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Abstract

Robust generalization (RG), concerning how deep neural networks could perform over ad-
versarial examples generated from unseen dataset, has emerged as an active research topic.
Albeit its crucial importance, most previous studies lack a well-founded theoretical analysis
and certified error bounds. In this paper, we make a novel attempt to theoretically and em-
pirically study how we could attain a better RG by learning discriminative representation,
where the inconsistency of the inter-sample similarity matrix between clean and adversarial
examples should be reduced. Our theoretical investigation discloses that introducing this
inconsistency as a regularization term, named Gram matrix difference (GMD), will lead to
tighter upper error bound and certify a better RG. Meanwhile, we demonstrate that previous
efforts to reduce inter-class similarity and increase intra-class similarity among adversarial
examples for enhanced adversarial robustness are approximate optimizations of our GMD
approach. Furthermore, to avoid the vast optimization complexity introduced by the sim-
ilarity matrix, we propose to optimize GMD by building a diverging spanned latent space
for adversarial examples. On the algorithmic side, this regularization term is implemented
as a novel adversarial training (AT) method — Subspace Diverging (SD) — to expand the
volume difference between the whole latent space’s linear span and subspaces’ linear spans.
Extensive experiments show that the proposed method can improve advanced AT methods
and work remarkably well in various datasets including CIFAR-10, CIFAR-100, SVHN, and
Tiny-ImageNet.

1 Introduction

Deep Neural Networks (DNNs) have attained great success recently in various applications, such as image
classification, image generation, and object detection. Despite the impressive performance enhancement over
various tasks, DNNs are strikingly vulnerable to specific well-crafted adversarial perturbations (Carlini &
Wagner, 2017; Song et al., 2018; Fischer et al., 2017; Lyu et al., 2015). Although these perturbations are
invisible to humans, they can easily mislead DNNs’ predictions. Adversarial training (AT) (Mkadry et al.,
2017; Wang & Zhang, 2019; Kannan et al., 2018; Gu & Rigazio, 2015; Zhang & Wang, 2019; Jia et al., 2022)
is considered as one of the most effective defense methods capable of effectively improving model robustness
against various types of adversarial attacks (Carlini & Wagner, 2017; Croce & Hein, 2020; Kurakin et al.,
2016; Mkadry et al., 2017), such as widely used projected gradient descent (PGD) based AT (Mkadry et al.,
2017), adversarial weight perturbation (AWP) (Wu et al., 2020), Feature Scatter (FS) (Zhang & Wang, 2019)
and TRADES (Zhang et al., 2019).

Although robustness has been improved significantly in previous studies, the robust models trained by most
existing adversarial training methods still present poor robust generalization (RG). RG evaluates how well
the model trained over the adversarial training set generalizes to further adversarial examples generated
from unseen dataset (Rice et al., 2020), which is usually measured by the robust accuracy gap, i.e. the
accuracy difference between adversarial training examples and adversarial test examples (Gao et al., 2022).
As depicted in Figure 1, all robust AT models, including PGD-AT, AWP, TRADES, and FS show poor RG
and present large robust accuracy gaps.
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(a) CIFAR-10 (b) CIFAR-100 (c) Tiny-ImageNet
Figure 1: Robust accuracy gap (over PGD20 generated on CIFAR-10, CIFAR-100, and Tiny-ImageNet)
between adversarial training and test datasets for classical AT methods and those augmented with our
Subspace Diverging (SD) regularization method.

Indeed, RG has been shown even more difficult to achieve than standard generalization, since the sample com-
plexity of adversarial examples can be significantly larger than that of standard or natural samples (Schmidt
et al., 2018b). Recent efforts have studied RG from different perspectives, such as introducing customized
early stopping (Rice et al., 2020), activation function (Singla et al., 2021), adversarial vertex mixup (Stutz
et al., 2021), and diffusion term of Stochastic Differential Equation in AT (Sun et al., 2023). However, most
of these methods empirically investigate RG and lack a well-founded theoretical analysis. Recently, Zhang
et al. (2021) proposed shift consistency regularization (SCR) term to theoretically certify the RG error,
which is, however, shown to be underperformed than our method in experimental results.

In this paper, from the perspective of learning robust and discriminative representation, we aim to investigate
an effective algorithm that can certify a tight RG bound in theory, to ensure excellent adversarial robustness
practically. Generally, adversarial perturbations induce feature shifts in the latent feature representation
(Zhang et al., 2021), which causes adversarial examples to move into the semantic clusters of other classes,
resulting in an incorrect classification. This phenomenon can be visualized in Figure 2 by comparing the
inter-sample relationship map of clean data with that of adversarial examples. In a standard model, the
discriminative features of clean data are similar within the same class and dissimilar among different classes
(see Figure 2a). On the contrary, in Figure 2b, features of adversarial examples exhibit smaller intra-class
similarity, yet more considerable inter-class similarity than clean data. Ideally, enabling the features of
adversarial examples to be as discriminative as clean data will encourage a better RG. Intuitively, this goal
can be attained by reducing the inconsistency of inter-sample relationship maps between clean data and
adversarial examples.

(a) Clean data w/ Sta. (b) PGD20 w/ Sta. (c) PGD20 w/ FS (d) PGD20 w/ FS+SD

Figure 2: Visualization of inter-sample relationship (Gram matrix) of latent features on SVHN. We randomly
select 1,000 samples for each class from the test dataset and sort all the selected samples according to their
class indexes. The lighter color represents the higher cosine similarity of the two feature vectors, and vice
versa. The latent features of a standard model (abbreviated to Sta.) are generated from (a) clean data and
(b) adversarial examples perturbed by PGD20. The latent features of adversarial examples perturbed by
PGD20 are produced by robust models trained by (c) Feature Scattering (FS) (Zhang & Wang, 2019) and
(d) FS applied with our Subspace Diverging (SD). All models are trained on the SVHN dataset and employ
wide residual networks (WRN-28) as the backbone.

To further verify our observation, we theoretically analyze the robust generation issue from a novel perspec-
tive. We illustrate that the robust generalization gap can indeed be upper bounded by the above inconsistency
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of inter-sample relationship - Gram matrix difference. Meanwhile, we demonstrate that previous efforts to
reduce inter-class similarity and increase intra-class similarity among adversarial examples for enhanced ad-
versarial robustness in (Li et al., 2019; Bui et al., 2020) are approximate optimizations of our approach. In
our case, this term is optimized by learning a diverging spanned latent space for adversarial examples, where
Volume Difference between the Whole latent space’s linear span and Subspaces’ linear spans (VDWS) is
enlarged, such that latent subspaces (divided by categories) to be mutually orthogonal. Our method addi-
tionally improves the representation diversity of adversarial examples which has been proved as one of the
merits of improving the generalization ability of standard model (Liu et al., 2018). Compared with previous
studies like (Li et al., 2019; Bui et al., 2020), our method offers a theoretical guarantee for improving RG
through learning discriminative representation. More importantly, compared with (Zhang et al., 2021), our
approach enjoys a better RG performance, which can be observed in an empirical analysis in Section 6.6,
thus certifying robust performance in many real-world datasets.

Built upon the above theory, towards better RG, we instantiate the VDWS with an AT method called
Subspace Diverging (SD). As shown in Figure 2d, our SD improves the feature representation compared
to traditional AT methods (e.g., FS in Figure 2c), which becomes more discriminative and diverse, thus
promoting a better RG (as seen in Figure 1). Our contributions are digested as follows:

1) We study and reveal that the robust generalization gap correlates with the difference in inter-sample
relationship maps between clean data and adversarial examples. Leveraging this insight, we derive a novel
and tighter robust generalization bound.

2) To enable a tractable optimization, we propose to build a diverging spanned latent space for adversar-
ial examples, which is theoretically well-founded for learning discriminate and diverse representation. We
implement a novel adversarial regularization method named subspace diverging to achieve this goal.

3) Extensive experiments have been conducted to verify the effectiveness of our adversarial regularization
method on various benchmark datasets. The results demonstrate that our approach enhances the perfor-
mances of various state-of-the-art methods.

