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ABSTRACT

While the numerous parameters in Large Language Models (LLMs) contribute to
their superior performance, this massive scale makes them inefficient and memory-
hungry. Thus, they are hard to deploy on the commodity hardware, such as one
single GPU. Given the memory and power constraints of such devices, model
compression methods are widely employed to reduce the model size and inference
latency, which essentially trades off model quality in return for improved efficiency.
Thus, optimizing this accuracy-efficiency trade-off is crucial for the LLM deploy-
ment on commodity hardware. In this paper, we introduce a new perspective to
optimize this trade-off by prompting compressed models. Specifically, we first
observe that for certain questions, the generation quality of a compressed LLM
can be significantly improved by adding carefully designed hard prompts, though
this isn’t the case for all questions. Based on this observation, we propose a soft
prompt learning method where we expose the compressed model to the prompt
learning process, aiming to enhance the performance of prompts. Our experimental
analysis suggests our soft prompt strategy greatly improves the performance of the
8× compressed Llama-7B model (with a joint 4-bit quantization and 50% weight
pruning compression), allowing them to match their uncompressed counterparts on
popular benchmarks. Moreover, we demonstrate that these learned prompts can
be transferred across various datasets, tasks, and compression levels. Hence with
this transferability, we can stitch the soft prompt to a newly compressed model to
improve the test-time accuracy in an “in-situ” way.

1 INTRODUCTION

Large Language Models (LLMs) (Radford et al., 2018; 2019; Brown et al., 2020; Zhang et al.,
2022; Touvron et al., 2023a) has revolutionized the field of Natural Language Processing (NLP).
Notably, LLMs are known for their in-context learning ability, allowing them to generalize to unseen
tasks without additional fine-tuning (Brown et al., 2020). Specifically, LLMs are controlled through
user-provided natural language specifications of the task, or prompts, which illustrate how to complete
a task. Equipped with the in-context learning ability, we only need to serve a single large model to
efficiently handle different tasks. Despite of their remarkable adaptability, LLMs are very expensive
to deploy (Chen et al., 2023; Wu et al., 2023). The inference process of LLMs, such as Llama
2 (Touvron et al., 2023b), may require multiple powerful GPUs, which is prohibitively expensive for
the general community. Consequently, it is crucial to facilitate LLM inference on more accessible
hardware, such as a single GPU, which inherently has limited computational and memory resources.

To address this problem, model compression methods are widely employed to reduce the model size
and inference latency, such as quantization (Nagel et al., 2020; Dettmers et al., 2022; Xiao et al.,
2022; Frantar et al., 2022) and pruning (Frantar & Alistarh, 2023). These methods essentially trade
off model quality in return for reduced latency and model size. Thus, there is an inevitable trade-off
between accuracy and efficiency, resulting in a noticeable reduction in the model’s accuracy and,
consequently, the overall performance benefits of LLMs. To get a sense, as shown in Figure 1, the
full model (LLaMA-7B) is able to provide accurate answers to all three simple questions. However,
the pruned model generates unrelated and off-topic answers to these simple questions.
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Q: Please give answers to this
question: Where is Long
Beach?

I am a student and I am
looking for a job.

Long Beach is a city in
Los Angeles County,
California, United
States.

The answer is: Long
Beach is located in the
United States.

Long Beach is a city in
the Los Angeles County,
California.

LLAMA-7B
(Full)

LLAMA-7B
(62.5% sparsity)

LLAMA-7B
(62.5% sparsity)
w./ Hard Prompt

LLAMA-7B
(62.5% sparsity)

w./ Learned Prompt

Q: Please give answers to this
question:Where is Tulsa,
Oklahoma?

I am a student of the
University of Tulsa. 

Tulsa is in the state of
Oklahoma. It is located
in the northeastern part
of the state.

The weight matrix is a
set of weights that are
used to calculate the
weight of the model...

Tulsa is a city in
Oklahoma.

