
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

EMPIRICALLY INVESTIGATING THE TRADE-OFFS
IN DETERMINISTIC CERTIFIED TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

While there have been numerous advancements regarding the performance of deep
neural networks on a broad range of supervised learning tasks , their adversarial
robustness remains a major concern. To mitigate this, neural network verifica-
tion aims to provide mathematically rigorous robustness guarantees at the cost of
substantial computational requirements. Certified training methods overcome this
challenge by optimising for verifiable robustness during training, which, how-
ever, usually results in substantial decrease of performance on clean data. This
robustness-accuracy trade-off has been extensively studied in the context of adver-
sarial training but remains mostly unexplored for certified training. To control this
trade-off, certified training techniques expose hyperparameters, which, to date,
have been manually tuned to one specific configuration that compares favourable
to the previous state-of-the-art. In this work, we present a novel fully-automated
hyperparameter optimisation procedure for certified training that yields a Pareto
front of optimal configurations with regard to the robustness-accuracy trade-off.
Our approach facilitates the fair, principled and nuanced comparison of the per-
formance of different methods. We show that most methods yield better trade-offs
than previously assumed, thereby establishing a new state of the art in certified
training of deep neural networks. In addition, we demonstrate that performance
improvements reported over recent years are far less pronounced when all meth-
ods have been carefully tuned.

1 INTRODUCTION

In recent years, deep learning has enabled remarkable advances across several application areas
ranging from computer vision (Dosovitskiy et al., 2021) to protein structure prediction (Jumper
et al., 2021). Concurrently, there has been a fast-growing trend towards employing deep-learning-
based systems in safety-critical domains, such as unmanned aircraft manoeuvre advisory systems
(Julian et al., 2019) and map generation for autonomous driving (Hubbertz et al., 2025). However,
it is well known that deep neural networks are vulnerable to adversarial examples (Szegedy et al.,
2014): inputs perturbed by small, carefully designed modifications that lead to misclassification
(see, e.g., Goodfellow et al. (2015); Madry et al. (2018)).

While adversarial attacks play an important role in diagnosing weaknesses before or after deploy-
ment, because of the heuristic nature of the methods and their reliance on local gradients, they may
fail to find an adversarial manipulation of given inputs even when those exist. Thus, neural net-
work verification techniques have been proposed that provide formal guarantees on the robustness
of neural networks (see, e.g., Tjeng et al. (2019); Wang et al. (2021); Ferrari et al. (2022); De Palma
et al. (2024a)). These come at the cost of substantially increased computational requirements, since
proving even simple properties is an NP-complete task (Katz et al., 2017; Sälzer & Lange, 2021).

One commonly studied property in the context of neural network verification is local robustness
within an ℓ∞ norm-ball around inputs (see, e.g., Wang et al. (2021); Brix et al. (2023); König et al.
(2024)). To train networks that adhere to that property, several techniques have been proposed, most
prominently adversarial training (see, e.g., Madry et al. (2018); Zhang et al. (2019)). Here, the
parameters of the neural network are optimised with regard to a worst-case loss within the given
threat model approximated by means of adversarial attacks.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

While these techniques result in neural networks that are empirically robust, the resulting networks
are usually not easily-verifiable, i.e., even highly-optimised state-of-the-art solvers mostly fail to
prove robustness properties (see, e.g., Mao et al. (2025); De Palma et al. (2024b)). An orthogonal
line of research, certified training, focuses on producing networks for which formal robustness guar-
antees can be obtained more efficiently (see, e.g., Gowal et al. (2019); Zhang et al. (2020); Shi et al.
(2021); Müller et al. (2023); Mao et al. (2023); De Palma et al. (2024b)). Here, incomplete verifi-
cation methods that yield sound, but potentially loose, bounds on the outputs of the neural network
are employed to over-approximate the worst-case loss.

State-of-the-art methods rely on Interval Bound Propagation (IBP) (Gowal et al., 2019) for the
bounding process. While the resulting networks are more amenable to formal verification tech-
niques, compared to adversarially trained networks, they generally perform far worse on clean data
(see, e.g., Müller et al. (2023); De Palma et al. (2024b)). This effect is known as the robustness-
accuracy trade-off in the context of adversarial training (see, e.g., Tsipras et al. (2019); Zhang et al.
(2019)), but remains mostly unexplored for deterministic certified training methods.

State-of-the-art certified training techniques expose hyperparameters that govern the trade-off be-
tween robustness and accuracy. In particular, they introduce a weighting factor to balance the certi-
fied loss obtained through IBP against either clean loss (Gowal et al., 2019; Zhang et al., 2020) or
adversarial loss (Müller et al., 2023; De Palma et al., 2024b). Moreover, these methods require tun-
ing additional hyperparameters, such as the learning rate and the number of warm-up epochs, which
strongly influence training stability and final performance. Until now, the state of the art in certified
training has been determined by tuning methods to one specific trade-off that improves over results
from related work; manually (see, e.g., Müller et al. (2023); De Palma et al. (2024b)) or by relying
on grid search (Mao et al., 2025). However, due to the robustness-accuracy trade-off, the problem
naturally gives rise to a Pareto front of configurations, i.e., a set of configurations for which im-
proving one objective necessarily degrades the other. To date, this front has not been systematically
explored in the context of certified training.

In this work, we propose, for the first time, a method for computing a Pareto front of well-performing
hyperparameter configurations of certified training techniques with regard to natural and certified
accuracy by employing methods from the field of multi-objective hyperparameter optimisation.
However, these methods cannot be trivially applied to certified training. Assessing the final tar-
get objective, i.e., the certified robustness of a network obtained via complete verification, for each
investigated configuration is infeasible. We demonstrate that an estimation of certified robustness
computed through cheaper, incomplete verification techniques serves as an efficient proxy objective,
yielding networks that also perform well under complete verification. Furthermore, certain regions
of the Pareto front correspond to trivial configurations; for example, the highest natural accuracies
can be obtained by training solely on clean or adversarial loss respectively. To avoid expending
resources on these regions, we demonstrate how the optimisation can be effectively constrained to
focus only on interesting areas.

To summarise, our contributions are as follows:

1. We introduce the first fully automated hyperparameter optimisation framework for certified
training based on constrained multi-objective optimisation, which computes a Pareto front
of optimal configurations, balancing performance and verifiability.

2. Using this framework, we demonstrate that many existing certified training methods
achieve more favourable trade-offs than previously reported across standard benchmarks,
thereby establishing a new state of the art in certified training.

3. Lastly, we show how a more nuanced assessment of the state of the art in certified training
is enabled by the computed Pareto fronts, revealing complimentary performance between
methods when higher certified or clean accuracies are desired.

2 BACKGROUND

In the following, we provide the necessary background for our work, covering neural network veri-
fication, certified training and multi-objective hyperparameter optimisation.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2.1 NEURAL NETWORK VERIFICATION

Generally, given a neural network fθ : Rd 7→ Rc, c, d ∈ N that maps inputs x ∈ Rd to outputs
fθ(x) ∈ Rc, formal neural network verification is concerned with proving whether a given input-
output property holds or is violated for f .

In this study, we focus on classification problems with scalar labels y ∈ N and on local robustness
in an ℓ∞ norm ball with radius ϵ denoted as Bϵ∞. More formally, given an original input x0 with
correct label y0, the local robustness problem can be stated as

∀x′ ∈ Bϵ∞ := {x | ||x− x0||∞ ≤ ϵ} : argmax
j

fθ(x
′)j = y0 (1)

The problem reduces to computing the sign of the following optimisation problem, where z(x, y) ∈
Rc is defined as the vector of logit differences, i.e., z(x, y) := fθ(x)[y] · 1− fθ(x):

min
x′∈Bϵ

∞
min
i̸=y

z(x′, y)[i] (2)

Computing an exact solution to Equation 2 is known to be an NP-complete problem (Sälzer
& Lange, 2021; Katz et al., 2017). Therefore, in practice, sound lower bounds z(x, y)[i] ≤
z(x, y)[i], i ∈ {1, . . . , c} are approximated using incomplete verification methods.

The arguably conceptually simplest incomplete method is Interval Bound Propagation (IBP) (Gowal
et al., 2019; Mirman et al., 2018), which employs axis-aligned hyper-boxes to approximate the set of
possible outputs. For this, consider fθ as the composition of L linear layers h1,...,L with hi(x

i−1) =
Wi ·xi−1 +bi and the ReLU activation σ(x) := max(0,x), i.e., fθ = hL ◦σ ◦hL−1 ◦ · · · ◦σ ◦h1.
Using interval arithmetic, the axis-aligned hyper-box B1 that encompasses h1(Bϵ∞) is defined to
have centre x1 = W · x0 and edge length δ1 = |W| · ϵ. To approximate the reachable outputs of
σ(B1), due to the non-linearity of the ReLU function, lower and upper bounds have to be propagated
separately, i.e., l2 = σ(x1 − δ1) and u2 = σ(x1 + δ1). The resulting hyper-box B2 has centre
x2 = u2+l2

2 and edge length δ2 = u2−l2
2 . By continuing this process, we can compute a hyper-box

that encompasses the reachable output set of fθ, thereby allowing for the calculation of z(x, y).

More sophisticated methods, such as (α-)CROWN (Zhang et al., 2018; Xu et al., 2021), propagate
symbolic intervals and employ a tighter relaxation at the cost of increased computational complexity.
Furthermore, incomplete methods can be used within a branch-and-bound framework (Bunel et al.,
2020) that solves the verification problem in a complete fashion (see, e.g., De Palma et al. (2024a);
Ferrari et al. (2022); Wang et al. (2021)). These methods constitute the current state of the art in
complete neural network verification (Brix et al., 2024; König et al., 2024).

2.2 TRAINING ROBUST NEURAL NETWORKS

Madry et al. (2018) introduced the problem of training robust neural networks as a min-max optimi-
sation problem that aims to find parameters θ that minimise an expected worst-case loss measured
through L : Rc × N→ R in the ℓ∞ norm ball around samples from a data distribution (x, y) ∼ D:

θ ∈ argmin
θ′

ED[max
x′∈Bϵ

∞
L(fθ′(x′), y)] (3)

As mentioned previously, calculating the exact worst-case loss is computationally not feasible, since
it is equivalent to solving Equation 2. Therefore, Madry et al. (2018) under-approximate the in-
ner maximisation by means of Projected Gradient Descent (PGD), which iteratively searches for
points xadv in Bϵ∞ that maximise the worst-case loss. We refer to this as the adversarial loss
Ladv := L(fθ(xadv), y). While the resulting networks are empirically robust, i.e., far more resistant
to adversarial attacks than traditionally trained networks, they do not yield certifiable guarantees and
may be vulnerable to stronger adversarial attacks (Mao et al., 2025; Croce et al., 2021). Certified
training methods follow an orthogonal approach by over-approximating the true value of the inner
maximisation by means of incomplete verification methods. The verified loss Lver is computed on
the previously defined lower bound to the logit differences of fθ (Wong & Kolter, 2018):

max
x′∈Bϵ

∞
L(fθ(x′), y)] ≤ Lver := L(−z(x, y), y) (4)

This loss decreases when the employed incomplete verifier can prove that fθ is locally robust for
the given training sample. Perhaps suprisingly, training methods that employ the hyper-box relax-
ation currently yield best results, despite relying on a relatively loose over-approximation (see, e.g.,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

De Palma et al. (2024b); Mao et al. (2024); Müller et al. (2023)). We present the concrete certified
training approaches relevant to this work in Section 3. Generally, certified training methods are
evaluated with regard to two metrics, i.e., clean and certified accuracy where, given a test set, the
former refers to the fraction of correctly classified inputs and the latter refers to the fraction of inputs
for which the network is provably robust within Bϵ∞.

2.3 MULTI-OBJECTIVE HYPERPARAMETER OPTIMISATION

Formal definition. In hyperparameter optimisation, letA be an algorithm and Λ its configuration
space, containing the hyperparameters and their ranges considered for optimisation. When A is run
with a hyperparameter configuration λ ∈ Λ, we denote it as Aλ. Given a data distribution D with
training set Dtrain and test set Dtest, and l performance metrics m = {m1, . . . ,ml}, each metric
evaluates the performance of Aλ trained on Dtrain and tested on Dtest. We assume w.o.l.g. that the
optimisation goal is to maximise all metrics. We denote the metric values of configuration λ as

m(Aλ) =
(
m1(Aλ), m2(Aλ), . . . , ml(Aλ)

)
. (5)

The optimisation may have constraints c1(Aλ), . . . , ck(Aλ). A configuration λ satisfies constraint
ci if, and only if, ci(λ) ≥ 0, and configurations satisfying all constraints are called feasible.

For two feasible configurations λi, λj ∈ Λ, we say that λi Pareto dominates λj (i.e., m(Aλi) ≻
m(Aλj)) if

∀k ∈ {1, . . . , l} : mk(Aλi
) ≥ mk(Aλj

) and ∃ k ∈ {1, . . . , l} : mk(Aλi
) > mk(Aλj

).

The optimisation goal is to identify the Pareto set of non-dominated feasible configurations Λ∗ ⊆ Λ,
such that λ ∈ Λ∗ iff ∄λ′ ∈ Λ with m(Aλ) ≺m(Aλ′). The corresponding Pareto front of is denoted
M∗ = {m(Aλ) | λ ∈ Λ∗}.
Common metrics for assessing multi-objective optimisation include the hypervolume, defined as the
Lebesgue measure of the dominated space between a reference point r ∈ Rl and an approximate
Pareto front M; we denote it as HV(M, r).

Multi-objective Bayesian optimisation. Since many real-world problems involve multiple objec-
tives, several approaches for multi-objective optimisation have been proposed, including evolution-
ary algorithms (Beume et al., 2007; Deb et al., 2002) and Bayesian optimisation (Daulton et al.,
2020), the latter of which we adopt in this work. Bayesian optimisation is a surrogate-based ap-
proach that iteratively samples configurations λ1, λ2 . . . , λt and stores them in a dataset ζ. This
dataset is used to train surrogate models S1 : Λ̂ → R, S2 : Λ̂ → R, . . . , Sl : Λ̂ → R, each approx-
imating an objective m1, . . . ,ml. In addition to objective estimates, surrogates provide predictive
uncertainty, typically expressed as a variance σ2. Common choices for surrogate models include
Gaussian processes (Rasmussen & Williams, 2006) and random forests (Breiman, 2001). An acqui-
sition function balances exploration and exploitation, and selects the configuration with the highest
acquisition value for evaluation. The dataset ζ is updated with this configuration, and the process
continues until a given evaluation budget is exhausted.