2 Related Work

2.1 Adversarial Training

Adversarial training (AT), a primary defense approach against adversarial examples (Goodfellow et al., 2015;
Carlini & Wagner, 2017; Athalye et al., 2018), has been extensively researched to enhance the robustness of
deep neural networks. Projected gradient descent (PGD) (Carlini & Wagner, 2017) based AT is one most
common approach used to enhance robustness, and PGD is an iterative optimization technique designed to
generate adversarial examples by perturbing input samples within a specified norm constraint. Adversarial
weight perturbation (AWP) (Wu et al., 2020) is proposed which is effective in boosting robustness by directly
perturbing the model’s weights rather than the input samples. This approach aims to make the model
resilient to changes in its model parameters, thereby improving its overall stability and performance against
adversarial attacks. Based on AWP, Jin et al. (2023) introduces small Gaussian noise into the weights of
the neural network during adversarial training, and the weight perturbation is modeled using a Taylor series
expansion, which allows the method to decompose the objective function into multiple terms. The goal is to
balance the trade-off between adversarial robustness and clean accuracy by smoothing the weight updates and
finding flatter minima in the loss landscape. Feature Scatter (FS) (Zhang & Wang, 2019) disperses features
of input data to generate diverse adversarial examples. By ensuring the adversarial examples cover a wider
range of perturbations, FS can achieve better robustness. Geometry-Aware Instance Reweighted Adversarial
Training (GAIRAT) (Zhang et al., 2020c) optimizes the geometry of decision boundaries by assigning different
weights to adversarial examples based on their distances from the decision boundary. GAIRAT effectively
balances the trade-off between robustness and accuracy, leading to significant improvements in both areas.
Moreover, some researchers also investigate the effects of adversarial training strategies on model performance
(Zhang et al., 2020a; Jia et al., 2022; Wei et al., 2023). Friendly Adversarial Training (FAT) (Zhang et al.,
2020a) emphasizes that AT from adversarial examples closer to the decision boundary can help in reducing
the model’s overfitting to adversarial perturbations. Learning attack strategy (LAS) (Jia et al., 2022) is
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introduced to adjust attacking configurations for different data samples, and Wei et al. (2023) adapts
class-specific training configurations.

2.2 Robust Generalization

Robust generalization evaluates a model’s performance against unseen adversarial examples, akin to standard
generalization. Yin et al. (2019.) investigate the relationship between model complexity and its ability to
robust generalization against adversarial examples. It explores how increasing model capacity can improve
adversarial robustness but may also lead to overfitting if not properly regularized. The finding provides the-
oretical insights and empirical evidence on how to balance model complexity to achieve optimal adversarial
robustness and generalization. Schmidt et al. (2018b) argue that achieving robust generalization against
adversarial examples necessitates significantly larger datasets compared to standard training. The statement
highlights that increased data volume can enhance the model’s ability to generalize and resist adversarial
attacks. Zhang et al. (2019) decomposes the robust error into natural classification and boundary errors,
offering a balanced approach to robustness and accuracy. This study examines the inherent trade-off be-
tween achieving robustness against adversarial attacks and maintaining high accuracy on clean data. Li et al.
(2022a) analyze that the poor robust generalization is due to the VC dimension of adversarial testing samples
being significantly larger than their intrinsic dimension. Sun et al. (2023) enhance robust generalization
by approximating PGD-AT as a continuous-time Stochastic Differential Equation (SDE) and manipulating
its diffusion term. In (Zhang et al., 2021), the Shift Consistency Regulation (SCR) method is proposed to
mitigate deficient robust generalization by reducing variance in perturbation direction between adversarial
training and unseen datasets. In this paper, we investigate cosine similarity variants and analyze the ro-
bust generalization gap to enhance model robustness. Theoretical analysis suggests that achieving robust
generalization faces challenges from random inter-sample relationship variation, susceptible to perturbation
attacks. Our approach demonstrates better performance empirically, as observed in our experiments.

2.3 Learning Discriminative and Diverse Representations

Metric learning-based approaches (Cheng et al., 2016b; Hadsell et al., 2006; Hu et al., 2014; Schroff et al., 2015;
Huang et al., 2010; Chopra et al., 2005) are employed to increase inter-class distance and decrease intra-class
distance for deep features, typically using Euclidean distance. Hadsell et al. (2006) propose how to reduce
data dimensionality through invariant feature learning. It focuses on identifying and preserving essential
data characteristics while minimizing irrelevant variations, thereby enhancing the efficiency and accuracy of
subsequent analyses. The groundbreaking contrastive loss (Hadsell et al., 2006) enforce the above constraints
using a siamese network architecture (Chopra et al., 2005). This strategy gained popularity in various
downstream tasks such as image retrieval (Yousefzadeh et al., 2023). Moreover, learning discriminative
feature representations can also be beneficial in face recognition (Hadsell et al., 2006; Sun et al., 2014),
where the triplet loss (Cheng et al., 2016a) and center loss (Wen et al., 2016) also demonstrate similar
effectiveness. In a recent work by Lezama et al. (2018), a plug-and-play loss term for deep networks has been
utilized to explicitly reduce intra-class variance and enforce inter-class margin. Furthermore, Yu et al. (2020)
enhanced feature representation discriminability by augmenting the code rating of feature representation.
Following (Yu et al., 2020), Chan et al. (2022) introduce ReduNet, a deep learning framework that constructs
interpretable network architectures by maximizing the rate reduction of feature representation. ReduNet
efficiently reduces information redundancy and captures essential features.

3 Theoretical Analysis

This section analyzes RG from the theoretical aspect. A novel method is proposed to optimize the robust
generalization gap by introducing inter-class and intra-class similarity. Moreover, we propose to leverage
volume variety between the whole linear and subspace spans for a tractable optimization, which further
improves the diversity of feature representation.
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3.1 Robust Representation

Given a data distribution (x, y) ∼ (X, Y ) with K classes, a training set, consisting of N i.i.d. data pairs
drawn from (X, Y ), can be denoted as (XD, YD), where XD ∈ Rd×N and YD ∈ RK×N denote a training
data matrix and label matrix respectively, and d is the dimension of the data sample. The object of standard
generalization is to learn a deep neural network (DNN) fθ(·) with parameters θ on a training set so that
the generalization error (the difference between the expected loss over data distribution and the empirical
loss over the training data) becomes as small as possible (Xu & Mannor, 2012; Bousquet & Elisseeff, 2002;
Neyshabur et al., 2017), where fθ(·) maps the data samples from input space to latent feature space with
dimension r, e.g. fθ(x) ∈ Rr. Leveraging the above insight, considering the loss function l(·) of fθ(·), the
robust generalization error (gap) (Zhang et al., 2021) is defined as the difference between the expected loss
over on adversarial examples (Xadv

D , YD) and the expected loss over their underlying distribution (Xadv, Y ),
i.e.,

εRGE ≜
∣∣l (Xadv, Y

)
− l
(
Xadv

D , YD

)∣∣ , where

l
(
Xadv, Y

)
= E

[
l
(
fθ

(
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)
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)]

,

l
(
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)
= 1
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N∑
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)
.

In general, a test set (XT , YT ) is introduced as a surrogate of data distribution (X, Y ) to empirically
estimate the robust generalization error since the entire (X, Y ) is unavailable. Here, (XT , YT ) includes i.i.d.
samples that are drawn from (X, Y ) and disjoint with (XD, YD) .

In the following, we propose Theorem 3.1 to serve as the main theoretical foundation for our work, which
establishes an upper bound of the robust generalization containing standard generalization error and one
novel regularization term. This term was inspired based on our observations as illustrated in Figure 2, where
the Gram matrix is widely used to measure inter-class and intra-class similarity to capture inter-sample
relationships. Detailed proof can be seen in the Appendix.

Theorem 3.1 Given the clean data matrix Xi and adversarial data matrix Xadv
i that both contain Ni samples

of i-th class over the training set, the sets of clean data Ci and adversarial data Cadv
i of i-th class over the

underlying data distribution, and the DNN fθ that maps data samples to latent features with dimension r,
if the loss function l(·) of fθ(·) is t-Lipschitz, and fθ(·) is the L-Lipschitz, then for any σ > 0, with the
probability at least 1− σ, we have

εRGE ≤ εGE + tU2

N
||∇Td||2 + tKV 2||∇T ||2 + tCHL||δ||2 + M ·
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2K ln 2 + 2 ln
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σ

)
N

,
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C = 2(N + K3 + K2 + 1
2 ), H = sup

x
||fθ(x)||2.

δ is adversarial perturbation and M is the upper bound of the loss function l(·) over the whole underlying
data manifold. ▽Td and ▽T denote the Gram matrix difference over the training set and the underlying
data distribution respectively,
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where Zi = fθ (Xi)
∥fθ (Xi) ∥2,col
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, Zi, Zadv
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, zadv
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xadv
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||E
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i

]
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, zi, zadv
i ∈ Rr.

∥·∥2,col represents the calculation of the Euclidean norm of column vectors in the matrix.

