

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 EMPIRICALLY INVESTIGATING THE TRADE-OFFS IN DETERMINISTIC CERTIFIED TRAINING

Anonymous authors

Paper under double-blind review

ABSTRACT

While there have been numerous advancements regarding the performance of deep neural networks on a broad range of supervised learning tasks, their adversarial robustness remains a major concern. To mitigate this, *neural network verification* aims to provide mathematically rigorous robustness guarantees at the cost of substantial computational requirements. *Certified training* methods overcome this challenge by optimising for verifiable robustness during training, which, however, usually results in substantial decrease of performance on clean data. This *robustness-accuracy* trade-off has been extensively studied in the context of adversarial training but remains mostly unexplored for certified training. To control this trade-off, certified training techniques expose hyperparameters, which, to date, have been manually tuned to one specific configuration that compares favourable to the previous state-of-the-art. In this work, we present a novel fully-automated hyperparameter optimisation procedure for certified training that yields a Pareto front of optimal configurations with regard to the robustness-accuracy trade-off. Our approach facilitates the fair, principled and nuanced comparison of the performance of different methods. We show that most methods yield better trade-offs than previously assumed, thereby establishing a new state of the art in certified training of deep neural networks. In addition, we demonstrate that performance improvements reported over recent years are far less pronounced when all methods have been carefully tuned.

1 INTRODUCTION

In recent years, deep learning has enabled remarkable advances across several application areas ranging from computer vision (Dosovitskiy et al., 2021) to protein structure prediction (Jumper et al., 2021). Concurrently, there has been a fast-growing trend towards employing deep-learning-based systems in safety-critical domains, such as unmanned aircraft manoeuvre advisory systems (Julian et al., 2019) and map generation for autonomous driving (Hubbertz et al., 2025). However, it is well known that deep neural networks are vulnerable to *adversarial examples* (Szegedy et al., 2014): inputs perturbed by small, carefully designed modifications that lead to misclassification (see, e.g., Goodfellow et al. (2015); Madry et al. (2018)).

While adversarial attacks play an important role in diagnosing weaknesses before or after deployment, because of the heuristic nature of the methods and their reliance on local gradients, they may fail to find an adversarial manipulation of given inputs even when those exist. Thus, *neural network verification* techniques have been proposed that provide *formal guarantees* on the robustness of neural networks (see, e.g., Tjeng et al. (2019); Wang et al. (2021); Ferrari et al. (2022); De Palma et al. (2024a)). These come at the cost of substantially increased computational requirements, since proving even simple properties is an \mathcal{NP} -complete task (Katz et al., 2017; Sälzer & Lange, 2021).

One commonly studied property in the context of neural network verification is local robustness within an ℓ_∞ norm-ball around inputs (see, e.g., Wang et al. (2021); Brix et al. (2023); König et al. (2024)). To train networks that adhere to that property, several techniques have been proposed, most prominently *adversarial training* (see, e.g., Madry et al. (2018); Zhang et al. (2019)). Here, the parameters of the neural network are optimised with regard to a worst-case loss within the given threat model approximated by means of adversarial attacks.

054 While these techniques result in neural networks that are empirically robust, the resulting networks
 055 are usually not easily-verifiable, *i.e.*, even highly-optimised state-of-the-art solvers mostly fail to
 056 prove robustness properties (see, *e.g.*, Mao et al. (2025); De Palma et al. (2024b)). An orthogonal
 057 line of research, *certified training*, focuses on producing networks for which formal robustness guar-
 058 antees can be obtained more efficiently (see, *e.g.*, Gowal et al. (2019); Zhang et al. (2020); Shi et al.
 059 (2021); Müller et al. (2023); Mao et al. (2023); De Palma et al. (2024b)). Here, *incomplete verifi-
 060 cation* methods that yield sound, but potentially loose, bounds on the outputs of the neural network
 061 are employed to over-approximate the worst-case loss.

062 State-of-the-art methods rely on *Interval Bound Propagation* (IBP) (Gowal et al., 2019) for the
 063 bounding process. While the resulting networks are more amenable to formal verification tech-
 064 niques, compared to adversarially trained networks, they generally perform far worse on clean data
 065 (see, *e.g.*, Müller et al. (2023); De Palma et al. (2024b)). This effect is known as the *robustness-
 066 accuracy trade-off* in the context of adversarial training (see, *e.g.*, Tsipras et al. (2019); Zhang et al.
 067 (2019)), but remains mostly unexplored for deterministic certified training methods.

068 State-of-the-art certified training techniques expose hyperparameters that govern the trade-off be-
 069 tween robustness and accuracy. In particular, they introduce a weighting factor to balance the certi-
 070 fied loss obtained through IBP against either clean loss (Gowal et al., 2019; Zhang et al., 2020) or
 071 adversarial loss (Müller et al., 2023; De Palma et al., 2024b). Moreover, these methods require tun-
 072 ing additional hyperparameters, such as the learning rate and the number of warm-up epochs, which
 073 strongly influence training stability and final performance. Until now, the state of the art in certified
 074 training has been determined by tuning methods to one specific trade-off that improves over results
 075 from related work; manually (see, *e.g.*, Müller et al. (2023); De Palma et al. (2024b)) or by relying
 076 on grid search (Mao et al., 2025). However, due to the robustness-accuracy trade-off, the problem
 077 naturally gives rise to a *Pareto front* of configurations, *i.e.*, a set of configurations for which im-
 078 proving one objective necessarily degrades the other. To date, this front has not been systematically
 079 explored in the context of certified training.

080 In this work, we propose, for the first time, a method for computing a Pareto front of well-performing
 081 hyperparameter configurations of certified training techniques with regard to natural and certified
 082 accuracy by employing methods from the field of multi-objective hyperparameter optimisation.
 083 However, these methods cannot be trivially applied to certified training. Assessing the final tar-
 084 get objective, *i.e.*, the certified robustness of a network obtained via complete verification, for each
 085 investigated configuration is infeasible. We demonstrate that an estimation of certified robustness
 086 computed through cheaper, incomplete verification techniques serves as an efficient proxy objective,
 087 yielding networks that also perform well under complete verification. Furthermore, certain regions
 088 of the Pareto front correspond to trivial configurations; for example, the highest natural accuracies
 089 can be obtained by training solely on clean or adversarial loss respectively. To avoid expending
 090 resources on these regions, we demonstrate how the optimisation can be effectively constrained to
 091 focus only on interesting areas.

092 To summarise, our contributions are as follows:

- 093 1. We introduce the first fully automated hyperparameter optimisation framework for certified
 094 training based on constrained multi-objective optimisation, which computes a Pareto front
 095 of optimal configurations, balancing performance and verifiability.
- 096 2. Using this framework, we demonstrate that many existing certified training methods
 097 achieve more favourable trade-offs than previously reported across standard benchmarks,
 098 thereby establishing a new state of the art in certified training.
- 100 3. Lastly, we show how a more nuanced assessment of the state of the art in certified training
 101 is enabled by the computed Pareto fronts, revealing complimentary performance between
 102 methods when higher certified or clean accuracies are desired.

104 2 BACKGROUND

105 In the following, we provide the necessary background for our work, covering neural network veri-
 106 fication, certified training and multi-objective hyperparameter optimisation.

108 2.1 NEURAL NETWORK VERIFICATION
109

110 Generally, given a neural network $f_\theta : \mathbb{R}^d \mapsto \mathbb{R}^c$, $c, d \in \mathbb{N}$ that maps inputs $\mathbf{x} \in \mathbb{R}^d$ to outputs
111 $f_\theta(\mathbf{x}) \in \mathbb{R}^c$, *formal neural network verification* is concerned with proving whether a given input-
112 output property *holds* or *is violated* for f .

113 In this study, we focus on classification problems with scalar labels $y \in \mathbb{N}$ and on *local robustness*
114 in an ℓ_∞ norm ball with radius ϵ denoted as $\mathcal{B}_\infty^\epsilon$. More formally, given an original input x_0 with
115 correct label y_0 , the local robustness problem can be stated as

$$116 \quad \forall \mathbf{x}' \in \mathcal{B}_\infty^\epsilon := \{\mathbf{x} \mid \|\mathbf{x} - \mathbf{x}_0\|_\infty \leq \epsilon\} : \arg \max_j f_\theta(\mathbf{x}')_j = y_0 \quad (1)$$

118 The problem reduces to computing the sign of the following optimisation problem, where $\mathbf{z}(\mathbf{x}, y) \in$
119 \mathcal{R}^c is defined as the vector of logit differences, *i.e.*, $\mathbf{z}(\mathbf{x}, y) := f_\theta(\mathbf{x})[y] \cdot \mathbf{1} - f_\theta(\mathbf{x})$:

$$120 \quad \min_{\mathbf{x}' \in \mathcal{B}_\infty^\epsilon} \min_{i \neq y} \mathbf{z}(\mathbf{x}', y)[i] \quad (2)$$

122 Computing an exact solution to Equation 2 is known to be an \mathcal{NP} -complete problem (Sälzer
123 & Lange, 2021; Katz et al., 2017). Therefore, in practice, sound lower bounds $\underline{\mathbf{z}}(\mathbf{x}, y)[i] \leq$
124 $\mathbf{z}(\mathbf{x}, y)[i]$, $i \in \{1, \dots, c\}$ are approximated using *incomplete* verification methods.

125 The arguably conceptually simplest incomplete method is *Interval Bound Propagation* (IBP) (Gowal
126 et al., 2019; Mirman et al., 2018), which employs axis-aligned hyper-boxes to approximate the set of
127 possible outputs. For this, consider f_θ as the composition of L linear layers $h_{1, \dots, L}$ with $h_i(\mathbf{x}^{i-1}) =$
128 $\mathbf{W}_i \cdot \mathbf{x}^{i-1} + \mathbf{b}_i$ and the ReLU activation $\sigma(\mathbf{x}) := \max(0, \mathbf{x})$, *i.e.*, $f_\theta = h_L \circ \sigma \circ h_{L-1} \circ \dots \circ \sigma \circ h_1$.
129 Using interval arithmetic, the axis-aligned hyper-box \mathcal{B}_1 that encompasses $h_1(\mathcal{B}_\infty^\epsilon)$ is defined to
130 have centre $\bar{\mathbf{x}}_1 = \mathbf{W} \cdot \mathbf{x}_0$ and edge length $\delta_1 = |\mathbf{W}| \cdot \epsilon$. To approximate the reachable outputs of
131 $\sigma(\mathcal{B}_1)$, due to the non-linearity of the ReLU function, lower and upper bounds have to be propagated
132 separately, *i.e.*, $\mathbf{l}_2 = \sigma(\bar{\mathbf{x}}_1 - \delta_1)$ and $\mathbf{u}_2 = \sigma(\bar{\mathbf{x}}_1 + \delta_1)$. The resulting hyper-box \mathcal{B}_2 has centre
133 $\bar{\mathbf{x}}_2 = \frac{\mathbf{u}_2 + \mathbf{l}_2}{2}$ and edge length $\delta_2 = \frac{\mathbf{u}_2 - \mathbf{l}_2}{2}$. By continuing this process, we can compute a hyper-box
134 that encompasses the reachable output set of f_θ , thereby allowing for the calculation of $\underline{\mathbf{z}}(\mathbf{x}, y)$.

135 More sophisticated methods, such as (α) -CROWN (Zhang et al., 2018; Xu et al., 2021), propagate
136 symbolic intervals and employ a tighter relaxation at the cost of increased computational complexity.
137 Furthermore, incomplete methods can be used within a branch-and-bound framework (Bunel et al.,
138 2020) that solves the verification problem in a complete fashion (see, *e.g.*, De Palma et al. (2024a);
139 Ferrari et al. (2022); Wang et al. (2021)). These methods constitute the current state of the art in
140 complete neural network verification (Brix et al., 2024; König et al., 2024).

141 2.2 TRAINING ROBUST NEURAL NETWORKS
142

144 Madry et al. (2018) introduced the problem of training robust neural networks as a min-max optimi-
145 sation problem that aims to find parameters θ that minimise an expected worst-case loss measured
146 through $\mathcal{L} : \mathbb{R}^c \times \mathbb{N} \rightarrow \mathbb{R}$ in the ℓ_∞ norm ball around samples from a data distribution $(\mathbf{x}, y) \sim D$:

$$147 \quad \theta \in \arg \min_{\theta'} \mathbb{E}_D \left[\max_{\mathbf{x}' \in \mathcal{B}_\infty^\epsilon} \mathcal{L}(f_{\theta'}(\mathbf{x}'), y) \right] \quad (3)$$

148 As mentioned previously, calculating the exact worst-case loss is computationally not feasible, since
149 it is equivalent to solving Equation 2. Therefore, Madry et al. (2018) under-approximate the inner
150 maximisation by means of *Projected Gradient Descent* (PGD), which iteratively searches for
151 points \mathbf{x}_{adv} in $\mathcal{B}_\infty^\epsilon$ that maximise the worst-case loss. We refer to this as the *adversarial loss*
152 $\mathcal{L}_{\text{adv}} := \mathcal{L}(f_\theta(\mathbf{x}_{\text{adv}}), y)$. While the resulting networks are empirically robust, *i.e.*, far more resistant
153 to adversarial attacks than traditionally trained networks, they do not yield certifiable guarantees and
154 may be vulnerable to stronger adversarial attacks (Mao et al., 2025; Croce et al., 2021). *Certified*
155 *training* methods follow an orthogonal approach by over-approximating the true value of the inner
156 maximisation by means of incomplete verification methods. The *verified loss* \mathcal{L}_{ver} is computed on
157 the previously defined lower bound to the logit differences of f_θ (Wong & Kolter, 2018):

$$158 \quad \max_{\mathbf{x}' \in \mathcal{B}_\infty^\epsilon} \mathcal{L}(f_\theta(\mathbf{x}'), y) \leq \mathcal{L}_{\text{ver}} := \mathcal{L}(-\underline{\mathbf{z}}(\mathbf{x}, y), y) \quad (4)$$

160 This loss decreases when the employed incomplete verifier can prove that f_θ is locally robust for
161 the given training sample. Perhaps surprisingly, training methods that employ the hyper-box relax-
162 ation currently yield best results, despite relying on a relatively loose over-approximation (see, *e.g.*,

162 De Palma et al. (2024b); Mao et al. (2024); Müller et al. (2023)). We present the concrete certified
 163 training approaches relevant to this work in Section 3. Generally, certified training methods are
 164 evaluated with regard to two metrics, *i.e.*, *clean* and *certified* accuracy where, given a test set, the
 165 former refers to the fraction of correctly classified inputs and the latter refers to the fraction of inputs
 166 for which the network is provably robust within $\mathcal{B}_\infty^\epsilon$.
 167

168 2.3 MULTI-OBJECTIVE HYPERPARAMETER OPTIMISATION

170 **Formal definition.** In hyperparameter optimisation, let \mathcal{A} be an algorithm and Λ its configuration
 171 space, containing the hyperparameters and their ranges considered for optimisation. When \mathcal{A} is run
 172 with a hyperparameter configuration $\lambda \in \Lambda$, we denote it as \mathcal{A}_λ . Given a data distribution D with
 173 training set D_{train} and test set D_{test} , and l performance metrics $\mathbf{m} = \{m_1, \dots, m_l\}$, each metric
 174 evaluates the performance of \mathcal{A}_λ trained on D_{train} and tested on D_{test} . We assume w.o.l.g. that the
 175 optimisation goal is to maximise all metrics. We denote the metric values of configuration λ as
 176

$$\mathbf{m}(\mathcal{A}_\lambda) = (m_1(\mathcal{A}_\lambda), m_2(\mathcal{A}_\lambda), \dots, m_l(\mathcal{A}_\lambda)). \quad (5)$$

178 The optimisation may have *constraints* $c_1(\mathcal{A}_\lambda), \dots, c_k(\mathcal{A}_\lambda)$. A configuration λ satisfies constraint
 179 c_i if, and only if, $c_i(\lambda) \geq 0$, and configurations satisfying all constraints are called *feasible*.
 180

181 For two feasible configurations $\lambda_i, \lambda_j \in \Lambda$, we say that λ_i *Pareto dominates* λ_j (*i.e.*, $\mathbf{m}(\mathcal{A}_{\lambda_i}) \succ$
 182 $\mathbf{m}(\mathcal{A}_{\lambda_j})$) if

$$\forall k \in \{1, \dots, l\} : m_k(\mathcal{A}_{\lambda_i}) \geq m_k(\mathcal{A}_{\lambda_j}) \quad \text{and} \quad \exists k \in \{1, \dots, l\} : m_k(\mathcal{A}_{\lambda_i}) > m_k(\mathcal{A}_{\lambda_j}).$$

185 The optimisation goal is to identify the Pareto set of non-dominated feasible configurations $\Lambda^* \subseteq \Lambda$,
 186 such that $\lambda \in \Lambda^*$ iff $\nexists \lambda' \in \Lambda$ with $\mathbf{m}(\mathcal{A}_\lambda) \prec \mathbf{m}(\mathcal{A}_{\lambda'})$. The corresponding Pareto front of is denoted
 187 $\mathbf{M}^* = \{\mathbf{m}(\mathcal{A}_\lambda) \mid \lambda \in \Lambda^*\}$.