In the multi-objective setting, the expected hypervolume improvement (EHVI) acquisition function
is frequently used. Given a Pareto front M and a new configuration λ ∈ Λ, the hypervolume
improvement is defined as

HVI(M, λ) =
(
HV(M ∪ {m(Aλ, Dtrain, Dtest)})− HV(M)

)
· 1[c(Aλ, Dtrain, Dtest)], (6)

i.e., the additional hypervolume gained by adding λ to the Pareto set. The EHVI is then given by
EHVI(M, λ) = E[HVI(M, λ)]

3 RELATED WORK

In the following, we give a brief overview of related work from the certified training and multi-
objective hyperparameter optimisation literature.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

State-of-the-Art Certified Training Techniques. As stated previously, state-of-the-art certified
training relies on IBP to approximate the worst-case robust loss. This approach was first introduced
by Gowal et al. (2019) but required gradually increasing ϵ to its final value over hundreds of ramp-
up epochs to stabilise training. In addition, Gowal et al. introduced a trade-off parameter κ that is
decreased from 1 to 0 during ramp-up, weighing clean and verified loss: κ · L(fθ(x), y) + (1 −
κ) · Lver(fθ(x), y)). Prior to certified training, the network may be initialized with several warm-
up epochs using the clean loss. Zhang et al. (2020) propose to combine IBP and CROWN (Zhang
et al., 2018) bounds in CROWN-IBP to compute Lver. Here, CROWN relaxations are used to bound
the final output based on IBP bounds of intermediate layers. Furthermore, a transition is made
from CROWN-IBP to IBP bounds during ramp-up, using an additional trade-off parameter β. Xu
et al. (2020) further reduce the complexity of CROWN-IBP through loss fusion, a technique that
enables direct computation of the verified loss without requiring logit differences. Shi et al. (2021)
suggest the use of BatchNorm layers (Ioffe & Szegedy, 2015) and introduce specialised initialisation
and regularisation techniques resulting in shorter ramp-up schedules and better performance. More
recently, a line of research emerged that combines certified and adversarial losses. Müller et al.
(2023) compute an unsound verified loss called SABR by propagating a smaller subset of the input
region with edge length τ · ϵ using IBP. The centers of the hyper-box are identified using PGD.
Additionally, ReLU shrinking is used to reduce the magnitude of IBP bounds by multiplying them
with a constant c < 1 before each activation, thereby gradually increasing focus on adversarial loss.
De Palma et al. (2024b) show that loss functions conceptually similar to SABR can be obtained by
considering convex combinations of Lver and Ladv weighed by α. Among those, the MTL-IBP loss
is defined as α · Lver + (1 − α) · Ladv. In addition, an effect similar to ReLU shrinking is achieved
by carrying out adversarial attacks over a larger perturbation radius.

Evaluation of Certified Training. To assess certified accuracy of trained models, related work
employed state-of-the-art complete verification systems Oval (De Palma et al., 2024a) or MN-BaB
(Ferrari et al., 2022). In addition, the tuning of parameters including the learning rate, the number of
warm- and ramp-up epochs and trade-off parameters, such as κ or α, is crucial for achieving state-
of-the-art performance. Until now, researchers have mostly relied on tuning parameters manually to
obtain a single configuration that compares favourably to the current state of the art. Recently, Mao
et al. (2025) proposed CTBench, a novel benchmark for certified training, with the goal of ensuring
a fair comparison between methods by employing grid search over separately designed hyperpa-
rameter spaces per benchmark. Nevertheless, the results presented in CTBench were obtained by
tuning to one specific trade-off that often favoured certified accuracy and, thus, came at the expense
of markedly reduced clean accuracy on some benchmarks as we show later in Section 5.

Multi-Objective Hyperparameter Optimisation. Multi-objective optimisation was deployed
previously in multiple AutoML scenarios. For example, Dooley et al. (2023) performed joint hy-
perparameter optimisation and neural architecture search of CNNs to train networks which are not
only accurate but also unbiased. Hennig & Lindauer (2025) used multi-objective hyperparameter
optimisation to find optimal shift neural networks that balance energy efficiency and accuracy. The
popular YAHPO (Pfisterer et al., 2022) benchmark offers several multi-objective hyperparameter
optimisation benchmarks for tabular machine learning. The benchmarks balance between different
objectives, including accuracy, memory usage and interpretability.

4 PARETO-FRONT DISCOVERY OF CERTIFIED TRAINING METHODS

In the following, we present our novel method for the discovery of a Pareto-optimal set of hyper-
parameter configurations for certified training. With this, we address multiple open problems in
the literature. First and foremost, we present a fully-automated pipeline to obtain optimal config-
urations for state-of-the-art methods. This renders labour-intensive manual hyperparameter tuning
unnecessary, thereby making the process more accessible to non-experts and more efficient for ex-
perts. Further, it offers a principled approach to finding high-performance configurations that might
reveal new trade-offs between clean and certified accuracy that could not be found through manual
tuning. In addition, the Pareto fronts enable a more nuanced comparison of certified training tech-
niques, e.g., they may uncover that one method yields more favourable trade-offs at a certain level
of clean accuracy than another.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Search space design. Since certified training depends on several hyperparameters whose influence
on performance is not known a priori, we opted to include all relevant hyperparameters in our
search space. These include general hyperparameters of deep learning pipelines, such as the learning
rate, epochs at which the learning rate is decayed and the optimiser used to find best performing
parameters with regard to Equation 3 (e.g., Adam (Kingma & Ba, 2015) or RAdam (Liu et al.,
2020)). Furthermore, we adapt ℓ1 regularisation, since it has proven beneficial for certified training,
and optimise its weight-parameter. Regarding techniques specific to certified training, we optimise
for the weight of the regularisation proposed by Shi et al. (2021), which is employed in all state-of-
the-art methods (see, e.g., De Palma et al. (2024b); Müller et al. (2023)). Furthermore, we search for
an optimal number of warm-up and ramp-up epochs. It may also be beneficial to train with a larger
perturbation radius than used for evaluation (see, e.g., De Palma et al. (2024b); Gowal et al. (2019));
hence, we optimise a parameter that scales the ϵ value used in training.

Moreover, we search for optimal method-specific trade-off parameters τ for SABR- and α for MTL-
IBP-based training. Regarding κ, we optimise two parameters κstart ≥ κend and transition from κstart
to κend during the ramp-up phase. We handle the β parameter in CROWN-IBP analogously. For
SABR and MTL-IBP, we additionally optimise the number of PGD steps and their step size. To
keep training cost tractable, we do not restart PGD multiple times per batch, as done by Mao et al.
(2025); a choice consistent with several prior studies (see, e.g., De Palma et al. (2024b); Madry et al.
(2018)). Lastly, we tune the ϵ-radius over which the PGD attack is carried out.

Overall, we constructed the search space to include all plausible parameter choices, rather than
restricting it to those previously shown to be successful in the literature. If those choices were
indeed optimal, we rely on the optimiser to discover them during search. For example, we included
κ and β as optimisable parameters, while related work has deemed those transitions unnecessary,
and we allow up to five warm-up epochs, while related work employed at most one (see, e.g., (Mao
et al., 2025; Shi et al., 2021)). With this, we hope to uncover previously unexplored configurations
that yield better trade-offs than prior work. We present the complete search space in Appendix B.7.

Optimisation metrics. As outlined previously, metrics of interest for certified training are clean
and certified accuracy. While evaluating clean accuracy is cheap, evaluating certified accuracy with
complete verification systems for each configuration is computationally infeasible. Thus, we opti-
mise for an under-approximation of the true certified accuracy by employing the incomplete verifica-
tion methods IBP, CROWN-IBP and CROWN, running computationally more demanding methods
only when cheaper methods could not provide a result.

Search strategy. Since hyperparameters are often inter-dependent (Moosbauer et al., 2021), we
jointly optimise all hyperparameters within the previously defined search space. To identify con-
figurations that optimally balance certified and natural accuracy, we employ multi-objective opti-
misation. However, we do not want to focus on regions of the Pareto front exhibiting high natural
accuracy with extremely low certified accuracy, or vice versa, which can be obtained, e.g., by tuning
SABR and MTL-IBP to reduce to adversarial training. Therefore, we constrain the optimisation to
an area of interest to avoid spending expensive resources on uninteresting configurations.

Multi-fidelity approaches are commonly used in hyperparameter optimisation to improve efficiency
(Eggensperger et al., 2021; Dooley et al., 2023). They first assess many configurations at low fi-
delities (e.g., fewer training epochs) and reserve high-fidelity evaluations for promising candidates.
In certified training, however, the ramp-up phase prevents meaningful comparison before training
completes, so we leave this extension for future work.

For the reasons mentioned above, we employ multi-objective Bayesian optimisation with a Gaussian
process surrogate and an EHVI acquisition function accommodating constraints. As the optimisa-
tion objectives are independent from each other, we model them using distinct Gaussian processes.
To avoid undesirable outcomes, such as becoming trapped in local optima or over-exploration of
specific parts of the Pareto front, we execute the optimisation with three pseudo-random seeds. We
then combine the Pareto fronts discovered by those three runs to create a single, unified Pareto front.

Complete verification. To obtain the final Pareto front, we assess the performance of all Pareto-
optimal configurations found with regard to incomplete verification using a state-of-the-art com-

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Comparison of the results reported from the literature to the results achieved by using
our novel optimisation procedure. For each result from the literature, we selected a configuration
from the Pareto front that achieves similar or better performance. Boldface marks results surpassing
prior work; underlined values indicate similar performance (±0.5). Our method typically yields
configurations with higher clean accuracy and, in many cases, improved certified accuracy.

Dataset ϵ Method Source
Clean Acc.

[%]
(Lit.)

Cert. Acc.
[%]

(Lit.)

Clean Acc.
[%]

(ours)

Cert. Acc.
[%]

(ours)

CIFAR-10

2
255

MTL-IBP De Palma et al. (2024b) 80.11 63.24 79.97 63.99
Mao et al. (2025) 78.82 64.41 79.87 64.54

SABR Müller et al. (2023) 79.24 62.84 81.95 64.11
Mao et al. (2025) 77.86 63.61 80.15 64.44

IBP Shi et al. (2021) 66.84 52.85 71.39 55.54
Mao et al. (2025) 67.49 55.99 69.37 55.62

CROWN-IBP Zhang et al. (2020) 71.52 53.97 77.44 59.25
Mao et al. (2025) 67.60 57.11 75.70 61.39

8
255

MTL-IBP De Palma et al. (2024b) 53.35 35.44 55.25 34.49
Mao et al. (2025) 54.28 35.41 54.18 35.27

SABR Müller et al. (2023) 52.38 35.13 54.93 34.96
Mao et al. (2025) 52.71 35.34 56.06 34.26

IBP Shi et al. (2021) 48.94 34.97 52.62 35.09
Mao et al. (2025) 48.51 35.28 51.02 35.35

CROWN-IBP Zhang et al. (2020) 46.29 33.38 55.11 33.77
Mao et al. (2025) 48.25 32.59 52.47 34.31

Tiny ImageNet 1
255

MTL-IBP De Palma et al. (2024b) 37.56 26.09 39.80 30.45
Mao et al. (2025) 35.97 27.73 39.75 30.67

SABR Müller et al. (2023) 28.85 20.46 40.61 28.86
Mao et al. (2025) 30.58 20.96 42.10 26.38

IBP Shi et al. (2021) 25.92 17.87 34.24 20.03
Mao et al. (2025) 26.77 19.82 32.12 21.53

CROWN-IBP Xu et al. (2021) 25.62 17.93 32.38 20.72
Mao et al. (2025) 28.44 22.14 30.82 22.20

plete verification system. However, the front may include several configurations with negligible
performance differences, for which complete verification would incur unnecessary costs. Therefore,
in cases where more than 5 configurations are part of the Pareto front, we employ single-linkage
clustering (Sibson, 1973), which starts by assigning each configuration to its own cluster and then
iteratively merges close clusters whenever the Euclidean distance between the metrics of configura-
tions from two clusters is less than dmin. We evaluate one random configuration for each cluster and
construct the final Pareto front using the certified accuracies obtained through complete verification.

5 EMPIRICAL EVALUATION

In the following, we describe the evaluation of our approach on standard benchmarks from the
certified training literature.

Setup of experiments. For our experiments, we employed the certified training implementations
of CTRAIN (Kaulen & Hoos, 2025), focusing on IBP, CROWN-IBP, SABR and MTL-IBP as the
methods under investigation. With this, we aimed to include current state-of-the-art methods as well
as seminal advancements from the field. For the hyperparameter optimiser, we used BoTorch (Balan-
dat et al., 2020) within the Optuna package (Akiba et al., 2019), which provides an implementation
of our chosen optimisation algorithm. Based on preliminary experiments, we set the evaluation
budget for each optimisation run to 100 trials, resulting in 300 trials per benchmark. For complete
verification, we used the state-of-the-art (Brix et al., 2024) verification system αβ-CROWN (Wang
et al., 2021; Xu et al., 2021) with a cutoff of 1 000 seconds in wall-clock time. For comparability
with related work, we followed the seemingly common practice in the certified training community
of tuning hyperparameters on the test set (see, e.g., Mao et al. (2025); Shi et al. (2021)).

We considered the CNN7 architecture of Shi et al. (2021), the de facto standard architecture for
evaluating certified training methods (see, e.g., De Palma et al. (2024b); Müller et al. (2023)). We
present results on CIFAR-10 (Dosovitskiy et al., 2021) for ϵ-radii 2

255 and 8
255 and on Tiny ImageNet

(Le & Yang, 2015) for ϵ = 1
255 , following general evaluation protocol of De Palma et al. (2024b)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

45 50 55 60 65
Certified Accuracy

67.5

70.0

72.5

75.0

77.5

80.0

82.5

85.0

N
at

ur
al

 A
cc

ur
ac

y

MTL (ours)
MTL (lit.)

(a) 2
255

, MTL

45 50 55 60 65
Certified Accuracy

67.5

70.0

72.5

75.0

77.5

80.0

82.5

85.0

N
at

ur
al

 A
cc

ur
ac

y

SABR (ours)
SABR (lit.)