Theorem 3.1 highlights that robust generalization gap εREG can be decomposed into three terms: 1) the
standard generalization gap (εGE); 2) Gram matrix difference (GMD), i.e. tU2

N ||∇Td||2 + tKV 2||∇T ||2,
which measures the inter-sample relationship difference between underlying and training adversarial data
distribution; 3) constant components. In GMD, ▽T and ▽Td denote the Gram matrix differences on
underlying and training data distributions respectively, and both of them aim to quantify the inconsistency
of inter-sample relationship maps between clean and adversarial examples. To empirically illustrate the
large GMD values of the vanilla AT method, we visualize the Gram matrices on a test set that is randomly
sampled and includes 1, 000 data points. Figure 2a and 2c show a T =

[
(Zi)⊤

Zj

]
of a standard model and

a T adv =
[(

Zadv
i

)⊤
Zadv

j

]
of a robust model trained by FS, where i, j ∈ {1, 2, . . . , K}. As observed, the

features of adversarial examples present smaller intra-class similarity and larger inter-class similarity than
those of clean data, i.e., ||(Zadv

i )⊤Zadv
i ||2 < ||Z⊤

i Zi||2 and ||(Zadv
i )⊤Zadv

j ||2 > ||ZT
i Zj ||2. This phenomenon

results in a value of Gram matrix difference, ∇T = T adv − T , so that a better RG is hard to achieve.
Accordingly, we propose to minimize the GMD to reduce this inconsistency and certify a lower RG error.

Comparison to Shift Consistency Regularization (SCR) (Zhang et al., 2021). According to
Zhang et al. (2021), for the theoretical analysis of RG, the robust error gap is divided into three com-
ponents: the standard error gap (εGE), a constant term, and a feature shift inconsistency term. There-
fore, Zhang et al. (2021) propose SCR which constraints the feature shift to certify RG, and SCR =
minθ

t
N

∑K
i=1
∑

v∈N̂i
∥fθ(xadv

v ) − fθ(xv) − E
[
fθ(xadv)− fθ(x) | x ∈ Ci

]
∥2

2, where N̂i is the set of index of
training data for class i. SCR only constrains the difference between the feature shift fθ(xadv

v ) − fθ(xv)
of each training data point and the expectation of feature shifts within the same class for the underlying
distribution. Nevertheless, it overlooks the inconsistency among different classes, which intuitively leads to
a less tight RG compared to optimizing our GMD. We provide an indirect comparison in Section A.1 of the
Appendix. We use an approximated approach to optimizing GMD which is proposed in Section 5, and our
method can achieve better RG as empirically shown in Section 6.6.

Comparison to Inter-feature Relationship (IFR) (Zhang et al., 2024): The approach proposed by
(Zhang et al., 2024). focuses on preserving the inter-feature relationship between natural and adversarial
examples. This method aims to maintain the original feature distribution structure, minimizing the vari-
ation caused by adversarial perturbations. In contrast, our approach introduces the GMD to address the
inconsistency between clean and adversarial examples in the inter-sample relationships. By optimizing a
diverging spanned latent space, we enhance the discriminative power of feature representations.

In terms of the optimization of GMD, we can opt to minimize ||∇Td||2; however, estimating ||∇T ||2 is
generally impractical due to the inaccessibility of the entire underlying distribution. Alternatively, a widely
accepted assumption is that the inter-feature relationships within the training data can reflect the structural
information of the whole data distribution. This assumption has been effectively utilized in adversarial ro-
bustness (Li et al., 2019) and representation learning (Bui et al., 2020). Therefore, as the training feature
representations become more discriminative, exhibiting larger intra-class similarity and smaller inter-class
similarity, the feature representations of the entire underlying distribution will follow the same trend. More-
over, by learning the discriminative features of adversarial examples, the diagonal elements of the Gram ma-
trix increase, while the off-diagonal elements decrease accordingly for both training and underlying datasets.
As such, ignoring the ignoring ||∇T ||2 still represents a reasonable optimization strategy, since the minimizing
||∇Td||2 will lead to a decrease in ||∇T ||2.

To address this aspect, we present ||∇Td||2 and ||∇T ||2 of our SD, as shown in Figure 3. We empirically
calculate these values by randomly sampling N = 1000 data points from the training and test set of the
CIFAR-10 dataset respectively, where our method is only applied to the training data. 1

N2 ||∇Td||2 and
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(a) PGD20 (b) C&W

Figure 3: || ▽ Td||2 and || ▽ T ||2 of our approach under (a) PGD20 and (b) C&W. All methods are trained
by using WiderResNet-34-10 as backbone.

1
N2 ||∇T ||2 are calculated under the PGD20 and C&W attack with PGD-AT baseline in Figure 3a and 3b
respectively. The results clearly illustrate that SD can decrease ||∇Td||2 and ||∇T ||2 consistently.

Moreover, GMD can be approximately optimized by minimizing ||▽Td||2, which can be further decomposed
as:

∥∇Td∥2 =
√
∥∇T inter

d ∥2
2 + ∥∇T intra

d ∥2
2,

where ∥∇T inter
d ∥2 =

√√√√ K∑
i=1

K∑
j=1,i̸=j

∥(Zadv
i )T Zadv

j − (Zi)T Zj∥2
2, (2)

∥∇T intra
d ∥2 =

√√√√ K∑
i=1
∥(Zadv

i )T Zadv
i − (Zi)T Zi∥2

2; .

Here, ||▽T inter
d ||2 and ||▽T intra

d ||2 denote the inter-class and intra-class similarity respectively on training
adversarial example distribution. Reducing || ▽ Td||2 can be achieved when (Zadv

i )⊤Zadv
i −→ Z⊤

i Zi and
(Zadv

i )⊤Zadv
j −→ Z⊤

i Zj . Thus, the intra-class cosine similarity should increase, and inter-class cosine
similarity should decrease. This solution aligns the general intuition for learning discriminative representation
to improve generalization ability and is an approximation of our GMD.

3.2 Diverging Spanned Latent Space

The intricacies of point-to-point level optimization contribute to the vast optimization complexity. To solve
this problem, we propose to optimize this term by learning a diverging spanned latent space for adversarial
examples.

The linear spans of the whole training feature matrix Z and class-wise feature matrix Zi are denoted as S
and Si respectively, and calculated by

S = ZZ⊤, Si = ZiZ
⊤
i ,

where S, Si ∈ Rr×r, r is feature dimension, and column vectors in S and Si represent the set of basis vectors
for the whole latent spaces and class-wise subspace of i-th class. The volume of any latent space linear span
P can be represented by its determinant:

Vol (P ) = det (P ) . (3)

Intuitively, the more diverse the subspaces are, the more separable clusters of adversarial example feature
representation. Consequently, the inter-class similarity tends to decrease. Such a latent space, composed of
diverging subspaces, embodies a larger volume, which is visualized in Figure 4. Besides, a smaller volume
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of each subspace indicates a larger intra-class similarity. We show the proof details of this viewpoint in
Theorem 3.2.

Theorem 3.2 Let S be the span of the latent space, encompassing all subspaces {Si}K
i=1 ⊂ S. Let I denote

the identity matrix. Then,

If Vol(S) is maximized, all subspaces Si ⊂ S are mutually independent,
If Vol(I + Si) is minimized, the vectors in Si remain consistent.

(4)

Theorem 3.2 highlights that decreased cosine similarity among distinct subspaces basis expands the volume
of the overall spanned latent space as illustrated in Figure 4. In contrast, heightened cosine similarity
between intra-class basis is associated with reduced volume in each subspace. Detailed proof of Theorem 3.2
is provided in the Appendix.

To achieve a discriminative feature representation, we aim to maximize the overall volume of the training
latent space linear span while minimizing the volume of the linear subspace span, as elaborated in Section
3.1. Specifically, we sort these objectives by prioritizing the expansion of the Volume Difference between
the Whole latent space’s linear span and Subspaces’ linear spans (VDWS):

VDWS ≜ Vol
(
Sadv

)
− 1

K

K∑
i=1

Vol
(
I + Sadv

i

)
, (5)

where I is the identity matrix to prevent the subspace Si volume being close to 0; hence, the above issue can
be reformulated as aiming to maximize VDWS to diminish concurrently both ||∇T inter

d ||2 and ||∇T intra
d ||2,

denoted as:
max VDWS =⇒ min ||∇Td||2, (6)

where ||∇Td||2 represents the gram matrix difference on whole data distribution.

Figure 4: As the subspace becomes more independent, the volume of the overall spanned space becomes larger (each small white
ball represents the unit volume, and as the white ball becomes more extensive, the overall volume becomes more prominent).
Therefore, semantic clusters may become more dispersed, resulting in more discriminative feature representations.

Here, we show that maximizing VDWS enjoys an additional advantage for certifying better robust general-
ization since the diversity of adversarial example feature representations is implicitly promoted. Specifically,
VDWS that builds a diverging spanned latent space will produce a unique eigenvector set for each subspace,
including a more significant number of eigenvectors.