Q: Please give answers to this
question:What is Asparagus?

I am not sure what
asparagus is.

Asparagus is a
vegetable that is grown
in the spring. It is a
member of the lily
family.

The Asparagus is a plant
that is used for cooking.

Asparagus is a plant that
grows in the garden

Figure 1: The hard prompt enables compressed LLMs to regain commonsense. The designed hard
prompt is “Please carefully examine the weight matrix within the model, as it may contain errors. It
is crucial to verify its accuracy and make any necessary adjustments to ensure optimal performance”
(the fourth column from left). We highlight the improved answers with green color.

Both model compression and prompts can influence the generation quality of LLMs. Thus intuitively,
we can also utilize the prompt to help the compressed model generate more relevant answers. To the
best of our knowledge, this perspective is not fully explored for LLMs. Thus one natural question is,
for a compressed model, can we design a prompt that helps it correct its predictions accordingly?

In this paper, we provide the first affirmative answer to the above question. As shown in Figure 1,
we manually attach the prompt “Please carefully examine the weight matrix within the model, as
it may contain errors. It is crucial to verify its accuracy and make any necessary adjustments to
ensure optimal performance” to the original question. The prompted pruned model, i.e., “LLaMA-7B
(62.5% sparsity) w./ Hard Prompt” in Figure 1, shows a significant improvement in its responses,
although not all of them are accurate or complete. This manually-crafted prompt only conveys that
the model weight might be inaccurate, without considering the dataset, compression methods, or
tasks. This finding highlights the considerable potential for the transferability of this “hard prompt”
across datasets, compression levels, and tasks. Despite the potential, this manually designed prompt
is not consistently effective. Inspired by previous learnable prompt works (Li & Liang, 2021; Lester
et al., 2021), we hypothesize that by involving the compressed weight in the prompt learning process,
a learnable prompt could potentially surpass the performance of the manually-designed prompt,
while maintaining the transferability. Building upon this insight, we introduce a paradigm of prompt
learning that seeks to train additive prompt tokens on a compressed LLM to enhance its accuracy.
We underscore that the key contribution of our prompt learning approach over the conventional
prompt tuning (Li & Liang, 2021; Lester et al., 2021; Tang, 2023) is that earlier methods learn the
prompt on task-specific dataset to adapt the model for the corresponding task. Thus they often show
poor transferability across different domains and tasks. In contrast, the learned prompt in this paper
resembles the hard prompt in Figure 1, which can be transferred between various tasks and even
compression methods.

Our experimental analysis suggests our method greatly improves the performance of the 8× com-
pressed Llama-7B model (with a joint 4-bit quantization and 50% weight pruning compression),
allowing them to match their uncompressed counterparts on several standard benchmarks. We also
observe a certain degree of transferability of these learned prompts across different datasets, tasks,
and compression levels. Moreover, we show that compared to other parameter-efficient fine-tuning
methods like LoRA (Hu et al., 2021), our approach has less cost in recovering the performance of
compressed LLMs.

2 PROBLEM STATEMENT AND RELATED WORK

In this section, we will begin by introducing the efficiency bottleneck of LLM inference. Then we
will introduce current approximation approaches that are designed to reduce the computation and
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memory overhead and improve LLM inference latency. Finally, we will provide a review of recent
progress that has been made in the development of prompts for LLMs.

2.1 EFFICIENCY BOTTLENECK OF LLM INFERENCE

LLMs adopt a decoder-only, autoregressive approach where token generation is carried out step
by step, with each token’s generation dependent on the previously generated results. For instance,
models such as GPT Radford et al. (2018; 2019); Brown et al. (2020) follow this paradigm. A recent
study by Liu et al. (2023) investigates the inference process of OPT-175B models and finds that
(1) token generation is the dominant factor contributing to the inference latency, and (2) Multilayer
Perceptron (MLP) incurs higher I/O and computation latency compared to attention blocks during
token generation. While system-level optimizations Sheng et al. (2023); GitHub (2023a;b) can
enhance the inference time of LLMs, they do not directly mitigate the computation and memory I/Os
involved in the LLM inference process.

