i)|z1:T ), where we use the
index i to denote that z(i) is associated with s(i). Then, for a given regime k, the matrix that encodes
the causal structure Ĝk is expressed as

Ĝk := 1

(
1

Nk

Nk∑
i=1

∣∣∣Jm̂(·,k)

(
z(i)
)∣∣∣ > τ

)
, z(i) ∈ Zk, (40)

where 1(·) is an indicator function which equals to 1 if the argument is true and 0 otherwise. We
τ = 0.05 in our experiments. Finally, we evaluate the estimated K regime-dependent causal graphs
can be evaluated in terms of the average F1-score over components.

F.3 TRAINING SPECIFICATIONS

All the experiments are implemented in Pytorch (Paszke et al., 2019) and carried out on NVIDIA
RTX 2080Ti GPUs, except for the experiments with videos (synthetic and salsa), where we used
NVIDIA RTX A6000 GPUs.

Markov Switching Models When training polynomials (including the linear case), we use the
exact batched M-step updates with batch size 500 and train for a maximum of 100 epochs, and stop
when the likelihood plateaus. When considering updates in the form of Eq. (13), e.g. neural networks,
we use ADAM optimiser (Kingma & Ba, 2015) with an initial learning rate 7 · 10−3 and decrease it
by a factor of 0.5 on likelihood plateau up to 2 times. We vary the batch size and maximum training
time depending on the number of states and dimensions. For instance, for K = 3 and d = 3, we use
a batch size of 256 and train for a maximum of 25 epochs. For other configurations, we decrease the
batch size and increase the maximum training time to meet GPU memory requirements. Similar to
related approaches (Hälvä & Hyvarinen, 2020), we use random restarts to achieve better parameter
estimates.
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Switching Dynamical Systems Since training SDSs requires careful hyperparameter tuning for
each setting, we provide details for each setting separately.

• For the synthetic experiments, we use batch size 64, and we train for 100 epochs. We
use ADAM optimiser (Kingma & Ba, 2015) with an initial learning rate 5 · 10−4, and
decrease it by a factor of 0.5 every 30 epochs. To avoid state collapse, we perform an initial
warm-up phase for 5 epochs, where we train with fixed discrete state parameters π and Q,
which we fix to uniform distributions. We run multiple seeds and select the best model
on the ELBO objective. Regarding the network architecture, we estimate the transition
means using two-layer networks with cosine activations and 16 hidden dimensions, and
the non-linear emission using two-layer networks with Leaky ReLU activations with 64
hidden dimensions. For the inference network, the bi-directional RNN has 2 hidden layers
and 64 hidden dimensions, and the forward RNN has an additional 2 layers with 64 hidden
dimensions. We use LSTMs for the RNN updates.

• For the synthetic videos, we vary some of the above configurations. We use batch size 64
and train for 200 epochs with the same optimiser and learning rate, but we now decrease it
by a factor of 0.8 every 80 epochs. Instead of running an initial warm-up phase, we devise a
three-stage training. First, we pre-train the encoder (emission) and decoder networks, where
for 10 epochs the objective ignores the terms from the MSM prior. The second phase is
inspired by Ansari et al. (2021), where we use softmax with temperature on the logits of π
and Q. To illustrate, we use softmax with temperature as follows

Qk,: = p(st|st−1 = k) = Softmax(ok/τ), t ∈ {2, . . . , T} (41)

where ok are the logits of p(st|st−1 = k) and τ is the temperature. We start with τ = 10,
and decay it exponentially every 50 iterations by a factor of 0.99 after the pre-training stage.
The third stage begins when τ = 1, where we train the model as usual. Again, we run
multiple seeds and select the best model on the ELBO. The network architecture is similar,
except that we use additional CNNs for inference and generation. For inference, we use a
5-layer CNN with 64 channels, kernel size 3, and padding 1, Leaky ReLU activations, and
we alternate between using stride 2 and 1. We then run a 2-layer MLP with Leaky ReLU
activations and 64 hidden dimensions and forward the embedding to the same RNN inference
network we described before. For generation, we use a similar network, starting with a
2-layer MLP with Leaky ReLU activations and 64 hidden dimensions, and use transposed
convolutions instead of convolutions (with the same configuration as before).

• For the salsa dancing videos, we use batch size 8 and train for a maximum of 400 epochs.
We use the same optimiser and an initial learning rate of 10−4 and stop on ELBO plateau.
We use a similar three-stage training as before, where we pre-train the encoder-decoder
networks for 10 epochs. For the second stage, we start with τ = 100 and decay it by a
factor of 0.975 every 50 iterations after the pre-training phase. As always, we run multiple
seeds and select the best model on ELBO. For the network architectures, we use the same as
in the previous synthetic video experiment, but we use 7-layer CNNs, we increase all the
network sizes to 128, and we use a latent MSM of 256 dimensions with K = 3 components.
The transitions of the continous latent variables are parametrised with 2-layer MLPs with
SofPlus activations and 256 hidden dimensions.