(b) 2
255

, SABR

45 50 55 60 65
Certified Accuracy

67.5

70.0

72.5

75.0

77.5

80.0

82.5

85.0

N
at

ur
al

 A
cc

ur
ac

y

C-IBP (ours)
C-IBP (lit.)

(c) 2
255

, C-IBP

45 50 55 60 65
Certified Accuracy

65.0

67.5

70.0

72.5

75.0

77.5

80.0

82.5

85.0

N
at

ur
al

 A
cc

ur
ac

y

IBP (ours)
IBP (lit.)

(d) 2
255

, IBP

28 30 32 34 36
Certified Accuracy

48

50

52

54

56

58

60

62

64

N
at

ur
al

 A
cc

ur
ac

y

(e) 8
255

, MTL

28 30 32 34 36
Certified Accuracy

48

50

52

54

56

58

60

62

64

N
at

ur
al

 A
cc

ur
ac

y

(f) 8
255

, SABR

28 30 32 34 36
Certified Accuracy

45.0

47.5

50.0

52.5

55.0

57.5

60.0

62.5

N
at

ur
al

 A
cc

ur
ac

y

(g) 8
255

, C-IBP

28 30 32 34 36
Certified Accuracy

48

50

52

54

56

58

60

62

64

N
at

ur
al

 A
cc

ur
ac

y

(h) 8
255

, IBP

20 22 24 26 28 30 32
Certified Accuracy

30

32

34

36

38

40

42

44

N
at

ur
al

 A
cc

ur
ac

y
(i) 1

255
, MTL

20.0 22.5 25.0 27.5 30.0 32.5
Certified Accuracy

28

30

32

34

36

38

40

42

44

N
at

ur
al

 A
cc

ur
ac

y

(j) 1
255

, SABR

17.5 20.0 22.5 25.0 27.5 30.0 32.5
Certified Accuracy

25.0

27.5

30.0

32.5

35.0

37.5

40.0

42.5

N
at

ur
al

 A
cc

ur
ac

y

(k) 1
255

, C-IBP

17.5 20.0 22.5 25.0 27.5 30.0 32.5
Certified Accuracy

25.0

27.5

30.0

32.5

35.0

37.5

40.0

42.5

N
at

ur
al

 A
cc

ur
ac

y

(l) 1
255

, IBP

Figure 1: Results for CIFAR-10 for ϵ = 2
255 are shown in (a)-(d), for ϵ = 8

255 in (e)-(h), and for
Tiny ImageNet for ϵ = 1

255 in (i)-(l). We compare Pareto fronts obtained using our method to results
given in the original publications and the recent CTBench benchmark (Mao et al., 2025).

(see Appendix B). We set dmin = 0.05 to filter redundant configurations and restrict the optimisation
process to configurations meeting minimum certified and natural accuracies of 40% and 60% for
CIFAR-10 (ϵ = 2

255), 25% and 40% (ϵ = 8
255), and 15% and 20% for Tiny ImageNet; these

limits were chosen based on the results reported in the original publications. Furthermore, we chose
to run CROWN-IBP without loss fusion on CIFAR-10, since this resulted in generally superior
performance. Additional results on MNIST (LeCun, 1998) and on different architectures, including
a wider CNN7 used by Mao et al. (2024), are provided in Appendix C.

Comparison to previously-known results. We begin by examining the configurations found us-
ing our optimisation procedure to previously-known results. Table 1 compares the results achieved
by our method to those from the literature, including the original publications of each method and
the recent CTBench benchmark (Mao et al., 2025). As previous studies reported only a single con-
figuration, we selected Pareto-optimal configurations that either dominate or match them. In nearly
all scenarios, the performance of configurations equals or surpasses prior results.

On CIFAR-10 with ϵ = 2
255 , SABR achieves a gain of more than 1% in terms of clean and certi-

fied accuracy, surpassing prior results and setting a new state of the art. Furthermore, our results
demonstrate that MTL-IBP can achieve strong certified and clean performance at the same time. For
CROWN-IBP and IBP, we found that these older methods remain competitive, with CROWN-IBP
achieving nearly a 6% improvement in clean accuracy over best results from the literature.

While for ϵ = 8
255 , our optimisation did not outperform previously known results regarding cer-

tified accuracy, it often finds configurations with comparable certified but higher natural accuracy.
Mao et al. (2025) suggest that all investigated methods converge to the same certified accuracy at
this larger perturbation radius. We validate this result but show that the performance differences
regarding clean accuracy are much less pronounced.

For TinyImageNet, we obtain new state-of-the-art results that substantially surpass prior work, with
MTL-IBP achieving an improvement of about 2% in terms of clean and certified accuracy. We
further demonstrate that SABR can achieve comparable results.

Comparison between methods. The Pareto fronts obtained from our novel method allow for a
more nuanced and multi-faceted assessment of the current state of the art in certified training. Instead
of comparing single configurations, it is now possible to evaluate the quality of feasible solutions
across the entire trade-off space. For this, we combined all configurations found by our method into
one single Pareto front per dataset and perturbation radius and analysed which methods contribute
to this combined front. We show the Pareto fronts of all methods per benchmark in Figure 2.

Regarding the CIFAR-10 dataset with ϵ = 2
255 , the combined Pareto set consists of networks trained

with MTL-IBP and SABR. Our analysis reveals that SABR generally achieves the highest clean ac-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

45 50 55 60 65
Certified Accuracy

65.0

67.5

70.0

72.5

75.0

77.5

80.0

82.5

85.0

N
at

ur
al

 A
cc

ur
ac

y

MTL (ours)
SABR (ours)
C-IBP (ours)
IBP (ours)

(a) ϵ = 2/255

28 30 32 34 36
Certified Accuracy

45.0

47.5

50.0

52.5

55.0

57.5

60.0

62.5

N
at

ur
al

 A
cc

ur
ac

y

(b) ϵ = 8/255

17.5 20.0 22.5 25.0 27.5 30.0 32.5
Certified Accuracy

25.0

27.5

30.0

32.5

35.0

37.5

40.0

42.5

N
at

ur
al

 A
cc

ur
ac

y

(c) ϵ = 1/255

Figure 2: Comparison of Pareto fronts from our method on CIFAR-10 with (a) ϵ = 2
255 , (b) ϵ = 8

255

and Tiny ImageNet with (c) ϵ = 1
255 . The fronts enable a nuanced assessment, showing, e.g., that

IBP is state of the art in (b) when prioritising natural accuracy.

curacies while maintaining strong certified robustness. However, MTL-IBP can still achieve similar
certifiable guarantees once clean accuracy decreases. For the higher perturbation radius of ϵ = 8

255 ,
we found that traditional IBP training contributes to the combined front alongside MTL-IBP and
SABR. More specifically, networks trained with IBP exhibit the strongest certifiable guarantees for
higher clean accuracies, while SABR and MTL-IBP achieve better trade-offs for higher certified
accuracies. This shows that IBP is a state-of-the-art method when higher natural accuracies are
desired. Lastly, on Tiny ImageNet, the Pareto front includes networks trained using SABR and
MTL-IBP. Here, SABR excels at increased natural accuracies, while MTL-IBP performs best when
higher certified accuracies are desired.

6 CONCLUSIONS AND FUTURE WORK

In this work, we have proposed a novel method for the fully-automated hyperparameter optimi-
sation of certified training techniques. Using this method, we tackle several open challenges in
certified training. Firstly, until now, hyperparameter tuning required extensive domain knowledge
and was not accessible to non-experts. Our automated optimisation pipeline removes this barrier
by systematically exploring the hyperparameter space and identifying configurations that achieve
favourable trade-offs between clean and certified accuracy. Secondly, prior evaluations of certified
training methods typically focused on single configurations, limiting insight into the overall perfor-
mance landscape. By constructing Pareto fronts of configurations, our method enables a more com-
prehensive assessment of the trade-offs that can be achieved, highlighting which certified training
techniques perform well consistently. Lastly, using our approach, we have demonstrated that there
exist more optimal trade-offs than previously known for several popular certified training methods
including MTL-IBP and SABR, thereby establishing a new state of the art in certified training.

To achieve this, we employed techniques from constrained multi-objective hyperparameter optimi-
sation in a novel tuning scheme that search for optimal trade-offs within an expert-designed search
space. For its design, we ensured to include all potentially sensible hyperparameter choices to
enable the discovery of previously unexplored configurations. Furthermore, we constrained the op-
timisation process to exclusively explore promising regions of the search space, in order to prevent
a focus on trivial configurations that reduce to adversarial or standard training. Lastly, since com-
plete verification for every configuration is computationally infeasible, our optimisation relies on a
proxy metric. We showed that incomplete verification enables efficient assessment of certifiability,
allowing the selection of configurations that also perform well under complete verification.

For future work, we suggest investigating how multi-fidelity optimisation and meta-learning tech-
niques for Bayesian optimisation (see, e.g., Dooley et al. (2023); Feurer et al. (2018)) could be
adapted for certified training to further improve efficiency.

Overall, we believe that evaluation of certified training techniques should focus on Pareto front
analysis rather than results for single hyperparameter configurations. By providing a method to
effectively approximate the Pareto front, our work establishes a foundation for a more nuanced
evaluation and calibration of certified training techniques.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 ETHICS STATEMENT

Our paper aims to improve the performance of certified training methods, providing a full Pareto
front of well-performing configurations with different accuracy-robustness trade-offs.. As certi-
fied training methods are used to obtain provably safe neural networks, we see no negative ethical
contributions of our work. Further, our Pareto front analysis enables a nuanced assessment of the
performance of certified training techniques, thereby facilitating their responsible and informed ap-
plication in practice. However, while we demonstrated the effectiveness of our method across several
commonly used vision datasets, this does not guarantee its effectiveness on different benchmarks,
data domains or threat models.

8 REPRODUCIBILITY STATEMENT

Our code is available in anonymous GitHub repository: https://anonymous.4open.
science/r/investigating_certified_training_trade_offs-0584. In our ex-
periments, we used popular open-source datasets which can be downloaded and preprocessed via
CTRAIN (Kaulen & Hoos, 2025). We provide additional information on the setup of our experi-
ments in Appendix B, including hardware details, software versions, neural network architectures
used and detailed configuration spaces.

REFERENCES

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna:
A next-generation hyperparameter optimization framework. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD 2019), pp.
2623–2631, 2019.

Maximilian Balandat, Brian Karrer, Daniel R. Jiang, Samuel Daulton, Benjamin Letham, An-
drew Gordon Wilson, and Eytan Bakshy. BoTorch: A framework for efficient monte-carlo
bayesian optimization. In Advances in Neural Information Processing Systems 33 (NeurIPS 33),
2020.

Nicola Beume, Boris Naujoks, and Michael T. M. Emmerich. SMS-EMOA: Multiobjective selection
based on dominated hypervolume. European Journal of Operations Research, 181(3):1653–1669,
2007. doi: 10.1016/J.EJOR.2006.08.008.

Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

Christopher Brix, Mark Niklas Müller, Stanley Bak, Taylor T Johnson, and Changliu Liu. First
three years of the international verification of neural networks competition (VNN-COMP). Inter-
national Journal on Software Tools for Technology Transfer, 25(3):329–339, 2023.

Christopher Brix, Stanley Bak, Taylor T Johnson, and Haoze Wu. The fifth international verifica-
tion of neural networks competition (VNN-COMP 2024): Summary and results. arXiv preprint
arXiv:2412.19985, 2024.

Rudy Bunel, Jingyue Lu, Ilker Turkaslan, Philip H.S. Torr, Pushmeet Kohli, and M Pawan Kumar.
Branch and bound for piecewise linear neural network verification. Journal of Machine Learning
Research, 21(42):1–39, 2020.

Francesco Croce, Maksym Andriushchenko, Vikash Sehwag, Edoardo Debenedetti, Nicolas Flam-
marion, Mung Chiang, Prateek Mittal, and Matthias Hein. Robustbench: A standardized adver-
sarial robustness benchmark. In Proceedings of the First Neural Information Processing Systems
Track on Datasets and Benchmarks (NeurIPS Datasets and Benchmarks 2021), pp. 1–17, 2021.

Samuel Daulton, Maximilian Balandat, and Eytan Bakshy. Differentiable expected hypervolume im-
provement for parallel multi-objective bayesian optimization. In Advances in Neural Information
Processing Systems 33 (NeurIPS 33), 2020.

10

https://anonymous.4open.science/r/investigating_certified_training_trade_offs-0584
https://anonymous.4open.science/r/investigating_certified_training_trade_offs-0584

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Alessandro De Palma, Harkirat Singh Behl, Rudy Bunel, Philip H. S. Torr, and M. Pawan Kumar.
Scaling the convex barrier with sparse dual algorithms. Journal of Machine Learning Research,
25(61):1–51, 2024a.

Alessandro De Palma, Rudy Bunel, Krishnamurthy (Dj) Dvijotham, M. Pawan Kumar, Robert Stan-
forth, and Alessio Lomuscio. Expressive losses for verified robustness via convex combinations.
In Proceedings of the 12th International Conference on Learning Representations (ICLR 2024),
pp. 1–28, 2024b.

Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, and T. Meyarivan. A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2):182–197,
2002. doi: 10.1109/4235.996017.

Samuel Dooley, Rhea Sukthanker, John P. Dickerson, Colin White, Frank Hutter, and Micah Gold-
blum. Rethinking bias mitigation: Fairer architectures make for fairer face recognition. In Ad-
vances in Neural Information Processing Systems 36 (NeurIPS 2023), pp. 1–28, 2023.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale. In Proceedings of the 9th International Conference on Learning Representations (ICLR
2021), pp. 1–22, 2021.

Katharina Eggensperger, Philipp Müller, Neeratyoy Mallik, Matthias Feurer, René Sass, Aaron
Klein, Noor H. Awad, Marius Lindauer, and Frank Hutter. Hpobench: A collection of repro-
ducible multi-fidelity benchmark problems for HPO. In Proceedings of the First Neural Informa-
tion Processing Systems Track on Datasets and Benchmarks (NeurIPS Datasets and Benchmarks
2021), 2021.

Claudio Ferrari, Mark Niklas Mueller, Nikola Jovanović, and Martin Vechev. Complete verification
via multi-neuron relaxation guided branch-and-bound. In Proceedings of the 10th International
Conference on Learning Representations (ICLR 2022), pp. 1–15, 2022.

