
Morse: Dual-Sampling for Lossless Acceleration of Diffusion Models

Chao Li 1 Jiawei Fan 1 Anbang Yao 1

Abstract

In this paper, we present Morse, a simple dual-
sampling framework for accelerating diffusion
models losslessly. The key insight of Morse is to
reformulate the iterative generation (from noise
to data) process via taking advantage of fast jump
sampling and adaptive residual feedback strate-
gies. Specifically, Morse involves two models
called Dash and Dot that interact with each other.
The Dash model is just the pre-trained diffusion
model of any type, but operates in a jump sam-
pling regime, creating sufficient space for sam-
pling efficiency improvement. The Dot model is
significantly faster than the Dash model, which is
learnt to generate residual feedback conditioned
on the observations at the current jump sampling
point on the trajectory of the Dash model, lifting
the noise estimate to easily match the next-step es-
timate of the Dash model without jump sampling.
By chaining the outputs of the Dash and Dot mod-
els run in a time-interleaved fashion, Morse ex-
hibits the merit of flexibly attaining desired image
generation performance while improving overall
runtime efficiency. With our proposed weight
sharing strategy between the Dash and Dot mod-
els, Morse is efficient for training and inference.
Our method shows a lossless speedup of 1.78×
to 3.31× on average over a wide range of sam-
pling step budgets relative to 9 baseline diffusion
models on 6 image generation tasks. Furthermore,
we show that our method can be also general-
ized to improve the Latent Consistency Model
(LCM-SDXL, which is already accelerated with
consistency distillation technique) tailored for
few-step text-to-image synthesis. The code and
models are available at https://github.com/deep-
optimization/Morse.

1Intel Labs China. Correspondence to: Anbang Yao <an-
bang.yao@intel.com>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1. Introduction
Diffusion models (DMs), a class of likelihood-based gen-
erative models, have achieved remarkable performance on
a variety of generative modeling tasks such as image gen-
eration (Ho et al., 2022), text-to-image generation (Zhang
et al., 2023), video creation (Blattmann et al., 2023), text-to-
3D synthesis (Poole et al., 2023) and audio synthesis (Liu
et al., 2022). The powerful generalization ability of DMs
comes from a forward-backward diffusion framework: the
forward process gradually degenerates the data into random
noise with a T -step noise schedule (typically, T = 1000
as default), while the backward process learns a neural net-
work to iteratively estimate and remove the noise added to
the data. However, to generate high quality samples, DMs
usually require hundreds of sampling steps (i.e., function
evaluations of the trained model). The slow sampling effi-
ciency incurs heavy computational overhead at inference,
especially to large-scale DMs such as DALL-E (Ramesh
et al., 2022), Imagen (Saharia et al., 2022) and Stable Dif-
fusion (Rombach et al., 2022; Podell et al., 2024), posing a
great challenge for the deployment of DMs.

Recently, there have been lots of research efforts aiming
to design fast samplers for DMs, which can be grouped
into two major categories. The first category focuses on
evolving more advanced formulations for the sampling pro-
cess that enjoy faster convergence. Denoising diffusion
implicit models (DDIM) (Mohamed & Lakshminarayanan,
2016; Song et al., 2021a), stochastic differential equations
(SDE) (Song et al., 2021b) and ordinary differential equa-
tions (ODE) based solvers (Zhang & Chen, 2023; Lu et al.,
2022) are representative ones. It is worth noting that the
ODE samplers allow to generate high quality samples in tens
of sampling steps. The second category relies on knowledge
distillation schemes, such as progressive distillation (Sali-
mans & Ho, 2022), two-stage progressive distillation (Meng
et al., 2023) and consistency distillation (Song et al., 2023;
Luo et al., 2023), by which the few-step samples generated
by a student DM using the distilled sampler can match to
the many-step outputs of its corresponding teacher DM.

In this work, we attempt to improve the sampling efficiency
of DMs in a more generalized perspective. Specifically,
we ask: given a pre-trained DM (with either U-Net or self-
attention based backbone), no matter what kind of existing

1

https://github.com/deep-optimization/Morse
https://github.com/deep-optimization/Morse

Morse: Dual-Sampling for Lossless Acceleration of Diffusion Models

Stable

Diffusion

50 LSDs20 LSDs10 LSDs

50 LSDs20 LSDs10 LSDs

+ Morse

A river with a red brick bridge over it.

LCM-SDXL

3 LSDs2 LSDs1 LSD

3 LSDs2 LSDs1.33 LSDs

+ Morse

Closeup of a brown bear sitting in a grassy area.

50 LSDs20 LSDs10 LSDs

50 LSDs20 LSDs10 LSDs

A cargo truck driving down a highway with red text.

3 LSDs2 LSDs1 LSD

3 LSDs2 LSDs1.33 LSDs

Birds perch on a bunch of twigs in the winter.

Figure 1. Generated samples from Stable Diffusion (Rombach et al., 2022) and Stable Diffusion XL fine-tuned with Latent Consistency
Models (LCM-SDXL) (Luo et al., 2023) with and without Morse for text-to-image generation. For simplicity, we use the Latency per
Sampling step of the baseline DM (LSD) as the time unit to calculate the total latency of a diffusion process.

samplers is used, is it possible to reformulate the iterative
denoising generation (from noise to data) process towards
better performance-efficiency tradeoffs under a wide range
of sampling step budgets (including hundreds-step, tens-
step and few-step sampling)? To address this problem, our
method is inspired by a common property of prevailing DMs.
We notice that they typically support jump sampling (JS) in
function evaluation, especially when using the fast samplers
discussed above. This observation inspires us to explore
the use of JS for formulating our method. Not surprisingly,
with JS, prevailing DMs can generate samples in a faster
speed, yet inevitably leads to worse sample quality due
to the information loss over unvisited steps between every
two adjacent JS points on the diffusion trajectory. The
performance degradation issue becomes more serious as the
JS step length increases. Therefore, the double-edged nature
of JS prohibits its use for performance lossless acceleration.

We overcome this barrier by presenting Morse, a simple
diffusion acceleration framework consisting of two models
called Dash and Dot which tactfully couple JS with a novel
residual feedback learning strategy, compensating for the
information loss and attaining the desired lossless accelera-
tion in terms of image generation quality. In the formulation
of Morse: (1) The Dash model is just the pre-trained diffu-

sion model that needs to be accelerated, but operates in a
JS regime, creating sufficient space for sampling efficiency
improvement; (2) The Dot model is significantly faster (e.g.,
multiple times faster in latency) than the Dash model, which
is learnt to generate residual feedback conditioned on the ob-
servations (including input and output samples, time steps
and noise estimate) at the current JS point on the trajec-
tory of the Dash model, lifting the noise estimate to closely
match the next-step estimate of the Dash model without JS;
(3) Morse chains the outputs of the Dash and Dot models run
in a time-interleaved fashion, allowing us to easily choose
a proper JS step length to attain performance-efficiency
tradeoffs under a wide range of sampling step budgets. In-
triguingly, as the Dot model is significantly faster than the
Dash model, it enables the Dot model to run several times
more sampling steps than the Dash model within the in-
terval of two adjacent JS points while enjoying the same
speed. Benefiting from this appealing merit, our method
can perform more sampling steps under the same sampling
step budget relative to the pre-trained target DMs, establish-
ing a strong base to achieve the desired acceleration goal.
Besides the strong ability to accelerate DMs, Morse is also
efficient for training and inference, thanks to our proposed
weight sharing strategy between the Dash and Dot mod-
els. In the strategy, we construct the Dot model by adding

2

Morse: Dual-Sampling for Lossless Acceleration of Diffusion Models

extra light-weight blocks to the pre-trained DM and adopt
lightweight Low-Rank Adaptation (LoRA) (Hu et al., 2022)
for fast training. During the training of the Dot model, the
shared weights from the Dash model remain fixed, while the
newly added layers and LoRA modules are trained jointly.
On six public image generation benchmarks, our method
achieves promising results under lots of experimental se-
tups. In Fig. 1, we show illustrative text-to-image generation
results using Stable Diffusion and LCM-SDXL with and
without Morse under different sampling-step budgets.