188 Common metrics for assessing multi-objective optimisation include the *hypervolume*, defined as the
 189 Lebesgue measure of the dominated space between a reference point $r \in \mathbb{R}^l$ and an approximate
 190 Pareto front \mathbf{M} ; we denote it as $\text{HV}(\mathbf{M}, r)$.
 191

192 **Multi-objective Bayesian optimisation.** Since many real-world problems involve multiple objectives,
 193 several approaches for multi-objective optimisation have been proposed, including evolutionary
 194 algorithms (Beume et al., 2007; Deb et al., 2002) and Bayesian optimisation (Daulton et al.,
 195 2020), the latter of which we adopt in this work. Bayesian optimisation is a surrogate-based approach
 196 that iteratively samples configurations $\lambda_1, \lambda_2, \dots, \lambda_t$ and stores them in a dataset ζ . This
 197 dataset is used to train *surrogate models* $S_1 : \hat{\Lambda} \rightarrow \mathbb{R}, S_2 : \hat{\Lambda} \rightarrow \mathbb{R}, \dots, S_l : \hat{\Lambda} \rightarrow \mathbb{R}$, each approximating
 198 an objective m_1, \dots, m_l . In addition to objective estimates, surrogates provide predictive
 199 uncertainty, typically expressed as a variance σ^2 . Common choices for surrogate models include
 200 Gaussian processes (Rasmussen & Williams, 2006) and random forests (Breiman, 2001). An *acquisition function*
 201 balances exploration and exploitation, and selects the configuration with the highest
 202 acquisition value for evaluation. The dataset ζ is updated with this configuration, and the process
 203 continues until a given evaluation budget is exhausted.

204 In the multi-objective setting, the *expected hypervolume improvement* (EHVI) acquisition function
 205 is frequently used. Given a Pareto front \mathbf{M} and a new configuration $\lambda \in \Lambda$, the hypervolume
 206 improvement is defined as

$$\text{HVI}(\mathbf{M}, \lambda) = (\text{HV}(\mathbf{M} \cup \{\mathbf{m}(\mathcal{A}_\lambda, D_{\text{train}}, D_{\text{test}})\}) - \text{HV}(\mathbf{M})) \cdot \mathbb{1}[\mathbf{c}(\mathcal{A}_\lambda, D_{\text{train}}, D_{\text{test}})], \quad (6)$$

209 *i.e.*, the additional hypervolume gained by adding λ to the Pareto set. The EHVI is then given by
 210 $\text{EHVI}(\mathbf{M}, \lambda) = \mathbb{E}[\text{HVI}(\mathbf{M}, \lambda)]$
 211

212 3 RELATED WORK

214 In the following, we give a brief overview of related work from the certified training and multi-
 215 objective hyperparameter optimisation literature.

216 **State-of-the-Art Certified Training Techniques.** As stated previously, state-of-the-art certified
 217 training relies on IBP to approximate the worst-case robust loss. This approach was first introduced
 218 by Gowal et al. (2019) but required gradually increasing ϵ to its final value over hundreds of *ramp-*
 219 *up* epochs to stabilise training. In addition, Gowal et al. introduced a trade-off parameter κ that is
 220 decreased from 1 to 0 during ramp-up, weighing clean and verified loss: $\kappa \cdot \hat{\mathcal{L}}(f_\theta(\mathbf{x}), y) + (1 -$
 221 $\kappa) \cdot \mathcal{L}_{\text{ver}}(f_\theta(\mathbf{x}), y)$). Prior to certified training, the network may be initialized with several *warm-*
 222 *up* epochs using the clean loss. Zhang et al. (2020) propose to combine IBP and CROWN (Zhang
 223 et al., 2018) bounds in *CROWN-IBP* to compute L_{ver} . Here, CROWN relaxations are used to bound
 224 the final output based on IBP bounds of intermediate layers. Furthermore, a transition is made
 225 from CROWN-IBP to IBP bounds during ramp-up, using an additional trade-off parameter β . Xu
 226 et al. (2020) further reduce the complexity of CROWN-IBP through *loss fusion*, a technique that
 227 enables direct computation of the verified loss without requiring logit differences. Shi et al. (2021)
 228 suggest the use of BatchNorm layers (Ioffe & Szegedy, 2015) and introduce specialised initialisation
 229 and regularisation techniques resulting in shorter ramp-up schedules and better performance. More
 230 recently, a line of research emerged that combines certified and adversarial losses. Müller et al.
 231 (2023) compute an unsound verified loss called *SABR* by propagating a smaller subset of the input
 232 region with edge length $\tau \cdot \epsilon$ using IBP. The centers of the hyper-box are identified using PGD.
 233 Additionally, *ReLU shrinking* is used to reduce the magnitude of IBP bounds by multiplying them
 234 with a constant $c < 1$ before each activation, thereby gradually increasing focus on adversarial loss.
 235 De Palma et al. (2024b) show that loss functions conceptually similar to SABR can be obtained by
 236 considering convex combinations of \mathcal{L}_{ver} and \mathcal{L}_{adv} weighed by α . Among those, the *MTL-IBP* loss
 237 is defined as $\alpha \cdot \mathcal{L}_{\text{ver}} + (1 - \alpha) \cdot \mathcal{L}_{\text{adv}}$. In addition, an effect similar to ReLU shrinking is achieved
 238 by carrying out adversarial attacks over a larger perturbation radius.

239 **Evaluation of Certified Training.** To assess certified accuracy of trained models, related work
 240 employed state-of-the-art complete verification systems *Oval* (De Palma et al., 2024a) or *MN-BaB*
 241 (Ferrari et al., 2022). In addition, the tuning of parameters including the learning rate, the number of
 242 warm- and ramp-up epochs and trade-off parameters, such as κ or α , is crucial for achieving state-
 243 of-the-art performance. Until now, researchers have mostly relied on tuning parameters manually to
 244 obtain a single configuration that compares favourably to the current state of the art. Recently, Mao
 245 et al. (2025) proposed *CTBench*, a novel benchmark for certified training, with the goal of ensuring
 246 a fair comparison between methods by employing grid search over separately designed hyperpar-
 247 ameter spaces per benchmark. Nevertheless, the results presented in CTBench were obtained by
 248 tuning to one specific trade-off that often favoured certified accuracy and, thus, came at the expense
 249 of markedly reduced clean accuracy on some benchmarks as we show later in Section 5.

250 **Multi-Objective Hyperparameter Optimisation.** Multi-objective optimisation was deployed
 251 previously in multiple AutoML scenarios. For example, Dooley et al. (2023) performed joint hy-
 252 perparameter optimisation and neural architecture search of CNNs to train networks which are not
 253 only accurate but also unbiased. Hennig & Lindauer (2025) used multi-objective hyperparameter
 254 optimisation to find optimal shift neural networks that balance energy efficiency and accuracy. The
 255 popular YAHPO (Pfisterer et al., 2022) benchmark offers several multi-objective hyperparameter
 256 optimisation benchmarks for tabular machine learning. The benchmarks balance between different
 257 objectives, including accuracy, memory usage and interpretability.

258

259 4 PARETO-FRONT DISCOVERY OF CERTIFIED TRAINING METHODS

260

261 In the following, we present our novel method for the discovery of a Pareto-optimal set of hyper-
 262 parameter configurations for certified training. With this, we address multiple open problems in
 263 the literature. First and foremost, we present a fully-automated pipeline to obtain optimal config-
 264 urations for state-of-the-art methods. This renders labour-intensive manual hyperparameter tuning
 265 unnecessary, thereby making the process more accessible to non-experts and more efficient for ex-
 266 perts. Further, it offers a principled approach to finding high-performance configurations that might
 267 reveal new trade-offs between clean and certified accuracy that could not be found through manual
 268 tuning. In addition, the Pareto fronts enable a more nuanced comparison of certified training tech-
 269 niques, *e.g.*, they may uncover that one method yields more favourable trade-offs at a certain level
 of clean accuracy than another.

270 **Search space design.** Since certified training depends on several hyperparameters whose influence
 271 on performance is not known *a priori*, we opted to include all relevant hyperparameters in our
 272 search space. These include general hyperparameters of deep learning pipelines, such as the learning
 273 rate, epochs at which the learning rate is decayed and the optimiser used to find best performing
 274 parameters with regard to Equation 3 (e.g., Adam (Kingma & Ba, 2015) or RAdam (Liu et al.,
 275 2020)). Furthermore, we adapt ℓ_1 regularisation, since it has proven beneficial for certified training,
 276 and optimise its weight-parameter. Regarding techniques specific to certified training, we optimise
 277 for the weight of the regularisation proposed by Shi et al. (2021), which is employed in all state-of-
 278 the-art methods (see, e.g., De Palma et al. (2024b); Müller et al. (2023)). Furthermore, we search for
 279 an optimal number of warm-up and ramp-up epochs. It may also be beneficial to train with a larger
 280 perturbation radius than used for evaluation (see, e.g., De Palma et al. (2024b); Gowal et al. (2019));
 281 hence, we optimise a parameter that scales the ϵ value used in training.

282 Moreover, we search for optimal method-specific trade-off parameters τ for SABR- and α for MTL-
 283 IBP-based training. Regarding κ , we optimise two parameters $\kappa_{\text{start}} \geq \kappa_{\text{end}}$ and transition from κ_{start}
 284 to κ_{end} during the ramp-up phase. We handle the β parameter in CROWN-IBP analogously. For
 285 SABR and MTL-IBP, we additionally optimise the number of PGD steps and their step size. To
 286 keep training cost tractable, we do not restart PGD multiple times per batch, as done by Mao et al.
 287 (2025); a choice consistent with several prior studies (see, e.g., De Palma et al. (2024b); Madry et al.
 288 (2018)). Lastly, we tune the ϵ -radius over which the PGD attack is carried out.

289 Overall, we constructed the search space to include all plausible parameter choices, rather than
 290 restricting it to those previously shown to be successful in the literature. If those choices were
 291 indeed optimal, we rely on the optimiser to discover them during search. For example, we included
 292 κ and β as optimisable parameters, while related work has deemed those transitions unnecessary,
 293 and we allow up to five warm-up epochs, while related work employed at most one (see, e.g., (Mao
 294 et al., 2025; Shi et al., 2021)). With this, we hope to uncover previously unexplored configurations
 295 that yield better trade-offs than prior work. We present the complete search space in Appendix B.7.
 296

297 **Optimisation metrics.** As outlined previously, metrics of interest for certified training are clean
 298 and certified accuracy. While evaluating clean accuracy is cheap, evaluating certified accuracy with
 299 complete verification systems for each configuration is computationally infeasible. Thus, we optimise
 300 for an under-approximation of the true certified accuracy by employing the incomplete verifica-
 301 tion methods IBP, CROWN-IBP and CROWN, running computationally more demanding methods
 302 only when cheaper methods could not provide a result.

303 **Search strategy.** Since hyperparameters are often inter-dependent (Moosbauer et al., 2021), we
 304 jointly optimise all hyperparameters within the previously defined search space. To identify con-
 305 figurations that optimally balance certified and natural accuracy, we employ multi-objective opti-
 306 misation. However, we do not want to focus on regions of the Pareto front exhibiting high natural
 307 accuracy with extremely low certified accuracy, or *vice versa*, which can be obtained, e.g., by tuning
 308 SABR and MTL-IBP to reduce to adversarial training. Therefore, we constrain the optimisation to
 309 an area of interest to avoid spending expensive resources on uninteresting configurations.

310 Multi-fidelity approaches are commonly used in hyperparameter optimisation to improve efficiency
 311 (Eggensperger et al., 2021; Dooley et al., 2023). They first assess many configurations at low fi-
 312 delities (e.g., fewer training epochs) and reserve high-fidelity evaluations for promising candidates.
 313 In certified training, however, the ramp-up phase prevents meaningful comparison before training
 314 completes, so we leave this extension for future work.

315 For the reasons mentioned above, we employ multi-objective Bayesian optimisation with a Gaussian
 316 process surrogate and an EHVI acquisition function accommodating constraints. As the optimisa-
 317 tion objectives are independent from each other, we model them using distinct Gaussian processes.
 318 To avoid undesirable outcomes, such as becoming trapped in local optima or over-exploration of
 319 specific parts of the Pareto front, we execute the optimisation with three pseudo-random seeds. We
 320 then combine the Pareto fronts discovered by those three runs to create a single, unified Pareto front.

321
 322 **Complete verification.** To obtain the final Pareto front, we assess the performance of all Pareto-
 323 optimal configurations found with regard to incomplete verification using a state-of-the-art com-

324
 325 Table 1: Comparison of the results reported from the literature to the results achieved by using
 326 our novel optimisation procedure. For each result from the literature, we selected a configuration
 327 from the Pareto front that achieves similar or better performance. Boldface marks results surpassing
 328 prior work; underlined values indicate similar performance (± 0.5). Our method typically yields
 329 configurations with higher clean accuracy and, in many cases, improved certified accuracy.