Matthias Feurer, Benjamin Letham, and Eytan Bakshy. Scalable meta-learning for bayesian opti-
mization. CoRR, abs/1802.02219, 2018.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. In Proceedings of the 3rd International Conference on Learning Representations,
(ICLR 2015), pp. 1–11, 2015.

Sven Gowal, Krishnamurthy Dj Dvijotham, Robert Stanforth, Rudy Bunel, Chongli Qin, Jonathan
Uesato, Relja Arandjelovic, Timothy Mann, and Pushmeet Kohli. Scalable verified training for
provably robust image classification. In Proceedings of the 35th IEEE/CVF International Confer-
ence on Computer Vision (CVPR 2019), pp. 4842–4851, 2019.

Leona Hennig and Marius Lindauer. Leveraging automl for sustainable deep learning: A multi-
objective HPO approach on deep shift neural networks. Transactions on Machine Learning Re-
search, 2025, 2025.

Michael Hubbertz, Pascal Colling, Qi Han, and Tobias Meisen. Inferring driving maps by deep
learning-based trail map extraction. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops (CVPR Workshops 2025), pp. 2425–2434, 2025.

Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. An efficient approach for assessing hyper-
parameter importance. In Proceedings of the 31st International Conference on Machine Learn-
ing(ICML 2014), volume 32, pp. 754–762, 2014a.

Frank Hutter, Lin Xu, Holger H Hoos, and Kevin Leyton-Brown. Algorithm runtime prediction:
Methods & evaluation. Artificial Intelligence, 206:79–111, 2014b.

Carl Hvarfner, Erik Orm Hellsten, and Luigi Nardi. Vanilla bayesian optimization performs great
in high dimensions. In Proceedings of the 41st International Conference on Machine Learning
(ICML 2024), pp. 1–9, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In Proceedings of the 32nd International Conference on Machine
Learning (ICML 2015), volume 37, pp. 448–456, 2015.

Kyle D Julian, Mykel J Kochenderfer, and Michael P Owen. Deep neural network compression
for aircraft collision avoidance systems. Journal of Guidance, Control, and Dynamics, 42(3):
598–608, 2019.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žı́dek, Anna Potapenko, et al. Highly accurate
protein structure prediction with alphafold. Nature, 596(7873):583–589, 2021.

Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer. Reluplex: An
efficient SMT solver for verifying deep neural networks. In Proceedings of the 29th International
Conference on Computer Aided Verification (CAV 2017), pp. 97–117, 2017.

Konstantin Kaulen and Holger Hoos. CTRAIN - a training library for certifiably robust neural
networks. In Proceedings of the 8th International Symposium on AI Verification (SAIV 2025), pp.
1–12, 2025.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proceedings
of the 3rd International Conference on Learning Representations (ICLR 2015), 2015.

Matthias König, Annelot W. Bosman, Holger H. Hoos, and Jan N. van Rijn. Critically assessing
the state of the art in neural network verification. Journal of Machine Learning Research, 25(12):
1–53, 2024.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Ya Le and Xuan S. Yang. Tiny imagenet visual recognition challenge. 2015.

Yann LeCun. The MNIST database of handwritten digits. 1998.

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Ji-
awei Han. On the variance of the adaptive learning rate and beyond. In Proceedings of the 8th
International Conference on Learning Representations (ICLR 2020), pp. 1–14, 2020.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
A convnet for the 2020s. In Proceedings of the 38th IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR 2022), pp. 11966–11976. IEEE, 2022.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In Proceedings of the
7th International Conference on Learning Representations (ICLR 2019), pp. 1–19, 2019.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In Proceedings of 6th International
Conference on Learning Representations (ICLR 2018), pp. 1–23, 2018.

Yuhao Mao, Mark Niklas Müller, Marc Fischer, and Martin T. Vechev. Connecting certified and
adversarial training. In Advances in Neural Information Processing Systems 37 (NeurIPS 2023),
pp. 1–19, 2023.

Yuhao Mao, Mark Niklas Müller, Marc Fischer, and Martin T. Vechev. Understanding certified
training with interval bound propagation. In Proceedings of the 12th International Conference on
Learning Representations (ICLR 2024), pp. 1–23, 2024.

Yuhao Mao, Stefan Balauca, and Martin Vechev. CTBENCH: A library and benchmark for certified
training. In Proceedings of the 42th International Conference on Machine Learning (ICML 2025),
pp. 1–12, 2025.

Matthew Mirman, Timon Gehr, and Martin T. Vechev. Differentiable abstract interpretation for
provably robust neural networks. In Proceedings of the 35th International Conference on Machine
Learning (ICML 2018), pp. 3575–3583. PMLR, 2018.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Julia Moosbauer, Julia Herbinger, Giuseppe Casalicchio, Marius Lindauer, and Bernd Bischl. Ex-
plaining hyperparameter optimization via partial dependence plots. In Advances in Neural Infor-
mation Processing Systems 34 (NeurIPS 34), pp. 2280–2291, 2021.

Mark Niklas Müller, Franziska Eckert, Marc Fischer, and Martin T. Vechev. Certified training:
Small boxes are all you need. In Proceedings of the 11th International Conference on Learning
Representations (ICLR 2023), pp. 1–21, 2023.

Thomas Nagler, Lennart Schneider, Bernd Bischl, and Matthias Feurer. Reshuffling resampling
splits can improve generalization of hyperparameter optimization. In Advances in Neural Infor-
mation Processing Systems 38 (NeruIPS 2024), 2024.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An imperative style, high-performance
deep learning library. In Advances in Neural Information Processing Systems 33 (NeurIPS 2019),
pp. 1–12, 2019.

Florian Pfisterer, Lennart Schneider, Julia Moosbauer, Martin Binder, and Bernd Bischl. YAHPO
gym - an efficient multi-objective multi-fidelity benchmark for hyperparameter optimization. In
Proceedings of the First International Conference on Automated Machine Learning (AutoML
2022), volume 188, pp. 3/1–39, 2022.

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian processes for machine learning.
Adaptive computation and machine learning. 2006.

Marco Sälzer and Martin Lange. Reachability is NP-complete even for the simplest neural networks.
In Proceedings of the 15th International Conference on Reachability Problems (RP 2021), pp.
149–164, 2021.

Lennart Schneider, Bernd Bischl, and Matthias Feurer. Overtuning in hyperparameter optimization.
In Proceedings of the 3rd International Conference on Automated Machine Learning (AutoML
2025), pp. 1–10, 2025.

Zhouxing Shi, Yihan Wang, Huan Zhang, Jinfeng Yi, and Cho-Jui Hsieh. Fast certified robust
training with short warmup. In Advances in Neural Information Processing Systems 34 (NeurIPS
2021), pp. 18335–18349, 2021.

Robin Sibson. SLINK: an optimally efficient algorithm for the single-link cluster method. The
Computer Journal, 16(1):30–34, 1973.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. In Proceedings of the 2nd International
Conference on Learning Representations (ICLR 2014), pp. 1–10, 2014.

Vincent Tjeng, Kai Y. Xiao, and Russ Tedrake. Evaluating robustness of neural networks with
mixed integer programming. In Proceedings of the 7th International Conference on Learning
Representations (ICLR 2019), pp. 1–21, 2019.

Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Aleksander Madry.
Robustness may be at odds with accuracy. In Proceedings of the 7th International Conference on
Learning Representations (ICLR 2019), pp. 1–23. OpenReview.net, 2019.

Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, and J Zico Kolter.
Beta-crown: Efficient bound propagation with per-neuron split constraints for neural network
robustness verification. In Advances in Neural Information Processing Systems 34 (NeurIPS
2021), pp. 29909–29921, 2021.

Ross Wightman, Hugo Touvron, and Hervé Jégou. Resnet strikes back: An improved training
procedure in timm. arXiv preprint arXiv:2110.00476, pp. 1–22, 2021.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Eric Wong and Zico Kolter. Provable defenses against adversarial examples via the convex outer
adversarial polytope. In Proceedings of the 35th International Conference on Machine Learning
(ICML 2018), pp. 5286–5295. PMLR, 2018.

Kaidi Xu, Zhouxing Shi, Huan Zhang, Yihan Wang, Kai-Wei Chang, Minlie Huang, Bhavya
Kailkhura, Xue Lin, and Cho-Jui Hsieh. Automatic perturbation analysis for scalable certified
robustness and beyond. In Advances in Neural Information Processing Systems 33 (NeurIPS
2020), pp. 1–13, 2020.

Kaidi Xu, Huan Zhang, Shiqi Wang, Yihan Wang, Suman Jana, Xue Lin, and Cho-Jui Hsieh. Fast
and complete: Enabling complete neural network verification with rapid and massively parallel
incomplete verifiers. In Proceedings of the 9th International Conference on Learning Represen-
tations (ICLR 2021), pp. 1–15, 2021.

Arber Zela, Julien Niklas Siems, Lucas Zimmer, Jovita Lukasik, Margret Keuper, and Frank Hutter.
Surrogate NAS benchmarks: Going beyond the limited search spaces of tabular NAS benchmarks.
In Proceedings of the 10th International Conference on Learning Representations (ICLR 2022),
2022.

Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui, and Michael Jordan.
Theoretically principled trade-off between robustness and accuracy. In Proceedings of the 36th
International Conference on Machine Learning (ICML 2019), volume 97, pp. 7472–7482, 2019.

Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel. Efficient neural net-
work robustness certification with general activation functions. In Advances in Neural Information
Processing Systems 31 (NeurIPS 2018), pp. 4944–4953, 2018.

Huan Zhang, Hongge Chen, Chaowei Xiao, Sven Gowal, Robert Stanforth, Bo Li, Duane Boning,
and Cho-Jui Hsieh. Towards stable and efficient training of verifiably robust neural networks. In
Proceedings of the 8th International Conference on Learning Representations (ICLR 2020), pp.
1–15, 2020.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A HYPERPARAMETER IMPORTANCE ANALYSIS

In the following, we aim to uncover reasons to why the discovered hyperparameter configurations
perform better than previously known configurations. To this end, we use fANOVA (Hutter et al.,
2014a) to identify the hyperparameters that were most influential during the optimisation procedure.
fANOVA quantifies the importance of a hyperparameter (or set of hyperparameters) as the frac-
tion of the variance in the predicted performance that can be attributed to it. Intuitively, changing
an important hyperparameter is expected to have a large effect on performance. To estimate this,
fANOVA fits a random forest (Breiman, 2001) as a surrogate model and computes the marginal
effect of a hyperparameter by integrating over all possible values of the other hyperparameters.

In Figures 3, 4, 5 and 6 we display the five most important hyperparameters for each objective (i.e.,
clean and certified accuracy) on the CIFAR-10 dataset for ϵ ∈ { 2

255 ,
8

255} along with the parameter
values of the configurations in the Pareto set for the training methods IBP, CROWN-IBP, SABR and
MTL-IBP respectively. Further, the plots include the achieved clean accuracy or, respectively, the
certified accuracy obtained through incomplete verification.

IBP. For most investigated scenarios, our analysis reveals that IBP yields stronger trade-offs when
more time during training is spent on optimising for clean cross-entropy loss. This is exemplified
in κstart and κend being highly important parameters across all scenarios, with higher κ values than
used previously. Interestingly, when ϵ = 8

255 , scaling the training ϵ has high influence on both clean
and certified accuracy and is even the most important hyperparameter for achieving strong clean
accuracy.

CROWN-IBP. Regarding CROWN-IBP, we observe a similar trend where κ parameters play an
important role in achieving strong performance across all scenarios to trade-off clean and certified
accuracy. Again, the factor by which the ϵ value is scaled during training plays an important role as
well. Interestingly, βend is an important parameter to tune certified accuracy with different optimal
values between both ϵ values. For ϵ = 2

255 , higher β values, i.e. a higher focus on CROWN-IBP
bounds, yield better performance while for ϵ = 8

255 it is crucial that β ≈ 0 at the end of the ramp-up
phase to achieve strong certifiable guarantees.

SABR. When investigating the results for SABR, it becomes apparent that the subselection ratio τ
is extremely effective at governing the trade-off between certified and clean accuracy, being a highly
important parameter across all scenarios. Further, parameters of the employed attack are also highly
important, such as the number of optimisation steps or the scaling factor of the ϵ applied during the
attack. For the latter, interestingly, higher values result in higher certified accuracies when ϵ = 2

255 ,
but when ϵ = 8

255 , the opposite is the case. Most importantly, our analysis reveals a simple and
intuitive explanation to why SABR achieves stronger natural accuracies than the previous state of
the art when ϵ = 2

255 . Here, a highly important parameter is the choice of the optimiser which is
always set to RAdam (Liu et al., 2020) for all configurations in the Pareto set. This optimiser seems
to be able to achieve substantially better trade-offs in this scenario than were previously known.