2. Method
2.1. Background and Motivation

Basic Concept. A diffusion model (DM) can generate
high quality images. It consists of a forward process for
converting image to noise and a generation process (i.e.,
reverse process) for converting noise to image, both of which
are typically formulated as Markov chains with T time steps
in total. In the forward process, an image x0 ∈ Rh×w×c

is first sampled from a data distribution D. At the t-th
time step, the sample xt is added with a random noise
ϵ ∼ N (0, I) having the same dimension, which produces
xt+1 for the next time step t + 1. The distribution for xt

conditioned on x0 can be represented as:

p(xt|x0) =

∫
(p(x0)

t∏
i=1

p(xi|xi−1))dx1:t−1, (1)

where p(x0) ∼ D and p(xi|xi−1) corresponds to the pa-
rameterized function for adding noise. As t increases, xt

gets noisier, where xT conforms to the distributionN (0, I).
With the forward process, a neural network θ is trained to
estimate the original image x0 (equivalent to estimate noise
ϵ) from any time step t:

zt = θ(xt, t), (2)

where zt denotes the estimate generated by the trained net-
work θ for approximating x0. Now, we can use θ to reverse
the forward process from noising to denoising for image
generation. Specifically, in the generation process, a noise
ϵ ∼ N (0, I) is firstly sampled as xT . With the estimate zt
from θ, we can approximate the distribution of p(xt−1|xt)
by p(xt−1|xt,x0 = zt) using Bayes’ rule and Eq. 1:

p(xt−1|xt) ≈
p(xt|xt−1)p(xt−1|x0 = zt)

p(xt|x0 = zt)
. (3)

Therefore, we can iteratively convert a noise xT to an im-
age x0 along the time step from T to 0 with p(x0|xT) =∫
(p(xT)

∏T
i=1 p(xi−1|xi))dx1:T−1. So far, we can gener-

ate high quality images with T sampling steps following
Eq. 3. However, such a generation process is very time-
consuming. At each of T steps, the trained network θ needs

to evaluate for one time. While the number of total steps
T is mostly very large (e.g., T = 1000 for DDPM (Ho
et al., 2020)). It is essential for the generation process to
well approximate the reverse of the forward process (Sohl-
Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021a).

Jump Sampling. For a better sampling efficiency, most pre-
vailing DMs adopt the jump sampling (JS) strategy, in which
not all the time steps T, . . . , 0 but only a decreasing sub-
sequence of them are visited. We denote the sub-sequence
as tn > · · · > t0(ti ∈ [0, T]), mostly sampled uniformly
from T to 0. Therefore, the number of visited steps n can be
much smaller than the total number of time steps T , leading
to a faster speed for the generation process. With JS, each
sampling step can be represented as:

xti−1
= ϕ(xti , zti , ti, ti−1), (4)

where ϕ is the schedule function used to update the sample
from xti to xti−1

, which is defined according to different
samplers (e.g., DDPM (Ho et al., 2020), DDIM (Song et al.,
2021a), SDE (Song et al., 2021b), DPM-Solver (Lu et al.,
2022), CM (Song et al., 2023)). Intuitively, for a generation
process, the neighboring steps tend to have similar sample
xt and close time step t as inputs for θ, leading to similar es-
timate zt. So that with the estimate zti , the sample can jump
over multiple steps toward the same estimate from ti to ti−1,
without doing much harm to the sample quality. As more
steps are jumped over, the step length between two adjacent
JS points becomes longer and the performance degradation
issue becomes more serious. Therefore, the double-edged
nature of JS prohibits its use for performance lossless accel-
eration, while it also leaves room for us to further improve it.
If we can efficiently reduce the information loss caused by
JS while maintaining its high sampling efficiency, then we
can achieve a better performance-efficiency tradeoff. This
is the key motivation of our work.

2.2. Morse

As we discussed above, our key motivation is to efficiently
reduce the information loss caused by JS while maintain-
ing the high sampling efficiency. To achieve this goal, we
present Morse, a simple diffusion acceleration framework
with dual-sampling, as illustrated in Fig. 2. With Morse,
the generation process is reformulated from iteration with a
single model to interaction between two models, which are
called Dash and Dot.

Formulation of Morse. The Dash model is just the pre-
trained DM, but operates in a JS regime, creating sufficient
space for sampling efficiency improvement. The Dot model
is newly introduced by us for accelerating the Dash model,
which is N times faster than the Dash model. During the
generation process, each sampling step is either with noise
estimate from the Dash model or the Dot model, while the

3

Morse: Dual-Sampling for Lossless Acceleration of Diffusion Models

𝜂= N ×

Latency per Step

𝜃

𝜂 Δ𝒛𝑡𝑖

𝒙𝑡𝑖
 𝒙𝑡𝑠

𝑡𝑖 𝑡𝑠

𝒛𝑡𝑠

𝜃 𝒛𝑡𝑖

𝒙𝑡𝑖

𝑡𝑖

Network

(a) Diffusion

(b) Diffusion

(c) Diffusion with Morse (N=4)

Latency

High

Low

Low

Quality

High

Low

High

Reverse Process

Dash

Dot

×2 ×4

×3

×5

3 LSDs

3 LSDs

5 LSDs

5 Steps

3 Steps

6 Steps

End

End

1000 800 600 400 200 0

1000 800 600 400 200 0

1000 800 600 400 200 0

Time Step

End

Figure 2. Illustration of diffusion with Morse. Morse consists of two models named Dash and Dot, which interact with each other during
the generation process. Dash is the pre-trained model of any type to be accelerated, which operates in a jump sampling regime. Dot is the
model newly introduced by us to accelerate Dash, which is N times faster than Dash in latency. We provide examples to show how our
Morse works. For simplicity, we use the Latency per Step of the baseline DM (LSD) as the time unit to calculate the total latency of
a diffusion process. (i.e., the latency per step of the Dot model is mapped to that of the baseline Dash model) (a) Standard generation
process, which performs 5 steps under 5 LSDs; (b) Standard generation process, which performs 3 steps under 3 LSDs; (c) Generation
process with Morse, which performs 6 steps under 3 LSDs. Under the same latency, a generation process with Morse can perform more
steps and achieve better sample quality.

two models play different roles. As we described in Sec. 2.1,
the Dash model can estimate noise independently. The Dot
model learns to generate residual feedback conditioned on
the observations (including input and output samples, time
steps, and noise estimate) at the current sampling point on
the trajectory of Dash, lifting the noise estimate to closely
match the next-step estimate of the Dash model without JS.
Morse chains the outputs of the Dash and Dot models run
in a time-interleaved fashion. For a generation process with
Morse, we reformulate how to estimate noise as:

zti =

{
θ(xti , ti) ti ∈ S

zts + η(xts ,xti , zts , ts, ti) ti /∈ S
, (5)

where θ denotes the Dash model; η denotes the Dot model;
ts denotes the current sampling point on the trajectory of the
Dash model when the Dot model produces noise estimation
at the step ti; S = {tsd , . . . , ts1} denotes the set of sampling
steps with the noise estimates from the Dash model, which
is a sub-sequence of tn, . . . , t0. The above formulation of
Morse is simple and easy to implement, and has the great
capability to accelerate diffusion models generally as tested
with various experimental settings.

Weight Sharing between Dash and Dot. To reduce the
training and computational costs of the Dot model, we intro-
duce a weight sharing strategy between Dash and Dot. As
shown in Fig. 3, we construct the Dot model by adding
m trainable lightweight down-sampling blocks and up-
sampling blocks on the top and under the bottom of the
pre-trained Dash model respectively. The extra blocks have
the significantly reduced numbers of channels and layers
compared with the pre-trained blocks. For each of the pre-

trained blocks, the resolution of its input is reduced by 4m

times. Therefore, the Dot model can be significantly faster
than the Dash model. When training the Dot model, we fix
the shared pre-trained layers and adopt lightweight Low-
Rank Adaptation (LoRA) (Hu et al., 2022) for quickly adapt-
ing to the new training objective and resolutions. With this
simple and low-cost design, our Dot model can be derived
from the pre-trained DM very efficiently, since it reserves
nearly all the knowledge learned by the Dash model.

2.3. A Deep Understanding of Morse

To have a deep understanding of how Morse can improve the
sampling efficiency of DMs, we give detailed explanations
in two perspectives.

How can Morse Accelerate Different Diffusion Models?
With JS, DMs can generate samples in a faster speed, yet in-
evitably lead to worse sample quality due to the information
loss over unvisited steps between two adjacent JS points
on the diffusion trajectory. To compensate for the infor-
mation loss, we insert extra multiple sampling points with
Dot between every two adjacent JS points, which efficiently
reduces the JS step length. Since Dot is N times faster than
Dash, the inserted sampling steps can be completed by Dot
with only 1/N time budget compared with Dash. In other
words, Morse can perform more sampling steps under the
same sampling step budget relative to the pre-trained DMs.
We assume a standard generation process has n sampling
steps. Under the same latency (for n sampling steps of base-
line DMs), there could be n−k (0 ≤ k < n) sampling steps
with Dash and Nk sampling steps with Dot in our Morse,
which introduces (N − 1)k extra sampling steps. Given a

4

Morse: Dual-Sampling for Lossless Acceleration of Diffusion Models

Down-sampling Block

Middle Block

Up-sampling Block

Extra Down-sampling Block

Extra Up-sampling Block

Output
The Dash Model

Weight Sharing

Input

ℎ×𝑤
ℎ

2
×𝑤
2

ℎ

4
×𝑤
4

ℎ

4
×𝑤
4

ℎ

2
×𝑤
2

ℎ

8
×𝑤
8

ℎ×𝑤

The Dot Model
ℎ×𝑤 ℎ×𝑤

ℎ

2
×𝑤
2

ℎ

4
×𝑤
4

ℎ

8
×𝑤
8

ℎ

8
×𝑤
8

ℎ

4
×𝑤
4

ℎ

16
×𝑤

16

OutputInput

+ LoRA

ℎ

2
×𝑤
2

Fixed Fixed

Figure 3. Illustration of weight sharing between Dash and Dot. The Dot model is constructed by adding m (m = 1 for the illustrated
example) trainable lightweight down-sampling and up-sampling blocks on the top and under the bottom of the pre-trained Dash model
respectively. h× w denotes the resolution of input feature maps. When training the Dot model, we fix the shared pre-trained layers and
add lightweight Low-Rank Adaptation (LoRA) to help the Dot model for fast convergence.

specific sampling step budget, Morse can flexibly change
the JS step length by controlling k. Under ideal conditions
where Dot and Dash perform exactly the same for noise es-
timation, this leads to a speedup of (n− k+Nk)/n, which
is the upper bound speedup for our Morse.