F.4 SYNTHETIC EXPERIMENTS

For data generation, we sample N = 10000 sequences of length T = 200 in terms of a stationary
first-order Markov chain with K states. The transition matrix Q is set to maintain the same state with
probability 90% and switch to the next state with probability 10%, and the initial distribution π is the
stationary distribution of Q. The initial distributions are Gaussian components with means sampled
from N (0, 0.72I) and the covariance matrix is 0.12I. The covariance matrices of the transition
distributions are fixed to 0.052I, and the mean transitions m(z, k), k = 1, . . . ,K are parametrised
using polynomials of degree P = 3 with random weights, random networks with cosine activations,
or random networks with softplus activations. For the locally connected networks (Zheng et al.,
2018), we use cosine activation networks, and the sparsity is set to allow 3 interactions per element
on average. All neural networks consist of two-layer MLPs with 16 hidden units.
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(a)

(b)

Figure 8: Function responses using 3 dimensions where we vary x2 and x3. Column i shows the
response with respect to the i-th dimension. The blue grid shows the ground truth function for (a) 3
states showing component 1, and (b) 10 states showing component 6.

When experimenting with SDSs, we use K = 3 and a 2D latent MSM. We then further generate
observations using two-layer Leaky ReLU networs with 8 hidden units. For synthetic videos, we
render a ball on 32 × 32 coloured images from the 2D coordinates of the latent variables. When
rendering images, the MSM trajectories are scaled to ensure the ball is always contained in the image
canvas.

In Figure 8, we show visualisations of some function responses for the experiment considering
increasing variables and states (figs. 3b and 3c). Recall that, for K = 3 states and d = 3 dimensions,
we achieve 9 · 10−3 L2 distance error and the responses in Figure 8a show low discrepancies with
respect to the ground truth. Similar observations can be made with K = 10 states in Figure 8b, where
the L2 distance error is 10−2.

F.5 ENSO-AIR EXPERIMENT
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Figure 9: Posterior distribution grouped by month.

The data consists of monthly obser-
vations of El Niño Southern Oscilla-
tion (ENSO) and All India Rainfall
(AIR), starting from 1871 to 2016.
Following the setting in Saggioro et al.
(2020), we more specifically use the
indicators Niño 3.4 SST Index4 and
All-India Rainfall precipitation5 re-
spectively. In total, we have N = 1
samples with T = 1752 time steps
and consider K = 2 components.

In the main text, we claim that our
approach captures regimes based on
seasonality. To visualise this, We group the posterior distribution by month (fig. 9), where similar
groupings arise from both models, and observe that one component is assigned to Summer months
(from May to September), and the other is assigned to Winter months (from October to April).
To better illustrate the seasonal dependence present in this data. We show the function responses
assuming linear and non-linear (softplus networks) transitions in Figures 10a and 10b respectively. In

4Extracted from https://psl.noaa.gov/gcos_wgsp/Timeseries/Nino34/.
5Extracted from https://climexp.knmi.nl/getindices.cgi?STATION=All-India_

Rainfall&TYPE=p&WMO=IITMData/ALLIN.
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Figure 10: Function responses of the ENSO-AIR experiment assuming (a) linear and (b) non-linear
softplus networks. Each row shows the function responses for Winter and Summer respectively.

the linear case, we observe that the function responses on the ENSO variable are invariant across
regimes. However, the response on the AIR variable varies across regimes, as we observe that the
slope with respect to the ENSO input is zero in Winter, and increases slightly in Summer. This
visualisation is consistent with the results reported in the regime-dependent graph (fig. 5). In the
non-linear case, we now observe that the responses of the ENSO variable are slightly different,
but the slope differences in the responses of the AIR variable with respect to the ENSO input are
harder to visualise. The noticeable difference is that the self-dependency of the AIR variable changes
non-linearly across regimes, contrary to the linear case where the slope with respect to AIR input was
constant.

F.6 SALSA EXPERIMENT
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Figure 11: Forecasting averaged pixel MSE and
standard deviation (vertical lines) of our iSDS us-
ing test data sequences.

Mocap sequences The data we consider for
this experiment consists on 28 salsa dancing
sequences from the CMU mocap data. Each
trial consists of a sequence with varying length,
where the observations represent 3D positions of
41 joints of both participants. Following related
approaches (Dong et al., 2020), we use informa-
tion of one of the participants, which should be
sufficient for capturing dynamics, with a total of
41 × 3 observations per frame. Then, we sub-
sample the data by a factor of 4, normalise the
data, and clip each sequence to T = 200.