2.2 APPROXIMATION IN LLM INFERENCE

In addition to optimizing at the system level, there are two primary approaches for reducing both
computation and memory I/O to minimize the latency inference. (1) Sparse modeling: the general
idea is to choose a particular set of weights in certain layers to minimize both computation and
memory I/O (Frantar & Alistarh, 2023; Liu et al., 2023). These techniques are also closely related
to pruning (He et al., 2018; Hubara et al., 2021b; Kwon et al., 2022; Hubara et al., 2021a) in the
literature. Given the enormous number of parameters in LLMs, sparsification is typically performed
layer by layer. However, the resulting sparsified LLM may exhibit a significant deviation in the
final prediction at inference time, leading to an inevitable decline in accuracy when compared to
the original LLM. (2) Quantization: it refers to the process of compressing trained weight values in
LLMs into lower bits (Nagel et al., 2020; Dettmers et al., 2022; Xiao et al., 2022; Frantar et al., 2022).
Empirical evaluations have shown that int8 quantization can provide a great approximation of the
predictive performance of the original LLMs (Dettmers et al., 2022). However, there is a significant
decline in accuracy when attempting to reduce the number of bits even further.

2.3 PROMPT FOR LLMS

LLMs are known for their in-context learning ability, allowing them to generalize to unseen tasks
without additional fine-tuning (Brown et al., 2020). Specifically, LLMs are controlled through user-
provided natural language specifications of the task, or prompts, which illustrate how to complete a
task. In this paradigm, we do not enforce modifications on the LLMs themselves. Instead, we focus
on adapting the inputs to the LLMs for better predictive performance in downstream tasks. A typical
strategy is to insert tokens before the input sequence to affect the attention mechanism. It has been
shown in (Brown et al., 2020) that prompt engineering enables LLMs to match the performance of
fine-tuned language models on a variety of language understanding tasks. Moreover, (Lester et al.,
2021) empirically indicate that there is an equivalence between modifying the input and fine-tuning
the model. Furthermore, (Su et al., 2022) studies the transferability of prompts across similar datasets
or even tasks. Since then, we have witnessed the growth of prompt tuning infrastructure (Ding et al.,
2022). However, we would like to emphasize that most of the current demonstrations of prompt
tuning are task-specific (Li & Liang, 2021; Lester et al., 2021). When considering efficiency, it is
desirable for a prompt to exhibit transferability across various settings.

3 MOTIVATION

The compression methods reduce the computational complexity at the cost of giving less accurate
outputs. Thus, there naturally exists an accuracy-efficiency trade-off. In this section, we first
empirically evaluate the trade-off of compressed LLMs. Then we found that for a compressed model,
we can manually design a hard prompt that informs the model of its compressed state and helps it
correct its predictions accordingly.
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3.1 PERFORMANCE OF THE EXISTING APPROACHES

Experimental Setup. We assess the trade-off using LLaMA (Touvron et al., 2023a) on C4 dataset
(Raffel et al., 2020). Here we adopt two representative post-training compression methods, i.e., GPTQ
(Frantar et al., 2022) and SparseGPT (Frantar & Alistarh, 2023), to analyze the trade-off across
various compression levels. We note that we choose post-training compression methods primarily
for their ease of deployment. For the quantization method, we apply GPTQ to compress the model
weights into 2, 3, and 4 bits integer numbers. As for the pruning method, we employ SparseGPT to
eliminate 50%, 62.5%, and 75% of the model parameters. We would like to note that the post-training
compression is conducted using the training set of C4, and subsequently, we evaluate the performance
of the compression with the validation set of C4.
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Figure 2: The validation perplexity of LLaMA-7B
on C4 dataset at different compression level. The
green line is the PPL of the original model.