How can Dot Behave as Dash on Noise Estimation? To an-
swer the question, we reiterate our design of the Dot model:
(1) Dot cooperates with Dash by learning to generate resid-
ual feedback utilizing the trajectory information; (2) Dot
inherits most of pre-trained weights from Dash. When train-
ing the Dot model, we fix the shared pre-trained layers and
add LoRA to help the Dot model for fast convergence. Ben-
efiting from the first design, Dot does not need to estimate
noise independently but generates residual feedback condi-
tioned on the observations at the current sampling point on
the trajectory of Dash. By using the input sample, output
sample, time steps and noise estimate as inputs, Dot gets the
information about how the sample is updated between the
two sampling steps, which largely helps Dot on adjusting
the noise estimate of Dash. In the second design, we adopt
a weight sharing mechanism between Dash and Dot. It al-
lows Dot to inherit most of the knowledge learned by Dash,
which guarantees the consistency between Dash and Dot in
the residual learning process. Additionally, the weight shar-
ing mechanism also improves the parameter efficiency and
training efficiency of Morse. By adding extra lightweight
trainable blocks to a pre-trained DM, the Dot model can
be trained very efficiently with LoRA. Thanks to the adap-
tive residual feedback strategy with trajectory information
and weight sharing mechanism, Dot is able to easily lift the
noise estimate at the current JS point to closely match the
next-step estimate of the Dash model. Since JS strategy is
adopted by most popular DMs, our Morse can widely accel-
erate various DMs with different samplers, benchmarks, and
network architectures under diverse sampling step budgets,
as we show in what follows.

Difference with the distillation-based methods. From the
perspective of learning the knowledge from a pre-trained
model, Morse is somehow similar with the distillation-based
methods for diffusion. While they are different both in for-
mulation and focus: (1) With Morse, the generation process

is reformulated as interaction between the Dash and Dot
models, rather than iteration with a student DM; (2) Morse
adopts an adaptive residual feedback strategy with trajectory
information; (3) The aim of Morse is to efficiently reduce
the information loss caused by jump sampling to attain the
lossless acceleration goal. In distillation-based methods, a
student DM is trained to match the outputs of its correspond-
ing teacher DM in a sampling process using much fewer
steps, but always with performance degradation issue; (4)
Morse is complementary to the distillation-based methods,
which can be used to further accelerate a DM trained with
distillation, as we show in the experiments.

3. Experiments
3.1. Metric to Evaluate Speedup

Speedup. Before showing the experimental results, we first
describe how we evaluate the speedup of Morse. For a pre-
trained DM, we assume two generation processes with and
without Morse. The total latency of the process without
Morse is n and the total latency of the process with Morse is
l(n ≥ l). The two processes get the same evaluation metric.
Then, the speedup of Morse under the latency of l can be
calculated as n/l×.

For a diffusion model (DM), we first measure its sample
quality with and without Morse under different latencies,
mainly using the mostly adopted metric Fréchet inception
distance (FID, lower is better) (Heusel et al., 2017). The
sampling steps are selected following the official settings.
Then, we use linear interpolation to fit the curves between
latency and evaluation metrics for approximating the evalu-
ation metric under any available latency. Note that it’s too
time-consuming to evaluate the metrics with all the laten-
cies. To be intuitive, we calculate an average speedup of
Morse over the selected latencies. We fit a curve between
a set of latencies and speedups to approximate speedups
across all the latencies. All the speeds for different models
are tested using an NVIDIA GeForce RTX 3090. Recall
that Dot is N times faster than Dash. The speeds of the
models may vary on different GPUs, leading to the change
of N and speedup. While we find that a Dash model and

5

Morse: Dual-Sampling for Lossless Acceleration of Diffusion Models

Figure 4. Results of Morse with different samplers on CIFAR-10
benchmark. A speedup of n under the latency of l means that
the DM with Morse under l and the DM without Morse under nl
achieve the same FID. We calculate the average speedups over all
the latencies, latencies from 3 to 15 LSDs and 20 to 100 LSDs.

its Dot model mostly have little change in N on different
GPUs, our Morse demonstrates a good acceleration ability
consistently. Details are provided in the Appendix.

LSD. For simplicity and generalization, we normalize the
total latency of a diffusion process with the time unit Latency
per Step of the baseline DM (LSD), namely the time cost of
the Dash model for one sampling step (i.e., the latency per
step of the Dot model is mapped to that of the baseline Dash
model). It takes 1 LSD for Dash and 1/N LSD for Dot to
perform one step. For a diffusion process without Morse
under n sampling steps, its latency (namely the end-to-end
time for generation images) can be represented as n LSDs.

3.2. Accelerate Image Generation

Experimental Setup. For each DM evaluated in experi-
ments, we collect its official pre-trained model as the Dash
model, of which the weights are fixed. With the weight shar-
ing strategy, all the Dot models are trained following the
official training settings, while typically with reduced batch
size and training iterations. We typically set the number of
extra down-sampling blocks and up-sampling blocks m to 2,
leading to N in the range of 5 to 10. All the experiments are
performed on the servers having 8 NVIDIA GeForce RTX
3090 GPUs. More details are described in the Appendix.

Figure 5. Results of Morse with DDIM sampler on different image
generation benchmarks.

Different Samplers. In the experiments, we evaluate our
Morse with the mainstream samplers, including DDPM (Ho
et al., 2020), DDIM (Song et al., 2021a), DPM-Solver (Lu
et al., 2022) for discrete samplers and SDE (Song et al.,
2021b), DPM-Solver on SDE for continuous samplers. We
conduct the experiments with CIFAR-10 (Krizhevsky, 2009)
benchmark, which is adopted by all the above samplers for
experiments. As shown in Fig. 4, our Morse can acceler-
ate DMs consistently with all the samplers under different
LSDs ranging from 3 to 100, achieving average speedups
ranging from 2.01× to 2.94×. The results also show that
our Morse can work with both discrete-time and continuous-
time methods. Morse can even significantly accelerate the
state-of-the-art sampler DPM-Solver, which can generate
high quality images with very few steps by also utilizing the
trajectory information from previous steps. Note that we
calculate the speedups of Morse as N/A for DPM-Solver
on both DDPM and SDE with 100 LSDs, which are not
used for calculating the average speedups. The reason is
that there is no room to accelerate, since the FIDs constantly
keep the same (even worse) value with latencies larger than
100 LSDs for the baseline DMs. The results with different
samplers on other benchmarks are provided in the Appendix.

Different Benchmarks. In the experiments, we further
evaluate our Morse with 5 popular image generation bench-
marks, including CIFAR-10 (32×32) (Krizhevsky, 2009),
ImageNet (64×64) (Russakovsky et al., 2015), CelebA
(64×64) (Liu et al., 2015), CelebA-HQ (256×256) and

6

Morse: Dual-Sampling for Lossless Acceleration of Diffusion Models

Figure 6. Results of Morse with different conditional generation
strategies on ImageNet benchmark.

LSUN-Church (256×256) (Yu et al., 2015). Since we have
evaluated Morse with different samplers, we keep the sam-
pler as the most widely used DDIM in the following ex-
periments unless otherwise stated, to exclude the impact of
differences in samplers. The results are shown in Fig. 5. Our
Morse can be generalized well to all the benchmarks, which
have different image resolutions (from 256×256 for LSUN-
Church and CelebA-HQ to 32×32 for CIFAR-10), different
dataset sizes (from 1.2 million for ImageNet to 30 thousand
for CelebA-HQ) and different semantic information. For all
the benchmarks under most LSDs, our Morse gets speedups
around 2×. On the CelebA, it can even achieve speedups
more than 4× under some LSDs.

Different Conditional Generation Strategies. After show-
ing the effectiveness of Morse under unconditional genera-
tion, we next evaluate our Morse under conditional genera-
tion with different strategies, including class-conditional and
classifier-guided image generation (Ho & Salimans, 2021)
on ImageNet benchmark at resolution 64×64. For the clas-
sifier guidance, we consider the classifier as a part of Dash
and train the Dot to approximate the estimate guided by a
classifier. As shown in Fig. 6, Morse can well generalize to
conditional generation with different strategies.