330 Dataset	331 ϵ	332 Method	333 Source	334 Clean Acc.	335 Cert. Acc.	336 Clean Acc.	337 Cert. Acc.
338	339	340	341	342	343	344	345
346 CIFAR-10	$\frac{2}{255}$	MTL-IBP	De Palma et al. (2024b)	80.11	63.24	79.97	63.99
			Mao et al. (2025)	<u>78.82</u>	<u>64.41</u>	<u>79.87</u>	64.54
		SABR	Müller et al. (2023)	79.24	62.84	81.95	<u>64.11</u>
			Mao et al. (2025)	77.86	63.61	80.15	64.44
			Shi et al. (2021)	66.84	52.85	71.39	55.54
	$\frac{8}{255}$	IBP	Mao et al. (2025)	67.49	<u>55.99</u>	69.37	<u>55.62</u>
			Zhang et al. (2020)	71.52	53.97	77.44	59.25
		CROWN-IBP	Mao et al. (2025)	67.60	57.11	75.70	61.39
			De Palma et al. (2024b)	53.35	35.44	55.25	34.49
			Mao et al. (2025)	<u>54.28</u>	<u>35.41</u>	<u>54.18</u>	<u>35.27</u>
347 Tiny ImageNet	$\frac{1}{255}$	SABR	Müller et al. (2023)	52.38	<u>35.13</u>	54.93	34.96
			Mao et al. (2025)	52.71	35.34	56.06	34.26
		IBP	Shi et al. (2021)	48.94	34.97	52.62	<u>35.09</u>
			Mao et al. (2025)	48.51	<u>35.28</u>	51.02	<u>35.35</u>
			Zhang et al. (2020)	46.29	<u>33.38</u>	55.11	<u>33.77</u>
		CROWN-IBP	Mao et al. (2025)	48.25	32.59	52.47	<u>34.31</u>
			De Palma et al. (2024b)	37.56	26.09	39.80	30.45
			Mao et al. (2025)	35.97	27.73	39.75	30.67
			Müller et al. (2023)	28.85	20.46	40.61	28.86
			Mao et al. (2025)	30.58	20.96	42.10	26.38

351
 352 plete verification system. However, the front may include several configurations with negligible
 353 performance differences, for which complete verification would incur unnecessary costs. Therefore,
 354 in cases where more than 5 configurations are part of the Pareto front, we employ single-linkage
 355 clustering (Sibson, 1973), which starts by assigning each configuration to its own cluster and then
 356 iteratively merges close clusters whenever the Euclidean distance between the metrics of configura-
 357 tions from two clusters is less than d_{\min} . We evaluate one random configuration for each cluster and
 358 construct the final Pareto front using the certified accuracies obtained through complete verification.

359 5 EMPIRICAL EVALUATION

360
 361 In the following, we describe the evaluation of our approach on standard benchmarks from the
 362 certified training literature.

363
 364 **Setup of experiments.** For our experiments, we employed the certified training implementations
 365 of CTRAIN (Kaulen & Hoos, 2025), focusing on IBP, CROWN-IBP, SABR and MTL-IBP as the
 366 methods under investigation. With this, we aimed to include current state-of-the-art methods as well
 367 as seminal advancements from the field. For the hyperparameter optimiser, we used BoTorch (Balan-
 368 dat et al., 2020) within the Optuna package (Akiba et al., 2019), which provides an implementation
 369 of our chosen optimisation algorithm. Based on preliminary experiments, we set the evaluation
 370 budget for each optimisation run to 100 trials, resulting in 300 trials per benchmark. For complete
 371 verification, we used the state-of-the-art (Brix et al., 2024) verification system $\alpha\beta$ -CROWN (Wang
 372 et al., 2021; Xu et al., 2021) with a cutoff of 1 000 seconds in wall-clock time. For comparability
 373 with related work, we followed the seemingly common practice in the certified training community
 374 of tuning hyperparameters on the test set (see, e.g., Mao et al. (2025); Shi et al. (2021)).

375
 376 We considered the CNN7 architecture of Shi et al. (2021), the *de facto* standard architecture for
 377 evaluating certified training methods (see, e.g., De Palma et al. (2024b); Müller et al. (2023)). We
 378 present results on CIFAR-10 (Dosovitskiy et al., 2021) for ϵ -radii $\frac{2}{255}$ and $\frac{8}{255}$ and on Tiny ImageNet
 379 (Le & Yang, 2015) for $\epsilon = \frac{1}{255}$, following general evaluation protocol of De Palma et al. (2024b)

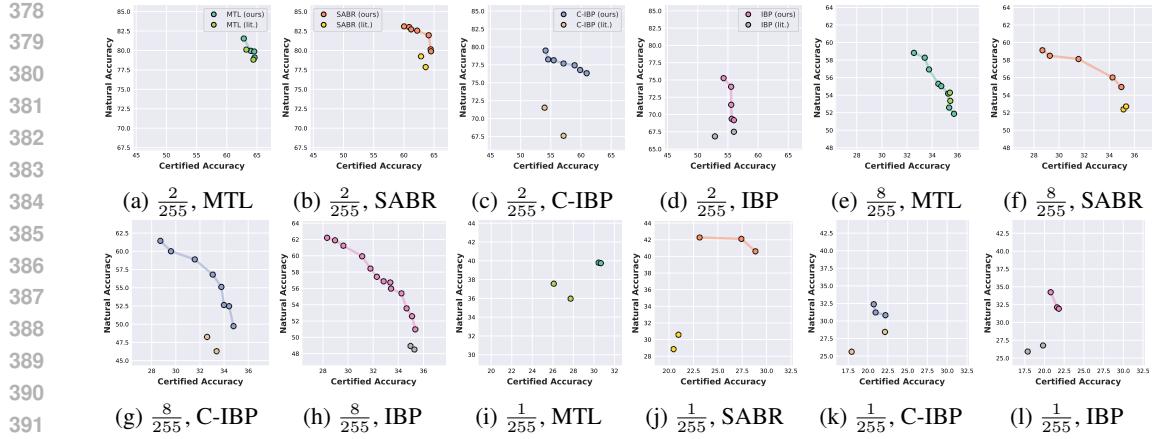


Figure 1: Results for CIFAR-10 for $\epsilon = \frac{2}{255}$ are shown in (a)-(d), for $\epsilon = \frac{8}{255}$ in (e)-(h), and for Tiny ImageNet for $\epsilon = \frac{1}{255}$ in (i)-(l). We compare Pareto fronts obtained using our method to results given in the original publications and the recent CTBench benchmark (Mao et al., 2025).

(see Appendix B). We set $d_{\min} = 0.05$ to filter redundant configurations and restrict the optimisation process to configurations meeting minimum certified and natural accuracies of 40% and 60% for CIFAR-10 ($\epsilon = \frac{2}{255}$), 25% and 40% ($\epsilon = \frac{8}{255}$), and 15% and 20% for Tiny ImageNet; these limits were chosen based on the results reported in the original publications. Furthermore, we chose to run CROWN-IBP without loss fusion on CIFAR-10, since this resulted in generally superior performance. Additional results on MNIST (LeCun, 1998) and on different architectures, including a wider CNN7 used by Mao et al. (2024), are provided in Appendix C.

Comparison to previously-known results. We begin by examining the configurations found using our optimisation procedure to previously-known results. Table 1 compares the results achieved by our method to those from the literature, including the original publications of each method and the recent CTBench benchmark (Mao et al., 2025). As previous studies reported only a single configuration, we selected Pareto-optimal configurations that either dominate or match them. In nearly all scenarios, the performance of configurations equals or surpasses prior results.

On CIFAR-10 with $\epsilon = \frac{2}{255}$, SABR achieves a gain of more than 1% in terms of clean and certified accuracy, surpassing prior results and setting a new state of the art. Furthermore, our results demonstrate that MTL-IBP can achieve strong certified and clean performance at the same time. For CROWN-IBP and IBP, we found that these older methods remain competitive, with CROWN-IBP achieving nearly a 6% improvement in clean accuracy over best results from the literature.

While for $\epsilon = \frac{8}{255}$, our optimisation did not outperform previously known results regarding certified accuracy, it often finds configurations with comparable certified but higher natural accuracy. Mao et al. (2025) suggest that all investigated methods converge to the same certified accuracy at this larger perturbation radius. We validate this result but show that the performance differences regarding clean accuracy are much less pronounced.

For TinyImageNet, we obtain new state-of-the-art results that substantially surpass prior work, with MTL-IBP achieving an improvement of about 2% in terms of clean and certified accuracy. We further demonstrate that SABR can achieve comparable results.

Comparison between methods. The Pareto fronts obtained from our novel method allow for a more nuanced and multi-faceted assessment of the current state of the art in certified training. Instead of comparing single configurations, it is now possible to evaluate the quality of feasible solutions across the entire trade-off space. For this, we combined all configurations found by our method into one single Pareto front per dataset and perturbation radius and analysed which methods contribute to this combined front. We show the Pareto fronts of all methods per benchmark in Figure 2.

Regarding the CIFAR-10 dataset with $\epsilon = \frac{2}{255}$, the combined Pareto set consists of networks trained with MTL-IBP and SABR. Our analysis reveals that SABR generally achieves the highest clean ac-

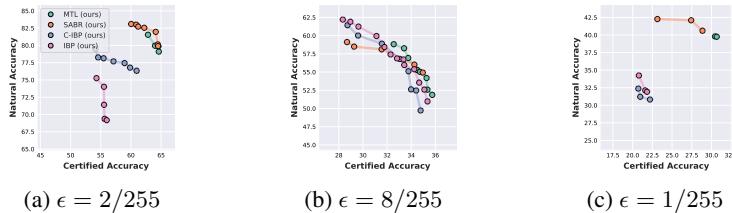
432
433
434
435
436
437

Figure 2: Comparison of Pareto fronts from our method on CIFAR-10 with (a) $\epsilon = \frac{2}{255}$, (b) $\epsilon = \frac{8}{255}$ and Tiny ImageNet with (c) $\epsilon = \frac{1}{255}$. The fronts enable a nuanced assessment, showing, *e.g.*, that IBP is state of the art in (b) when prioritising natural accuracy.

438
439
440
441
442443
444
445
446
447
448
449
450
451
452
453

curacies while maintaining strong certified robustness. However, MTL-IBP can still achieve similar certifiable guarantees once clean accuracy decreases. For the higher perturbation radius of $\epsilon = \frac{8}{255}$, we found that traditional IBP training contributes to the combined front alongside MTL-IBP and SABR. More specifically, networks trained with IBP exhibit the strongest certifiable guarantees for higher clean accuracies, while SABR and MTL-IBP achieve better trade-offs for higher certified accuracies. This shows that IBP is a state-of-the-art method when higher natural accuracies are desired. Lastly, on Tiny ImageNet, the Pareto front includes networks trained using SABR and MTL-IBP. Here, SABR excels at increased natural accuracies, while MTL-IBP performs best when higher certified accuracies are desired.

454
455
456

6 CONCLUSIONS AND FUTURE WORK

457
458
459
460
461
462
463
464
465
466
467
468
469
470

In this work, we have proposed a novel method for the fully-automated hyperparameter optimisation of certified training techniques. Using this method, we tackle several open challenges in certified training. Firstly, until now, hyperparameter tuning required extensive domain knowledge and was not accessible to non-experts. Our automated optimisation pipeline removes this barrier by systematically exploring the hyperparameter space and identifying configurations that achieve favourable trade-offs between clean and certified accuracy. Secondly, prior evaluations of certified training methods typically focused on single configurations, limiting insight into the overall performance landscape. By constructing Pareto fronts of configurations, our method enables a more comprehensive assessment of the trade-offs that can be achieved, highlighting which certified training techniques perform well consistently. Lastly, using our approach, we have demonstrated that there exist more optimal trade-offs than previously known for several popular certified training methods including MTL-IBP and SABR, thereby establishing a new state of the art in certified training.

471
472
473
474
475
476
477
478
479

To achieve this, we employed techniques from constrained multi-objective hyperparameter optimisation in a novel tuning scheme that search for optimal trade-offs within an expert-designed search space. For its design, we ensured to include all potentially sensible hyperparameter choices to enable the discovery of previously unexplored configurations. Furthermore, we constrained the optimisation process to exclusively explore promising regions of the search space, in order to prevent a focus on trivial configurations that reduce to adversarial or standard training. Lastly, since complete verification for every configuration is computationally infeasible, our optimisation relies on a proxy metric. We showed that incomplete verification enables efficient assessment of certifiability, allowing the selection of configurations that also perform well under complete verification.

480
481
482

For future work, we suggest investigating how multi-fidelity optimisation and meta-learning techniques for Bayesian optimisation (see, *e.g.*, Dooley et al. (2023); Feurer et al. (2018)) could be adapted for certified training to further improve efficiency.

483
484
485

Overall, we believe that evaluation of certified training techniques should focus on Pareto front analysis rather than results for single hyperparameter configurations. By providing a method to effectively approximate the Pareto front, our work establishes a foundation for a more nuanced evaluation and calibration of certified training techniques.

486 **7 ETHICS STATEMENT**
 487

488 Our paper aims to improve the performance of certified training methods, providing a full Pareto
 489 front of well-performing configurations with different accuracy-robustness trade-offs.. As certi-
 490 fied training methods are used to obtain provably safe neural networks, we see no negative ethical
 491 contributions of our work. Further, our Pareto front analysis enables a nuanced assessment of the
 492 performance of certified training techniques, thereby facilitating their responsible and informed ap-
 493 plication in practice. However, while we demonstrated the effectiveness of our method across several
 494 commonly used vision datasets, this does not guarantee its effectiveness on different benchmarks,
 495 data domains or threat models.

496
 497 **8 REPRODUCIBILITY STATEMENT**
 498

499 Our code is available in anonymous GitHub repository: [https://anonymous.4open.
 500 science/r/investigating_certified_training_trade_offs-0584](https://anonymous.4open.science/r/investigating_certified_training_trade_offs-0584). In our ex-
 501 periments, we used popular open-source datasets which can be downloaded and preprocessed via
 502 CTRAIN (Kaulen & Hoos, 2025). We provide additional information on the setup of our experi-
 503 ments in Appendix B, including hardware details, software versions, neural network architectures
 504 used and detailed configuration spaces.

505
 506 **REFERENCES**
 507

508 Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna:
 509 A next-generation hyperparameter optimization framework. In *Proceedings of the 25th ACM
 510 SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD 2019)*, pp.
 511 2623–2631, 2019.

512 Maximilian Balandat, Brian Karrer, Daniel R. Jiang, Samuel Daulton, Benjamin Letham, An-
 513 drew Gordon Wilson, and Eytan Bakshy. BoTorch: A framework for efficient monte-carlo
 514 bayesian optimization. In *Advances in Neural Information Processing Systems 33 (NeurIPS 33)*,
 515 2020.

516 Nicola Beume, Boris Naujoks, and Michael T. M. Emmerich. SMS-EMOA: Multiobjective selection
 517 based on dominated hypervolume. *European Journal of Operations Research*, 181(3):1653–1669,
 518 2007. doi: 10.1016/J.EJOR.2006.08.008.