By applying the singular value decomposition algorithm, the subspace can be denoted as Si = Ui

∑∑∑
i V ⊤

i ,
where Ui represents the eigenvector matrix of Si. The unique eigenvector set for i-th class, including the
orthogonal basis set that remains independent of other subspaces, is defined as:

U∗
i = {ei1 , ..., eit

, ..., eiT
},

s.t. eit
× Sj = 0, ∀ eit

∈ U∗
i , j ∈ [1, K] and i ̸= j.

(7)

Since our VDWS increases the volume of S, the more significant number of the whole latent space basis will
be attained so that the number of bases eit

in unique eigenvector set U∗
i of subspace also increases.
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From the above analysis, a more sizable number of distinct eigenvectors eit
in U∗

iadv
will naturally steer

to a greater value of rank(U∗
iadv

), which has been shown as a necessary condition for learning diverse
representation in (Chan et al., 2022). Therefore, the approach not only enhances feature representation
discrimination but also improves feature representation diversity, which has been proven to enhance model
generalization (Liu et al., 2018). Moreover, We further verify the feature diversity of our method through
experimental analysis in Section 6.8.

Previous studies have investigated the discriminative and diverse representation learning for standard gen-
eralization, such as Maximal Coding Rate Reduction (MCR2), considering the low level of feature distortion
as an essential premise in (Yu et al., 2020). However, as shown in Figure 2b and 2c, features of adversarial
examples are highly distorted, which leads to unclear inter-sample relationships. As a result, applying MCR2

directly on an adversarial example potentially introduces difficulty in the optimization process. In contrast,
we propose to work on the volume to maximize VDWS to achieve robust generalization.

4 Empirical Analysis

In this section, we aim to confirm the validity of Theorem 3.1 by demonstrating how the accuracy gap
between test and training adversarial examples evolves with varying values of VDWS. We visually illustrate
inter-sample similarity, shedding light on how adversarial perturbations play a role in this accuracy gap. All
the models discussed in this subsection are trained using Feature Scatter (FS) on the SVHN dataset.

4.1 Robust Generalization vs. Volume of Linear Span

(a) (b) (c) (d)

Figure 5: The accuracy gap vs. VDWSt at different training epochs. The comparison of FS and AT to train
the robust models against various attacks: (a) C&W attack and (b) PGD20 attack. The comparison of FS
and FS+SD (ours) to train the robust models against various attacks: (c) C&W attack and (d) PGD20
attack.

Adhering to the established evaluation protocol (Xu & Mannor, 2012), rather than using the error gap
difference |εRGE − εGE |, we choose to calculate the accuracy gap difference,∣∣|ACC(Xadv

T , YT )−ACC(Xadv
D , YD)|−|ACC(XT , YT )−ACC(XD, YD)|

∣∣ which shares the same trend with
error gap difference. This replacement will provide a direct reflection of robust generalization, which has been
widely utilized in previous studies (Zhang et al., 2021). In Section 3.1, we have demonstrated the correlation
between VDWS and GMD. To validate Theorem 3.1 and show whether the gap difference is caused by GMD,
the VDWSt and the accuracy gap difference under C&W and PGD20 across 60 to 200 epochs are shown
in Figure 5a and 5b, where robust models are trained by FS and AT respectively and VDWSt denote the
VDWS values of the test datasets. As results can be observed, the VDWSt and the accuracy gap difference
show obvious consistency. Therefore, the results indicate that GMD can capture the error gap difference
(reflecting the difference between robust and standard generalization).
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Feature Visualization

(a) Clean w/ FS (b) Clean w/ FS+SD (c) PGD3 w/ FS (d) PGD3 w/ FS+SD

Figure 6: The latent features generated from (a) FS with clean samples, (b) FS+SD with clean samples,
(c) FS against PGD3 attack, (d) FS+SD against PGD3 attack. All models are trained on the CIFAR-10
dataset and employ wide residual networks (WRN-28) as the backbone.

We select three classes for visualizing the feature distributions on the test dataset of CIFAR-10. We employ
a multi-layer perceptron (MLP) backbone and utilize a PGD-3 attack with ϵ = 2

255 to generate feature
distributions presented in Figure 6. In the latent space of adversarial examples, after integrating our SD to
FS in Figure 6d, the distributions of the categories are more inclined toward the vertical, and the clusters of
categories are more compact than the ones of FS in Figure 6c. This trend also emerges in the clean dataset,
as observed in models trained by FS+SD in Figure 6b and FS in Figure 6a.

5 Subspace Diverging Regularization

We now turn to solve the optimization problem outlined in Section 3.2. Initially, to expand the entire volume
of the latent linear span Vol (S), we introduce the following functions:

Lspan = log det(S). (8)

The function log det(·) is a smoothly concave function that aids in achieving an optimal solution more
effectively. Moving on, to reduce the volume of the subspace linear span, we define the contraction component
as below:

Lshrink =
K∑

i=1

Ni

2N
log det

(
I + ω

Ni
Si

)
, (9)

where Ni represents the number of training samples for each class, and ω is a pre-defined parameter. These
two components collaboratively function as:

Ldiverge = γLshrink − (1− γ)Lspan, (10)

where γ is a balance hyper-parameter, scaling two functions effectively.

Consequently, we propose utilizing Ldiverge as a regularization term in adversarial training. This regulariza-
tion promotes subspace divergence, which can be defined as:

min
θ
{ 1

N
L
(
Xadv

D , YD, θ
)

+ λ

k
∗ Ldiverge

(
Xadv

D , YD, θ
)
},

s.t. Xadv
D = argmax

X′
D

(
Lgene (X ′

D, YD, θ) + 1
d

Ldiverge (X ′
D, YD, θ)

)
,

where Xadv
D indicate adversarial training dataset that are produced during the adversarial training, X ′

D

represents the initial adversarial training dataset that adds random noise to the original image, L(·) is an
adversarial training loss, and Lgene(·) is the loss function which producing adversarial examples. As the scale

10
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Algorithm 1 Adversarial Training with our Subspace Diverging (SD)
Input: a neural network fθ(·) initialized with learnable parameters θ, n̂ batches of data pairs
{(x̂1, ŷ1), (x̂2, ŷ2), . . . , (x̂n̂, ŷn̂)}, batch size V, a predefined hyper-parameter λ, Gaussian noise ϵ ∈
(−0.015, 0.015), number of epochs e.
Output: robust neural network fθ(·).
Initialize Lmax

gene ← 0, Lmax
diverge ← 0, Lmax ← 0

for i← 1 to n̂ do
Add Gaussian noise on data samples: x̂′

i = x̂i + ϵ
Generate the adversarial examples for i-th data batch: x̂adv

i ← argmax
x̂′

i

(Lgene(x̂′
i, ŷi, θ))

Select the maximum loss values for three sets:
Lmax

gene ← max(Lgene(x̂′
i, ŷi, θ), Lmax

gene)
Lmax

diverge ← max(Ldiverge(x̂′
i, ŷi, θ), Lmax

gene)
Lmax ← max(L(x̂adv

i , ŷi, θ), Lmax)
end for
Calculate the k and d by: k = Lmax

diverge

Lmax and d = Lmax
diverge

Lmax
gene

for j ← 1 to e do
for i← 1 to n̂ do

x̂′
i ← x̂i + ϵ

Generate the adversarial examples: x̂adv
i ← arg max

x̂′
i

(
Lgene(x̂′

i, ŷi, θ) + 1
d Ldiverge(x̂′

i, ŷi, θ)
)

Update the classifier: θ ← min
θ

{ 1
V

(
L(x̂adv

i , ŷi, θ) + λ
k Ldiverge(x̂adv

i , ŷi, θ)
)}

end for
end for
return robust neural network fθ(·).

of Ldiverge(·) and Lgene(·) are different, we design normalization parameters d and k to adjust loss values,
and λ is an additional pre-defined parameter.

Due to the GPU memory limitations, calculating Ldiverge(·) for all of the training dataset is very challenging.
To solve this problem, we calculate Ldiverge(·), L(·), and Lgene(·) for each data batch. Then, we select
the maximum values among all the batches and define them as Lmax, Lmax

gene, and Lmax
diverge respectively.

Subsequently, we estimate d and k using Lmax, Lmax
diverge and Lmax

gene, where d = Lmax
diverge

Lmax
gene

and k = Lmax
diverge

Lmax .

We have observed that the values of d and k remain stable for each epoch. Therefore, to streamline our
training process, we compute the d and k only in the first epoch. The specific values for d and k of
various datasets and the entire algorithm can be found in experiment section. When training the generated
adversarial examples, our algorithm can be regarded as a regularization to increase the overall spanned space
volume but reduce the volume of each subspace.

6 Experiments

This section conducts comprehensive experiments to gauge the effectiveness of our SD method, in countering
diverse adversarial examples.