Different Network Architectures. In the above experi-
ments, there are 8 different network architectures collected
from 6 research works with model sizes ranging from
35.75M to 421.53M for the Dash models (Rombach et al.,
2022; Ho et al., 2020; Nichol & Dhariwal, 2021; Song et al.,
2021a;b; Dhariwal & Nichol, 2021). It can be seen that
our Morse achieves good generalization ability under all
diffusion architectures with different capacities and model
sizes.

3.3. Accelerate Text-to-Image Generation

Next, we evaluate our Morse under the highly popular text-
to-image generation task with the latent-space Stable Diffu-
sion model (Rombach et al., 2022).

Experimental Setup. We select the Stable Diffusion v1.4
as our Dash model, which is pre-trained with around 2 bil-
lion text-image pairs from LAION-5B dataset (Schuhmann
et al., 2022). In our experiments, the Dot model is trained

Table 1. FIDs of Stable Diffusion with and without Morse on MS-
COCO. We calculate FIDs under different classifier-free guidance
scales and select the best FID among all the scales and FID under
default scale of 7.5 for comparison.

Method FID Latency (LSD)
10 15 20 50

Stable Diffusion scale of 7.5 11.75 11.92 12.35 13.53
best scale 10.65 9.47 8.70 8.22

+ Morse scale of 7.5 9.29 10.07 10.93 13.22
best scale 8.60 8.55 8.29 8.15

Figure 7. Stable Diffusion with and without Morse under different
latencies and scales.

with only about 2M text-image pairs at resolution 512×512
sampled from the LAION-5B dataset. We use DDIM as
the sampler. Following the popular evaluation protocol, we
adopt the FID (lower is better) and CLIP score (Radford
et al., 2021) (higher is better) as the evaluation metrics and
use the 30000 generated samples with the prompts from the
MS-COCO (Lin et al., 2014) validation set for evaluation.
The CLIP scores are calculated using ViT-g/14. All the ex-
periments are performed on a server having 8 NVIDIA Tesla
V100 GPUs. More details are described in the Appendix.

Results Comparison. Following the default settings, we
first evaluate the FIDs of Stable Diffusion with and without
Morse, using the classifier-free guidance scale of 7.5. While
we find that increasing the number of steps does not always
lead to consistently better FID scores for standard Stable
Diffusion, as shown in Table 1. Therefore, we find another
two schemes to evaluate speedups. In the first scheme, we
evaluate the FID with different scales and select the best
FID score for comparison. From the results shown in Fig. 7,
we can find that the best FID consistently gets better when
the latency increases. Under this scheme, we can calcu-
late an average speedup of 2.29×. In the other evaluation
scheme, we fit the curves between FID and CLIP scores un-
der different scales using the linear interpolation following
Stable Diffusion. The results are shown in Fig. 8. When the
scale is larger than 4, we can observe a tradeoff between the
two metrics. The curve with our Morse is below the curve
without Morse. For example, the curve with Morse under
10 LSDs is below the curve without Morse under 20 LSDs
in most scales, indicating an average speedup of approxi-
mately 2×. Some generated samples for comparison are
provided in Fig. 1 and Appendix. The results further demon-
strate the generalization ability of Morse. On the popular
text-to-image generation task with a large DM (859.52M),
our Morse still shows a significant acceleration ability. As

7

Morse: Dual-Sampling for Lossless Acceleration of Diffusion Models

Table 2. Training details of Stable Diffusion and the corresponding
Dot model in Morse. The training memory cost is tested with the
batch size of 8 per GPU.

Model Params Training Samples Training Cost Training Memory
(M) (M) (A100 hours) (MB)

Stable Diffusion 859.52 2,000 150,000 23,485

Dot model 97.84 2 190 18,841
(+11.4%) (+0.1%) (+0.1%) (-19.8%)

Figure 8. Results of Morse with Stable Diffusion. (a) and (b) are
curves between FIDs and CLIP scores for Stable Diffusion with
and without Morse on different LSDs under guidance scales of 2, 3,
4, 5, 6, 7, 7.5, 8, 9, 10, which correspond to the points in the curves
from left to right. We paint the background using the curve of
standard Stable Diffusion for better illustration; (c) Curves between
FIDs and LSDs using the best FIDs among different scales.

shown in Table 2, while the Dash model is trained with
heavy computational resources and large datasets, our Dot
can be trained very efficiently with less than 0.1% text-
image pairs and 0.1% training cost compared with it. With
the trajectory information, the Dot model can be easily
close to the Dash model on noise estimation. The results
also show that our Morse works well with the classifier-free
guidance and the latent-space diffusion models.

3.4. Ablation Study and More Comparisons

Effect of Trajectory Information. Recall that our core
insight is that the trajectory information can help the Dot
model to perform as well as the Dash model without JS on
noise estimation. In Morse, we use the sample xts , the time
step ts and the noise estimate zts at the current sampling
point on the trajectory of Dash as the extra inputs for Dot. In
the experiments, we evaluate Morse with different combina-
tions of them with DDIM sampler on CIFAR-10 benchmark
under 10 LSDs. From the results shown in Table 3, we can
see that each of the inputs is helpful for Dot on residual esti-
mation. Without the trajectory information, the introduction
of the Dot model can not accelerate DMs anymore, because
of its inferior estimation. These ablative results prove that
the trajectory information plays a key role in our design,
which also validate our key insight to some extent.

Table 3. Ablation of Morse with
different trajectory information.

Method xts zts ts FID
DDIM - - - 13.67

+ Morse

13.56
✓ 8.11

✓ 8.06
✓ ✓ 7.60

✓ 7.50
✓ ✓ 6.83
✓ ✓ 7.27
✓ ✓ ✓ 6.60

Table 4. CLIP scores of LCM-
SDXL with and without Morse
on MS-COCO.

Method LSD CLIP score

LCM-SDXL

1 25.39
2 29.40
3 30.34
4 30.80

1.33 28.70
LCM-SDXL 1.67 29.84
with Morse 2 30.30

3 30.83

LCM-SDXL with Morse. In the above experiments, we
have demonstrated the great capability of Morse to acceler-
ate 9 baseline diffusion models on 6 image generation tasks.
Here, we further show that Morse can be also generalized
to improve Latent Consistency Models (LCM) (Luo et al.,
2023), which is a popular distillation-based method tailored
for few-step text-to-image synthesis. We use LCM-SDXL
as the baseline, which denotes a Stable Diffusion XL model
fine-tuned with LCM. The resolution is 1024×1024. We
evaluate LCM-SDXL with Morse on MS-COCO benchmark
as described in Sec 3.3. Same with Stable Diffusion, Stable
Diffusion XL also adopts the classifier-free guidance, while
LCM fixes the scale to 7.5 during the distillation. Under the
fixed scale of 7.5, for standard LCM-SDXL, we notice that
its FID score does not consistently get better as the number
of steps increases, while the CLIP score does. Therefore,
we select the CLIP score as the metric for evaluating LCM-
SDXL with Morse. The results are shown in Table 4. Since
the Dot model is 3 times faster than the Dash model, we
can evaluate the CLIP scores for LCM-SDXL with Morse
under LSDs of 1.33 and 1.67. Over a sampling step number
from 1 to 4, we can calculate an average speedup of 1.43×
on the CLIP score for our Morse. Experimental details and
some generated samples for comparison are provided in the
Appendix.

Figure 9. Comparison between Morse and DeepCache with Stable
Diffusion v1.4 using DDIM sampler. To give a clear comparison,
we report the FIDs of two methods under different throughputs,
which are evaluated on an NVIDIA GeForce RTX 4090 GPU
with the batch size of 20. The results are tested with the public
code of DeepCache. Following the official settings of DeepCache,
we evaluate it with the number of steps 20, 50, 100 under N =
2, 3, 5, 10 on CIFAR-10 and the number of steps 20, 50 under
N = 2, 3, 5 on MS-COCO.

8

Morse: Dual-Sampling for Lossless Acceleration of Diffusion Models

Table 5. FIDs of Morse and PFDiff on MS-COCO benchmark with
Stable Diffusion. The results of PFDiff are collected from the
paper. Following the default settings of PFDiff, we evaluate Morse
with 10000 generated samples under the guidance scale of 7.5.

Method Latency (LSD)
6 10 15 20

Stable Diffusion 20.33 16.78 16.08 15.95
+ PFDiff 15.47 13.06 13.57 13.97
+ Morse 13.88 11.67 12.22 13.63

Table 6. FIDs of Morse and AYS on ImageNet (64×64) bench-
mark. For fair comparisons, we collect the results of AYS from
the paper and evaluate Morse under the same settings.