519 Leo Breiman. Random forests. *Machine Learning*, 45(1):5–32, 2001.

520 Christopher Brix, Mark Niklas Müller, Stanley Bak, Taylor T Johnson, and Changliu Liu. First
 521 three years of the international verification of neural networks competition (VNN-COMP). *Inter-
 522 national Journal on Software Tools for Technology Transfer*, 25(3):329–339, 2023.

523 Christopher Brix, Stanley Bak, Taylor T Johnson, and Haoze Wu. The fifth international verifica-
 524 tion of neural networks competition (VNN-COMP 2024): Summary and results. *arXiv preprint
 525 arXiv:2412.19985*, 2024.

526 Rudy Bunel, Jingyue Lu, Ilker Turkaslan, Philip H.S. Torr, Pushmeet Kohli, and M Pawan Kumar.
 527 Branch and bound for piecewise linear neural network verification. *Journal of Machine Learning
 528 Research*, 21(42):1–39, 2020.

529 Francesco Croce, Maksym Andriushchenko, Vikash Sehwag, Edoardo Debenedetti, Nicolas Flam-
 530 marion, Mung Chiang, Prateek Mittal, and Matthias Hein. Robustbench: A standardized adver-
 531 sarial robustness benchmark. In *Proceedings of the First Neural Information Processing Systems
 532 Track on Datasets and Benchmarks (NeurIPS Datasets and Benchmarks 2021)*, pp. 1–17, 2021.

533 Samuel Daulton, Maximilian Balandat, and Eytan Bakshy. Differentiable expected hypervolume im-
 534 provement for parallel multi-objective bayesian optimization. In *Advances in Neural Information
 535 Processing Systems 33 (NeurIPS 33)*, 2020.

540 Alessandro De Palma, Harkirat Singh Behl, Rudy Bunel, Philip H. S. Torr, and M. Pawan Kumar.
 541 Scaling the convex barrier with sparse dual algorithms. *Journal of Machine Learning Research*,
 542 25(61):1–51, 2024a.

543 Alessandro De Palma, Rudy Bunel, Krishnamurthy (Dj) Dvijotham, M. Pawan Kumar, Robert Stan-
 544 forth, and Alessio Lomuscio. Expressive losses for verified robustness via convex combinations.
 545 In *Proceedings of the 12th International Conference on Learning Representations (ICLR 2024)*,
 546 pp. 1–28, 2024b.

547 Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, and T. Meyarivan. A fast and elitist multiobjective
 548 genetic algorithm: NSGA-II. *IEEE Transactions on Evolutionary Computation*, 6(2):182–197,
 549 2002. doi: 10.1109/4235.996017.

550 Samuel Dooley, Rhea Sukthanker, John P. Dickerson, Colin White, Frank Hutter, and Micah Gold-
 551 blum. Rethinking bias mitigation: Fairer architectures make for fairer face recognition. In *Ad-
 552 vances in Neural Information Processing Systems 36 (NeurIPS 2023)*, pp. 1–28, 2023.

553 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 554 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
 555 reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
 556 scale. In *Proceedings of the 9th International Conference on Learning Representations (ICLR
 557 2021)*, pp. 1–22, 2021.

558 Katharina Eggensperger, Philipp Müller, Neeratoy Mallik, Matthias Feurer, René Sass, Aaron
 559 Klein, Noor H. Awad, Marius Lindauer, and Frank Hutter. Hpobench: A collection of repro-
 560ducible multi-fidelity benchmark problems for HPO. In *Proceedings of the First Neural Infor-
 561 mation Processing Systems Track on Datasets and Benchmarks (NeurIPS Datasets and Benchmarks
 562 2021)*, 2021.

563 Claudio Ferrari, Mark Niklas Mueller, Nikola Jovanović, and Martin Vechev. Complete verification
 564 via multi-neuron relaxation guided branch-and-bound. In *Proceedings of the 10th International
 565 Conference on Learning Representations (ICLR 2022)*, pp. 1–15, 2022.

566 Matthias Feurer, Benjamin Letham, and Eytan Bakshy. Scalable meta-learning for bayesian opti-
 567 mization. *CoRR*, abs/1802.02219, 2018.

568 Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
 569 examples. In *Proceedings of the 3rd International Conference on Learning Representations,
 570 (ICLR 2015)*, pp. 1–11, 2015.

571 Sven Gowal, Krishnamurthy Dj Dvijotham, Robert Stanforth, Rudy Bunel, Chongli Qin, Jonathan
 572 Uesato, Relja Arandjelovic, Timothy Mann, and Pushmeet Kohli. Scalable verified training for
 573 provably robust image classification. In *Proceedings of the 35th IEEE/CVF International Confer-
 574 ence on Computer Vision (CVPR 2019)*, pp. 4842–4851, 2019.

575 Leona Hennig and Marius Lindauer. Leveraging automl for sustainable deep learning: A multi-
 576 objective HPO approach on deep shift neural networks. *Transactions on Machine Learning Re-
 577 search*, 2025, 2025.

578 Michael Hubertz, Pascal Colling, Qi Han, and Tobias Meisen. Inferring driving maps by deep
 579 learning-based trail map extraction. In *IEEE/CVF Conference on Computer Vision and Pattern
 580 Recognition Workshops (CVPR Workshops 2025)*, pp. 2425–2434, 2025.

581 Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. An efficient approach for assessing hyper-
 582 parameter importance. In *Proceedings of the 31st International Conference on Machine Learn-
 583 ing (ICML 2014)*, volume 32, pp. 754–762, 2014a.

584 Frank Hutter, Lin Xu, Holger H Hoos, and Kevin Leyton-Brown. Algorithm runtime prediction:
 585 Methods & evaluation. *Artificial Intelligence*, 206:79–111, 2014b.

586 Carl Hvarfner, Erik Orm Hellsten, and Luigi Nardi. Vanilla bayesian optimization performs great
 587 in high dimensions. In *Proceedings of the 41st International Conference on Machine Learning
 588 (ICML 2024)*, pp. 1–9, 2024.

594 Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
 595 reducing internal covariate shift. In *Proceedings of the 32nd International Conference on Machine*
 596 *Learning (ICML 2015)*, volume 37, pp. 448–456, 2015.

597

598 Kyle D Julian, Mykel J Kochenderfer, and Michael P Owen. Deep neural network compression
 599 for aircraft collision avoidance systems. *Journal of Guidance, Control, and Dynamics*, 42(3):
 600 598–608, 2019.

601 John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
 602 Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al. Highly accurate
 603 protein structure prediction with alphafold. *Nature*, 596(7873):583–589, 2021.

604

605 Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer. Reluplex: An
 606 efficient SMT solver for verifying deep neural networks. In *Proceedings of the 29th International*
 607 *Conference on Computer Aided Verification (CAV 2017)*, pp. 97–117, 2017.

608 Konstantin Kaulen and Holger Hoos. CTRAIN - a training library for certifiably robust neural
 609 networks. In *Proceedings of the 8th International Symposium on AI Verification (SAIV 2025)*, pp.
 610 1–12, 2025.

611

612 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In *Proceedings*
 613 *of the 3rd International Conference on Learning Representations (ICLR 2015)*, 2015.

614

615 Matthias König, Annelot W. Bosman, Holger H. Hoos, and Jan N. van Rijn. Critically assessing
 616 the state of the art in neural network verification. *Journal of Machine Learning Research*, 25(12):
 617 1–53, 2024.

618

619 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
 620 2009.

621

622 Ya Le and Xuan S. Yang. Tiny imagenet visual recognition challenge. 2015.

623

624 Yann LeCun. The MNIST database of handwritten digits. 1998.

625

626 Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Ji-
 627 awei Han. On the variance of the adaptive learning rate and beyond. In *Proceedings of the 8th*
 628 *International Conference on Learning Representations (ICLR 2020)*, pp. 1–14, 2020.

629

630 Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
 631 A convnet for the 2020s. In *Proceedings of the 38th IEEE/CVF Conference on Computer Vision*
 632 *and Pattern Recognition (CVPR 2022)*, pp. 11966–11976. IEEE, 2022.

633

634 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *Proceedings of the*
 635 *7th International Conference on Learning Representations (ICLR 2019)*, pp. 1–19, 2019.

636

637 Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
 638 Towards deep learning models resistant to adversarial attacks. In *Proceedings of 6th International*
 639 *Conference on Learning Representations (ICLR 2018)*, pp. 1–23, 2018.

640

641 Yuhao Mao, Mark Niklas Müller, Marc Fischer, and Martin T. Vechev. Connecting certified and
 642 adversarial training. In *Advances in Neural Information Processing Systems 37 (NeurIPS 2023)*,
 643 pp. 1–19, 2023.

644

645 Yuhao Mao, Mark Niklas Müller, Marc Fischer, and Martin T. Vechev. Understanding certified
 646 training with interval bound propagation. In *Proceedings of the 12th International Conference on*
 647 *Learning Representations (ICLR 2024)*, pp. 1–23, 2024.

648

649 Yuhao Mao, Stefan Balaucă, and Martin Vechev. CTBENCH: A library and benchmark for certified
 650 training. In *Proceedings of the 42th International Conference on Machine Learning (ICML 2025)*,
 651 pp. 1–12, 2025.

652

653 Matthew Mirman, Timon Gehr, and Martin T. Vechev. Differentiable abstract interpretation for
 654 provably robust neural networks. In *Proceedings of the 35th International Conference on Machine*
 655 *Learning (ICML 2018)*, pp. 3575–3583. PMLR, 2018.

648 Julia Moosbauer, Julia Herbinger, Giuseppe Casalicchio, Marius Lindauer, and Bernd Bischl. Ex-
 649 plaining hyperparameter optimization via partial dependence plots. In *Advances in Neural Infor-*
 650 *mation Processing Systems 34 (NeurIPS 34)*, pp. 2280–2291, 2021.

651

652 Mark Niklas Müller, Franziska Eckert, Marc Fischer, and Martin T. Vechev. Certified training:
 653 Small boxes are all you need. In *Proceedings of the 11th International Conference on Learning*
 654 *Representations (ICLR 2023)*, pp. 1–21, 2023.

655 Thomas Nagler, Lennart Schneider, Bernd Bischl, and Matthias Feurer. Reshuffling resampling
 656 splits can improve generalization of hyperparameter optimization. In *Advances in Neural Infor-*
 657 *mation Processing Systems 38 (NeurIPS 2024)*, 2024.

658

659 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 660 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
 661 Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
 662 Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An imperative style, high-performance
 663 deep learning library. In *Advances in Neural Information Processing Systems 33 (NeurIPS 2019)*,
 664 pp. 1–12, 2019.

665 Florian Pfisterer, Lennart Schneider, Julia Moosbauer, Martin Binder, and Bernd Bischl. YAHPO
 666 gym - an efficient multi-objective multi-fidelity benchmark for hyperparameter optimization. In
 667 *Proceedings of the First International Conference on Automated Machine Learning (AutoML*
 668 *2022)*, volume 188, pp. 3/1–39, 2022.

669

670 Carl Edward Rasmussen and Christopher K. I. Williams. *Gaussian processes for machine learning*.
 671 Adaptive computation and machine learning. 2006.

672 Marco Sälzer and Martin Lange. Reachability is NP-complete even for the simplest neural networks.
 673 In *Proceedings of the 15th International Conference on Reachability Problems (RP 2021)*, pp.
 674 149–164, 2021.

675

676 Lennart Schneider, Bernd Bischl, and Matthias Feurer. Overtuning in hyperparameter optimization.
 677 In *Proceedings of the 3rd International Conference on Automated Machine Learning (AutoML*
 678 *2025)*, pp. 1–10, 2025.

679

680 Zhouxing Shi, Yihan Wang, Huan Zhang, Jinfeng Yi, and Cho-Jui Hsieh. Fast certified robust
 681 training with short warmup. In *Advances in Neural Information Processing Systems 34 (NeurIPS*
 682 *2021)*, pp. 18335–18349, 2021.

683

684 Robin Sibson. SLINK: an optimally efficient algorithm for the single-link cluster method. *The*
Computer Journal, 16(1):30–34, 1973.

685

686 Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
 687 and Rob Fergus. Intriguing properties of neural networks. In *Proceedings of the 2nd International*
688 Conference on Learning Representations (ICLR 2014), pp. 1–10, 2014.

689

690 Vincent Tjeng, Kai Y. Xiao, and Russ Tedrake. Evaluating robustness of neural networks with
 691 mixed integer programming. In *Proceedings of the 7th International Conference on Learning*
692 Representations (ICLR 2019), pp. 1–21, 2019.

693

694 Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Aleksander Madry.
 695 Robustness may be at odds with accuracy. In *Proceedings of the 7th International Conference on*
Learning Representations (ICLR 2019), pp. 1–23. OpenReview.net, 2019.

696

697 Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, and J Zico Kolter.
 698 Beta-crown: Efficient bound propagation with per-neuron split constraints for neural network
 699 robustness verification. In *Advances in Neural Information Processing Systems 34 (NeurIPS*
 700 *2021)*, pp. 29909–29921, 2021.

701

Ross Wightman, Hugo Touvron, and Hervé Jégou. Resnet strikes back: An improved training
 procedure in timm. *arXiv preprint arXiv:2110.00476*, pp. 1–22, 2021.

702 Eric Wong and Zico Kolter. Provable defenses against adversarial examples via the convex outer
703 adversarial polytope. In *Proceedings of the 35th International Conference on Machine Learning*
704 (*ICML* 2018), pp. 5286–5295. PMLR, 2018.

705

706 Kaidi Xu, Zhouxing Shi, Huan Zhang, Yihan Wang, Kai-Wei Chang, Minlie Huang, Bhavya
707 Kailkhura, Xue Lin, and Cho-Jui Hsieh. Automatic perturbation analysis for scalable certified
708 robustness and beyond. In *Advances in Neural Information Processing Systems 33 (NeurIPS*
709 *2020)*, pp. 1–13, 2020.

710 Kaidi Xu, Huan Zhang, Shiqi Wang, Yihan Wang, Suman Jana, Xue Lin, and Cho-Jui Hsieh. Fast
711 and complete: Enabling complete neural network verification with rapid and massively parallel
712 incomplete verifiers. In *Proceedings of the 9th International Conference on Learning Representations*
713 (*ICLR* 2021), pp. 1–15, 2021.

714 Arber Zela, Julien Niklas Siems, Lucas Zimmer, Jovita Lukasik, Margret Keuper, and Frank Hutter.
715 Surrogate NAS benchmarks: Going beyond the limited search spaces of tabular NAS benchmarks.
716 In *Proceedings of the 10th International Conference on Learning Representations (ICLR* 2022),
717 2022.

718 Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui, and Michael Jordan.
719 Theoretically principled trade-off between robustness and accuracy. In *Proceedings of the 36th*
720 *International Conference on Machine Learning (ICML* 2019), volume 97, pp. 7472–7482, 2019.

721

722 Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel. Efficient neural net-
723 work robustness certification with general activation functions. In *Advances in Neural Information*
724 *Processing Systems 31 (NeurIPS 2018)*, pp. 4944–4953, 2018.