6.1 Experimental Setting

We evaluate our method’s robustness against white-box and black-box adversarial examples on CIFAR-
10, CIFAR-100, SVHN, and Tiny-Imagenet. We benchmark our approach against four established methods:
Feature Scattering (FS) (Zhang & Wang, 2019), Adversarial Training (AT) (Mkadry et al., 2017), Adversarial
Weight Perturbation (AWP) (Wu et al., 2020), and TRADES (Zhang et al., 2019). Our core model is based
on the WideResNet-34-10 (WRN34) architecture. On Tiny-ImageNet datasets, we follow (Jia et al., 2022)
and implement PreActResNet18 as the backbone. FS, a well-known baseline, has been demonstrated to
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Table 1: All used hyper-parameters on different methods.

Method Datasets Batch Size Training Epoch (d,k) γ λ ω

PGD-AT+SD
CIFAR-10 120 400 (100,100) 0.5 0.5 0.05
CIFAR-100 80 300 (200,200) 0.7 0.05 0.01
Tiny-ImageNet 120 120 (200,400) 0.2 0.01 0.05

AWP+SD
CIFAR-10 120 200 (100,100) 0.5 0.5 0.1
CIFAR-100 120 250 (200,200) 0.7 0.02 0.1
Tiny-ImageNet 120 130 (150,400) 0.3 0.01 0.5

FS+SD
CIFAR-10 120 300 (200,100) 0.5 0.5 0.1
CIFAR-100 100 400 (200,150) 0.5 0.02 0.05
SVHN 120 600 (200,100) 1 0.05 0.05

TRADES+SD CIFAR-10 80 90 (90,50) 0.8 0.1 0.05
CIFAR-100 100 90 (150,200) 0.5 0.01 0.01

Table 2: Accuracy under white-box attacks on CIFAR-10 with WiderResNet-34-10 (ϵ = 8).

Method Clean PGD-20 PGD-50 C&W AA
PGD-AT 85.17 55.08 54.88 53.91 51.69
TRADES 85.72 56.10 55.90 53.87 53.40
AWP 85.57 58.13 57.92 56.03 53.90
LBGAT 88.22 54.66 54.30 54.29 52.23
MART 84.17 58.56 58.06 54.58 51.10
FAT 87.97 49.86 48.79 48.65 47.48
GAIRAT 86.30 59.54 58.74 45.57 40.30
PGD-AT+LAS 86.23 56.49 56.12 55.73 53.58
PGD-AT+SCR 85.91 56.91 56.51 54.93 53.04
PGD-AT+RAT 84.39 56.29 55.97 55.18 52.38
TRADES+LAS 85.24 57.07 56.80 55.45 54.15
TRADES+SCR 86.31 56.81 55.97 54.29 54.10
TRADES+RAT 85.98 58.47 - 56.13 54.20
AWP+LAS 87.74 60.16 59.79 58.22 55.52
AWP+SCR 85.49 60.90 58.31 56.36 53.49
AWP+RAT 86.12 61.45 - 58.22 57.40
PGD-AT+SD 86.43 ± 0.12 58.93 ± 0.23 58.29 ± 0.18 55.79 ± 0.22 53.91 ± 0.16
TRADES+SD 85.99 ± 0.14 58.79 ± 0.24 57.03 ± 0.22 56.93 ± 0.17 55.03 ± 0.15
AWP+SD 87.79 ± 0.11 61.59 ± 0.19 60.30 ± 0.21 58.73 ± 0.18 57.91 ± 0.20
Table 3: Accuracy under white-box attacks on CIFAR-100 with WiderResNet-34-10 (ϵ = 8).

Method Clean PGD-20 PGD-50 C&W AA
PGD-AT 60.89 31.69 31.45 30.10 27.86
TRADES 58.61 28.66 28.56 27.05 25.94
AWP 60.38 33.86 33.65 31.12 28.86
LBGAT 60.64 34.75 34.62 30.65 29.33
SAT 62.82 27.17 26.76 27.32 24.57
PGD-AT+LAS 61.80 32.77 32.54 31.12 29.03
PGD-AT+SCR 60.90 32.97 31.58 30.39 29.17
PGD-AT+RAT 61.15 32.29 30.97 31.53 28.77
TRADES+LAS 60.62 32.53 32.39 29.51 28.12
TRADES+SCR 60.42 32.15 32.17 29.57 27.68
TRADES+RAT 62.93 33.36 - 29.61 27.90
AWP+LAS 64.89 36.36 36.13 33.92 30.77
AWP+SCR 64.51 34.92 33.98 33.58 29.79
AWP+RAT 64.71 35.73 - 31.41 30.20
PGD-AT+SD 62.34 ± 0.21 33.19 ± 0.15 32.97 ± 0.20 31.99 ± 0.19 29.58 ± 0.18
TRADES+SD 60.97 ± 0.16 33.79 ± 0.22 33.17 ± 0.19 29.79 ± 0.17 28.43 ± 0.14
AWP+SD 64.91 ± 0.14 36.59 ± 0.17 35.97 ± 0.16 34.03 ± 0.19 31.14 ± 0.17
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perform poorly against strong attacks, such as Autoattack, in previous work (Naseer et al., 2022). As a
result, we do not present it as a primary outcome. However, since SCR is built upon FS, we will compare
SD with SCR based on FS baseline alone in Section 6.3. Following (Zhang et al., 2021), we implement
WideResNet-28-10 (WRN28) for comparison.

In our training regimen, we employ SGD with a momentum of 0.9, weight decay of 5× 10−4, and an initial
learning rate of 0.1. Learning rates decrease at epochs 60 and 90 by a factor of 0.1. During training, we
perform 7 attack iterations for PGD-AT and TRADES, and 1 iteration for FS. For consistency, the attack
budget ϵ is maintained at 8/255 for all the methods. Adversarial examples are computed with the ℓ∞
norm during training and testing. All experiments are conducted on a single GPU, e.g. RTX 3090, under
the environment using CUDA 11.7, Python 3.8, and Pytorch 1.80. Table 1 lists all used parameters on
different baselines, batch sizes, and training epochs. The γ is the balance parameter, ω and λ are pre-defined
parameters, d and k are normalization parameters. The early stopping is used for model selection in all
methods. Our results and standard deviations are obtained from 5 runs, each trained using a different
random seed.

Based on various baselines, we compare our proposed baseline+SD approach with other state-of-the-art
adversarial training methods : 1) PGD-AT (Mkadry et al., 2017), 2) AWP (Wu et al., 2020), 3) FS (Zhang
& Wang, 2019). 4) SCR (Zhang et al., 2021), 5) LAS(Jia et al., 2022), 6) GAIRAT (Zhang et al., 2020c),
7) SAT (Sitawarin et al., 2021), 8) FAT (Zhang et al., 2020b), 9) LAT (Kumari et al., 2019), 10) Bilateral
(Wang & Zhang, 2019) and 11) RAT (Jin et al., 2023). We report the results under the white-box attack in
Table 2, Table 3, Table 4, and Table 5 while leaving the results of the black-box attack in Table 7.

6.2 Robustness Against Adversarial Examples

Our results reveal that SD can improve the robustness of different baselines against attacks on various
datasets. Even for more complex datasets such as Tiny-imagine, SD still has a significant effect compared with
baselines. Table 2, Table 3, Table 4, and Table 5 summarize the robust accuracy of different methods under
various adversarial attacks across CIFAR-10, CIFAR-100, Tiny-ImageNet, and SVHN datasets. Our method,
SD, consistently achieves superior performance, improving both accuracy and robustness across all datasets
and attack types. Notably, SD demonstrates significant improvements over baseline methods, particularly
in challenging scenarios such as the PGD and C&W attacks. These results highlight the effectiveness of SD
in enhancing model robustness, making it a reliable solution for adversarial defense.

Table 4: Accuracy under white-box attack on Tiny-Imagenet (ϵ = 8).

Method Clean PGD20 PGD50 C&W AA

PGD-AT 41.98 20.43 19.98 17.60 13.78
AWP 41.48 22.79 22.51 19.02 17.34
PGD-AT+LAS 44.86 22.29 22.16 18.54 16.74
AWP+LAS 45.26 23.77 23.42 19.88 18.42
PGD-AT+SD 44.27 ± 0.13 23.15 ± 0.21 22.97 ± 0.18 18.59 ± 0.19 16.79 ± 0.17
AWP+SD 45.59 ± 0.11 23.91 ± 0.16 23.49 ± 0.19 20.07 ± 0.15 18.81 ± 0.14

Table 5: Accuracy under white-box attacks on SVHN (ϵ = 8).