MTL-IBP. Lastly, we focus on the hyperparameter configurations of MTL-IBP. The method-
inherent trade-off parameter α is very important across all scenarios, effectively steering the trade-off
between natural and certified accuracy. Interestingly, our method found several configurations that
achieve, both, strong certified and natural accuracies when ϵ = 2

255 , which could be traced back to
a higher number of warm-up epochs employed in our configurations than in related work. Interest-
ingly, when ϵ = 8

255 , the weight of the regulariser proposed by Shi et al. (2021) seems to have major
impact on the achievable natural accuracy. Regarding certified accuracy on that benchmark, more
PGD steps correspond to higher certified accuracies, indicating that a better approximation of the
adversarial loss is crucial in this case.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

0.68

0.7

0.72

0.74

1.e-51.e-51.e-51.e-51.e-5

2.15e-42.15e-42.15e-42.15e-42.15e-4

4.64e-34.64e-34.64e-34.64e-34.64e-3

0.10.10.10.10.1

Learning Rate

00000

1313131313

2727272727

4040404040

LR Decay Epoch 2

0.00.00.00.00.0

0.330.330.330.330.33

0.670.670.670.670.67

1.01.01.01.01.0

End κ

0.00.00.00.00.0

0.330.330.330.330.33

0.670.670.670.670.67

1.01.01.01.01.0

Start κ

00000

22222

33333

55555

Warmup Epochs

0.650.650.650.650.65

0.70.70.70.70.7

0.750.750.750.750.75

0.80.80.80.80.8

Clean Accuracy

0.84

0.65

(a) Clean Acc., ϵ = 2
255

0.45

0.5

1.e-51.e-51.e-51.e-51.e-5

2.15e-42.15e-42.15e-42.15e-42.15e-4

4.64e-34.64e-34.64e-34.64e-34.64e-3

0.10.10.10.10.1

Learning Rate

1010101010

4747474747

8383838383

120120120120120

Ramp-up Epochs

0.00.00.00.00.0

0.330.330.330.330.33

0.670.670.670.670.67

1.01.01.01.01.0

End κ

1.01.01.01.01.0

1.331.331.331.331.33

1.671.671.671.671.67

2.02.02.02.02.0

Training Eps. Factor

00000

22222

33333

55555

Warmup Epochs

0.40.40.40.40.4

0.450.450.450.450.45

0.50.50.50.50.5

0.550.550.550.550.55

Cert. Accuracy

0.6

0.4

(b) Certified Acc., ϵ = 2
255

0.55

0.6

1.01.01.01.01.0

1.331.331.331.331.33

1.671.671.671.671.67

2.02.02.02.02.0

Training Eps. Factor

0.00.00.00.00.0

0.330.330.330.330.33

0.670.670.670.670.67

1.01.01.01.01.0

End κ

0.00.00.00.00.0

0.330.330.330.330.33

0.670.670.670.670.67

1.01.01.01.01.0

Start κ

1010101010

7272727272

133133133133133

195195195195195

Ramp-up Epochs

1.e-51.e-51.e-51.e-51.e-5

2.15e-42.15e-42.15e-42.15e-42.15e-4

4.64e-34.64e-34.64e-34.64e-34.64e-3

0.10.10.10.10.1

Learning Rate

0.450.450.450.450.45

0.50.50.50.50.5

0.550.550.550.550.55

0.60.60.60.60.6

Clean Accuracy

0.63

0.45

(c) Clean Acc., ϵ = 8
255

0.26

0.28

0.3

0.32

0.34

1.e-51.e-51.e-51.e-51.e-5

2.15e-42.15e-42.15e-42.15e-42.15e-4

4.64e-34.64e-34.64e-34.64e-34.64e-3

0.10.10.10.10.1

Learning Rate

0.00.00.00.00.0

0.330.330.330.330.33

0.670.670.670.670.67

1.01.01.01.01.0

End κ

0.00.00.00.00.0

0.330.330.330.330.33

0.670.670.670.670.67

1.01.01.01.01.0

Start κ

1010101010

7272727272

133133133133133

195195195195195

Ramp-up Epochs

1.01.01.01.01.0

1.331.331.331.331.33

1.671.671.671.671.67

2.02.02.02.02.0

Training Eps. Factor

0.250.250.250.250.25

0.30.30.30.30.3

0.350.350.350.350.35

0.40.40.40.40.4

Cert. Accuracy

0.4

0.25

(d) Certified Acc., ϵ = 8
255

Figure 3: Parallel coordinates plot for the hyperparameter optimisation of IBP on CIFAR-10. In
each plot, we show the five most important parameters for one of the two objectives along with the
parameter values of configurations in the Pareto set.

0.74

0.76

0.78

1.e-51.e-51.e-51.e-51.e-5

2.15e-42.15e-42.15e-42.15e-42.15e-4

4.64e-34.64e-34.64e-34.64e-34.64e-3

0.10.10.10.10.1

Learning Rate

0.00.00.00.00.0

0.330.330.330.330.33

0.670.670.670.670.67

1.01.01.01.01.0

End κ

1.e-81.e-81.e-81.e-81.e-8

2.15e-72.15e-72.15e-72.15e-72.15e-7

4.64e-64.64e-64.64e-64.64e-64.64e-6

1.e-41.e-41.e-41.e-41.e-4

l1 Reg. Weight

1.01.01.01.01.0

1.331.331.331.331.33

1.671.671.671.671.67

2.02.02.02.02.0

Training Eps. Factor

0.00.00.00.00.0

0.330.330.330.330.33

0.670.670.670.670.67

1.01.01.01.01.0

Start κ

0.650.650.650.650.65

0.70.70.70.70.7

0.750.750.750.750.75

0.80.80.80.80.8

Clean Accuracy

0.84

0.65

(a) Clean Acc., ϵ = 2
255

0.5

0.55

1.e-51.e-51.e-51.e-51.e-5

2.15e-42.15e-42.15e-42.15e-42.15e-4

4.64e-34.64e-34.64e-34.64e-34.64e-3

0.10.10.10.10.1

Learning Rate

0.00.00.00.00.0

0.330.330.330.330.33

0.670.670.670.670.67

1.01.01.01.01.0

End κ

1010101010

4747474747

8383838383

120120120120120

Ramp-up Epochs

0.00.00.00.00.0

0.330.330.330.330.33

0.670.670.670.670.67

1.01.01.01.01.0

End β

00000

2727272727

5353535353

8080808080

LR Decay Epoch 1

0.40.40.40.40.4

0.450.450.450.450.45

0.50.50.50.50.5

0.550.550.550.550.55

Cert. Accuracy

0.6

0.4

(b) Certified Acc., ϵ = 2
255

0.5

0.55

0.6

0.00.00.00.00.0

0.330.330.330.330.33

0.670.670.670.670.67

1.01.01.01.01.0

End κ

1.e-51.e-51.e-51.e-51.e-5

2.15e-42.15e-42.15e-42.15e-42.15e-4

4.64e-34.64e-34.64e-34.64e-34.64e-3

0.10.10.10.10.1

Learning Rate

1.01.01.01.01.0

1.331.331.331.331.33

1.671.671.671.671.67

2.02.02.02.02.0

Training Eps. Factor

1010101010

7272727272

133133133133133

195195195195195

Ramp-up Epochs

0.00.00.00.00.0

0.330.330.330.330.33

0.670.670.670.670.67

1.01.01.01.01.0

Start κ

0.450.450.450.450.45

0.50.50.50.50.5

0.550.550.550.550.55

0.60.60.60.60.6

Clean Accuracy

0.63

0.45

(c) Clean Acc., ϵ = 8
255

0.26

0.28

0.3

0.32

0.34

0.00.00.00.00.0

0.330.330.330.330.33

0.670.670.670.670.67

1.01.01.01.01.0

End β

1.e-51.e-51.e-51.e-51.e-5

2.15e-42.15e-42.15e-42.15e-42.15e-4

4.64e-34.64e-34.64e-34.64e-34.64e-3

0.10.10.10.10.1

Learning Rate

0.00.00.00.00.0

0.330.330.330.330.33

0.670.670.670.670.67

1.01.01.01.01.0

End κ

0.00.00.00.00.0

0.330.330.330.330.33

0.670.670.670.670.67

1.01.01.01.01.0

Start κ

1.01.01.01.01.0

1.331.331.331.331.33

1.671.671.671.671.67

2.02.02.02.02.0

Training Eps. Factor

0.250.250.250.250.25

0.30.30.30.30.3

0.350.350.350.350.35

0.40.40.40.40.4

Cert. Accuracy

0.4

0.25

(d) Certified Acc., ϵ = 8
255

Figure 4: Parallel coordinates plot for the hyperparameter optimisation of CROWN-IBP on CIFAR-
10. In each plot, we show the five most important parameters for one of the two objectives along
with the parameter values of configurations in the Pareto set.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

0.78

0.8

0.82

1e-31e-31e-31e-31e-3

7.94e-37.94e-37.94e-37.94e-37.94e-3

0.060.060.060.060.06

0.50.50.50.50.5

Subselection Ratio

adamadamadamadamadam

adamwadamwadamwadamwadamw

radamradamradamradamradam

Optimiser

1010101010

4747474747

8383838383

120120120120120

Ramp-up Epochs

1.e-51.e-51.e-51.e-51.e-5

2.15e-42.15e-42.15e-42.15e-42.15e-4

4.64e-34.64e-34.64e-34.64e-34.64e-3

0.10.10.10.10.1

Learning Rate

1.e-81.e-81.e-81.e-81.e-8

2.15e-72.15e-72.15e-72.15e-72.15e-7

4.64e-64.64e-64.64e-64.64e-64.64e-6

1.e-41.e-41.e-41.e-41.e-4

l1 Reg. Weight

0.650.650.650.650.65

0.70.70.70.70.7

0.750.750.750.750.75

0.80.80.80.80.8

Clean Accuracy

0.84

0.65

(a) Clean Acc., ϵ = 2
255

0.45

0.5

0.55

1e-31e-31e-31e-31e-3

7.94e-37.94e-37.94e-37.94e-37.94e-3

0.060.060.060.060.06

0.50.50.50.50.5

Subselection Ratio

11111

44444

77777

1010101010

PGD Steps

00000

2727272727

5353535353

8080808080

LR Decay Epoch 1

1.01.01.01.01.0

1.671.671.671.671.67

2.332.332.332.332.33

3.03.03.03.03.0

PGD Eps. Factor

1.e-81.e-81.e-81.e-81.e-8

2.15e-72.15e-72.15e-72.15e-72.15e-7

4.64e-64.64e-64.64e-64.64e-64.64e-6

1.e-41.e-41.e-41.e-41.e-4

l1 Reg. Weight

0.40.40.40.40.4

0.450.450.450.450.45

0.50.50.50.50.5

0.550.550.550.550.55

Cert. Accuracy

0.6

0.4

(b) Certified Acc., ϵ = 2
255

0.5

0.52

0.54

0.56

0.58

1.e-51.e-51.e-51.e-51.e-5

2.15e-42.15e-42.15e-42.15e-42.15e-4

4.64e-34.64e-34.64e-34.64e-34.64e-3

0.10.10.10.10.1

Learning Rate

1e-31e-31e-31e-31e-3

7.94e-37.94e-37.94e-37.94e-37.94e-3

0.060.060.060.060.06

0.50.50.50.50.5

Subselection Ratio

11111

44444

77777

1010101010

PGD Steps

1.e-81.e-81.e-81.e-81.e-8

2.15e-72.15e-72.15e-72.15e-72.15e-7

4.64e-64.64e-64.64e-64.64e-64.64e-6

1.e-41.e-41.e-41.e-41.e-4

l1 Reg. Weight

1.01.01.01.01.0

1.331.331.331.331.33

1.671.671.671.671.67

2.02.02.02.02.0

Training Eps. Factor

0.450.450.450.450.45

0.50.50.50.50.5

0.550.550.550.550.55

0.60.60.60.60.6

Clean Accuracy

0.63

0.45

(c) Clean Acc., ϵ = 8
255

0.26

0.28

0.3

0.32

1e-31e-31e-31e-31e-3

7.94e-37.94e-37.94e-37.94e-37.94e-3

0.060.060.060.060.06

0.50.50.50.50.5

Subselection Ratio

1.01.01.01.01.0

1.671.671.671.671.67

2.332.332.332.332.33

3.03.03.03.03.0

PGD Eps. Factor

1.e-51.e-51.e-51.e-51.e-5

4.48e-44.48e-44.48e-44.48e-44.48e-4

0.020.020.020.020.02

0.90.90.90.90.9

LR Decay Factor

11111

44444

77777

1010101010

PGD Steps

1.01.01.01.01.0

1.331.331.331.331.33

1.671.671.671.671.67

2.02.02.02.02.0

Training Eps. Factor

0.250.250.250.250.25

0.30.30.30.30.3

0.350.350.350.350.35

0.40.40.40.40.4

Cert. Accuracy

0.4

0.25

(d) Certified Acc., ϵ = 8
255

Figure 5: Parallel coordinates plot for the hyperparameter optimisation of SABR on CIFAR-10. In
each plot, we show the five most important parameters for one of the two objectives along with the
parameter values of configurations in the Pareto set.

0.76

0.78

0.8

1e-31e-31e-31e-31e-3

7.94e-37.94e-37.94e-37.94e-37.94e-3

0.060.060.060.060.06

0.50.50.50.50.5

MTL IBP α

1.e-81.e-81.e-81.e-81.e-8

2.15e-72.15e-72.15e-72.15e-72.15e-7

4.64e-64.64e-64.64e-64.64e-64.64e-6

1.e-41.e-41.e-41.e-41.e-4

l1 Reg. Weight

1.e-51.e-51.e-51.e-51.e-5

4.48e-44.48e-44.48e-44.48e-44.48e-4

0.020.020.020.020.02

0.90.90.90.90.9

LR Decay Factor

00000

22222

33333

55555

Warmup Epochs

1.01.01.01.01.0

1.331.331.331.331.33

1.671.671.671.671.67

2.02.02.02.02.0

Training Eps. Factor

0.650.650.650.650.65

0.70.70.70.70.7

0.750.750.750.750.75

0.80.80.80.80.8

Clean Accuracy

0.84

0.65

(a) Clean Acc., ϵ = 2
255

0.5

0.55

1.e-51.e-51.e-51.e-51.e-5

2.15e-42.15e-42.15e-42.15e-42.15e-4

4.64e-34.64e-34.64e-34.64e-34.64e-3

0.10.10.10.10.1

Learning Rate

1e-31e-31e-31e-31e-3

7.94e-37.94e-37.94e-37.94e-37.94e-3

0.060.060.060.060.06

0.50.50.50.50.5

MTL IBP α

1.e-51.e-51.e-51.e-51.e-5

4.48e-44.48e-44.48e-44.48e-44.48e-4

0.020.020.020.020.02

0.90.90.90.90.9

LR Decay Factor

0.10.10.10.10.1

0.730.730.730.730.73

1.371.371.371.371.37

2.02.02.02.02.0

PGD α

1.01.01.01.01.0

1.331.331.331.331.33

1.671.671.671.671.67

2.02.02.02.02.0

Training Eps. Factor

0.40.40.40.40.4

0.450.450.450.450.45

0.50.50.50.50.5

0.550.550.550.550.55

Cert. Accuracy

0.6

0.4

(b) Certified Acc., ϵ = 2
255

0.52

0.54

0.56

0.58

1.01.01.01.01.0

1.331.331.331.331.33

1.671.671.671.671.67

2.02.02.02.02.0

Training Eps. Factor

1e-31e-31e-31e-31e-3

7.94e-37.94e-37.94e-37.94e-37.94e-3

0.060.060.060.060.06

0.50.50.50.50.5

MTL IBP α

1.e-81.e-81.e-81.e-81.e-8

2.15e-72.15e-72.15e-72.15e-72.15e-7

4.64e-64.64e-64.64e-64.64e-64.64e-6

1.e-41.e-41.e-41.e-41.e-4

l1 Reg. Weight

1.01.01.01.01.0

1.671.671.671.671.67

2.332.332.332.332.33

3.03.03.03.03.0

PGD Eps. Factor

0.00.00.00.00.0

0.330.330.330.330.33

0.670.670.670.670.67

1.01.01.01.01.0

Shi Reg. Weight

0.450.450.450.450.45

0.50.50.50.50.5

0.550.550.550.550.55

0.60.60.60.60.6

Clean Accuracy

0.63

0.45

(c) Clean Acc., ϵ = 8
255

0.28

0.3

0.32

0.34

1e-31e-31e-31e-31e-3

7.94e-37.94e-37.94e-37.94e-37.94e-3

0.060.060.060.060.06

0.50.50.50.50.5

MTL IBP α

11111

44444

77777

1010101010

PGD Steps

1.e-81.e-81.e-81.e-81.e-8

2.15e-72.15e-72.15e-72.15e-72.15e-7

4.64e-64.64e-64.64e-64.64e-64.64e-6

1.e-41.e-41.e-41.e-41.e-4

l1 Reg. Weight

0.10.10.10.10.1

0.730.730.730.730.73

1.371.371.371.371.37

2.02.02.02.02.0

PGD α

1010101010

7272727272

133133133133133

195195195195195

Ramp-up Epochs

0.250.250.250.250.25

0.30.30.30.30.3

0.350.350.350.350.35

0.40.40.40.40.4

Cert. Accuracy

0.4

0.25

(d) Certified Acc., ϵ = 8
255

Figure 6: Parallel coordinates plot for the hyperparameter optimisation of MTL-IBP on CIFAR-10.
In each plot, we show the five most important parameters for one of the two objectives along with
the parameter values of configurations in the Pareto set.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B ADDITIONAL DETAILS ON THE SETUP OF THE EXPERIMENTS