725 Huan Zhang, Hongge Chen, Chaowei Xiao, Sven Gowal, Robert Stanforth, Bo Li, Duane Boning,
726 and Cho-Jui Hsieh. Towards stable and efficient training of verifiably robust neural networks. In
727 *Proceedings of the 8th International Conference on Learning Representations (ICLR* 2020), pp.
728 1–15, 2020.

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 A HYPERPARAMETER IMPORTANCE ANALYSIS
757
758

759 In the following, we aim to uncover reasons to why the discovered hyperparameter configurations
760 perform better than previously known configurations. To this end, we use fANOVA (Hutter et al.,
761 2014a) to identify the hyperparameters that were most influential during the optimisation procedure.
762 fANOVA quantifies the importance of a hyperparameter (or set of hyperparameters) as the frac-
763 tion of the variance in the predicted performance that can be attributed to it. Intuitively, changing
764 an important hyperparameter is expected to have a large effect on performance. To estimate this,
765 fANOVA fits a random forest (Breiman, 2001) as a surrogate model and computes the marginal
766 effect of a hyperparameter by integrating over all possible values of the other hyperparameters.
767

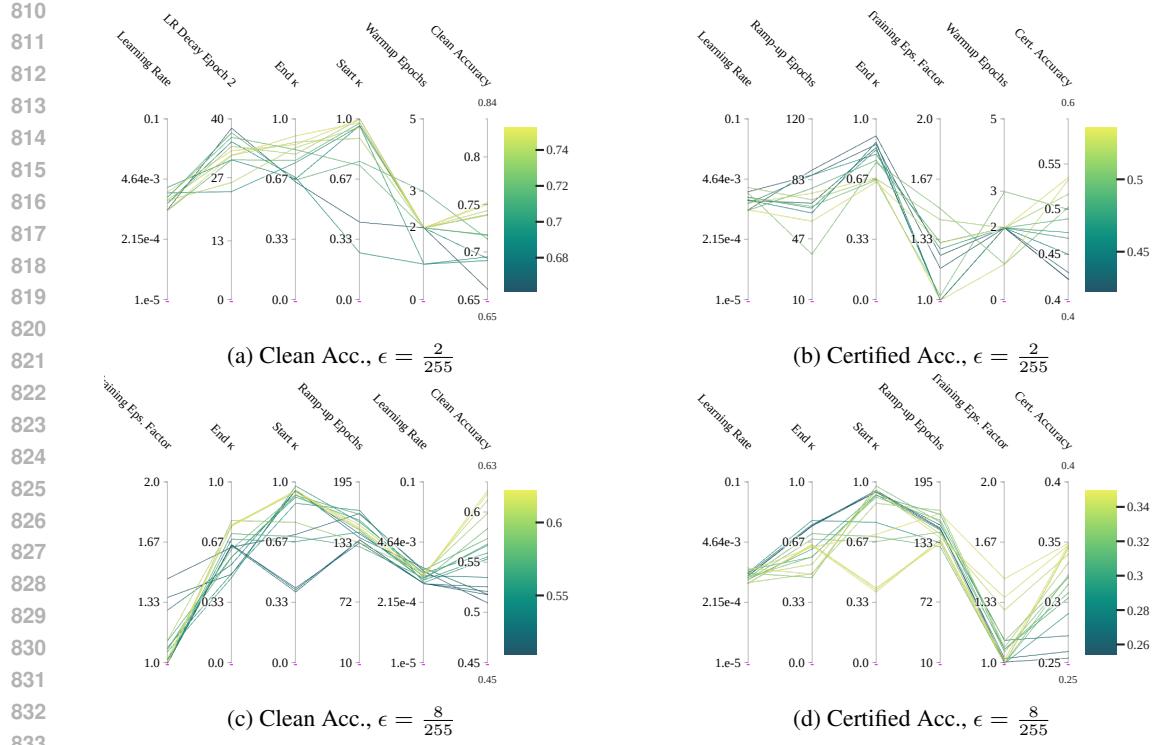
768 In Figures 3, 4, 5 and 6 we display the five most important hyperparameters for each objective (*i.e.*,
769 clean and certified accuracy) on the CIFAR-10 dataset for $\epsilon \in \{\frac{2}{255}, \frac{8}{255}\}$ along with the parameter
770 values of the configurations in the Pareto set for the training methods IBP, CROWN-IBP, SABR and
771 MTL-IBP respectively. Further, the plots include the achieved clean accuracy or, respectively, the
772 certified accuracy obtained through incomplete verification.
773

774 **IBP.** For most investigated scenarios, our analysis reveals that IBP yields stronger trade-offs when
775 more time during training is spent on optimising for clean cross-entropy loss. This is exemplified
776 in κ_{start} and κ_{end} being highly important parameters across all scenarios, with higher κ values than
777 used previously. Interestingly, when $\epsilon = \frac{8}{255}$, scaling the training ϵ has high influence on both clean
778 and certified accuracy and is even the most important hyperparameter for achieving strong clean
779 accuracy.
780

781 **CROWN-IBP.** Regarding CROWN-IBP, we observe a similar trend where κ parameters play an
782 important role in achieving strong performance across all scenarios to trade-off clean and certified
783 accuracy. Again, the factor by which the ϵ value is scaled during training plays an important role as
784 well. Interestingly, β_{end} is an important parameter to tune certified accuracy with different optimal
785 values between both ϵ values. For $\epsilon = \frac{2}{255}$, higher β values, *i.e.* a higher focus on CROWN-IBP
786 bounds, yield better performance while for $\epsilon = \frac{8}{255}$ it is crucial that $\beta \approx 0$ at the end of the ramp-up
787 phase to achieve strong certifiable guarantees.
788

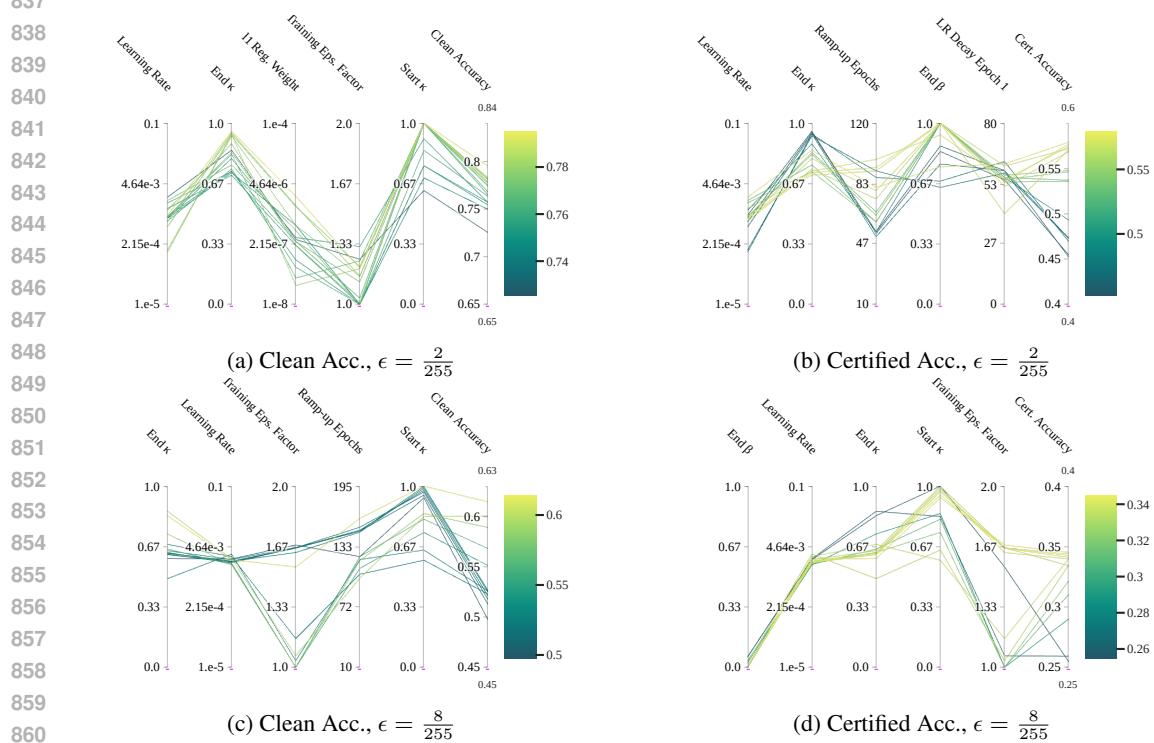
789 **SABR.** When investigating the results for SABR, it becomes apparent that the subselection ratio τ
790 is extremely effective at governing the trade-off between certified and clean accuracy, being a highly
791 important parameter across all scenarios. Further, parameters of the employed attack are also highly
792 important, such as the number of optimisation steps or the scaling factor of the ϵ applied during the
793 attack. For the latter, interestingly, higher values result in higher certified accuracies when $\epsilon = \frac{2}{255}$,
794 but when $\epsilon = \frac{8}{255}$, the opposite is the case. Most importantly, our analysis reveals a simple and
795 intuitive explanation to why SABR achieves stronger natural accuracies than the previous state of
796 the art when $\epsilon = \frac{2}{255}$. Here, a highly important parameter is the choice of the optimiser which is
797 always set to RAdam (Liu et al., 2020) for all configurations in the Pareto set. This optimiser seems
798 to be able to achieve substantially better trade-offs in this scenario than were previously known.
799

800
801
802 **MTL-IBP.** Lastly, we focus on the hyperparameter configurations of MTL-IBP. The method-
803 inherent trade-off parameter α is very important across all scenarios, effectively steering the trade-off
804 between natural and certified accuracy. Interestingly, our method found several configurations that
805 achieve, both, strong certified and natural accuracies when $\epsilon = \frac{2}{255}$, which could be traced back to
806 a higher number of warm-up epochs employed in our configurations than in related work. Interest-
807 ingly, when $\epsilon = \frac{8}{255}$, the weight of the regulariser proposed by Shi et al. (2021) seems to have major
808 impact on the achievable natural accuracy. Regarding certified accuracy on that benchmark, more
809 PGD steps correspond to higher certified accuracies, indicating that a better approximation of the
adversarial loss is crucial in this case.
810



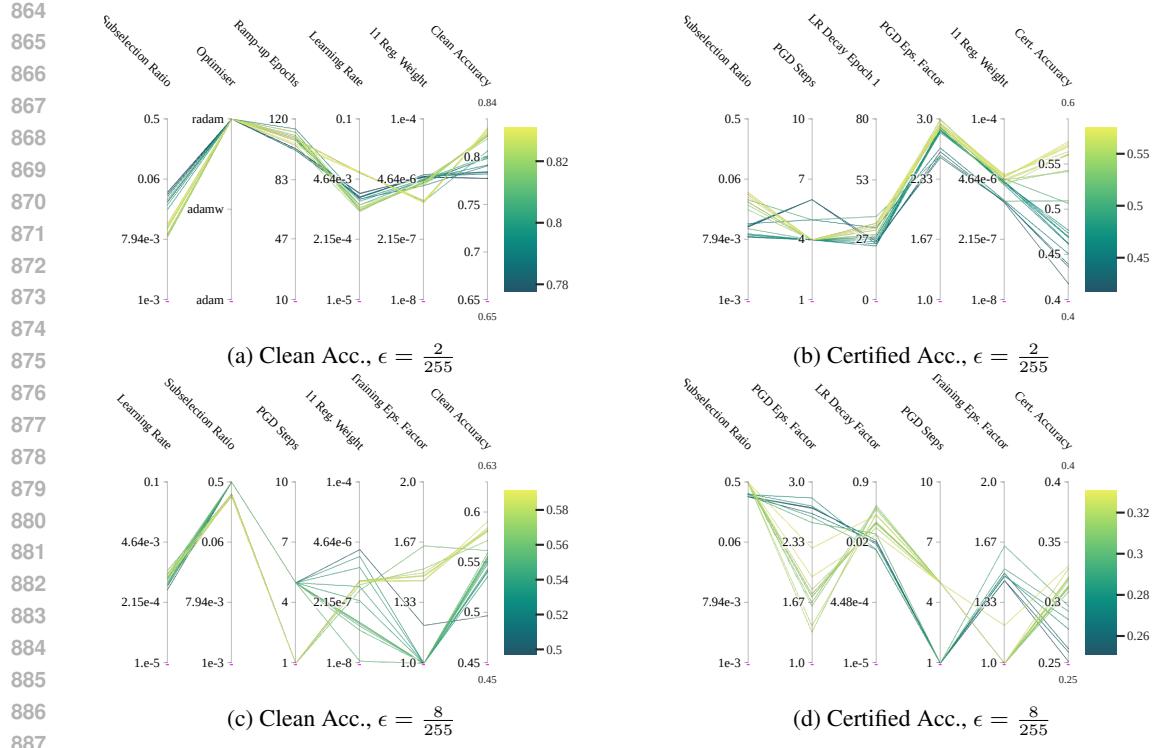
834
835
836

Figure 3: Parallel coordinates plot for the hyperparameter optimisation of IBP on CIFAR-10. In each plot, we show the five most important parameters for one of the two objectives along with the parameter values of configurations in the Pareto set.

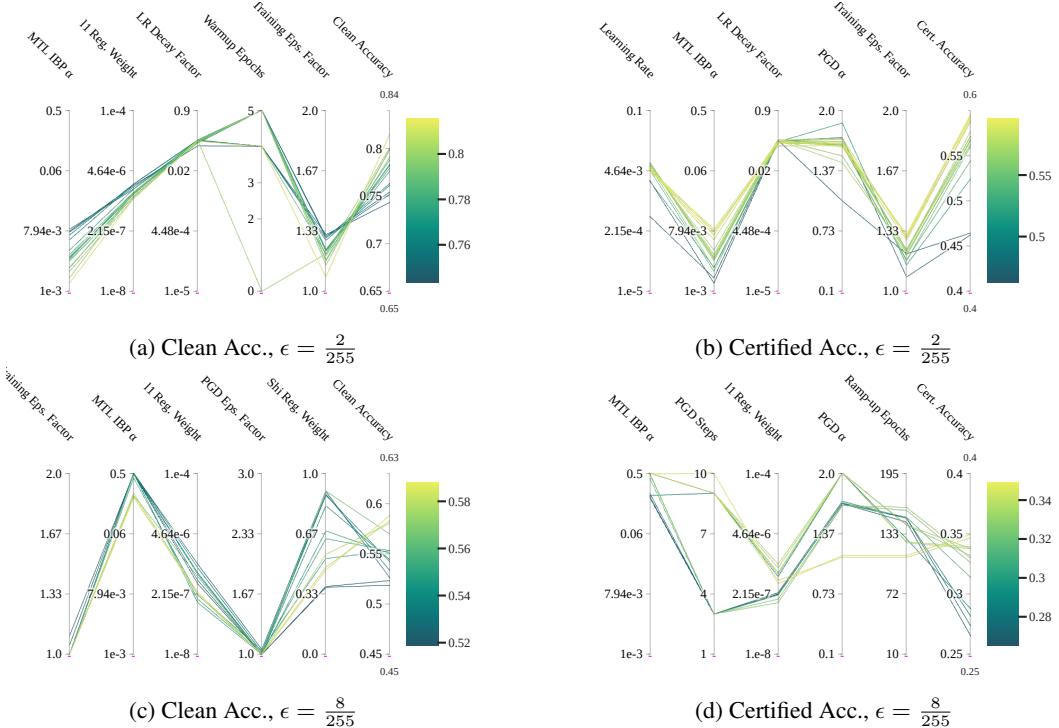


861
862
863

Figure 4: Parallel coordinates plot for the hyperparameter optimisation of CROWN-IBP on CIFAR-10. In each plot, we show the five most important parameters for one of the two objectives along with the parameter values of configurations in the Pareto set.