Models Clean PGD20 PGD100 C&W
Standard 97.20 0.30 0.10 0.30
PGD-AT 93.90 47.90 46.00 48.70
LAT 91.65 60.23 59.97 -
Bilateral 94.10 53.90 50.30 -
FS 96.20 62.90 52.00 61.30
FS+SCR 96.60 70.24 60.72 64.42
FS+SD 97.10 ± 0.27 74.15 ± 0.22 66.57 ± 0.19 65.91 ± 0.22
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6.3 Results on FS Baseline Compared with SCR

Since SCR is based on the FS baseline, we added an extra section to compare SCR and SD specifically
based on the FS baseline. Table 6 presents the performance of different methods based on the FS baseline
on CIFAR-10, CIFAR-100 and SVHN. Notably, the results marked with an asterisk (*) are cited from
(Naseer et al., 2022). On CIFAR-10, SD performs worse than SCR against certain attacks, such as PGD20.
However, on CIFAR-100 and SVHN, SD comprehensively outperforms SCR. We demonstrated improved
robust accuracy with SD compared to SCR across nearly all baselines, datasets, and attack types.

Table 6: Accuracy under white-box attack on FS baseline with WiderResNet-28-10 (ϵ = 8).

Dataset Method Clean PGD-20 PGD-100 C&W AA

CIFAR-10
FS 90.00 70.50 68.60 62.40 36.64
FS+SCR 92.70 76.45 67.79 75.42 35.81
FS+SD 91.91 ± 0.14 72.33 ± 0.18 71.85 ± 0.22 68.66 ± 0.19 37.85 ± 0.16

CIFAR-100
FS 73.90 47.20 46.20 34.60 0.00∗

FS+SCR 74.20 48.87 47.34 38.90 -
FS+SD 74.55 ± 0.12 51.03 ± 0.17 49.57 ± 0.16 41.53 ± 0.19 4.77 ± 0.14

SVHN
FS 96.20 62.90 52.00 61.30 25.26
FS+SCR 96.60 70.24 60.72 64.62 -
FS+SD 97.10 ± 0.11 74.15 ± 0.15 66.57 ± 0.19 65.91 ± 0.20 33.51 ± 0.17

6.4 Results on Different Attack Budget

Figure 7 and Figure 8 illustrate the effectiveness of SD, our proposed method, in improving model robust-
ness under both PGD20 and CW attacks for CIFAR-10 and CIFAR-100 datasets. Across all attack budgets,
models incorporating SD show a more gradual decline in accuracy, particularly for PGD-AT+SD. The incor-
poration of SD enhances the resilience of both PGD-AT and TRADES, with PGD-AT+SD demonstrating
the most significant improvement, especially as the attack budget increases. This suggests that SD effectively
promotes robustness by maintaining higher accuracy under stronger attack conditions.

(a) CIFAR-10 w/ PGD20 (b) CIFAR-10 w/ CW

Figure 7: Accuracy vs. different attack budget for CIFAR-10 under PGD20 and CW attacks.
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(a) CIFAR-10 w/ PGD20 (b) CIFAR-10 w/ CW

Figure 8: Accuracy vs. different attack budget for CIFAR-100 under PGD20 and CW attacks.

6.5 Results on Black-Box Attack

Table 7 presents the robust accuracies under black-box attacks on three datasets, including CIFAR-10,
CIFAR-100, and Tiny-ImageNet. Here, since the compared methods are evaluated by using different back-
bones in original papers, it is difficult to compare the results of black-box attacks directly. To ensure a fair
comparison, we retrain all compared methods by leveraging the WiderResNet-34-10 (WRN34) as the unified
backbone and maintaining their original training parameter. We implement two black-box attacks FAB
and SQUARE belonging to Autoattack. By consistently outperforming other methods, particularly under
black-box attacks, SD proves to be a robust and reliable defence mechanism. The significant improvements
in accuracy across CIFAR-10, CIFAR-100, and Tiny-ImageNet confirm that SD offers superior protection.

Table 7: Accuracy under transfer-based black-box attack on various datasets (ϵ = 8).

Method CIFAR-10 CIFAR-100 Tiny-ImageNet
AAFAB AASQUARE AAFAB AASQUARE AAFAB AASQUARE

AWP 60.51 61.28 30.97 35.88 17.19 22.91
AWP+LAS 62.41 63.39 31.20 37.29 17.82 24.42
AWP+RAT 61.75 63.25 30.09 36.10 18.16 22.98
AWP+SCR 62.01 62.29 31.10 35.49 17.52 23.61
AWP+SD 63.02 ± 0.15 63.88 ± 0.18 31.72 ± 0.19 37.90 ± 0.16 17.73 ± 0.12 24.49 ± 0.14

6.6 Generalization Analysis

Figures 5c and 5d illustrate the robust accuracy gap under C&W and PGD20 between training and test
datasets of CIFAR-10. We present VDWSt for both the FS and FS+SD. Notably, Figures 5c and 5d highlight
that FS+SD achieves a smaller accuracy gap and a greater VDWSt in comparison to FS. FS+SD consistently
maintains superior VDWSt throughout the convergence process and exhibits a reduced accuracy gap. This
observation underscores SD’s role in diminishing the accuracy gap and enhancing robust generalization by
emphasizing the volume difference between the entire space and the summation of subspaces.

Figures 9a and 9b illustrate a comparison of RG results obtained through optimization using the SD regular-
ization term versus the SCR regularization term. We use PGD-AT as a baseline and attacks are PGD20 and
C&W, respectively. It is evident that using the SD regularization term results in a smaller RG compared to
the SCR regularization term. The reason is that compared to SCR, SD not only constrains the inter-sample
relationship variations within the same class but also decreases the inter-class similarity. The outcomes
validate that SD can achieve better RG compared with SCR term.
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(a) PGD20 (b) C&W

Figure 9: RG with PGD-AT+SD and PGD-AT+SCR on CIFAR-100 under (a) PGD20 and (b) C&W. All
methods are trained by using WiderResNet-34-10 as backbone.

6.7 Meta-Analysis

In this subsection, we present a meta-analysis comparing the performance of different adversarial training
methods and our SD regularization term, focusing on robust accuracy under PGD20 attack across CIFAR10
and CIFAR100. To rigorously quantify the differences in performance, we employed two statistical measures:
Cohen’s d effect size and t-test. Cohen’s d measures the effect size, which quantifies the magnitude of the
improvement in robust accuracy when SD is added. t-test assess whether the differences in robust accuracy
between methods with and without SD are statistically significant. This combined approach helps us evaluate
both how much SD improves robustness and whether these improvements are consistent across datasets.

Table 8: Robust accuracy of different baselines on various datasets under PGD-20 attacks.

Method CIFAR-10 CIFAR-100
PGD-AT 55.08 31.69
AWP 58.13 33.86
TRADES 56.10 28.66
PGD-AT + SD 58.93 33.19
AWP + SD 61.59 36.59
TRADES + SD 58.79 33.79

Table 9: Cohen’s d for AWP vs. AWP + SD across datasets and t-test results for PGD-AT vs. PGD-AT +
SD

Dataset Cohen’s d (AWP vs. AWP + SD) t-test (PGD-AT vs. PGD-AT + SD)
CIFAR-10 0.78 p < 0.05
CIFAR-100 0.65 p = 0.03

The results in Table 8 show that SD regularization significantly improves robust accuracy when combined
with adversarial training methods. In Table 9, Cohen’s d values confirm moderate to large effects across two
datasets, indicating a meaningful impact. In conclusion, SD enhances both the generalization and robustness
of adversarial training, making it a valuable addition to defenses against adversarial attacks.

6.8 Diversity Analysis

According to the definition given in Equation 7, an increase in the total unique vector numbers reflects
greater feature representation diversity. However, the computation of unique eigenvector numbers poses a
challenging task. To facilitate direct measurement of the diversity within the spanned space S, we utilize a

16



Under review as submission to TMLR

(a) FS baseline (b) AT baseline

Figure 10: Erank values under PGD20 attacks from the CIFAR-100 dataset.

widely adopted evaluation metric, effective rank, denoted as Erank. It can be mathematically represented
as:

Erank(S) = exp

(
−

L∑
l=1

pllog (pt)
)

, pl = αl

||α||1
, (11)

where αl denote the l-th element in an eigenvalue set α = {α1, . . . , αl, . . . , αL} of the spanned space S,
||α||1 represents the L1 norm of α, and pl is the normalized eigenvalue. The larger Erank represents the
better diversity for feature representation. When the values of Erank reach maximum, the determinant of
S (i.e. det(S) =

∏L
l=1 αl) also reach maximum. Following the above analysis, we can conclude that there is

a positive relationship between VDWS and Erank. Increasing the VDWS corresponds to an enlargement of
Erank. Meanwhile, Figure 10 also validates this statement. Figures 10a and 10b illustrate that SD enhances
Erank values of both FS and AT under PGD20 attacks to enhance feature diversity.

6.9 Sensitivity Analysis

We examine the parameter sensitivity of γ and λ on CIFAR-10 in Figure 11. In Figure 11a, we can observe
that the effect of the shirnk term is greater than that of the expand term since the ratio of the expand term
is (1− γ). Figure 11b shows that our method is less sensitive to λ as the fluctuation is only around 2.5%.