Method Latency (LSD)
5 10 15

DDIM 147.44 39.40 28.68
+ AYS 50.38 29.23 24.21
+ Morse 46.63 25.76 21.50

Comparison with Feature Reuse. To further demonstrate
the effectiveness of Morse, we compare Morse with the state-
of-the-art feature reuse methods, including DeepCache (Ma
et al., 2024) and PFDiff (Wang et al., 2025). Same to Morse,
the methods also explore the temporal step redundancies
for accelerating diffusion models, while in different ways.
Specifically, DeepCache reuses the features at step t for
N − 1 following steps, and PFDiff utilizes the states of past
steps stored in a buffer to update the states of future steps.
As shown in Figure 9, we can find that Morse consistently
gets better throughput and FID than DeepCache on both
benchmarks. For acceleration, DeepCache is lossy in gen-
eration quality due to reusing most of the features at step
for N − 1 following denoising steps, yet Morse is lossless.
From the results shown in Table 5, we can find that Morse
is also superior to PFDiff.

Comparison with Time Step Schedule Optimization. To
accelerate diffusion models, time step schedule optimiza-
tion methods design different strategies to choose optimal
time steps when given a small number of sampling steps.
The line of work is also closely related to Morse. In Ta-
ble 6, we provide the comparison results between Morse
and AYS (Sabour et al., 2024), which is a state-of-the-art
method in this domain. As shown, Morse performs better
than AYS over different sampling step budgets.

More Ablations and Discussions. In the Appendix, we
provide more ablative experiments and discussions about
Morse for a better understanding, including: (1) The runtime
latencies of Dash models and Dot models on different GPUs;
(2) The principles to determine the scheduling of Morse; (3)
The performance of Morse under a specific latency using
different numbers of steps with Dash; (4) Comparison be-
tween different architectural designs for the Dot model; (5)
Other results and more generated samples.

4. Related Work
Besides the fast samplers discussed in the Introduction sec-
tion, there are other emerging efforts to speed up the infer-
ence of DMs. Some recent works use quantization (Li et al.,
2023b; Chen et al., 2023b), pruning (Li et al., 2022; Wang
et al., 2024), reuse of parameters and feature maps (Agarwal
et al., 2024; Wimbauer et al., 2024; Ma et al., 2024), time
step schedule optimization (Watson et al., 2021; Xue et al.,
2024; Sabour et al., 2024), and GPU-specialized optimiza-
tion (Chen et al., 2023c; Li et al., 2024) to reduce runtime
model latency. Another line of research (Li et al., 2023c;
Xu et al., 2024; Li et al., 2023a) seeks to design lightweight
network architectures for DMs, enabling to deploy them on
mobile devices. In design, our method is orthogonal to these
methods, and thus it should be able to combine with them
for improved performance.

The idea of using dual-model designs to strike a better
accuracy-efficiency tradeoff is popular in both computer vi-
sion and natural language processing. SlowFast network (Fe-
ichtenhofer et al., 2019), a powerful and efficient architec-
ture for video action recognition, uses a slow pathway op-
erating at a low frame rate with low resolution to encode
spatial semantics, and a parallel fast pathway operating at a
higher frame rate with higher resolution to encode motion
cues. Speculative decoding (Stern et al., 2018), a fast de-
coding mechanism for accelerating the inference of autore-
gressive language models, predicts candidate tokens with a
small approximation model, and verifies the acceptability
of these candidate tokens by a larger and powerful target
model with a single forward pass, significantly reducing the
computation for accepted tokens. Many variants (Li et al.,
2020; Leviathan et al., 2023; Chen et al., 2023a; Zhang et al.,
2024) of them have been proposed. Although our method is
also a dual-model design, it focuses on accelerating diffu-
sion models with a simple framework, and its key insight is
to reformulate the iterative generation (from noise to data)
process via taking advantage of fast jump sampling and
adaptive residual feedback strategies. Clearly, our method
differs from them in focus, motivation and formulation.

5. Discussion and Conclusion
We present a simple dual-sampling framework called Morse
to accelerate diffusion models losslessly. Morse reformu-
lates the iterative generation process by involving two mod-
els called Dash and Dot that interact with each other, which
exhibits the merit of flexibly attaining high-fidelity image
generation while improving overall sampling efficiency. Ex-
perimental results show that Morse can generally accelerate
diffusion models under various settings. While Morse shows
the general acceleration ability, it introduces an extra Dot
model with a small number of trainable parameters.

9

Morse: Dual-Sampling for Lossless Acceleration of Diffusion Models

Impact Statement
As an acceleration method for diffusion models, Morse has
broader impacts similar to most generative AI models. For
example, it may be misused to help creating realistic fake
news and videos to spread false information.

References
Agarwal, S., Mitra, S., Chakraborty, S., Karanam, S.,

Mukherjee, K., and Saini, S. K. Approximate caching
for efficiently serving text-to-image diffusion models. In
NSDI, 2024.

Blattmann, A., Rombach, R., Ling, H., Dockhorn, T., Kim,
S. W., Fidler, S., and Kreis, K. Align your latents: High-
resolution video synthesis with latent diffusion models.
In CVPR, 2023.

Chen, C., Borgeaud, S., Irving, G., Lespiau, J.-B., Sifre,
L., and Jumper, J. Accelerating large language model
decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, 2023a.

Chen, T., Zhang, R., and Hinton, G. Analog bits: Gen-
erating discrete data using diffusion models with self-
conditioning. In ICLR, 2023b.

Chen, Y., Sarokin, R., Lee, J., Tang, J., Chang, C., Kulik,
A., and Grundmann, M. Speed is all you need: On-
device acceleration of large diffusion models via gpu-
aware optimizations. In CVPR Workshops, 2023c.

Dhariwal, P. and Nichol, A. Diffusion models beat gans on
image synthesis. In NeurIPS, 2021.

Feichtenhofer, C., Fan, H., Malik, J., and He, K. Slowfast
networks for video recognition. In ICCV, 2019.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and
Hochreiter, S. Gans trained by a two time-scale update
rule converge to a local nash equilibrium. In NIPS, 2017.

Ho, J. and Salimans, T. Classifier-free diffusion guidance.
In NeurIPS Workshop, 2021.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
bilistic models. In NeurIPS, 2020.

Ho, J., Saharia, C., Chan, W., Fleet, D. J., Norouzi, M., and
Salimans, T. Cascaded diffusion models for high fidelity
image generation. JMLR, 2022.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. Lora: Low-rank adaptation
of large language models. In ICLR, 2022.

Krizhevsky, A. Learning multiple layers of features from
tiny images. Technical Report, 2009.

Leviathan, Y., Kalman, M., and Matias, Y. Fast inference
from transformers via speculative decoding. In ICML,
2023.

Li, M., Lin, J., Meng, C., Ermon, S., Han, S., and Zhu, J.
Efficient spatially sparse inference for conditional gans
and diffusion models. In NeurIPS, 2022.

Li, M., Cai, T., Cao, J., Zhang, Q., Cai, H., Bai, J., Jia,
Y., Li, K., and Han, S. Distrifusion: Distributed parallel
inference for high-resolution diffusion models. In CVPR,
2024.

Li, S., Hu, T., Khan, F. S., Li, L., Yang, S., Wang, Y., Cheng,
M.-M., and Yang, J. Faster diffusion: Rethinking the
role of unet encoder in diffusion models. arXiv preprint
arXiv:2312.09608, 2023a.

Li, X., Wang, Y., Zhou, Z., and Qiao, Y. Smallbignet: Inte-
grating core and contextual views for video classification.
In CVPR, 2020.

Li, X., Liu, Y., Lian, L., Yang, H., Dong, Z., Kang, D.,
Zhang, S., and Keutzer, K. Q-diffusion: Quantizing
diffusion models. In ICCV, 2023b.

Li, Y., Wang, H., Jin, Q., Hu, J., Chemerys, P., Fu, Y., Wang,
Y., Tulyakov, S., and Ren, J. Snapfusion: Text-to-image
diffusion model on mobile devices within two seconds.
In NeurIPS, 2023c.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P.,
Ramanan, D., Dollár, P., and Zitnick, C. L. Microsoft
coco: Common objects in context. In ECCV, 2014.

Liu, J., Li, C., Ren, Y., Chen, F., and Zhao, Z. Diffsinger:
Singing voice synthesis via shallow diffusion mechanism.
In AAAI, 2022.

Liu, Z., Luo, P., Wang, X., and Tang, X. Deep learning face
attributes in the wild. In ICCV, 2015.

Lu, C., Zhou, Y., Bao, F., Chen, J., Li, C., and Zhu, J. Dpm-
solver: A fast ode solver for diffusion probabilistic model
sampling in around 10 steps. In NeurIPS, 2022.

Luo, S., Tan, Y., Huang, L., Li, J., and Zhao, H. La-
tent consistency models: Synthesizing high-resolution
images with few-step inference. arXiv preprint
arXiv:2310.04378, 2023.

Ma, X., Fang, G., and Wang, X. Deepcache: Accelerating
diffusion models for free. In CVPR, 2024.

Meng, C., Rombach, R., Gao, R., Kingma, D., Ermon,
S., Ho, J., and Salimans, T. On distillation of guided
diffusion models. In CVPR, 2023.