B.1 HARDWARE DETAILS

Our experiments were conducted on two compute clusters. For running our method on CIFAR10,
as well as calculating certified accuracy using complete verification for all datasets except MNIST
we used a cluster in which each node is equipped with two Intel Xeon Platinum 8480+ with 210MB
of L3 cache, four Nvidia H100 SXM GPUs, and 2TB of RAM running Rocky Linux 9. Each
optimisation and verification experiment utilised 14 CPU cores, 220GB of RAM and one GPU. For
running our method on TinyImageNet and MNIST, as well as verifiying the obtained Pareto fronts
on MNIST, we used a cluster in which each node is equipped with two Intel Xeon Platinum 8468
with 210MB of L3 cache, four Nvidia H100 NVL GPUs, 512GB of RAM running Rocky Linux 9.
Here, each experiment utilised 24 CPU cores, 120GB of RAM and one GPU.

B.2 DATASETS

For our experiments, we employed several well-known datasets that have been used regularly within
the certified training community. First, we used CIFAR10 (Krizhevsky et al., 2009) containing RGB
images (i.e., three channels) of size 32 × 32 pixels associated to 10 classes (such as airplane, frog,
...). The dataset includes 50 000 training samples and 10 000 test samples. TinyImageNet (Le &
Yang, 2015) is a subsampled version of the ImageNet dataset including 100 000 training samples
and 10 000 test samples restricted to 200 classes. The resolution of each image is 64 × 64 with
three channels. In additional experiments, we employed the MNIST dataset (LeCun, 1998) which
contains grayscale images of size 28 × 28 with 60 000 training samples and 10 000 test samples.
In line with previous work (see, e.g., Mao et al. (2025); De Palma et al. (2024b); Müller et al.
(2023); Shi et al. (2021); Xu et al. (2020)), we normalised all datasets and used data augmentations
when training on CIFAR-10 and TinyImageNet. More specifically, we augmented CIFAR-10 and
TinyImageNet with random horizontal flips and random cropping to 32 × 32 pixels after 2-pixel
padding for CIFAR-10, and to 64 × 64 pixels after 4-pixel padding for TinyImageNet. Lastly, we
trained on the corresponding train sets and report clean and certified accuracy on the test split (in
line with, e.g., Mao et al. (2025); De Palma et al. (2024b); Müller et al. (2023); Shi et al. (2021); Xu
et al. (2020)).

B.3 ARCHITECTURES

We use the CNN7 architecture from Shi et al. (2021) across all datasets and ϵ radii, which is the
de facto standard architecture to evaluate certified training methods on (see, e.g., Mao et al. (2025);
De Palma et al. (2024b); Mao et al. (2024); Müller et al. (2023)). This architecture employs Batch-
Norm layers (Ioffe & Szegedy, 2015) before every ReLU activation which improve the performance
of certified training methods by reducing an imbalance between active and inactive neurons (Shi
et al., 2021). To further evaluate the consistency of our tuning method and to investigate findings by
Mao et al. (2024) regarding the influence of architecture on certified training, we included wide and
narrow variants of CNN7 as defined by Mao et al. (2024) in additional experiments. We also show
the performance on deeper and shallower versions of CNN7, named CNN9 and CNN5, respectively
following Mao et al. (2024). The architectures are illustrated in Table 2.

B.4 EXPERIMENTAL SETUP

Generally, we mostly followed the experimental setup of De Palma et al. (2024b) for our hyperpa-
rameter optimisation. In the following, we give a detailed description how we ran the respective
certified training methods during our novel optimisation method.

Initialisation. Before the start of the training procedure, the network is initialised using the tech-
nique proposed by Shi et al. (2021) that relies on a low-variance Gaussian distribution to prevent the
explosion of IBP bounds during early training stages. This initialisation has been used in all recent
works (see, e.g., Mao et al. (2025); De Palma et al. (2024b); Müller et al. (2023)) and was found to
be generally beneficial to performance.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 2: Model architectures of the CNN7, CNN5 and CNN9 architectures as defined by Shi et al.
(2021) and Mao et al. (2024). For CNN7, we provide the number of filters for narrow and wide
variants in the order of (Narrow CNN7— CNN7 — Wide CNN7)

(a) (Narrow, Wide) CNN7

Convolutional: (32—64—128) filters of size 3× 3, stride 1, padding 1
Batch normalisation

ReLU activation

Convolutional: (32—64—128) filters of size 3× 3, stride 1, padding 1
Batch normalisation

ReLU activation

Convolutional: (64—128—256) filters of size 3× 3, stride 2, padding 1
Batch normalisation

ReLU activation

2 ×
Convolutional: (64—128—256) filters of size 3× 3, stride 1, padding 1

Batch normalisation
ReLU activation

Linear: 512 neurons
Batch normalisation

ReLU activation

Linear: no. of classes in dataset

(b) CNN5

Convolutional: 64 filters of size 3× 3, stride 1, padding 1
Batch normalisation

ReLU activation

Convolutional: 64 filters of size 3× 3, stride 2, padding 1
Batch normalisation

ReLU activation

Convolutional: 128 filters of size 3× 3, stride 2, padding 1
Batch normalisation

ReLU activation

Linear: 512 neurons
Batch normalisation

ReLU activation

Linear: no. of classes in dataset

(c) CNN9

2 ×
Convolutional: 64 filters of size 3× 3, stride 1, padding 1

Batch normalisation
ReLU activation

Convolutional: 128 filters of size 3× 3, stride 2, padding 1
Batch normalisation

ReLU activation

4 ×
Convolutional: 128 filters of size 3× 3, stride 1, padding 1

Batch normalisation
ReLU activation

Linear: 512 neurons
Batch normalisation

ReLU activation

Linear: no. of classes in dataset

Training schedule. At the beginning of training, we employ a defined number of warm-up epochs
where the standard cross-entropy loss is used. After that, the perturbation radius ϵ used for the
calculation of (CROWN-)IBP bounds and during the PGD attack is gradually increased starting at 0
until it reaches its final value ϵtrain over a defined number of ramp-up epochs. To anneal to the final
ϵ value, early works employed a linear schedule (Gowal et al., 2019; Zhang et al., 2020), but more
recently a smoothed schedule was found to yield better results (see, e.g., Mao et al. (2025); De Palma
et al. (2024b); Müller et al. (2023); Xu et al. (2020)). Here, ϵ is increased exponentially for the first
25% of ramp-up epochs and linearly thereafter. This leads to smaller ϵ values during the beginning
of the training process, which contributes to training stability. Notice, that the ϵ radius used during
training does not need to match the ϵ value used for evaluation. In some cases, training with a larger
ϵ radius than that used for evaluation has been shown to be beneficial (see, e.g., Shi et al. (2021);
Gowal et al. (2019)). For IBP and CROWN-IBP training, we chose to include additional parameters
that are annealed during the ramp-up phase. Both methods employ a κ parameter (Zhang et al.,
2020; Gowal et al., 2019) which weighs certified with clean loss, i.e., κ · L(fθ(x), y) + (1 − κ) ·
Lver(fθ(x), y)). During ramp-up κ smoothly transitions from κstart to κend, where κstart ≥ κend.
Analogously, for CROWN-IBP we included the β parameter (Zhang et al., 2020) that additionally
weighs verified losses obtained through CROWN-IBP and IBP to calculate the final verified loss
used, i.e., Lver(x, y) = β · LCROWN-IBP(x, y) + (1− β) · LIBP(x, y). This parameter transitions from
βstart to βend with βstart ≥ βend. This way, tighter CROWN-IBP bounds are only employed to stabilise
the beginning of the training process which may result in superior performance to using CROWN-
IBP bounds throughout (Zhang et al., 2020). However, it is important to notice that by setting
κstart = κend = 0 and βstart = βend = 1, experimental setups used by Shi et al. (2021) and Mao
et al. (2025) can be achieved, which only employ IBP or CROWN-IBP losses respectively. After
the ramp-up phase, training is carried out over the full epsilon radius until it finishes. Regarding
the number of epochs, we follow De Palma et al. (2024b) and train for 70 epochs on MNIST, 160
epochs for ϵ = 2

255 and 260 epochs for ϵ = 8
255 on CIFAR-10 and 160 epochs on TinyImageNet.

Regularisation. During the ramp-up phase, we employed the regulariser proposed by Shi et al.
(2021) which is composed of two terms. One that penalises the explosion of IBP bounds during
training time and one that balances inactive and active ReLU activations, i.e., neurons that behave

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

only linearly and non-linearly for all inputs within the ϵ ball. The magnitude of this regularisation
is controlled by two factors; a parameter λ and a decay factor 1 − ϵ

ϵtrain
with both of which the loss

term is multiplied. This ensures that the regularisation is most prominently employed during the
beginning of the training process which contributes to more stable training. In addition, we used ℓ1
regularisation weighed by a specified parameter. For its calculation, we exclusively considered the
magnitude of weights in convolutional and linear layers in line with previous work (see, e.g., Mao
et al. (2025); De Palma et al. (2024b); Shi et al. (2021)).

Optimisation. We included the choice of an optimiser as well as the learning rate as part of our
tuning scheme. Generally, we support Adam (Kingma & Ba, 2015), AdamW (Loshchilov & Hutter,
2019) as well as RAdam (Liu et al., 2020). We did not tune the internal hyperparameters of the opti-
misers, such as their β values and weight decay, but used the defaults provided in PyTorch (Paszke
et al., 2019). It is worth noting, that prior works did not consider different optimisers but exclusively
relied on Adam for the optimisation; a choice not in line with advancements in the broader ML
community (see, e.g., Liu et al. (2022); Wightman et al. (2021)). For all conducted experiments, we
employed a batch size of 512 while related work usually employed batch sizes of 256 on MNIST and
128 on CIFAR-10 and TinyImageNet (see, e.g., Mao et al. (2025); De Palma et al. (2024b); Müller
et al. (2023); Shi et al. (2021)). While we experienced in preliminary experiments that higher batch
sizes do hurt the performance of certified training, we aimed to conduct our tuning using a higher
batch size to fully exploit the capabilities of modern GPUs. In addition, our method searches for two
epochs after ramp-up at which the learning rate is decayed by a given factor that is also optimised.

Batch normalisation layers. Shi et al. (2021) showed that BatchNorm layers are generally ben-
eficial to the performance of certified training of deep neural networks. Therefore, we also employ
them after every activation in the networks considered for our evaluation. In the literature, there
are several options on how the statistics of the layers used to normalise batches should be set. Shi
et al. (2021) and Müller et al. (2023) set the statistics based exclusively on unperturbed data, while
De Palma et al. (2024b) use statistics over adversarial examples for the IBP bounds. At evaluation
time, De Palma et al. (2024b) consider the statistics over both, perturbed and clean data. Mao et al.
(2025) proposed to use statistics of unperturbed data for the PGD attack as well as for training.
At test time, the authors employed statistics obtained over the whole population. Since multiple
approaches exist and it is, to date, unclear whether any of them actually result in decisive perfor-
mance differences, we chose to adopt the standard setting of CTRAIN that follows the approach of
De Palma et al. (2024b) for SABR and MTL-IBP and the approach of Shi et al. (2021) for CROWN-
IBP and IBP.

Hyperparameter optimisation. In our hyperparameter optimisation setup, we use the
BoTorch (Balandat et al., 2020) sampler of Optuna (Akiba et al., 2019) with 10 initial random
samples. We use a Gaussian Process as a surrogate model, with lengthscales as recommended
by Hvarfner et al. (2024) and RBF kernel. The Gaussian Process hyperparameters are optimised us-
ing L-BFGS-B with marginal log likelihood loss. The inputs to the Guassian process are normalised
to the range [0, 1] and the target values are standardised. We optimise the acquisition function is op-
timised using L-BFGS-B. All design choices are based on the values found in (Akiba et al., 2019).
Our hyperprameter optimisation method does not use any previously known configurations or priors,
making the optimisation procedure generalisable for new, unseen scenarios.