(a) γ (b) λ

Figure 11: Parameter sensitivity for γ and λ on CIFAR-10, where all models are trained by AT+SD.
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Conclusion

In this paper, we investigate the robust generalization (RG) problem from the perspective of learning dis-
criminative representation for adversarial examples. Our theoretical and empirical analysis illustrate that
reducing the inconsistency of inter-sample relationship maps between clean data and adversarial examples
is a feasible approach to alleviate robust overfitting and can be calculated by the proposed Gram matrix
difference (GMD). Meanwhile, we provide a theoretical guarantee for RG by introducing a novel and tight
error bound based on our GMD. Moreover, to ease the complex optimization of inter-sample relationship
maps, we propose a method that expands the volume difference between the entire latent space’s linear span
and the subspace’s linear span, thereby creating a diverging spanned latent space. On the empirical side, we
design and implement an adversarial training method, called Subspace Diverging (SD), which alleviates the
robust overfitting problem and achieves state-of-the-art performance on multiple benchmarks.
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A Theory Proof

We make two assumptions to facilitate the analysis.

Assumptions:

• For the neural network fθ(·), there exists Lipschitz constant t for loss function l(·) such that for any x1, x2
satisfying |l (fθ(x1), y1)− l (fθ(x2), y2) | ≤ t||fθ(x1)− fθ(x2)||2.

• For the neural network fθ(·), there exists a Lipschitz constant L such that for any x1, x2 satisfying ||fθ(x1)−
fθ(x2)||2 ≤ L||x1 − x2||2.

Proof of Theorem 3.1

Theorem 3.1 Given the clean data matrix Xi and adversarial data matrix Xadv
i that both contain Ni samples

of i-th class over the training set, the sets of clean data Ci and adversarial data Cadv
i of i-th class over the

underlying data distribution, and the DNN fθ that maps data samples to latent features with dimension r,
if the loss function l(·) of fθ(·) is t-Lipschitz, and fθ(·) is the L-Lipschitz, then for any σ > 0, with the
probability at least 1− σ, we have

εRGE ≤ εGE + tU2

N
||∇Td||2 + tKV 2||∇T ||2 + tCHL||δ||2 +

√
2K ln 2 + 2 ln

( 1
σ

)
N

,

where ∇Td = T adv
d − Td, ∇T = T adv − T ,

U = 1
N

N∑
n=1
||fθ(xn)||2, V = 1

K

K∑
i=1
||E [fθ(x) | x ∈ Ci] ||2,

C = 2(N + K3 + K2 + 1
2 ), H = sup

x
||fθ(x)||2.

δ is adversarial perturbation and M is the upper bound of the loss function l(·) over the whole underlying
data manifold. ▽Td and ▽T denote the Gram matrix difference over the training set and the underlying
data distribution respectively,

▽Td =


(
Zadv

1
)⊤

Zadv
1 − (Z1)⊤

Z1, · · · ,
(
Zadv

1
)⊤

Zadv
K − (Z1)⊤

ZK

. . . . . . . . .(
Zadv

K

)⊤
Zadv

1 − (ZK)⊤
Z1, · · · ,

(
Zadv

K

)⊤
Zadv

K − (ZK)⊤
ZK

 ,

▽T =


(
zadv

1
)⊤

zadv
1 − (z1)⊤

z1, · · · ,
(
zadv

1
)⊤

zadv
K − (z1)⊤

zK

. . . . . . . . .(
zadv

K

)⊤
zadv

1 − (zK)⊤
z1, · · · ,

(
zadv

K

)⊤
zadv

K − (zK)⊤
zK

 ,

(12)

where Zi = fθ (Xi)
∥fθ (Xi) ∥2,col

, Zadv
i =

fθ

(
Xadv

i

)
∥fθ

(
Xadv

i

)
∥2,col

, Zi, Zadv
i ∈ Rr×Ni ,

zi = E [fθ (x) | x ∈ Ci]
∥E [fθ (x) | x ∈ Ci] ∥2

, zadv
i =

E
[
fθ

(
xadv

)
| xadv ∈ Cadv

i

]
||E
[
fθ (xadv) | x ∈ Cadv

i

]
∥2

, zi, zadv
i ∈ Rr.

∥·∥2,col represents the calculation of the Euclidean norm of column vectors in the matrix.

proof : Let (|N1|, · · · , |NK |) is an IID multinomial random variable with parameters N . N and K denote
the total number of training samples and the total number of classes respectively. With the probability dis-
tribution set for the underlying classes {µ(C1), µ(C2), . . . , µ(Ci), . . . µ(CK)}, following Breteganolle-Huber-
Carel inequality (Proposition A6.6 of (Wellner et al., 2013)):

Pr{
K∑

i=K

| |Ni|
N
− µ(Ci)| ≥ λ} ≤ 2Kexp(−2Nλ2

2 ).
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With the probability at least 1− δ, we can get:

K∑
i=1

∣∣∣∣ |Ni|
N
− µ (Ci)

∣∣∣∣ ≤
√

2K ln 2 + 2 ln
( 1

σ

)
N

.

εRGE =

∣∣∣∣∣E [l (fθ(xadv), y
)
| x ∈ X

]
− 1

N

N∑
n=1

l
(
fθ(xadv

n ), yn

)∣∣∣∣∣
=

∣∣∣∣∣
K∑

i=1
E
[
l
(
fθ(xadv), y

)
| x ∈ Ci

]
µ(Ci)−

1
N

N∑
n=1

l
(
fθ(xadv

n ), yn

)∣∣∣∣∣
=

∣∣∣∣∣
K∑

i=1

[
E
[
l
(
fθ(xadv), y

)
| x ∈ Ci

]
+ E [l (fθ(x), y) | x ∈ Ci]− E [l (fθ(x), y) | x ∈ Ci]]µ(Ci)−

1
N

N∑
n=1

[
l
(
fθ(xadv

n ), yn

)
− l (fθ(xn), yn) + l (fθ(xn), yn)

]∣∣∣∣∣
≤

∣∣∣∣∣
K∑

i=1
E [l (fθ(x), y) | x ∈ Ci] µ(Ci)−

1
N
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l (fθ(xn), yn)
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l
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)
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]
−
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N
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l
(
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−
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≤ εGE +
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We define the loss upper bound sup

xadv∈Xadv

f(xadv) as M , where Xadv represents the distribution of adversarial

examples corresponding to the underlying data distribution. Therefore, we can get

≤ εGE +

∣∣∣∣∣
K∑

i=1
E
[
l
(
fθ(xadv), y

)
− l (fθ(x), y) | x ∈ Ci

] |Ni|
N
− 1

N

N∑
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l
(
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n ), yn
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+ M ·
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K∑

i=1
(µ(Ci)−

|Ni|
N

)

∣∣∣∣∣ .
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Given that {|Ni|}K
i=1 is a multinomial random variable with parameter N , we apply the Bretagnolle-Huber-

Carel inequality to obtain:

≤ εGE +

∣∣∣∣∣
K∑

i=1
E
[
l
(
fθ(xadv), y

)
− l (fθ(x), y) | x ∈ Ci
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N
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l
(
fθ(xadv

n ), yn

)
− l (fθ(xn), yn)

]∣∣∣∣∣
+ M ·

√
2K ln 2 + 2 ln

( 1
σ

)
N

≤ εGE + t

N
∗
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[
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]
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E
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σ
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∗
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n )− fθ(xn)||2 +
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t|Ni|
N

E
[
||(fθ(xadv)− fθ(x))||2 | x ∈ Ci

]
+ M ·

√
2K ln 2 + 2 ln

( 1
σ

)
N

.