888
889
890
Figure 5: Parallel coordinates plot for the hyperparameter optimisation of SABR on CIFAR-10. In
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
9999

918 B ADDITIONAL DETAILS ON THE SETUP OF THE EXPERIMENTS
919920 B.1 HARDWARE DETAILS
921922 Our experiments were conducted on two compute clusters. For running our method on CIFAR10,
923 as well as calculating certified accuracy using complete verification for all datasets except MNIST
924 we used a cluster in which each node is equipped with two Intel Xeon Platinum 8480+ with 210MB
925 of L3 cache, four Nvidia H100 SXM GPUs, and 2TB of RAM running Rocky Linux 9. Each
926 optimisation and verification experiment utilised 14 CPU cores, 220GB of RAM and one GPU. For
927 running our method on TinyImageNet and MNIST, as well as verifying the obtained Pareto fronts
928 on MNIST, we used a cluster in which each node is equipped with two Intel Xeon Platinum 8468
929 with 210MB of L3 cache, four Nvidia H100 NVL GPUs, 512GB of RAM running Rocky Linux 9.
930 Here, each experiment utilised 24 CPU cores, 120GB of RAM and one GPU.
931932 B.2 DATASETS
933934 For our experiments, we employed several well-known datasets that have been used regularly within
935 the certified training community. First, we used CIFAR10 (Krizhevsky et al., 2009) containing RGB
936 images (*i.e.*, three channels) of size 32×32 pixels associated to 10 classes (such as airplane, frog,
937 ...). The dataset includes 50 000 training samples and 10 000 test samples. TinyImageNet (Le &
938 Yang, 2015) is a subsampled version of the ImageNet dataset including 100 000 training samples
939 and 10 000 test samples restricted to 200 classes. The resolution of each image is 64×64 with
940 three channels. In additional experiments, we employed the MNIST dataset (LeCun, 1998) which
941 contains grayscale images of size 28×28 with 60 000 training samples and 10 000 test samples.
942 In line with previous work (see, *e.g.*, Mao et al. (2025); De Palma et al. (2024b); Müller et al.
943 (2023); Shi et al. (2021); Xu et al. (2020)), we normalised all datasets and used data augmentations
944 when training on CIFAR-10 and TinyImageNet. More specifically, we augmented CIFAR-10 and
945 TinyImageNet with random horizontal flips and random cropping to 32×32 pixels after 2-pixel
946 padding for CIFAR-10, and to 64×64 pixels after 4-pixel padding for TinyImageNet. Lastly, we
947 trained on the corresponding train sets and report clean and certified accuracy on the test split (in
948 line with, *e.g.*, Mao et al. (2025); De Palma et al. (2024b); Müller et al. (2023); Shi et al. (2021); Xu
949 et al. (2020)).
950951 B.3 ARCHITECTURES
952953 We use the CNN7 architecture from Shi et al. (2021) across all datasets and ϵ radii, which is the
954 *de facto* standard architecture to evaluate certified training methods on (see, *e.g.*, Mao et al. (2025);
955 De Palma et al. (2024b); Mao et al. (2024); Müller et al. (2023)). This architecture employs Batch-
956 Norm layers (Ioffe & Szegedy, 2015) before every ReLU activation which improve the performance
957 of certified training methods by reducing an imbalance between active and inactive neurons (Shi
958 et al., 2021). To further evaluate the consistency of our tuning method and to investigate findings by
959 Mao et al. (2024) regarding the influence of architecture on certified training, we included wide and
960 narrow variants of CNN7 as defined by Mao et al. (2024) in additional experiments. We also show
961 the performance on deeper and shallower versions of CNN7, named CNN9 and CNN5, respectively
962 following Mao et al. (2024). The architectures are illustrated in Table 2.
963964 B.4 EXPERIMENTAL SETUP
965966 Generally, we mostly followed the experimental setup of De Palma et al. (2024b) for our hyperpa-
967 rameter optimisation. In the following, we give a detailed description how we ran the respective
968 certified training methods during our novel optimisation method.
969970 **Initialisation.** Before the start of the training procedure, the network is initialised using the tech-
971 nique proposed by Shi et al. (2021) that relies on a low-variance Gaussian distribution to prevent the
972 *explosion* of IBP bounds during early training stages. This initialisation has been used in all recent
973 works (see, *e.g.*, Mao et al. (2025); De Palma et al. (2024b); Müller et al. (2023)) and was found to
974 be generally beneficial to performance.
975

972 Table 2: Model architectures of the CNN7, CNN5 and CNN9 architectures as defined by Shi et al.
973 (2021) and Mao et al. (2024). For CNN7, we provide the number of filters for narrow and wide
974 variants in the order of (Narrow CNN7— CNN7 — Wide CNN7)

(a) (Narrow, Wide) CNN7		(b) CNN5
	Convolutional: (32—64—128) filters of size 3×3 , stride 1, padding 1 Batch normalisation ReLU activation	Convolutional: 64 filters of size 3×3 , stride 1, padding 1 Batch normalisation ReLU activation
	Convolutional: (32—64—128) filters of size 3×3 , stride 1, padding 1 Batch normalisation ReLU activation	Convolutional: 64 filters of size 3×3 , stride 2, padding 1 Batch normalisation ReLU activation
	Convolutional: (64—128—256) filters of size 3×3 , stride 2, padding 1 Batch normalisation ReLU activation	Convolutional: 128 filters of size 3×3 , stride 2, padding 1 Batch normalisation ReLU activation
2 ×	Convolutional: (64—128—256) filters of size 3×3 , stride 1, padding 1 Batch normalisation ReLU activation	Linear: 512 neurons Batch normalisation ReLU activation
	Linear: 512 neurons Batch normalisation ReLU activation	Linear: no. of classes in dataset
	Linear: no. of classes in dataset	
(c) CNN9		
	2 × Convolutional: 64 filters of size 3×3 , stride 1, padding 1 Batch normalisation ReLU activation	Convolutional: 64 filters of size 3×3 , stride 1, padding 1 Batch normalisation ReLU activation
		Convolutional: 128 filters of size 3×3 , stride 2, padding 1 Batch normalisation ReLU activation
	4 × Convolutional: 128 filters of size 3×3 , stride 1, padding 1 Batch normalisation ReLU activation	Convolutional: 128 filters of size 3×3 , stride 1, padding 1 Batch normalisation ReLU activation
		Linear: 512 neurons Batch normalisation ReLU activation
		Linear: no. of classes in dataset

999 **Training schedule.** At the beginning of training, we employ a defined number of *warm-up* epochs
1000 where the standard cross-entropy loss is used. After that, the perturbation radius ϵ used for the
1001 calculation of (CROWN-)IBP bounds and during the PGD attack is gradually increased starting at 0
1002 until it reaches its final value ϵ_{train} over a defined number of *ramp-up* epochs. To anneal to the final
1003 ϵ value, early works employed a linear schedule (Gowal et al., 2019; Zhang et al., 2020), but more
1004 recently a smoothed schedule was found to yield better results (see, *e.g.*, Mao et al. (2025); De Palma
1005 et al. (2024b); Müller et al. (2023); Xu et al. (2020)). Here, ϵ is increased exponentially for the first
1006 25% of ramp-up epochs and linearly thereafter. This leads to smaller ϵ values during the beginning
1007 of the training process, which contributes to training stability. Notice, that the ϵ radius used during
1008 training does not need to match the ϵ value used for evaluation. In some cases, training with a larger
1009 ϵ radius than that used for evaluation has been shown to be beneficial (see, *e.g.*, Shi et al. (2021);
1010 Gowal et al. (2019)). For IBP and CROWN-IBP training, we chose to include additional parameters
1011 that are annealed during the ramp-up phase. Both methods employ a κ parameter (Zhang et al.,
1012 2020; Gowal et al., 2019) which weighs certified with clean loss, *i.e.*, $\kappa \cdot \mathcal{L}(f_\theta(\mathbf{x}), y) + (1 - \kappa) \cdot$
1013 $\mathcal{L}_{\text{ver}}(f_\theta(\mathbf{x}), y)$. During ramp-up κ smoothly transitions from κ_{start} to κ_{end} , where $\kappa_{\text{start}} \geq \kappa_{\text{end}}$.
1014 Analogously, for CROWN-IBP we included the β parameter (Zhang et al., 2020) that additionally
1015 weighs verified losses obtained through CROWN-IBP and IBP to calculate the final verified loss
1016 used, *i.e.*, $\mathcal{L}_{\text{ver}}(\mathbf{x}, y) = \beta \cdot \mathcal{L}_{\text{CROWN-IBP}}(\mathbf{x}, y) + (1 - \beta) \cdot \mathcal{L}_{\text{IBP}}(\mathbf{x}, y)$. This parameter transitions from
1017 β_{start} to β_{end} with $\beta_{\text{start}} \geq \beta_{\text{end}}$. This way, tighter CROWN-IBP bounds are only employed to stabilise
1018 the beginning of the training process which may result in superior performance to using CROWN-
1019 IBP bounds throughout (Zhang et al., 2020). However, it is important to notice that by setting
1020 $\kappa_{\text{start}} = \kappa_{\text{end}} = 0$ and $\beta_{\text{start}} = \beta_{\text{end}} = 1$, experimental setups used by Shi et al. (2021) and Mao
1021 et al. (2025) can be achieved, which only employ IBP or CROWN-IBP losses respectively. After
1022 the ramp-up phase, training is carried out over the full epsilon radius until it finishes. Regarding
1023 the number of epochs, we follow De Palma et al. (2024b) and train for 70 epochs on MNIST, 160
1024 epochs for $\epsilon = \frac{2}{255}$ and 260 epochs for $\epsilon = \frac{8}{255}$ on CIFAR-10 and 160 epochs on TinyImageNet.
1025

1024 **Regularisation.** During the ramp-up phase, we employed the regulariser proposed by Shi et al.
1025 (2021) which is composed of two terms. One that penalises the explosion of IBP bounds during
1026 training time and one that balances inactive and active ReLU activations, *i.e.*, neurons that behave

1026 only linearly and non-linearly for all inputs within the ϵ ball. The magnitude of this regularisation
 1027 is controlled by two factors; a parameter λ and a decay factor $1 - \frac{\epsilon}{\epsilon_{\text{train}}}$ with both of which the loss
 1028 term is multiplied. This ensures that the regularisation is most prominently employed during the
 1029 beginning of the training process which contributes to more stable training. In addition, we used ℓ_1
 1030 regularisation weighed by a specified parameter. For its calculation, we exclusively considered the
 1031 magnitude of weights in convolutional and linear layers in line with previous work (see, *e.g.*, Mao
 1032 et al. (2025); De Palma et al. (2024b); Shi et al. (2021)).
 1033

1034 **Optimisation.** We included the choice of an optimiser as well as the learning rate as part of our
 1035 tuning scheme. Generally, we support *Adam* (Kingma & Ba, 2015), *AdamW* (Loshchilov & Hutter,
 1036 2019) as well as *RAdam* (Liu et al., 2020). We did not tune the internal hyperparameters of the optimisers,
 1037 such as their β values and weight decay, but used the defaults provided in PyTorch (Paszke
 1038 et al., 2019). It is worth noting, that prior works did not consider different optimisers but exclusively
 1039 relied on Adam for the optimisation; a choice not in line with advancements in the broader ML
 1040 community (see, *e.g.*, Liu et al. (2022); Wightman et al. (2021)). For all conducted experiments, we
 1041 employed a batch size of 512 while related work usually employed batch sizes of 256 on MNIST and
 1042 128 on CIFAR-10 and TinyImageNet (see, *e.g.*, Mao et al. (2025); De Palma et al. (2024b); Müller
 1043 et al. (2023); Shi et al. (2021)). While we experienced in preliminary experiments that higher batch
 1044 sizes do hurt the performance of certified training, we aimed to conduct our tuning using a higher
 1045 batch size to fully exploit the capabilities of modern GPUs. In addition, our method searches for two
 1046 epochs after ramp-up at which the learning rate is decayed by a given factor that is also optimised.
 1047

1048 **Batch normalisation layers.** Shi et al. (2021) showed that BatchNorm layers are generally beneficial
 1049 to the performance of certified training of deep neural networks. Therefore, we also employ
 1050 them after every activation in the networks considered for our evaluation. In the literature, there
 1051 are several options on how the statistics of the layers used to normalise batches should be set. Shi
 1052 et al. (2021) and Müller et al. (2023) set the statistics based exclusively on unperturbed data, while
 1053 De Palma et al. (2024b) use statistics over adversarial examples for the IBP bounds. At evaluation
 1054 time, De Palma et al. (2024b) consider the statistics over both, perturbed and clean data. Mao et al.
 1055 (2025) proposed to use statistics of unperturbed data for the PGD attack as well as for training.
 1056 At test time, the authors employed statistics obtained over the whole population. Since multiple
 1057 approaches exist and it is, to date, unclear whether any of them actually result in decisive performance
 1058 differences, we chose to adopt the standard setting of CTRAIN that follows the approach of
 1059 De Palma et al. (2024b) for SABR and MTL-IBP and the approach of Shi et al. (2021) for CROWN-
 1060 IBP and IBP.
 1061

1061 **Hyperparameter optimisation.** In our hyperparameter optimisation setup, we use the
 1062 BoTorch (Balandat et al., 2020) sampler of Optuna (Akiba et al., 2019) with 10 initial random
 1063 samples. We use a Gaussian Process as a surrogate model, with lengthscales as recommended
 1064 by Hvarfner et al. (2024) and RBF kernel. The Gaussian Process hyperparameters are optimised using
 1065 L-BFGS-B with marginal log likelihood loss. The inputs to the Gaussian process are normalised
 1066 to the range $[0, 1]$ and the target values are standardised. We optimise the acquisition function is
 1067 optimised using L-BFGS-B. All design choices are based on the values found in (Akiba et al., 2019).
 1068 Our hyperparameter optimisation method does not use any previously known configurations or priors,
 1069 making the optimisation procedure generalisable for new, unseen scenarios.
 1070

1071 B.5 ADDITIONAL IMPLEMENTATION DETAILS

1072 To run our optimisation method, we relied on CTRAIN (Kaulen & Hoos, 2025) in version 0.4.2
 1073 for the implementation of the certified training methods. CTRAIN includes implementations of
 1074 several state-of-the-art methods, including the methods investigated in this work, as well as the
 1075 proposed initialisation and regularisation procedures of Shi et al. (2021). Further, it implements
 1076 IBP, CROWN-IBP and CROWN (Zhang et al., 2018) for incomplete verification and the adversarial
 1077 attack PGD (Madry et al., 2018) for fast disproving of robustness. For the bounding process and
 1078 incomplete verification, CTRAIN in turn relies on the `auto_LiRPA` library (Xu et al., 2020) at
 1079 commit `cf0169c`. Lastly, the neural network training is carried out using PyTorch (Paszke et al.,
 2019) in version 2.3.1.