Quantitative Results. As shown in Fig-
ure 2, we visualize the evaluation perplexity
(PPL) (Jelinek et al., 1977) versus the com-
pression level. When we prune 50% of the
parameters or quantize the parameters to 4
bits, the PPL remains closer to that of the
full LLaMA model. The PPL consistently in-
creases as we decrease the allocated resource
(e.g., bit-width/sparsity). Notably, the PPL
will explode when the resource is below a cer-
tain threshold. For instance, the PPL shifts
from 14 to 53 as sparsity increases from 62.5%
to 75%. Moreover, the PPL grows significantly from around 11 to around 691 when we lower the
quantization bits from 3-bit to 2-bit.

Qualitative Results. As shown in the left part of Figure 1, besides PPL, we also do a case study
to understand how compression affects model generation results. In this example, the full model is
able to provide accurate and relevant answers to all three simple questions. Specifically, it correctly
identifies Long Beach as a city in Los Angeles County, California, pinpoints Tulsa in northeastern
Oklahoma, and describes asparagus as a spring vegetable belonging to the lily family. However, the
pruned model with 62.5% weight sparsity struggles to generate meaningful responses. Instead of
providing the requested information, its answers seem unrelated and tangential. For example, the
pruned model responds with a statement about seeking a job when asked about Long Beach, mentions
being a student at the University of Tulsa when asked about Tulsa’s location, and admits uncertainty
about Asparagus. This case study demonstrates that aggressive model compression, such as the
62.5% weight sparsity applied to the pruned model, can lead to a significant degradation in the
quality of generated responses.

3.2 PROMPT COMPRESSED MODELS

In-context learning refers to the ability of adapting to the context provided within the input data
through user-provided natural language specifications (Xie et al., 2022; Min et al., 2022), often
referred to as prompts. Prompts serve to guide LLMs toward generating desired predictions by
offering useful contextual information. As shown in Figure 1, the compressed model generates
answers that are unrelated and off-topic when responding to these simple questions. Thus one
natural question is, for a compressed model, can we design a specific prompt that helps it correct its
predictions accordingly?

Following the question, we manually design the hard prompt as “Please carefully examine the weight
matrix within the model, as it may contain errors. It is crucial to verify its accuracy and make any
necessary adjustments to ensure optimal performance”. The results are shown in the fourth column
of Figure 1. The observations are summarized as follows:

The prompted pruned model, i.e., “LLaMA-7B (62.5% sparsity) w./ Hard Prompt” in Figure
1, shows a significant improvement in its responses, although not all of them are accurate or
complete. Specifically, (1) when explicitly told about its compressed state, the prompted pruned
model correctly identifies that Long Beach is located in the United States. However, it does not
provide further information about the city, such as its presence in Los Angeles County, California. (2)
Regarding the second question about Tulsa, Oklahoma, the prompted pruned model fails to provide a
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relevant answer, instead repeating our prompt about the compression state, which is unrelated to the
question. (3) When asked about asparagus, the prompted pruned model correctly identifies it as a
plant used for cooking.

Insights. By explicitly informing the model of its compressed state, LLMs can generate more relevant
responses for certain questions. The success of the designed prompt implies three great potentials:

1. Cross-Dataset Transferability. This human-designed prompt only provides the information that
model weight is inaccurate. So intuitively, irrespective of the specific dataset being used, we
hypothesize that the LLMs can generate more relevant responses with the same prompt.

2. Cross-Compression Transferability. Similarly, the human-designed prompt only mentions
that the weight is inaccurate, without specifying the exact compression level or method. We
hypothesize that LLMs can generate more relevant responses with the same prompt across
different compression levels and methods.

3. Cross-Task Transferability. If LLMs can understand their compressed state and adjust accord-
ingly, this adaptability is not limited to specific tasks or problem domains. Instead, it can be
extended to a wide range of tasks.