B.5 ADDITIONAL IMPLEMENTATION DETAILS

To run our optimisation method, we relied on CTRAIN (Kaulen & Hoos, 2025) in version 0.4.2
for the implementation of the certified training methods. CTRAIN includes implementations of
several state-of-the-art methods, including the methods investigated in this work, as well as the
proposed initialisation and regularisation procedures of Shi et al. (2021). Further, it implements
IBP, CROWN-IBP and CROWN (Zhang et al., 2018) for incomplete verification and the adversarial
attack PGD (Madry et al., 2018) for fast disproving of robustness. For the bounding process and
incomplete verification, CTRAIN in turn relies on the auto LiRPA library (Xu et al., 2020) at
commit cf0169c. Lastly, the neural network training is carried out using PyTorch (Paszke et al.,
2019) in version 2.3.1.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

B.6 COMPLETE VERIFICATION

For complete verification, we used the state-of-the-art (Brix et al., 2024; König et al., 2024) complete
verification system αβ-CROWN (Wang et al., 2021; Xu et al., 2021; Zhang et al., 2018). While it is
known, that careful parameter tuning of αβ-CROWN is crucial to obtain strong results, we used the
system in its standard configuration to not create a biased evaluation, where one certified training
method or network architecture might benefit more from the selected parameter choices. We set the
batch size of Branch-and-Bound domains to the highest number our hardware could accomodate,
resulting in a batch size of 1024 for CNN7, Narrow CNN7 and CNN5 and a batch size of 512
for CNN7 Wide and CNN9 on CIFAR-10. We used a batch size of 1024 for MNIST and 16 for
verifying networks trained on TinyImageNet. We used a cutoff time of 1 000s in wall-clock time for
verification of CNN7 on CIFAR-10 and TinyImageNet. For MNIST and the results on additional
architectures presented later, we used a cutoff of 300s in wall-clock time to keep computational
demands manageable.

B.7 CONFIGURATION SPACES

The configuration spaces used in our experiments are shown in Table 3. Each space consists of a set
of base hyperparameters shared across all methods, extended with method-specific ones where nec-
essary. In the following, we provide a brief explanation of each hyperparameter included. Generally,
we ensured in our design of the search space that it encompasses all previously chosen parameter
values from the literature but also includes all sensible parameter choices to allow for the discovery
of novel, well-performing configurations.

Warm up epochs refer to the number of epochs for which the network is trained on clean cross
entropy loss at the beginning of the training schedule.

Ramp-up epochs refer to the previously explained training phase, where ϵ is annealed from 0 to its
final value. We employ 10 such epochs at least and make the maximum number dependent on the
number of total epochs the network should be trained for, thereby making the search space flexible
and applicable to new benchmarks. At most, we extend the ramp-up phase through 75% of the total
number of epochs. This way, the ramp-up phase will have completed at the end of training, even
when the maximally allowed warm- and ramp-up durations are chosen.

LR decay factor describes the factor by which the learning rate is decayed at up to two epochs after
the ramp-up phase, for which we also optimise.

LR decay epoch {1,2} describe the points in time at which the learning rate is decayed. We cal-
culate the first point by adding LR decay epoch 1 to the number of warm- and ramp-up epochs,
ensuring that the learning rate is only decayed after the ramp-up phase completed. The second point
is calculated analogously, by adding the value of LR decay epoch 2 to the epoch at which the learn-
ing rate was decayed first. If any of these decay epochs exceed the total number of training epochs,
they are ignored.

L1 regularisation weight refers to the weight with which L1 regularisation is employed during
training.

Shi regularisation weight refers to the λ parameter which refers to the magnitude of the regulari-
sation proposed by Shi et al. (2021) during the ramp-up phase.

Train ϵ factor scales the ϵ value the network is evaluated on by a given factor for training. In some
cases, this has shown to be beneficial (see, e.g., Gowal et al. (2019); Shi et al. (2021).

Optimiser refers to the choice of the optimiser used for the training procedure. We include Adam
(Kingma & Ba, 2015), AdamW (Loshchilov & Hutter, 2019) and RAdam (Liu et al., 2020).

Learning rate refers to the initial learning rate employed by the previously chosen optimiser.

Start & end κ refer to the κ value employed in IBP and CROWN-IBP to weigh standard cross-
entropy loss and the certified loss. During the ramp-up phase, κstart is gradually decreased to κend,
placing greater weight on the natural loss in the early stages to stabilise training before progressively
shifting the focus toward the certifiability objective. To ensure that κstart always exceeds κend, we

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 3: Configuration spaces employed in our hyperparameter optimisation method for certified
training. Square brackets indicate continuous parameters for which we give inclusive upper and
lower limits. Curly brackets indicate sets out of which the optimiser can choose one option. Finally,
single numbers indicate constants, i.e., parameters that remain unchanged throughout the hyperpa-
rameter optimisation.

Method Hyperparameter Range

All

Warm up epochs [0, 5]
Ramp up epochs [10, 0.75 · Total Epochs]
LR decay factor [1e-5, 0.9]
LR decay epoch 1 [0, 0.5 · Total Epochs]
LR decay epoch 2 [0, 0.25 · Total Epochs]
L1 regularisation weight [1e-8, 1e-4]
Shi regularisation weight [0.0, 1.0]
Train ϵ factor [1.0, 2.0]
Optimiser {Adam, AdamW, RAdam}
Learning rate [1e-5, 1e-1]

IBP Start κ [0, 1]
End κ [0, 1]

CROWN-IBP

Start κ [0, 1]
End κ [0, 1]
Start β 1.0
Start β [0, 1]

SABR

τ [0.001, 0.5]
PGD steps [1, 10]
PGD step size [0.1, 2]
PGD restarts 1
PGD ϵ scaling factor [1, 3]

MTL-IBP

α [0.001, 0.5]
PGD steps [1, 10]
PGD step size [0.1, 2]
PGD restarts 1
PGD ϵ scaling factor [1, 3]

define the latter as a multiplicative factor c of the former, i.e., κend = κstart × c and optimise the
factor c instead of optimising κend directly.

Start & end β are handled analogously, but we fix βstart = 1.0 to ensure that the full benefit of the
tighter relaxation used in CROWN-IBP is employed to stabilise early training stages.

τ refers to the subselection ratio used in SABR that weighs certified with adversarial loss (De Palma
et al., 2024b; Müller et al., 2023).

α refers to the parameter of MTL-IBP that weighs certified with adversarial loss (De Palma et al.,
2024b).

PGD steps, step size, restarts and ϵ scaling factor refer to the parameters of the adversarial attack
employed during training to approximate the adversarial loss (Madry et al., 2018). Here, steps spec-
ify the number of optimisation steps, while step size indicates the magnitude of the input change
allowed per iteration. To keep training costs tractable, we chose to always randomly initialise the
attack once within the ϵ ball and not multiple times as done by Mao et al. (2025); a choice con-
sistent with multiple other works in the field (De Palma et al., 2024b; Müller et al., 2023; Madry
et al., 2018). This strategy leverages the fact that each training sample is reinitialised differently
across epochs, yielding a good approximation of the worst-case adversarial loss overall. Finally, we
optimise a factor that scales the ϵ radius in the adversarial attack, increasing the emphasis on the
adversarial loss when combined with the certified loss (De Palma et al., 2024b), achieving a similar
effect to ReLU shrinking as used by Müller et al. (2023).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 4: Comparison of the results reported from the literature to the results achieved by using
our novel optimisation procedure on MNIST with ϵ = 0.3. For each result from the literature, we
selected a configuration from the Pareto front that achieves similar or better performance. Boldface
marks results surpassing prior work; underlined values indicate similar performance (±0.5).

Dataset ϵ Method Source
Clean Acc.

[%]
(Lit.)

Cert. Acc.
[%]

(Lit.)

Clean Acc.
[%]

(ours)

Cert. Acc.
[%]

(ours)

MNIST 0.3

MTL-IBP De Palma et al. (2024b) 98.80 93.62 98.66 93.73
Mao et al. (2025) 98.74 93.90 98.66 93.73

SABR Müller et al. (2023) 98.75 92.98 98.77 93.43
Mao et al. (2025) 98.66 93.68 98.75 93.55

IBP Shi et al. (2021) 97.67 93.10 98.55 93.89
Mao et al. (2025) 98.54 93.80 98.52 94.00

CROWN-IBP Xu et al. (2021) 98.18 92.98 97.98 93.22
Mao et al. (2025) 98.48 93.90 97.94 93.25

C ADDITIONAL EXPERIMENTS

In the following, we give results of experiments conducted on additional datasets and architectures.

C.1 ADDITIONAL DATASETS

We evaluated our approach on MNIST (LeCun, 1998) with ϵ = 0.3, following the experimental
setup outlined earlier. While we left our optimisation procedure unchanged, we ran verification with
a cutoff time of 300s to reduce the computational burden. Nevertheless, we believe that our results
regarding certified accuracy could be further strengthened when employing cutoff times of 1 000
seconds as done in related work (see, e.g., (Mao et al., 2025; De Palma et al., 2024b)). We show the
Pareto fronts found using our novel method in Figure 7 and compare to results from the literature in
Table 4. While our method generally achieves comparable performance to configurations reported
in the literature, it did not identify configurations that substantially surpass prior results. We at-
tribute this to the fact that current certified training techniques have likely already been tuned to the
maximal performance achievable with IBP-based training for the given benchmark. This hypothesis
is reinforced by the observation that all methods converge to very similar trade-offs in our analysis,
suggesting that a performance barrier has likely been reached. However, the fact that we were able
to retrieve these high-performing configurations underlines the effectiveness of our method once
more.

C.2 ADDITIONAL ARCHITECTURES

Recently, Mao et al. (2024) showed, both theoretically and empirically, that architecture, specifically
network depth and width, has a major impact on the performance of certified training techniques.

91 92 93 94 95 96
Certified Accuracy

96.0

96.5

97.0

97.5

98.0

98.5

99.0

99.5

100.0

N
at

ur
al

 A
cc

ur
ac

y

MTL (ours)
MTL (lit.)

(a) MTL

91 92 93 94 95 96
Certified Accuracy

96.0

96.5

97.0

97.5

98.0

98.5

99.0

99.5

100.0

N
at

ur
al

 A
cc

ur
ac

y

SABR (ours)
SABR (lit.)

(b) SABR

91 92 93 94 95 96
Certified Accuracy

96.0

96.5

97.0

97.5

98.0

98.5

99.0

99.5

100.0

N
at

ur
al

 A
cc

ur
ac

y

C-IBP (ours)
C-IBP (lit.)

(c) C-IBP

91 92 93 94 95 96
Certified Accuracy

96.0

96.5

97.0

97.5

98.0

98.5

99.0

99.5

100.0

N
at

ur
al

 A
cc

ur
ac

y

IBP (ours)
IBP (lit.)

(d) IBP

Figure 7: Results for MNIST with ϵ = 0.3 yielded by our method. We compare Pareto fronts
obtained using our method to results given in the original publications and the recent CTBench
benchmark (Mao et al., 2025).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 5: Comparison of performances on CIFAR-10, ϵ = 2
255 , of well-performing configurations

reported by the respective authors across different codebases. We retrain all configurations using
CTRAIN (Kaulen & Hoos, 2025) and compare them to the results reported in the original publica-
tions. CTRAIN achieves similar results across all methods, revealing that advancements achieved
by our method cannot be traced back to the employed implementation.

Dataset ϵ Method Source
Clean Acc.

[%]
(Lit.)

Cert. Acc.
[%]

(Lit.)

Clean Acc.
[%]

(CTRAIN)

Cert. Acc.
[%]

(CTRAIN)

Adv. Acc.
[%]

(CTRAIN)

CIFAR-10

2
255

MTL-IBP De Palma et al. (2024b) 80.11 51.35 80.04 50.09 68.76
SABR Müller et al. (2023) ⋆ 79.24 62.84 79.66 46.29 64.06
IBP Shi et al. (2021) 66.84 52.85 67.35 53.21 57.50
CROWN-IBP Zhang et al. (2020) † 71.52 53.97 67.26 53.97 57.82

8
255

MTL-IBP De Palma et al. (2024b) 53.35 34.64 54.34 32.33 38.06
SABR Müller et al. (2023) ⋆ 52.38 35.13 51.67 34.47 38.77
IBP Shi et al. (2021) 48.94 34.97 48.04 33.63 36.93
CROWN-IBP Zhang et al. (2020) † 46.29 33.38 46.83 33.13 35.68

⋆: Results were obtained with complete verification.
†: Results were obtained without improvements by Shi et al. (2021) and a longer training schedule.

The authors found that the CNN7 Wide network defined earlier exhibits optimal depth and width
for certified training techniques. We investigated whether this claim still holds when considering
a Pareto front as the performance measure by running our novel method on CNN5, CNN7 Wide,
CNN7 Narrow and CNN9 using the CIFAR-10 dataset with ϵ = 2

255 . However, since running
complete verification for all networks would incur substantial computational costs, we opted for a
preliminary experiment where we only verified the first 1 000 images of the test set with a cutoff
time of 300s. We present the resulting Pareto fronts in Figure 8. Our analysis reveals that, indeed,
the CNN7 Wide architecture yields very strong trade-offs across the performance space. However,
there are also other architectures that contribute to a combined Pareto front over all architectures. For
MTL-IBP, the Pareto front also includes two CNN5 models, whereas for CROWN-IBP it includes
one CNN5 model. For SABR, 50% of the Pareto front consists of the standard CNN7 architec-
ture, particularly for configurations targeting higher certified accuracies. Finally, for standard IBP
training, a single CNN9 model appears on the Pareto front, achieving a trade-off comparable to that
of the CNN7 Wide models. This preliminary experiment highlights that our Pareto front analysis
may reveal previously unknown performance complementarities regarding different architectures
and motivates future work.