Video sequences To train SDSs, we generate
64 × 64 video sequences of length T = 200.
The dancing sequences are originally obtained
from the same CMU mocap data, but they are processed into human meshes using Mahmood et al.
(2019) and available on the AMASS dataset. The total processed samples from CMU salsa dancing
sequences are 14. To generate videos, we subsample the sequences by a factor of 8, and augment the
data by rendering human meshes with rotated perspectives and offsetting the subsampled trajectories.
To do so, we adapt the available code from Mahmood et al. (2019), and generate 10080 train
samples and 560 test samples. In figure 12 we show examples of reconstructed salsa videos from
the test dataset using our identifiable SDS, where we observe that the method achieves high-fidelity
reconstructions. Additionally, in Figure 11 we provide forecasting results on the test data for 50 future
frames from the last observation. As a reference, at each frame we compare the iSDS predictions
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with a black image (indicated as baseline). As we observe, the prediction error increases rapidly.
More specifically, the averaged pixel MSE for the first 20 predicted frames is 0.0148, which is
high compared to the reconstruction error (2.26 · 10−4). Nonetheless, this result is expected for
the following reasons. First, the discrete transitions are independent of the observations, which can
trigger dynamical changes that are not aligned with the groundtruth transitions. Second, the errors are
accumulated over time, which combined with the previous point can rapidly cause disparities in the
predictions. Finally, our formulation does not train the model based on prediction explicitly. Although
the predicted frames are not aligned with the ground truth, in Figure 13 we show that our iSDS is
able to produce reliable future sequences, despite some exceptions (see 6th forecast). In general, we
observe that our proposed model can be used to generate reliable future dancing sequences. We note
that despite the restrictions assumed to achieve identifiability guarantees (e.g. removed feedback
from observations in comparison to Dong et al. (2020)), our iSDS serves as a generative model for
high-dimensional sequences.

F.7 REAL DANCING VIDEOS

To further motivate the applications of our identifiable SDS in challenging realistic domains, we
consider real dancing sequences from the AIST Dance DB (Tsuchida et al., 2019). As in the previous
semi-synthetic video experiment, we focus on segmenting dancing patterns from high-dimensional
input. The data contains a total of 12670 sequences of varying lengths, which include 10 different
dancing genres (with 1267 sequences each), different actors, and camera orientations. We focus on
segmenting sequences corresponding to the Middle Hip Hop genre, where we leave 100 sequences
for testing. We process each sequence as follows: (i) we subsample the video by 4, (ii) we crop each
frame to center the dancer position, (iii) we resize each frame to 64× 64, and (iv) we crop the length
of the video to T = 200 frames.

For training, we adopt the same architecture and hyper-parameters as in the salsa dancing video
experiment (See Appendix F.3; except we set a batch size of 16 this time). Here we also include
a pre-training stage for the encoder-decoder networks, but in this case we include all the available
dancing sequences (all genres, except the test samples). In the second stage where the transitions are
learned, we use only the Middle Hip Hop sequences. We note that training the iSDS in this dataset is
particularly challenging, as we find that the issue of state collapsed reported by related works (Dong
et al., 2020; Ansari et al., 2021) is more prominent in this scenario. To mitigate this problem, we train
our model using a combination of the KL annealing schedule proposed in Dong et al. (2020) and the
temperature coefficient proposed in Ansari et al. (2021), which we already included previously. We
start with a KL annealing term of 104 and decay it by a factor of 0.95 every 50 iterations, and with
τ = 103, where we decay it by a factor of 0.975 every 100 iterations. We run this second phase for a
maximum of 1000 epochs.

We show reconstruction and segmentation results in Figure 14, where we observe our iSDS learns
different components from the dancing sequences. In general we observe that the sequences are
segmented according to different dancing moves, except for some cases where only a prominent
mode is present. We also note that different prominent modes are present depending on background
information. For example, the blue mode is prominent for white background, and the teal mode
is prominent for combined black and white backgrounds. Such findings indicate the possibility of
having data artifacts, in which the model performs segmentation based on the background information
as they could be correlated with the dancing dynamics. Furthermore, our iSDS reconstructs the video
sequences with high fidelity, except for fine-grained details such as the hands. Quantitatively, our
approach reconstructs the sequences with an averaged pixel MSE of 7.85 · 103. We consider this
quantity is reasonable as it is an order of magnitude higher in comparison to the previous salsa videos,
where the sequences were rendered on black backgrounds.
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Figure 12: Reconstruction and ground truth of salsa dancing videos from the test dataset.
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Figure 13: Forecasts and corresponding ground truth of future T = 50 frames from salsa test samples.
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Figure 14: Reconstruction, ground truth, and segmentation of dancing videos from the AIST Dance
DB test set.
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