10

Morse: Dual-Sampling for Lossless Acceleration of Diffusion Models

Mohamed, S. and Lakshminarayanan, B. Learn-
ing in implicit generative models. arXiv preprint
arXiv:1610.03483, 2016.

Nichol, A. Q. and Dhariwal, P. Improved denoising diffusion
probabilistic models. In ICML, 2021.

Podell, D., English, Z., Lacey, K., Blattmann, A., Dockhorn,
T., Müller, J., Penna, J., and Rombach, R. Sdxl: Im-
proving latent diffusion models for high-resolution image
synthesis. In ICLR, 2024.

Poole, B., Jain, A., Barron, J. T., and Mildenhall, B. Dream-
fusion: Text-to-3d using 2d diffusion. In ICLR, 2023.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark,
J., Krueger, G., and Sutskever, I. Learning transferable
visual models from natural language supervision. In
ICML, 2021.

Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., and Chen,
M. Hierarchical text-conditional image generation with
clip latents. arXiv preprint arXiv:2204.06125, 2022.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. High-resolution image synthesis with latent
diffusion models. In CVPR, 2022.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein,
M., Berg, A. C., and Li, F.-F. Imagenet large scale visual
recognition challenge. IJCV, 2015.

Sabour, A., Fidler, S., and Kreis, K. Align your steps:
Optimizing sampling schedules in diffusion models. In
ICML, 2024.

Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Denton,
E. L., Ghasemipour, K., Gontijo Lopes, R., Karagol Ayan,
B., Salimans, T., et al. Photorealistic text-to-image dif-
fusion models with deep language understanding. In
NeurIPS, 2022.

Salimans, T. and Ho, J. Progressive distillation for fast
sampling of diffusion models. In ICLR, 2022.

Schuhmann, C., Beaumont, R., Vencu, R., Gordon, C.,
Wightman, R., Cherti, M., Coombes, T., Katta, A., Mullis,
C., Wortsman, M., et al. Laion-5b: An open large-scale
dataset for training next generation image-text models. In
NeurIPS, 2022.

Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., and
Ganguli, S. Deep unsupervised learning using nonequi-
librium thermodynamics. In ICML, 2015.

Song, J., Meng, C., and Ermon, S. Denoising diffusion
implicit models. In ICLR, 2021a.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Er-
mon, S., and Poole, B. Score-based generative modeling
through stochastic differential equations. In ICLR, 2021b.

Song, Y., Dhariwal, P., Chen, M., and Sutskever, I. Consis-
tency models. In ICML, 2023.

Stern, M., Shazeer, N., and Uszkoreit, J. Blockwise parallel
decoding for deep autoregressive models. In NeurIPS,
2018.

Wang, G., Cai, Y., Peng, W., Su, S.-Z., et al. Pfdiff: Training-
free acceleration of diffusion models combining past and
future scores. In ICLR, 2025.

Wang, H., Liu, D., Kang, Y., Li, Y., Lin, Z., Jha, N. K., and
Liu, Y. Attention-driven training-free efficiency enhance-
ment of diffusion models. In CVPR, 2024.

Watson, D., Ho, J., Norouzi, M., and Chan, W. Learning
to efficiently sample from diffusion probabilistic models.
arXiv preprint arXiv:2106.03802, 2021.

Wimbauer, F., Wu, B., Schoenfeld, E., Dai, X., Hou, J.,
He, Z., Sanakoyeu, A., Zhang, P., Tsai, S., Kohler, J.,
et al. Cache me if you can: Accelerating diffusion models
through block caching. In CVPR, 2024.

Xu, Y., Zhao, Y., Xiao, Z., and Hou, T. Ufogen: You forward
once large scale text-to-image generation via diffusion
gans. In CVPR, 2024.

Xue, S., Liu, Z., Chen, F., Zhang, S., Hu, T., Xie, E., and Li,
Z. Accelerating diffusion sampling with optimized time
steps. In CVPR, 2024.

Yu, F., Seff, A., Zhang, Y., Song, S., Funkhouser, T., and
Xiao, J. Lsun: Construction of a large-scale image dataset
using deep learning with humans in the loop. arXiv
preprint arXiv:1506.03365, 2015.

Zhang, J., Wang, J., Li, H., Shou, L., Chen, K., Chen, G.,
and Mehrotra, S. Draft & verify: Lossless large language
model acceleration via self-speculative decoding. In ACL,
2024.

Zhang, L., Rao, A., and Agrawala, M. Adding conditional
control to text-to-image diffusion models. In ICCV, 2023.

Zhang, Q. and Chen, Y. Fast sampling of diffusion models
with exponential integrator. In ICLR, 2023.

11

Morse: Dual-Sampling for Lossless Acceleration of Diffusion Models

A. Appendix
A.1. Benchmarks and Evaluation Details

Image Generation. In the experiments described in Sec. 3.2, we consider 5 mainstream image generation benchmarks
with various resolutions for evaluating the generalization ability of our Morse, including CIFAR-10 (32×32, 50 thousand
images) (Krizhevsky, 2009), CelebA (64×64, 0.2 million images) (Liu et al., 2015), ImageNet (64×64, 1.2 million
images) (Russakovsky et al., 2015), CelebA-HQ (256×256, 30 thousand images) (Liu et al., 2015), LSUN-Church
(256×256, 0.1 million images) (Yu et al., 2015). Following the popular evaluation protocol, for each DM, we generate 50000
samples and calculate the FID score between the generated images and the images of the corresponding benchmark. For fair
comparisons, we adopt the settings including data processing pipeline and hyperparameters following the corresponding
DMs.

Text-to-Image Generation. In the experiments for Stable Diffusion v1.4 and LCM-SDXL, we use 2 million text-image
pairs sampled from the LAION-5B (Schuhmann et al., 2022) dataset. Following the popular evaluation protocol, we evaluate
the text-to-image diffusion models under zero-shot text-to-image generation on the MS-COCO 2014 validation set (Lin
et al., 2014) (256×256). All the generated images are down-sampled from 512×512 to 256×256 for evaluation. For each
DM, we generate 30000 samples with the prompts from the validation set. The CLIP scores are calculated using ViT-g/14.

A.2. Implementation Details for Stable Diffusion

Implementation Details. For text-to-image generation, we evaluate our Morse with Stable Diffusion v1.4 (Rombach et al.,
2022). In the experiments, we use the Dot model with the extra parameters of 97.84M to accelerate the Dash model with
the size of 859.52M. The latencies of the Dash model and the Dot model are 0.709 second and 0.082 second per batch
respectively (N = 8.6), which is tested using a single NVIDIA GeForce RTX 3090 under a batch size of 20. With the
official settings, Stable Diffusion v1.4 is pre-trained with around 2 billion text-image pairs at resolution 256×256 and
fine-tuned with around 600M text-image pairs at resolution 512×512 from LAION-5B dataset (Schuhmann et al., 2022).
We add two trainable down-sampling blocks and up-sampling blocks, with the numbers of channels 96 and 160, on the top
and under the bottom of the pre-trained Stable Diffusion to construct the Dot model respectively. We set the rank of LoRA
to 64. In our experiments, the Dot model is trained with only about 2M text-image pairs at resolution 512×512 sampled
from the LAION-5B dataset for 100,000 iterations. We use DDIM as the sampler.

For conditional image generation, Stable Diffusion v1.4 adopts the classifier-free guidance, which has a parameter called
guidance scale to control the influence of the text prompts on the generation process. To ensure that our Morse can also
work well with different guidance scales besides the different numbers of steps, we also randomly sample the guidance
scales between 2 and 10 during the training procedure. The Dot models are trained on a server with 8 NVIDIA Tesla V100
GPUs. Considering the risk for misuse of the generative models, we use the safety checker module which is adopted by
Stable Diffusion project for the released models.

Latency of Each Block. It may be not intuitive that we can construct a Dot model with faster speed by adding extra blocks
to a DM. Here, we provide the latency of each block for the Stable Diffusion with and without extra blocks in Fig. 10. The
state-of-the-art DMs mostly adopt the U-Net architecture with self-attention layers. With the extra blocks on the top and
under the bottom of the pre-trained Stable Diffusion, the resolution of the input for each pre-trained block is reduced by
16 times, which significantly reduces the latencies of the pre-trained blocks. Additionally, the extra blocks have the same
architecture with the pre-trained blocks while removing the self-attention layers. Since the computational complexity of
a self-attention layer grows quadratically with the number of tokens, the pre-trained blocks with high-resolution feature
maps have relatively slow inference speeds. By removing the self-attention layers and reducing the number of channels, the
latencies of the extra blocks with the high-resolution feature maps are still relatively low. Therefore, the Dot model can be
significantly faster than the Dash model.