C.3 COMPARISON TO CONFIGURATIONS REPORTED IN THE LITERATURE

To ensure that our reported performance gains are not due to the different codebase used for
the experiments, we train with configurations reported in the literature as best-performing using
CTRAIN (Kaulen & Hoos, 2025). For this, we consider configurations for SABR and MTL-IBP
from their original publications and configurations for IBP and CROWN-IBP from Shi et al. (2021).
We trained those on CIFAR-10 with ϵ = 2

255 and evaluated them using incomplete verification,
i.e., CROWN (Zhang et al., 2018). We also provide adversarial accuracy as an upper bound to the

54 56 58 60
Certified Accuracy

68

70

72

74

76

N
at

ur
al

 A
cc

ur
ac

y

CNN-5
CNN-7
CNN-7 Wide
CNN-7 Narrow
CNN-9

(a) IBP

50.0 52.5 55.0 57.5 60.0 62.5
Certified Accuracy

72

74

76

78

80

82

N
at

ur
al

 A
cc

ur
ac

y

CNN-5
CNN-7
CNN-7 Wide
CNN-7 Narrow
CNN-9

(b) CROWN-IBP

56 58 60 62 64 66
Certified Accuracy

76

78

80

82

84

N
at

ur
al

 A
cc

ur
ac

y

CNN-5
CNN-7
CNN-7 Wide
CNN-7 Narrow
CNN-9

(c) SABR

45 50 55 60 65
Certified Accuracy

74

76

78

80

82

84

N
at

ur
al

 A
cc

ur
ac

y

CNN-5
CNN-7
CNN-7 Wide
CNN-7 Narrow
CNN-9

(d) MTL-IBP

Figure 8: Pareto fronts on CIFAR-10 with ϵ = 2
255 yielded by our method for the architectures

CNN5, CNN7, CNN7 Wide, CNN7 Narrow as well as CNN9.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

46 48 50 52 54 56 58
Certified Accuracy

74

75

76

77

78

79

80

81

82

N
at

ur
al

 A
cc

ur
ac

y

(a) MTL

42.5 45.0 47.5 50.0 52.5 55.0 57.5
Certified Accuracy

78

79

80

81

82

83

N
at

ur
al

 A
cc

ur
ac

y

(b) SABR

44 46 48 50 52 54 56 58
Certified Accuracy

73

74

75

76

77

78

79

N
at

ur
al

 A
cc

ur
ac

y

(c) C-IBP

42 44 46 48 50 52
Certified Accuracy

66

68

70

72

74

N
at

ur
al

 A
cc

ur
ac

y

(d) IBP

Figure 9: Pareto fronts obtained using our method on CIFAR-10 with ϵ = 2
255 with error bars. Each

dot represents the average performance over three pseudo-random seeds and error bars indicate
standard deviation.

certified robustness achievable through complete verification. In Table 5 we compare the obtained
results to those reported in the literature. It is important to note, that the authors of SABR did not
provide results on incomplete verification (Müller et al., 2023) and Shi et al. (2021) did not pro-
vide results on CROWN-IBP. Thus, we compare to results obtained using complete verification on
SABR and to results without the improvements by Shi et al. (2021) and a longer training schedule
on CROWN-IBP. The experiment shows that CTRAIN achieves similar results to the ones reported
by the original authors with negligible differences. Therefore, we conclude that the success of our
method cannot be attributed to the used codebase and might most probably work well when using
other implementations as well.

C.4 VARIANCE OF RESULTS

In this experiment we evaluate each configuration resulting from the hyperparameter optimisation
procedure using three pseudo-random seeds to assess result variance. We present the outcomes in
Figure 9, where each data point represents the mean and error bars indicate standard deviation.

It is important to note, that the algorithm performances resulting from this experiment do not create a
Pareto front, since some of the configurations dominate others. The reason for this is the fact that we
evaluate each configuration only once during the HPO procedure, which is a known practice when
optimising neural network hyperparameters due to the high training cost associated with it (see, e.g.,
Zela et al. (2022)). This setup allows “lucky” configurations to appear on the Pareto front, while
“unlucky” ones may be excluded even if their average performance would place them on the front.
Therefore, the hyperparameter optimisation might overfit to the chosen training seed. This issue is
further compounded by the inherent non-determinism of GPU-based neural network training, which
can lead to noticeable performance differences even with the same training seed. A strongly related
topic to this issue is overtuning in hyperparameter optimisation, an active area of research (see, e.g.,
Schneider et al. (2025); Nagler et al. (2024)). One method to mitigate these phenomena is evaluating
each configuration multiple times during optimisation and using its average performance, which is
computationally infeasible given the costs of certified training.

However, we strongly believe that this does not undermine our results. Our final evaluation is per-
formed on an unseen test set, and we consider differences significant only if they exceed ±0.5 com-
pared to previously known results. This threshold corresponds to the maximum standard deviation
observed when training each method with three seeds.

D COMPUTATIONAL COSTS

We present the computational costs for both the hyperparameter optimisation runs and the verifica-
tion in Table 6. We display the required total compute for discovery and complete verification of
the Pareto front as well as the average verification time per instance. We show that hyperparameter
optimisation costs scale directly with training costs, with TinyImageNet being the most expensive
benchmark due to its larger scale. Across the same dataset, architectures with fewer parameters
incur lower optimisation costs, with CNN5 being the cheapest to optimise. However, regarding
the costs of complete verification, perhaps surprisingly, the highest costs occur on the CIFAR-10
dataset with ϵ = 2

255 . We attribute this to the fact that, on this benchmark, complete verification

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 6: Computation time of our experiments in wall-clock time. For each experiment, we show
the time required for the hyperparameter optimisation, the average verification time required per
instance as well as the total time used for complete verification of the Pareto front. If not indicated
otherwise, we report verification times over the complete test-set with a per-instance timeout of
1 000s in wall-clock time.

Dataset Network Method ϵ HPO (h) Verification (s)
Average

Verification (h)
Total

CIFAR10 ⋆† CNN5

MTL-IBP
2

255

113.69 10.96 33.48
SABR 111.02 9.18 28.06
CROWN-IBP 135.15 6.09 15.23
IBP 62.95 2.23 6.21

CIFAR10 CNN7

MTL-IBP
2

255

236.68 47.34 1314.97
SABR 226.83 52.03 1387.50
CROWN-IBP 318.13 24.66 704.08
IBP 95.70 7.39 225.95

CIFAR10 CNN7

MTL-IBP
8

255

340.25 10.07 378.07
SABR 296.88 15.54 461.29
CROWN-IBP 457.43 9.10 202.11
IBP 158.81 13.69 436.11

CIFAR10 ⋆† CNN9

MTL-IBP
2

255

339.96 17.64 53.89
SABR 336.08 18.80 67.89
CROWN-IBP 434.99 8.15 15.85
IBP 140.74 3.77 15.71

CIFAR10 ⋆† Narrow CNN7

MTL-IBP
2

255

182.16 15.99 44.41
SABR 172.72 13.44 44.80
CROWN-IBP 211.36 5.27 19.03
IBP 75.45 2.63 8.03

CIFAR10 ⋆† Wide CNN7

MTL-IBP
2

255

409.45 27.56 53.59
SABR 399.83 21.98 79.38
CROWN-IBP 624.31 12.66 31.64
IBP 164.31 4.62 17.98

MNIST ⋆ CNN7

MTL-IBP

0.3

117.15 5.02 27.91
SABR 104.22 4.79 93.22
CROWN-IBP 140.0 2.05 22.79
IBP 51.22 3.16 43.91

TinyImagenet CNN7

MTL-IBP
1

255

1576.51 37.43 207.96
SABR 1494.89 45.68 888.30
CROWN-IBP 1567.99 15.12 209.96
IBP 757.65 16.32 408.07

⋆: Selected networks were verified with a per-instance timeout of 300 seconds in wall-clock time.
†: For selected networks, we report verification times over the first 1000 images of the test set.

methods achieve the largest improvements compared to cheaper, incomplete methods. On the other
benchmarks, incomplete methods are often sufficient to certify most provably robust instances.

E ADDITIONAL DISCUSSION

In the following, we discuss several of our design decisions in developing our novel method and
give rationale on the selection of methods included in the evaluation.

E.1 MOTIVATION FOR MULTI-OBJECTIVE OPTIMISATION

In related work, the hyperparameter optimisation problem has been treated as a single-objective
problem with optimising for certified accuracy only (Mao et al., 2025) or by optimising for the

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

sum of clean and certified accuracy (De Palma et al., 2024b). This circumstance already high-
lights that there exist multiple views on what defines a well-performing configuration with regard to
the robustness-accurcay trade-off (e.g., given two configurations with performances (0.8, 0.63) and
(0.78, 0.64), De Palma et al. (2024b) would prefer the former while Mao et al. (2025) would choose
the latter). Therefore, there does not exist a clear single-objective definition of strong performance
for certified training. Thus, we opted to provide a method that approximates the whole Pareto set
of configurations with strong robustness-accuracy trade-offs. It is important to note that, given our
method, a potential user can constrain the optimisation to regions that are important to them, e.g.
prioritising strong certifiability over clean performance.

In addition, we argue that the multi-objective approach enabled successful automated hyperparam-
eter optimisation for certified training of deep neural networks in the first place. As mentioned
previously, conducting complete verification for all investigated configurations during optimisation
is computationally infeasible. Thus, we optimised for a proxy metric, i.e., certified accuracy ob-
tained through cheaper incomplete verification methods. However, we found that the Pareto front
often included configurations with similar sums of performances, e.g., (0.8, 0.5) vs. (0.75, 0.55),
where higher certifiability with incomplete methods only led to faster complete verification but not
to higher certified accuracies overall. In these cases, the former configuration should be preferred
since it yields a generally better trade-off. However, if the optimisation objective were the sum of
certified and clean accuracy, the optimiser could not distinguish between the two; if only certified
accuracy were used, it would favour the latter. With our method, both configurations are included
in the Pareto set and considered for complete verification, ultimately revealing the superior per-
formance of the former configuration. We therefore conclude that a multi-objective approach is
essential for efficiently identifying the best-performing configurations.

E.2 JOINT HYPERPARAMETER-OPTIMISATION

While prior work (Mao et al., 2025; De Palma et al., 2024b; Müller et al., 2023) showed that the
robustness-accuracy trade-off can be explored by tuning method-inherent trade-off parameters such
as α for MTL-IBP and τ for SABR, we decided to investigate the trade-off through joint optimisation
of all relevant parameters of the training pipeline, including method-specific as well as general deep
learning parameters. First and foremost, it is a well-known fact that hyperparameters often exhibit
complex interactions and that it is therefore required to optimise all parameters jointly to identify
best-performing configurations (Hutter et al., 2014b). In the context of certified training, our analysis
in Appendix A revealed that several hyperparameters contribute strongly to overall performance.
For example, the choice of the optimiser used in SABR or the number of warm-up epochs employed
in MTL-IBP were crucial to obtain strong trade-offs on CIFAR-10 with ϵ = 2

255 . These well-
performing configurations could not have been discovered when tuning only single parameters.

E.3 RATIONALE FOR EXCLUSION OF TAPS AND STAPS

While we included several state-of-the-art methods in our evaluation, we decided against considering
the recently proposed TAPS and STAPS certified training methods (Mao et al., 2023). These meth-
ods train by propagating interval (TAPS) or SABR (STAPS) bounds through a predefined number of
layers, and then performing adversarial training in the latent space within the resulting bounds for
the remaining layers of the network. Mao et al. (2023) demonstrated that these methods can achieve
strong performance on standard benchmarks of the certified training community. However, both the
original evaluation of the authors (Mao et al., 2023) as well as the recent CTBench benchmark (Mao
et al., 2025) showed that neither TAPS nor STAPS outperforms MTL-IBP.

While we would have preferred to include these methods in our evaluation to assess their perfor-
mances using Pareto front analysis, we faced several challenges. First, the choice of network split
has a major impact on method performance, with almost all splits except the best-performing one
yielding sub-par or even catastrophic results. We therefore assume that proper hyperparameter op-
timisation would require far more trials than used in our experiments. Additionally, TAPS and
STAPS achieve their best performance when paired with strong latent-space adversarial attacks with
multiple random restarts (Mao et al., 2025; 2023). STAPS also requires an input-space adversar-
ial attack to compute SABR bounds. Consequently, TAPS and STAPS are generally very costly,
making efficient hyperparameter optimisation even more challenging. In conclusion, we chose to

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

exclude TAPS and STAPS from this study but plan to investigate their performance with regard to
the obtained Pareto fronts in future work.

F PSEUDO-CODE

Algorithm 1 provides pseudo-code for our proposed constrained multi-objective hyperparameter
optimisation method for certified training of deep neural networks. Line 1 gathers the initial random
samples, which are evaluated in line 2. In line 4, we determine which configurations belong to
the Pareto set. The optimisation loop then begins with fitting the surrogate models in line 6. Line
7 then optimises the acquisition function to decide on the next candidate configuration. We then
evaluate the configuration and add it to the set of evaluated configurations in line 8. Lastly, in line
9, we determine which configurations belong to the Pareto set based on the updated set of evaluated
configurations.

Algorithm 1 Multi-objective hyperparameter optimisation for certified training

1: Input: total budget b, initial sample size r, certified training method t, incomplete verification
method v, dataset D, min. clean acc. constraint cclean, min. cert acc. constraint ccert

2: Initialise ζ with r randomly sampled points
3: ζ ← {(λ, v(t(D,λ))) | λ ∈ ζ}
4: P ← {(λ, (mclean,mcert))|∄(λ′,(m′

clean,m
′
cert)∈ζ(mclean,mcert) ≺ (m′

clean,m
′
cert)∧ (mclean ≥ cclean ∧

mclean ≥ cclean)}
5: while budget b is not exhausted do
6: Sclean, Scert, Sclean cond, Scert cond ← fit(ζ)
7: λt ← argmaxEHVI(Sclean, Scert, Sclean cond, Scert cond, P, cclean, ccert)
8: ζ ← ζ ∪ {(λ, v(t(D,λ)))}
9: P ← {(λ, (mclean,mcert))|∄(λ′,(m′

clean,m
′
cert)∈ζ(mclean,mcert) ≺ (m′

clean,m
′
cert) ∧ (mclean ≥

cclean ∧mcert ≥ ccert)}
10: end while
11: Return P

28

	Introduction
	Background
	Neural Network Verification
	Training Robust Neural Networks
	Multi-Objective Hyperparameter Optimisation

	Related Work
	Pareto-Front Discovery of Certified Training Methods
	Empirical Evaluation
	Conclusions and Future Work
	Ethics Statement
	Reproducibility Statement
	Hyperparameter Importance Analysis
	Additional Details on the Setup of the Experiments
	Hardware Details
	Datasets
	Architectures
	Experimental Setup
	Additional Implementation Details
	Complete Verification
	Configuration Spaces

	Additional Experiments
	Additional Datasets
	Additional Architectures
	Comparison to Configurations Reported in the Literature
	Variance of Results

	Computational Costs
	Additional Discussion
	Motivation for Multi-Objective Optimisation
	Joint Hyperparameter-Optimisation
	Rationale for Exclusion of TAPS and STAPS

	Pseudo-code