1080
1081

B.6 COMPLETE VERIFICATION

1082

For complete verification, we used the state-of-the-art (Brix et al., 2024; König et al., 2024) complete verification system $\alpha\beta$ -CROWN (Wang et al., 2021; Xu et al., 2021; Zhang et al., 2018). While it is known, that careful parameter tuning of $\alpha\beta$ -CROWN is crucial to obtain strong results, we used the system in its standard configuration to not create a biased evaluation, where one certified training method or network architecture might benefit more from the selected parameter choices. We set the batch size of Branch-and-Bound domains to the highest number our hardware could accomodate, resulting in a batch size of 1024 for CNN7, Narrow CNN7 and CNN5 and a batch size of 512 for CNN7 Wide and CNN9 on CIFAR-10. We used a batch size of 1024 for MNIST and 16 for verifying networks trained on TinyImageNet. We used a cutoff time of 1 000s in wall-clock time for verification of CNN7 on CIFAR-10 and TinyImageNet. For MNIST and the results on additional architectures presented later, we used a cutoff of 300s in wall-clock time to keep computational demands manageable.

1093

1094
1095

B.7 CONFIGURATION SPACES

1096

1097

The configuration spaces used in our experiments are shown in Table 3. Each space consists of a set of base hyperparameters shared across all methods, extended with method-specific ones where necessary. In the following, we provide a brief explanation of each hyperparameter included. Generally, we ensured in our design of the search space that it encompasses all previously chosen parameter values from the literature but also includes all sensible parameter choices to allow for the discovery of novel, well-performing configurations.

1098

1099

1100

1101

1102

1103

1104

1105

Warm up epochs refer to the number of epochs for which the network is trained on clean cross entropy loss at the beginning of the training schedule.

1106

1107

1108

1109

1110

1111

Ramp-up epochs refer to the previously explained training phase, where ϵ is annealed from 0 to its final value. We employ 10 such epochs at least and make the maximum number dependent on the number of total epochs the network should be trained for, thereby making the search space flexible and applicable to new benchmarks. At most, we extend the ramp-up phase through 75% of the total number of epochs. This way, the ramp-up phase will have completed at the end of training, even when the maximally allowed warm- and ramp-up durations are chosen.

1112

1113

LR decay factor describes the factor by which the learning rate is decayed at up to two epochs after the ramp-up phase, for which we also optimise.

1114

1115

1116

1117

1118

1119

LR decay epoch {1,2} describe the points in time at which the learning rate is decayed. We calculate the first point by adding *LR decay epoch 1* to the number of warm- and ramp-up epochs, ensuring that the learning rate is only decayed after the ramp-up phase completed. The second point is calculated analogously, by adding the value of *LR decay epoch 2* to the epoch at which the learning rate was decayed first. If any of these decay epochs exceed the total number of training epochs, they are ignored.

1120

1121

L1 regularisation weight refers to the weight with which L1 regularisation is employed during training.

1122

1123

1124

Shi regularisation weight refers to the λ parameter which refers to the magnitude of the regularisation proposed by Shi et al. (2021) during the ramp-up phase.

1125

1126

Train ϵ factor scales the ϵ value the network is evaluated on by a given factor for training. In some cases, this has shown to be beneficial (see, *e.g.*, Gowal et al. (2019); Shi et al. (2021)).

1127

1128

Optimiser refers to the choice of the optimiser used for the training procedure. We include *Adam* (Kingma & Ba, 2015), *AdamW* (Loshchilov & Hutter, 2019) and *RAAdam* (Liu et al., 2020).

1129

1130

Learning rate refers to the initial learning rate employed by the previously chosen optimiser.

1131

1132

1133

Start & end κ refer to the κ value employed in IBP and CROWN-IBP to weigh standard cross-entropy loss and the certified loss. During the ramp-up phase, κ_{start} is gradually decreased to κ_{end} , placing greater weight on the natural loss in the early stages to stabilise training before progressively shifting the focus toward the certifiability objective. To ensure that κ_{start} always exceeds κ_{end} , we

1134 Table 3: Configuration spaces employed in our hyperparameter optimisation method for certified
 1135 training. Square brackets indicate continuous parameters for which we give inclusive upper and
 1136 lower limits. Curly brackets indicate sets out of which the optimiser can choose one option. Finally,
 1137 single numbers indicate constants, *i.e.*, parameters that remain unchanged throughout the hyperpa-
 1138 rameter optimisation.

1139

1140	Method	Hyperparameter	Range
1141	All	Warm up epochs	[0, 5]
1142		Ramp up epochs	[10, 0.75 · Total Epochs]
1143		LR decay factor	[1e-5, 0.9]
1144		LR decay epoch 1	[0, 0.5 · Total Epochs]
1145		LR decay epoch 2	[0, 0.25 · Total Epochs]
1146		L1 regularisation weight	[1e-8, 1e-4]
1147		Shi regularisation weight	[0.0, 1.0]
1148		Train ϵ factor	[1.0, 2.0]
1149		Optimiser	{Adam, AdamW, RAdam}
1150		Learning rate	[1e-5, 1e-1]
1151	IBP	Start κ	[0, 1]
1152		End κ	[0, 1]
1153	CROWN-IBP	Start κ	[0, 1]
1154		End κ	[0, 1]
1155		Start β	1.0
1156		Start β	[0, 1]
1157	SABR	τ	[0.001, 0.5]
1158		PGD steps	[1, 10]
1159		PGD step size	[0.1, 2]
1160		PGD restarts	1
1161		PGD ϵ scaling factor	[1, 3]
1162	MTL-IBP	α	[0.001, 0.5]
1163		PGD steps	[1, 10]
1164		PGD step size	[0.1, 2]
1165		PGD restarts	1
1166		PGD ϵ scaling factor	[1, 3]

1167

1168

1169 define the latter as a multiplicative factor c of the former, *i.e.*, $\kappa_{\text{end}} = \kappa_{\text{start}} \times c$ and optimise the
 1170 factor c instead of optimising κ_{end} directly.

1171

1172 **Start & end** β are handled analogously, but we fix $\beta_{\text{start}} = 1.0$ to ensure that the full benefit of the
 1173 tighter relaxation used in CROWN-IBP is employed to stabilise early training stages.

1174 τ refers to the subselection ratio used in SABR that weighs certified with adversarial loss (De Palma
 1175 et al., 2024b; Müller et al., 2023).

1176 α refers to the parameter of MTL-IBP that weighs certified with adversarial loss (De Palma et al.,
 1177 2024b).

1178

1179 **PGD steps, step size, restarts and ϵ scaling factor** refer to the parameters of the adversarial attack
 1180 employed during training to approximate the adversarial loss (Madry et al., 2018). Here, steps spec-
 1181 ify the number of optimisation steps, while step size indicates the magnitude of the input change
 1182 allowed per iteration. To keep training costs tractable, we chose to always randomly initialise the
 1183 attack once within the ϵ ball and not multiple times as done by Mao et al. (2025); a choice con-
 1184 sistent with multiple other works in the field (De Palma et al., 2024b; Müller et al., 2023; Madry
 1185 et al., 2018). This strategy leverages the fact that each training sample is reinitialised differently
 1186 across epochs, yielding a good approximation of the worst-case adversarial loss overall. Finally, we
 1187 optimise a factor that scales the ϵ radius in the adversarial attack, increasing the emphasis on the
 1188 adversarial loss when combined with the certified loss (De Palma et al., 2024b), achieving a similar
 1189 effect to ReLU shrinking as used by Müller et al. (2023).

1188 Table 4: Comparison of the results reported from the literature to the results achieved by using
 1189 our novel optimisation procedure on MNIST with $\epsilon = 0.3$. For each result from the literature, we
 1190 selected a configuration from the Pareto front that achieves similar or better performance. Boldface
 1191 marks results surpassing prior work; underlined values indicate similar performance (± 0.5).
 1192

1193 Dataset	1194 ϵ	1195 Method	1196 Source	1197 Clean Acc. [%] (Lit.)	1198 Cert. Acc. [%] (Lit.)	1199 Clean Acc. [%] (ours)	1200 Cert. Acc. [%] (ours)
1201 MNIST	0.3	MTL-IBP	De Palma et al. (2024b)	98.80	93.62	98.66	93.73
			Mao et al. (2025)	98.74	93.90	98.66	93.73
		SABR	Müller et al. (2023)	98.75	92.98	98.77	93.43
			Mao et al. (2025)	98.66	93.68	98.75	93.55
		IBP	Shi et al. (2021)	97.67	93.10	98.55	93.89
			Mao et al. (2025)	98.54	93.80	98.52	94.00
		CROWN-IBP	Xu et al. (2021)	98.18	92.98	97.98	93.22
			Mao et al. (2025)	98.48	93.90	97.94	93.25

C ADDITIONAL EXPERIMENTS

In the following, we give results of experiments conducted on additional datasets and architectures.

C.1 ADDITIONAL DATASETS

We evaluated our approach on MNIST (LeCun, 1998) with $\epsilon = 0.3$, following the experimental setup outlined earlier. While we left our optimisation procedure unchanged, we ran verification with a cutoff time of 300s to reduce the computational burden. Nevertheless, we believe that our results regarding certified accuracy could be further strengthened when employing cutoff times of 1000 seconds as done in related work (see, *e.g.*, (Mao et al., 2025; De Palma et al., 2024b)). We show the Pareto fronts found using our novel method in Figure 7 and compare to results from the literature in Table 4. While our method generally achieves comparable performance to configurations reported in the literature, it did not identify configurations that substantially surpass prior results. We attribute this to the fact that current certified training techniques have likely already been tuned to the maximal performance achievable with IBP-based training for the given benchmark. This hypothesis is reinforced by the observation that all methods converge to very similar trade-offs in our analysis, suggesting that a performance barrier has likely been reached. However, the fact that we were able to retrieve these high-performing configurations underlines the effectiveness of our method once more.

C.2 ADDITIONAL ARCHITECTURES

Recently, Mao et al. (2024) showed, both theoretically and empirically, that architecture, specifically network depth and width, has a major impact on the performance of certified training techniques.

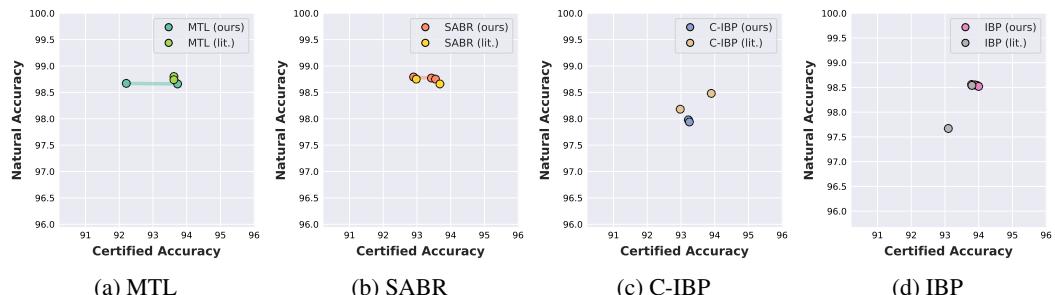


Figure 7: Results for MNIST with $\epsilon = 0.3$ yielded by our method. We compare Pareto fronts obtained using our method to results given in the original publications and the recent CTBench benchmark (Mao et al., 2025).

Table 5: Comparison of performances on CIFAR-10, $\epsilon = \frac{2}{255}$, of well-performing configurations reported by the respective authors across different codebases. We retrain all configurations using CTRAIN (Kaulen & Hoos, 2025) and compare them to the results reported in the original publications. CTRAIN achieves similar results across all methods, revealing that advancements achieved by our method cannot be traced back to the employed implementation.

Dataset	ϵ	Method	Source	Clean Acc. [%] (Lit.)	Cert. Acc. [%] (Lit.)	Clean Acc. [%] (CTRAIN)	Cert. Acc. [%] (CTRAIN)	Adv. Acc. [%] (CTRAIN)
CIFAR-10	$\frac{2}{255}$	MTL-IBP	De Palma et al. (2024b)	80.11	51.35	80.04	50.09	68.76
		SABR	Müller et al. (2023) *	79.24	62.84	79.66	46.29	64.06
		IBP	Shi et al. (2021)	66.84	52.85	67.35	53.21	57.50
	$\frac{8}{255}$	CROWN-IBP	Zhang et al. (2020) †	71.52	53.97	67.26	53.97	57.82
		MTL-IBP	De Palma et al. (2024b)	53.35	34.64	54.34	32.33	38.06
		SABR	Müller et al. (2023) *	52.38	35.13	51.67	34.47	38.77
		IBP	Shi et al. (2021)	48.94	34.97	48.04	33.63	36.93
		CROWN-IBP	Zhang et al. (2020) †	46.29	33.38	46.83	33.13	35.68

*: Results were obtained with complete verification.

†: Results were obtained without improvements by Shi et al. (2021) and a longer training schedule.

The authors found that the CNN7 Wide network defined earlier exhibits optimal depth and width for certified training techniques. We investigated whether this claim still holds when considering a Pareto front as the performance measure by running our novel method on CNN5, CNN7 Wide, CNN7 Narrow and CNN9 using the CIFAR-10 dataset with $\epsilon = \frac{2}{255}$. However, since running complete verification for all networks would incur substantial computational costs, we opted for a preliminary experiment where we only verified the first 1000 images of the test set with a cutoff time of 300s. We present the resulting Pareto fronts in Figure 8. Our analysis reveals that, indeed, the CNN7 Wide architecture yields very strong trade-offs across the performance space. However, there are also other architectures that contribute to a combined Pareto front over all architectures. For MTL-IBP, the Pareto front also includes two CNN5 models, whereas for CROWN-IBP it includes one CNN5 model. For SABR, 50% of the Pareto front consists of the standard CNN7 architecture, particularly for configurations targeting higher certified accuracies. Finally, for standard IBP training, a single CNN9 model appears on the Pareto front, achieving a trade-off comparable to that of the CNN7 Wide models. This preliminary experiment highlights that our Pareto front analysis may reveal previously unknown performance complementarities regarding different architectures and motivates future work.