A.3. Implementation Details for LCM-SDXL

In the main experiments, we also evaluate our Morse on the Latent Consistency Models (Luo et al., 2023) (LCM-SDXL
with 1024×1024 resolution, which is already accelerated with consistency distillation technique). LCM-SDXL can be
used for high quality text-to-image generation with very few steps, which is trained with heavy computational resources
and large dataset. We add a trainable down-sampling block and up-sampling block on the top and under the bottom of the
pre-trained LCM-SDXL respectively. For each of the original pre-trained blocks, the resolution of its input is reduced by

12

Morse: Dual-Sampling for Lossless Acceleration of Diffusion Models

Down-sampling Block Middle BlockUp-sampling Block

Extra Down-sampling Block Extra Up-sampling Block

Output

The Dash Model

Input

0.123

0.056

0.044 0.095

0.126

0.009

0.209

0.006 0.018

The Dot Model
OutputInput

0.005

0.005

0.005

0.002

0.010

0.011

0.011

0.001 0.003

0.005

0.003 0.008

0.011

Figure 10. Latency (second) of each block for Stable Diffusion with and without adding extra down-sampling and up-sampling blocks.
The speeds are tested with the batch size of 20 on a single NVIDIA RTX 3090 GPU.

4 times. The latencies of the Dash model and the Dot model are 0.646 second and 0.211 second per batch respectively
(N = 3.1), which is tested using single NVIDIA Tesla V100 under a batch size of 5. We fix the shared pre-trained layers
except some mismatched layers and add lightweight Low-Rank Adaptation (LoRA) (Hu et al., 2022) to help the Dot model
for fast convergence. Compared to the LCM-SDXL with the model size of 2567.55M, the Dot model only has 229.19M
trainable parameters, which can be efficiently injected to the Dash model. In our experiments, the Dot model is trained with
about 2M text-image pairs at resolution 1024×1024 from the LAION-5B dataset for 100,000 iterations. The Dot model is
trained on the servers with 8 NVIDIA Tesla V100 GPUs.

A.4. Implementation Details for Image Generation

In this section, we provide the implementation details for all the DMs adopted in our experiments for image generation.

Table 7. Latency (second) per sampling step of the Dash models and the Dot models on different GPUs. N denotes that the Dot model is
N times faster than the Dash model. h× w denotes the resolution of input feature maps.

Model Source Benchmark RTX 3090 RTX 4090 Tesla V100
Dash Dot N Dash Dot N Dash Dot N

DDPM CIFAR-10 (32×32) 0.072 0.012 6.0 0.035 0.006 5.8 0.082 0.015 5.5
CelebA-HQ (256×256) 0.539 0.112 4.8 0.346 0.073 4.7 0.680 0.135 5.0

DDIM CelebA (64×64) 0.244 0.042 5.8 0.143 0.021 6.8 0.292 0.054 5.4
Improved DDPM ImageNet (64×64) 0.367 0.065 5.6 0.226 0.034 6.6 0.458 0.092 5.0
SDE CIFAR-10 (32×32) 0.120 0.020 6.0 0.113 0.018 6.3 0.139 0.025 5.6

LDM LSUN-Church (256×256) 0.288 0.060 4.8 0.185 0.022 8.4 0.360 0.057 6.3
MS-COCO (512×512) 0.709 0.082 8.6 0.344 0.042 8.2 0.771 0.088 8.8

ADM ImageNet (64×64) 0.956 0.149 6.5 0.760 0.085 8.9 1.105 0.186 5.9
ADM-G 1.547 0.149 10.5 0.956 0.085 11.3 1.889 0.186 10.2

Training and Sampling. In the main experiments, we adopt multiple DMs to evaluate the effectiveness of our Morse,
including the models from DDPM (Ho et al., 2020), DDIM (Song et al., 2021a), Improved DDPM (Nichol & Dhariwal,
2021), SDE (Song et al., 2021b), LDM (Rombach et al., 2022) and ADM (Dhariwal & Nichol, 2021). For a DM, we
collect its official pre-trained model as the Dash model. To construct the corresponding Dot model, we add two lightweight
down-sampling blocks and up-sampling blocks on the top and under the bottom of each pre-trained Dash model respectively.
With the weight sharing strategy, all the Dot models are trained following the official training settings. As shown in Table 7,
we provide the detailed information, including the source models, the speeds of the Dash models and Dot models and N .
Recall that the Dot model is N times faster than the Dash model. All the speeds for different models are tested using a
single NVIDIA GeForce RTX 3090. When testing the speeds, we set the batch size to 100 for most benchmarks except
20 for CelebA-HQ and MS-COCO benchmarks. During the training procedures, a Dot model is trained to estimate the
difference between the outputs from the Dash model at two randomly sampled steps. Here, we give an example of the
training procedure and sampling procedure for DDIM sampler, as shown in Algorithm 1 and Algorithm 2. The procedures
can be easily extended to other samplers with simple modification. The Dot models are trained on the servers with 8 NVIDIA

13

Morse: Dual-Sampling for Lossless Acceleration of Diffusion Models

Tesla V100 GPUs or 8 NVIDIA GeForce RTX 4090 GPUs.

N on Different GPUs. Recall that Dot is N times faster than Dash. For a Dash model and its trained Dot model, the
speedup of Morse gets larger when N gets larger. While the speeds of the models may vary on different GPUs, leading
to the change of N and speedup. In our design, we construct a Dot model by adding several extra blocks on the top and
under the bottom of the pre-trained Dash model. Therefore, a Dot model has the architecture which is very similar with its
corresponding Dash model. As shown Table 7, we can find that a pair of Dash and Dot mostly has little change in N on
different GPUs. The results indicate that our Morse performs well on different GPUs.

Algorithm 1: Training of Dot with DDIM
Require :Trained Dash model θ(·, ·)
Require :Dot model η(·, ·, ·, ·, ·) to be trained
Require :Schedule function ϕ(·, ·, ·, ·)
Require :Dataset D
Require :Learning rate γ

1 repeat
2 sample x ∼ D
3 sample ϵ ∼ N (0, I)
4 sample ts, to ∼ U [0, T] (ts > to)
5 xts = αtsx+ σtsϵ
6 zts = θ(xts , ts)
7 xto = ϕ(xts , zts , ts, to)
8 zto = θ(xto , to)
9 ẑto = zts + η(xts ,xto , zts , ts, to)

10 η ← η − γ∇η∥zto − ẑto∥22
11 until convergence

Algorithm 2: DDIM Sampling with Morse
Require :Trained network Dash θ(·, ·)
Require :Trained network Dot η(·, ·, ·, ·, ·)
Require :Schedule function ϕ(·, ·, ·, ·)
Require :Sequence of time points tn > tn−1 > · · · > t0
Require :Number of dash steps d

1 sample xtn ∼ N (0, I)
2 uniformly sample sd, . . . , s0 from tn to t0
3 for i← n to 1 do
4 if ti ∈ {sd, . . . , s1} then
5 zti = θ(xti , ti)
6 ts = ti
7 else
8 zti = zs + η(xts ,xti , zts , ts, ti)
9 end

10 xti−1 = ϕ(xti , zti , ti, ti−1)

11 end
Return :xt0

How to Determine the Scheduling of Morse. Generally, how the scheduling of Morse is determined relies on three key
factors: (1) The selection of the jump-sampling-based diffusion sub-sequence of the Dash model. With jump sampling,
only a sub-sequence of the available time steps (e.g., T,...,0) are visited. Clearly, there are different strategies to select the
sub-sequence. In Morse, we typically use a simple selection strategy following the standard jump sampling settings (which
are supported with most existing diffusion methods) of any pre-trained diffusion model (i.e. the Dash model), for easy
implementation; (2) Given the numbers of sampling steps for Dash and Dot, how to decide their orders. For a diffusion
process with Morse, we denote the number of sampling steps for Dash as kdash and the number of sampling steps for Dot
as kdot, leading to kdash + kdot sampling steps in total. Since the Dot model needs the trajectory information of the Dash
model for predicting its residual feedback, the first sampling step can only be with the Dash model, and then we can flexibly
decide orders of the remaining steps. For simplicity, we uniformly sample the steps with the Dash and Dot models. For
example, if kdash = 2 and kdot = 4, the order of the steps can be denoted as Dash,Dot,Dot,Dash,Dot,Dot; (3) Given
the desired latency budget, how to decide the number of sampling steps for Dash and Dot. Recall that Dot is N× faster than
Dash. Under the desired latency of n LSDs (LSD is the defined time metric, namely the time for the baseline diffusion
model to perform one step), there could be n− k (0 ≤ k < n) sampling steps with Dash and Nk sampling steps with Dot
for Morse. The problem is how to decide the k. Under ideal conditions where Dot and Dash perform exactly the same for
noise estimation, Morse achieves a speedup of (n− k +Nk)/n. While Morse can accelerate a pre-trained diffusion model
with a wide range of k (as shown in Fig. 13). Based on our experiments with 10 diffusion models on 6 benchmarks, we
suggest setting (n− k +Nk)/n between 2.0 and 3.0, which leads mostly to the best results. With the above three simple
principles, it’s easy and flexible to decide the scheduling of Morse under different latencies.