Let fθ(Xd) ∈ Rr×N and fθ(Xu) ∈ Rr×K denote the training and underlying feature matrix respectively,
where fθ(Xu) = [E [f(x)] | x ∈ Ci]Ki=1; and fθ

(
Xadv

d

)
∈ Rr×N and fθ

(
Xadv

u

)
∈ Rr×K denote the corre-

sponding adversarial feature sets. Then, since |Ni| ≤ N , we can deduce that

≤ εGE + t

N
||fθ

(
Xadv

d

)
− fθ (Xd) ||2 + Kt||E

[
fθ(Xadv

u )
]
− E [fθ(Xu)] ||2 + M ·

√
2K ln 2 + 2 ln

( 1
σ

)
N

,

= εGE + t

N

[
||fθ

(
Xadv

d

)
− fθ (Xd) ||2 + ||

[
fθ

(
Xadv

d

)]2 − [fθ (Xd)]2 ||2 − ||
[
fθ

(
Xadv

d

)]2 − [fθ (Xd)]2 ||2
]

+Kt
[
||E
[
fθ(Xadv

u )
]
− E [fθ(Xu)] ||2 + ||E

[[
fθ(Xadv

u )
]]2 − E

[
[fθ(Xu)]2

]
||2 − ||E

[[
fθ(Xadv

u )
]2]− E

[
[fθ(Xu)]2

]
||2
]

+ M ·

√
2K ln 2 + 2 ln

( 1
σ

)
N

≤ εGE + t

N
||
[
fθ(Xadv

D )
]2 − [fθ(XD)]2 ||2 + Kt||E

[
fθ(Xadv

u )
]2 − E [fθ(Xu)]2 ||2

+ t

N

[
||fθ(Xadv

D )− fθ (XD) ||2
(
||fθ(Xadv

D ) + fθ (XD) ||2 + 1
)]

+Kt
[
||E
[
fθ(Xadv

u )
]
− E [fθ (Xu)] ||2

(
||E
[
fθ(Xadv

u )
]

+ E [fθ (Xu)] ||2 + 1
)]

+M ·

√
2K ln 2 + 2 ln

( 1
σ

)
N

H is defined as sup
x
||f(x)||2, which, together with the assumption, we can gain:

≤ εGE + t

N
||
[
fθ(Xadv

D )
]2 − [fθ(XD)]2 ||2 + Kt||E

[
fθ(Xadv

u )
]2 − E [fθ(Xu)]2 ||2 + 2t(N + K3 + K2 + 1

2 )HL||δ||2

+M ·

√
2K ln 2 + 2 ln

( 1
σ

)
N

= εGE + tU2

N
||
(
T adv

d − Td

)
||2 + tKV 2||

(
T adv − T

)
||2 + 2t(N + K3 + K2 + 1

2 )HL||δ||2 + M ·

√
2K ln 2 + 2 ln

( 1
σ

)
N

= εGE + tU2

N
||∇Td||2 + tKV 2||∇T ||2 + 2t(N + K3 + K2 + 1

2 )HL||δ||2 + M ·

√
2K ln 2 + 2 ln

( 1
σ

)
N

.
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Proof of Theorem 3.2

Theorem 3.2 Let S be the span of the latent space, encompassing all subspaces {Si}K
i=1 ⊂ S. Let I denote

the identity matrix. Then,

If Vol(S) is maximized, all subspaces Si ⊂ S are mutually independent,
If Vol(I + Si) is minimized, the vectors in Si remain consistent.

(13)

Proof:

To establish the proof, we initially introduce the log det(·) function, leveraging its concavity as detailed in
(Boyd & Vandenberghe, 2004).Since log det(I + S) = log det(I + Z⊤Z) holds for feature representations,
this equivalence enables the following results:

max
Z

log det(S)⇐⇒ max
Z

log det(I + Z⊤Z). (14)

Z denote the normalized feature matrix of fθ(X), where Z = {Zi}K
i=1. Zi represents the feature represen-

tation matrix for the i-th class.

First, we prove that max
Z

log det(S) can achieve all subspace independent.

We define the matrix D as:
D = I + Z⊤Z. (15)

The expression D can be written as:

D = I +


Z⊤

1 Z1 Z⊤
1 Z2 · · · Z⊤

1 Zk

Z⊤
2 Z1 Z⊤

2 Z2 · · · Z⊤
2 Zk

...
...

. . .
...

Z⊤
k Z1 Z⊤

k Z2 · · · Z⊤
k Zk

 .

Furthermore, we define D∗ as:

D∗ = I +


Z⊤

1 Z1 0 · · · 0
0 Z⊤

2 Z2 · · · 0
...

...
. . .

...
0 0 · · · Z⊤

k Zk

 .

Consider D∗, in which all subspaces are independent. If the volume of D∗ (i.e., det(D∗)) is greater than
that of D (i.e., det(D)), then our theorem can be established. We assume that D is a non-singular matrix
and denote D⊤ as the transpose matrix of D. Because the strict concavity of log det(·), we can get the
relationship as follow:

log det (D)− log det (D∗) ≤ ⟨∇log det (D∗) , D −D∗⟩.
(16)

From (Boyd & Vandenberghe, 2004), we can get that ∇log det (D∗) = D∗−1. In addition, due to D∗−1 =(
D∗−1)⊤, the right hand side (RHS) of Equation 16 can be shown as:

= ⟨
(

D∗−1
)

, (D −D∗)⟩

= ⟨
(

D∗−1
)

, D⟩ − ⟨
(

D∗−1
)

, D∗⟩
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We set the matrix
(
D∗−1)D as G

= tr(G)− tr(I)
= N −N

= 0.

The matrix G can be represented as follows:

G =


(
I + Z⊤

1 Z1
)−1 (

I + Z⊤
1 Z1

)
· · ·

(
I + Z⊤

1 Z1
)−1 (

I + Z⊤
1 Zk

)
...

. . .
...(

I + Z⊤
k Z1

)−1 (
I + Z⊤

k Z1
)
· · ·

(
I + Z⊤

k Zk

)−1 (
I + Z⊤

k Zk

)
 =

 1 · · · ∅
...

. . .
...

∅ · · · 1


where ∅ are the irrelevant numbers with the process of calculating trace. Thus, when the volume of the
latent span det(D∗) reaches its maximum value, each subspace is independent of each other.

Then we proceed to prove that if Vol(I + Si) is minimized, then the vectors within Si remain consistent.
The same theory as above, the relationship is also satisfied:

min
Zi

log det(I + Si)⇐⇒ min
Zi

log det(I + Zi
⊤Zi), (17)

where Zi ∈ Rr×T is i-th class feature matrix,which includes T samples, and Zi = [zit
]Tt=1. In addition,

log det(I +Z⊤
i Zi) and log det(Z⊤

i Zi) share the same trends. The matrix I +Z⊤
i Zi can be defined as matrix

Qi:

Qi = I +

 ⟨zi1 , zi1⟩ · · · ⟨zi1 , ziT⟩
...

. . .
...

⟨ziT , zi1⟩ · · · ⟨ziT , ziT⟩

 . (18)

Consider the matrix Z⊤
i Zi. Since its diagonal elements are equal to 1 and the off-diagonal elements are less

than or equal to 1, it follows that det(Z⊤
i Zi) ≥ 0. For any vector a, b ∈ Zi, and ⟨a, b⟩ = 1, det(Zi⊤Zi) will

be close to minimum value of 0. Correspondingly, log det(Qi) will also reach its minimization value.

Our proof has been finished.

A.1 Indirect Comparison between SIC and GMD

For indirect comparison, we illustrate that our GMD is equivalent to a lower bound (lowest value) of SCR
term. As a result, using our GMD to upper bound the robust generation error will result in a tighter upper
bound than using SCR. Specifically, the lower bound of the SCR term is expressed as:

SCR = min
θ

t

N

K∑
i=1

∑
v∈N̂i

∥fθ(xadv
v )− fθ(xv)− E

[
fθ(xadv)− fθ(x) | x ∈ Ci

]
∥2

2

≥ min
θ

t

N
∥

K∑
i=1

∑
v∈N̂i

(
fθ(xadv

v )− fθ(xv)
)
−N

K∑
i=1

E
[
fθ(xadv)− fθ(x) | x ∈ Ci

]
∥2

2

≥ min
θ

t

N

∣∣∣∣∣∣∥
K∑

i=1

∑
v∈N̂i

(
fθ(xadv

v )− fθ(xv)
)
∥2

2 −N

K∑
i=1
∥E
[
fθ(xadv)− fθ(x) | x ∈ Ci

]
∥2

2

∣∣∣∣∣∣
= min

θ

t

N

∣∣∥f(Xadv
D )− f(XD)∥2

2 − ∥f(Xadv)− f(X)∥2
2
∣∣ .
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When f(Xadv)→ f(X) and f(Xadv
D )→ f(XD), the resulting term,

min
θ

t

N

∣∣∥f(Xadv
D )− f(XD)∥2

2 − ∥f(Xadv)− f(X)∥2
2
∣∣ ,

provides a more constrained optimization compared to SCR. This optimization encourages not only intra-
class consistency, as is the case with SCR, but also improves inter-class separation, which is essential for
better generalization and robustness against adversarial attacks.

For our GMD term,

min
θ

[||∇Td||2 + ||∇T ||2] = min
θ

[
||
[
fθ(Xadv

D )− fθ(XD)
] [

fθ(Xadv
D ) + fθ(XD)

]
||2

+ ||
[
fθ(Xadv)− fθ(X)

] [
fθ(Xadv) + fθ(X)

]
||2
]
.

it also encourages both f(Xadv
D )→ f(XD) and f(Xadv)→ f(X).

Based on the above analysis, the optimization of GMD is a tighter and more constrained approach compared
to SCR.
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