C.3 COMPARISON TO CONFIGURATIONS REPORTED IN THE LITERATURE

To ensure that our reported performance gains are not due to the different codebase used for the experiments, we train with configurations reported in the literature as best-performing using CTRAIN (Kaulen & Hoos, 2025). For this, we consider configurations for SABR and MTL-IBP from their original publications and configurations for IBP and CROWN-IBP from Shi et al. (2021). We trained those on CIFAR-10 with $\epsilon = \frac{2}{255}$ and evaluated them using incomplete verification, *i.e.*, CROWN (Zhang et al., 2018). We also provide adversarial accuracy as an upper bound to the

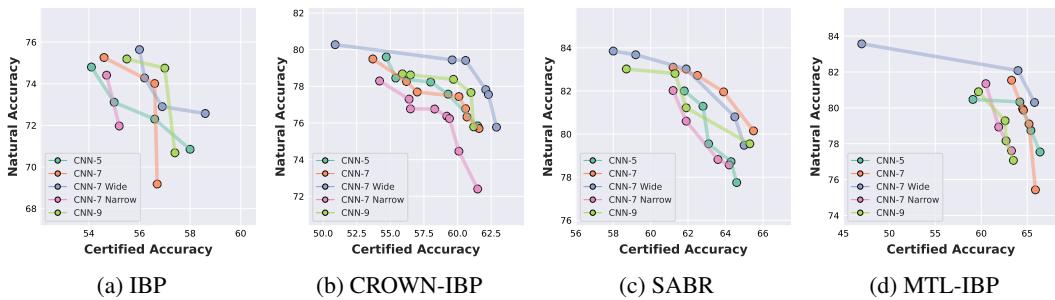


Figure 8: Pareto fronts on CIFAR-10 with $\epsilon = \frac{2}{255}$ yielded by our method for the architectures CNN5, CNN7, CNN7 Wide, CNN7 Narrow as well as CNN9.

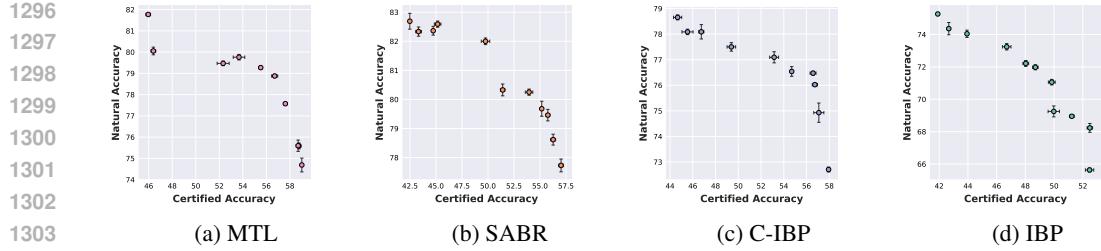


Figure 9: Pareto fronts obtained using our method on CIFAR-10 with $\epsilon = \frac{2}{255}$ with error bars. Each dot represents the average performance over three pseudo-random seeds and error bars indicate standard deviation.

certified robustness achievable through complete verification. In Table 5 we compare the obtained results to those reported in the literature. It is important to note, that the authors of SABR did not provide results on incomplete verification (Müller et al., 2023) and Shi et al. (2021) did not provide results on CROWN-IBP. Thus, we compare to results obtained using complete verification on SABR and to results without the improvements by Shi et al. (2021) and a longer training schedule on CROWN-IBP. The experiment shows that CTRAIN achieves similar results to the ones reported by the original authors with negligible differences. Therefore, we conclude that the success of our method cannot be attributed to the used codebase and might most probably work well when using other implementations as well.

C.4 VARIANCE OF RESULTS

In this experiment we evaluate each configuration resulting from the hyperparameter optimisation procedure using three pseudo-random seeds to assess result variance. We present the outcomes in Figure 9, where each data point represents the mean and error bars indicate standard deviation.

It is important to note, that the algorithm performances resulting from this experiment do not create a Pareto front, since some of the configurations dominate others. The reason for this is the fact that we evaluate each configuration only once during the HPO procedure, which is a known practice when optimising neural network hyperparameters due to the high training cost associated with it (see, e.g., Zela et al. (2022)). This setup allows “lucky” configurations to appear on the Pareto front, while “unlucky” ones may be excluded even if their average performance would place them on the front. Therefore, the hyperparameter optimisation might overfit to the chosen training seed. This issue is further compounded by the inherent non-determinism of GPU-based neural network training, which can lead to noticeable performance differences even with the same training seed. A strongly related topic to this issue is overfitting in hyperparameter optimisation, an active area of research (see, e.g., Schneider et al. (2025); Nagler et al. (2024)). One method to mitigate these phenomena is evaluating each configuration multiple times during optimisation and using its average performance, which is computationally infeasible given the costs of certified training.

However, we strongly believe that this does not undermine our results. Our final evaluation is performed on an unseen test set, and we consider differences significant only if they exceed ± 0.5 compared to previously known results. This threshold corresponds to the maximum standard deviation observed when training each method with three seeds.

D COMPUTATIONAL COSTS

We present the computational costs for both the hyperparameter optimisation runs and the verification in Table 6. We display the required total compute for discovery and complete verification of the Pareto front as well as the average verification time per instance. We show that hyperparameter optimisation costs scale directly with training costs, with TinyImageNet being the most expensive benchmark due to its larger scale. Across the same dataset, architectures with fewer parameters incur lower optimisation costs, with CNN5 being the cheapest to optimise. However, regarding the costs of complete verification, perhaps surprisingly, the highest costs occur on the CIFAR-10 dataset with $\epsilon = \frac{2}{255}$. We attribute this to the fact that, on this benchmark, complete verification

Table 6: Computation time of our experiments in wall-clock time. For each experiment, we show the time required for the hyperparameter optimisation, the average verification time required per instance as well as the total time used for complete verification of the Pareto front. If not indicated otherwise, we report verification times over the complete test-set with a per-instance timeout of 1 000s in wall-clock time.

Dataset	Network	Method	ϵ	HPO (h)	Verification (s) Average	Verification (h) Total
CIFAR10 *†	CNN5	MTL-IBP		113.69	10.96	33.48
		SABR		111.02	9.18	28.06
		CROWN-IBP	$\frac{2}{255}$	135.15	6.09	15.23
		IBP		62.95	2.23	6.21
CIFAR10	CNN7	MTL-IBP		236.68	47.34	1314.97
		SABR	$\frac{2}{255}$	226.83	52.03	1387.50
		CROWN-IBP	$\frac{8}{255}$	318.13	24.66	704.08
		IBP		95.70	7.39	225.95
CIFAR10	CNN7	MTL-IBP		340.25	10.07	378.07
		SABR	$\frac{8}{255}$	296.88	15.54	461.29
		CROWN-IBP	$\frac{8}{255}$	457.43	9.10	202.11
		IBP		158.81	13.69	436.11
CIFAR10 *†	CNN9	MTL-IBP		339.96	17.64	53.89
		SABR	$\frac{2}{255}$	336.08	18.80	67.89
		CROWN-IBP	$\frac{2}{255}$	434.99	8.15	15.85
		IBP		140.74	3.77	15.71
CIFAR10 *†	Narrow CNN7	MTL-IBP		182.16	15.99	44.41
		SABR	$\frac{2}{255}$	172.72	13.44	44.80
		CROWN-IBP	$\frac{2}{255}$	211.36	5.27	19.03
		IBP		75.45	2.63	8.03
CIFAR10 *†	Wide CNN7	MTL-IBP		409.45	27.56	53.59
		SABR	$\frac{2}{255}$	399.83	21.98	79.38
		CROWN-IBP	$\frac{2}{255}$	624.31	12.66	31.64
		IBP		164.31	4.62	17.98
MNIST *	CNN7	MTL-IBP		117.15	5.02	27.91
		SABR	0.3	104.22	4.79	93.22
		CROWN-IBP	0.3	140.0	2.05	22.79
		IBP		51.22	3.16	43.91
TinyImagenet	CNN7	MTL-IBP		1576.51	37.43	207.96
		SABR	$\frac{1}{255}$	1494.89	45.68	888.30
		CROWN-IBP	$\frac{1}{255}$	1567.99	15.12	209.96
		IBP		757.65	16.32	408.07

^{*}: Selected networks were verified with a per-instance timeout of 300 seconds in wall-clock time.

[†]: For selected networks, we report verification times over the first 1000 images of the test set.

methods achieve the largest improvements compared to cheaper, incomplete methods. On the other benchmarks, incomplete methods are often sufficient to certify most provably robust instances.

E ADDITIONAL DISCUSSION

In the following, we discuss several of our design decisions in developing our novel method and give rationale on the selection of methods included in the evaluation.

E.1 MOTIVATION FOR MULTI-OBJECTIVE OPTIMISATION

In related work, the hyperparameter optimisation problem has been treated as a single-objective problem with optimising for certified accuracy only (Mao et al., 2025) or by optimising for the

sum of clean and certified accuracy (De Palma et al., 2024b). This circumstance already highlights that there exist multiple views on what defines a well-performing configuration with regard to the robustness-accuracy trade-off (*e.g.*, given two configurations with performances (0.8, 0.63) and (0.78, 0.64), De Palma et al. (2024b) would prefer the former while Mao et al. (2025) would choose the latter). Therefore, there does not exist a clear single-objective definition of strong performance for certified training. Thus, we opted to provide a method that approximates the whole Pareto set of configurations with strong robustness-accuracy trade-offs. It is important to note that, given our method, a potential user can constrain the optimisation to regions that are important to them, *e.g.* prioritising strong certifiability over clean performance.

In addition, we argue that the multi-objective approach enabled successful automated hyperparameter optimisation for certified training of deep neural networks in the first place. As mentioned previously, conducting complete verification for all investigated configurations during optimisation is computationally infeasible. Thus, we optimised for a proxy metric, *i.e.*, certified accuracy obtained through cheaper incomplete verification methods. However, we found that the Pareto front often included configurations with similar sums of performances, *e.g.*, (0.8, 0.5) vs. (0.75, 0.55), where higher certifiability with incomplete methods only led to faster complete verification but not to higher certified accuracies overall. In these cases, the former configuration should be preferred since it yields a generally better trade-off. However, if the optimisation objective were the sum of certified and clean accuracy, the optimiser could not distinguish between the two; if only certified accuracy were used, it would favour the latter. With our method, both configurations are included in the Pareto set and considered for complete verification, ultimately revealing the superior performance of the former configuration. We therefore conclude that a multi-objective approach is essential for efficiently identifying the best-performing configurations.

E.2 JOINT HYPERPARAMETER-OPTIMISATION

While prior work (Mao et al., 2025; De Palma et al., 2024b; Müller et al., 2023) showed that the robustness-accuracy trade-off can be explored by tuning method-inherent trade-off parameters such as α for MTL-IBP and τ for SABR, we decided to investigate the trade-off through joint optimisation of all relevant parameters of the training pipeline, including method-specific as well as general deep learning parameters. First and foremost, it is a well-known fact that hyperparameters often exhibit complex interactions and that it is therefore required to optimise all parameters jointly to identify best-performing configurations (Hutter et al., 2014b). In the context of certified training, our analysis in Appendix A revealed that several hyperparameters contribute strongly to overall performance. For example, the choice of the optimiser used in SABR or the number of warm-up epochs employed in MTL-IBP were crucial to obtain strong trade-offs on CIFAR-10 with $\epsilon = \frac{2}{255}$. These well-performing configurations could not have been discovered when tuning only single parameters.

E.3 RATIONALE FOR EXCLUSION OF TAPS AND STAPS

While we included several state-of-the-art methods in our evaluation, we decided against considering the recently proposed TAPS and STAPS certified training methods (Mao et al., 2023). These methods train by propagating interval (TAPS) or SABR (STAPS) bounds through a predefined number of layers, and then performing adversarial training in the latent space within the resulting bounds for the remaining layers of the network. Mao et al. (2023) demonstrated that these methods can achieve strong performance on standard benchmarks of the certified training community. However, both the original evaluation of the authors (Mao et al., 2023) as well as the recent CTBench benchmark (Mao et al., 2025) showed that neither TAPS nor STAPS outperforms MTL-IBP.

While we would have preferred to include these methods in our evaluation to assess their performances using Pareto front analysis, we faced several challenges. First, the choice of network split has a major impact on method performance, with almost all splits except the best-performing one yielding sub-par or even catastrophic results. We therefore assume that proper hyperparameter optimisation would require far more trials than used in our experiments. Additionally, TAPS and STAPS achieve their best performance when paired with strong latent-space adversarial attacks with multiple random restarts (Mao et al., 2025; 2023). STAPS also requires an input-space adversarial attack to compute SABR bounds. Consequently, TAPS and STAPS are generally very costly, making efficient hyperparameter optimisation even more challenging. In conclusion, we chose to

1458 exclude TAPS and STAPS from this study but plan to investigate their performance with regard to
 1459 the obtained Pareto fronts in future work.
 1460

1461 F PSEUDO-CODE

1463
 1464 Algorithm 1 provides pseudo-code for our proposed constrained multi-objective hyperparameter
 1465 optimisation method for certified training of deep neural networks. Line 1 gathers the initial random
 1466 samples, which are evaluated in line 2. In line 4, we determine which configurations belong to
 1467 the Pareto set. The optimisation loop then begins with fitting the surrogate models in line 6. Line
 1468 7 then optimises the acquisition function to decide on the next candidate configuration. We then
 1469 evaluate the configuration and add it to the set of evaluated configurations in line 8. Lastly, in line
 1470 9, we determine which configurations belong to the Pareto set based on the updated set of evaluated
 1471 configurations.

1472 **Algorithm 1** Multi-objective hyperparameter optimisation for certified training

1473 1: **Input:** total budget b , initial sample size r , certified training method t , incomplete verification
 1474 method v , dataset D , min. clean acc. constraint c_{clean} , min. cert acc. constraint c_{cert}
 1475 2: Initialise ζ with r randomly sampled points
 1476 3: $\zeta \leftarrow \{(\lambda, v(t(D, \lambda))) \mid \lambda \in \zeta\}$
 1477 4: $P \leftarrow \{(\lambda, (m_{\text{clean}}, m_{\text{cert}})) \mid \nexists_{(\lambda', (m'_{\text{clean}}, m'_{\text{cert}})) \in \zeta} (m_{\text{clean}}, m_{\text{cert}}) \prec (m'_{\text{clean}}, m'_{\text{cert}}) \wedge (m_{\text{clean}} \geq c_{\text{clean}} \wedge$
 1478 $m_{\text{clean}} \geq c_{\text{clean}})\}$
 1479 5: **while** budget b is not exhausted **do**
 1480 6: $S_{\text{clean}}, S_{\text{cert}}, S_{\text{clean cond}}, S_{\text{cert cond}} \leftarrow \text{fit}(\zeta)$
 1481 7: $\lambda_t \leftarrow \arg \max \text{EHVI}(S_{\text{clean}}, S_{\text{cert}}, S_{\text{clean cond}}, S_{\text{cert cond}}, P, c_{\text{clean}}, c_{\text{cert}})$
 1482 8: $\zeta \leftarrow \zeta \cup \{(\lambda, v(t(D, \lambda)))\}$
 1483 9: $P \leftarrow \{(\lambda, (m_{\text{clean}}, m_{\text{cert}})) \mid \nexists_{(\lambda', (m'_{\text{clean}}, m'_{\text{cert}})) \in \zeta} (m_{\text{clean}}, m_{\text{cert}}) \prec (m'_{\text{clean}}, m'_{\text{cert}}) \wedge (m_{\text{clean}} \geq$
 1484 $c_{\text{clean}} \wedge m_{\text{cert}} \geq c_{\text{cert}})\}$
 10: **end while**
 11: **Return** P

1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511