A.5. More Experiments for Studying Morse

Morse with Different Samplers. In the experiments described in Sec. 3.2, we evaluate our Morse on CIFAR-10 (32×32)
benchmark with different samplers. Here, we perform experiments to further validate the effectiveness of Morse on other
datasets with different samplers. As shown in Fig. 11, our Morse achieves good generalization ability on CelebA-HQ
(256×256) dataset with different samplers.

14

Morse: Dual-Sampling for Lossless Acceleration of Diffusion Models

Figure 11. Results of Morse with different samplers on CelebA-HQ (256×256) benchmark.

Figure 12. Results of Dot with trajectory information from the Dash model and the both two models.

Where Trajectory Information Comes from? Recall that Morse redefines how to estimate noise during the generation
process as:

zti =

{
θ(xti , ti) ti ∈ S

zts + η(xti ,xts , ti, ts, zts) ti /∈ S
. (6)

In the design, a Dot model generates residual feedback conditioned on the observations at the current JS point on the
trajectory of the Dash model. For another reasonable design, the observations can also come from the trajectory of the two
models, which can be represented as:

zti =

{
θ(xti , ti) ti ∈ S

zti−1
+ η(xti ,xti−1

, ti, ti−1, zti−1
) ti /∈ S

. (7)

In the experiments, we compare the two designs which utilize the different trajectory information on CIFAR-10 dataset
with DDIM sampler. The results are shown in Fig. 12. It can be seen that our design (using trajectory information from the
Dash model) performs better, which achieves an average speedup of 2.26× against to 2.00×. In which case the number
of steps is extremely small (e.g., 3), using trajectory information from ti−1 is better than that from ts. This is probably
because the distance between ts and ti becomes relatively large when the number of steps is very small, which makes
the trajectory information less helpful for the Dot model. We can also find that the Dot model also works well with the
trajectory information from itself, though it is trained with the trajectory information from the Dash model during the
training procedure.

Comparison under the Same Number of Steps. For evaluating the speedups of Morse under different sampling step
budgets, we mostly compare the DMs with and without Morse under the selected latencies in the previous experiments. In
Fig. 14, we provide the results of DMs under the selected number of steps, establishing a set of different time-interleaved
configurations of Dot and Dash under a given LSD budget. It can be seen that the curves of a DM with Morse are always
below the curve without Morse, indicating the consistent acceleration ability of Morse under different numbers of sampling
steps and proportion between the total numbers of sampling steps and the numbers of sampling steps with noise estimation
from Dot.

Effect of Exchanged Steps Ratio. Recall that under a specific latency of n LSDs, there could be n − k (0 ≤ k < n)
sampling steps with Dash and Nk sampling steps with Dot for Morse. Morse can flexibly change the JS step length by
controlling k. Here, we define the ratio of exchanged steps as k/n. In the experiments, we explore the effect of different

15

Morse: Dual-Sampling for Lossless Acceleration of Diffusion Models

Figure 13. Speedups of Morse with DDIM sampler on CIFAR-10 (32×32) under different LSDs and exchanged steps ratios. The
exchanged steps ratio denotes the ratio of the latency of steps with Dot to the total latency in a generation process.

Figure 14. Results of Morse with DDIM sampler under different numbers of sampling steps. For a diffusion process with Morse, we set
50%, 60%, 70%, 80% and 90% of the sampling steps for using the Dot model and the other steps using the Dash model.

ratios of the exchanged steps. We conduct the experiments on CIFAR-10 dataset with DDIM sampler. The results are shown
in Fig. 13. Under most LSDs, Morse can achieve a speedup around 2× with most ratios. Under the extreme condition when
we exchange most of the sampling steps with Dash for the sampling steps with Dot (e.g., more than 70%), the speedups
sharply decrease below 1.0×. In our opinion, the reason is that the trajectory information becomes less helpful for the Dot
models on residual estimation when the distance between the two sampling steps is very large, since there are much fewer
sampling steps with Dash.

Different Designs for the Extra Down-Sampling and Up-Sampling Blocks of Dot. Recall that we construct the Dot
model for Stable Diffusion by adding 2 trainable lightweight down-sampling blocks and up-sampling blocks to the Dash
model. When training the Dot model, we fix the shared pre-trained layers and adopt lightweight LoRA. In the experiments,
we study the construction of a Dot model with different designs for down-sampling and up-sampling. We evaluate several
variant designs for the Dot model including: (1) Down-sampling and up-sampling with proposed trainable blocks or bilinear
sampling; (2) Training the Dot model with or without LoRA. The shared pre-trained layers are fixed. From the results shown
in the Table 8, we can see that both designs can significantly improve the performance of Morse. Without fine-tuning, the
original DM cannot adapt well to a lower resolution directly. While adding the trainable sampling blocks and adopting
LoRA for training the Dot model can enhance learnable and soft resolution transformation and help the pre-trained blocks
adapt to the new resolutions, respectively.

Different Architectures of the Dot Model. In the experiments, we evaluate the performance of Morse with the independent
Dot model without sharing the pre-trained blocks with Dash model. We conduct the experiments on MS-COCO dataset
with Stable Diffusion. In the variant design, the Dot model has similar architecture with the Dash model while with the
reduced numbers of channels and blocks. The results are shown in Table 9. Even without fine-tuning with the pre-trained
weights, our Morse can still accelerate the Stable Diffusion. While it needs more training iterations and trainable parameters
to achieve similar performance with our proposed design. The results demonstrate the effectiveness and efficiency of our
proposed weight sharing strategy for training a Dot model. While it also shows that we can flexibly construct a Dot model
with different architectures.

16

Morse: Dual-Sampling for Lossless Acceleration of Diffusion Models

Table 8. FIDs of Stable Diffusion with different variants of Dot. We calculate FIDs under different classifier-free guidance scales and
select the best FID among all the scales.

Method Trainable Sampling Blocks LoRA 10 LSDs 15 LSDs 20 LSDs 50 LSDs
Stable Diffusion - - 10.65 9.47 8.70 8.22

+ Morse

370.79 397.82 392.64 389.12
✓ 9.23 8.94 8.60 8.36

✓ 9.79 9.21 8.89 8.51
✓ ✓ 8.60 8.55 8.29 8.15

Table 9. Different architectures of the Dot model for Stable Diffusion.
Method Training Iterations Params Average Speedup
Independent Dot model 0.4 million 324.93M 2.07×
Dot model with weight sharing strategy 0.1 million 97.84M 2.29×

A.6. More Generated Samples

We provide some generated samples from the diffusion models with and without Morse under different LSDs for better com-
parisons, including image generation for CelebA-HQ (256×256) and LSUN-Church (256×256), text-to-image generation
on MS-COCO with Stable Diffusion v1.4 and LCM-SDXL.

17

Morse: Dual-Sampling for Lossless Acceleration of Diffusion Models

(a) DDIM

3 LSDs 50 LSDs20 LSDs10 LSDs5 LSDs

(b) DDIM with Morse

3 LSDs 50 LSDs20 LSDs10 LSDs5 LSDs

Figure 15. Generated samples at resolution 256×256 for CelebA-HQ dataset using DDIM sampler with and without Morse.

18

Morse: Dual-Sampling for Lossless Acceleration of Diffusion Models

(a) DDIM

3 LSDs 50 LSDs20 LSDs10 LSDs5 LSDs

(b) DDIM with Morse

3 LSDs 50 LSDs20 LSDs10 LSDs5 LSDs

Figure 16. Generated samples at resolution 256×256 for LSUN-Church dataset using DDIM sampler with and without Morse.

19

Morse: Dual-Sampling for Lossless Acceleration of Diffusion Models

Artistic photograph of architecture and frost-laden trees at dawn

A green and yellow train riding down the train tracks.

a brown teddy bear is sitting on a green bed

a dog laying on a pillow next to an open luggage bag

A white van covered in spray paint next to buildings.

50 LSDs20 LSDs10 LSDs 50 LSDs20 LSDs10 LSDs

Young girl combing the hair behind her head.

(b) Stable Diffusion with Morse(a) Stable Diffusion

A boat that is floating in a body of water.

Figure 17. Generated samples at resolution 512×512 with prompts from MS-COCO validation set from Stable Diffusion v1.4 using
DDIM sampler with and without Morse. The classifier-free guidance scale is set to 7.5 following the official settings.

20

Morse: Dual-Sampling for Lossless Acceleration of Diffusion Models

A man riding a board over the top of a wave.

A white cake topped with berries and a plate of fruit and cheeses.

Birds perch on a bunch of twigs in the winter.

a dog is holding a yellow disc in its mouth

A young man wearing a white shirt and tie.

(b) LCM-SDXL with Morse(a) LCM-SDXL

3 LSDs2 LSDs1 LSD 3 LSDs2 LSDs1.33 LSDs

Closeup of a brown bear sitting in a grassy area.

a little girl standing by a table with some cakes on it.

Figure 18. Generated samples at resolution 1024×1024 with prompts from MS-COCO validation set from LCM-SDXL with and without
Morse.

21