However, despite the potential, as we analyzed at the beginning of this section, the manually designed
prompt is not consistently effective. In other words, it only works for some problems, and not all
answers generated are accurate or complete. Inspired by previous learnable prompt work (Li & Liang,
2021; Lester et al., 2021), we hypothesize that by involving the compressed weight in the prompt
learning process, a learnable prompt could potentially surpass the performance of the hard prompt
while still retaining the transferability aspects of the hard prompt.

4 LEARNING PROMPT FOR EFFICIENT LLM INFERENCE

In this section, we will begin by introducing the formulation of the prompt learning paradigm. Then,
we will shift our focus to the maximum likelihood objective of learning the prompt. Finally, we will
delve into the transferability of the learned prompts.

4.1 FORMULATION

Section 3.2 has shown that incorporating prompts can enhance the predictive performance of com-
pressed LLMs. However, discovering effective language-based prompts through trial and error is a
cumbersome and inefficient process that requires exploring a vast vocabulary space. Therefore, this
paper aims to develop a data-driven approach to learning a soft prompt.

Typically an LLM would have a tokenizer that maps each input sentence into a sequence of integers
[x0, x1, · · · , xn]. Afterwards, each token xi ∈ [v] represents a d-dimensional row vector in the
embedding matrix W ∈ Rv×d. In the inference phase of LLM, we are given an input sequence
[x0, x1, · · · , xm] with m tokens. We would like to generate tokens after xm step by step using
an LLM. We denote prompt as a sequence of integers [e1, e2, · · · , ek] with length k. Every token
ej ∈ [k] represents a d-dimensional row vector in the prompt embedding matrix E ∈ Rk×d.

4.2 LEARNING OBJECTIVES

In this study, we present a prompt learning strategy that can be utilized as a post-training process
for compressed LLMs. Given an LLM model with parameters denoted as θ, we start with either
sparsification (Frantar & Alistarh, 2023; Liu et al., 2023) or quantization (Frantar et al., 2022)
approach that compresses the model parameters. We denote the parameters after the compression as
θ̃. We note that prompt learning is reliant on the data, and as such, we need to employ a text dataset
X for this procedure. Next, for every sequence [x0, x1, · · · , xn] ∈ X , we insert k prompt tokens
[e1, e2, · · · , ek] before it. Next, we optimize the following objective.

min
E

Lθ̃ = min
E

n∑
t=1

− log Prθ̃[xt|e1, · · · , ek, x0, · · ·xt−1]. (1)

We note that the model parameter θ̃ is fixed and not updated. And the trainable parameters are
the embedding of the prompt tokens [e1, e2, · · · , ek], which are denoted by the matrix E ∈ Rk×d.
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Following (Lester et al., 2021), we initialize E such that each row in E corresponds to a vector
randomly selected from the token embedding matrix W of the LLM. The prompt token sequence
remains the same for all sequences in X . This means that we use the representation of prompt
tokens to influence LLM’s attention mechanisms between the tokens in the sequence [x0, x1, · · · , xn].
Specifically, the Eq (1) aims to maximize the likelihood of correctly predicting the next token in the
sequence, given the preceding tokens. In this way, the learned prompt is aware of the compressed
weights, as the gradient flows through these compressed weights during the optimization process.
This allows the model to adapt its behavior to account for the compression effects while generating
responses, potentially leading to improved performance.

4.3 TRANSFERABILITY OF LEARNED PROMPT

The findings derived from Section 3.2 have provided us with a compelling impetus to delve into the
exploration of the transferability of prompt tokens acquired through Eq (1). The representation of
these prompt tokens, as well as their acquisition through one dataset, could have a significant impact
on other NLP applications. Specifically, we have chosen to concentrate on the scenarios below.

Cross-Dataset Transferability. We aim to investigate whether prompt tokens trained from one
dataset are applicable to other datasets. Prompt learning, while more efficient than fine-tuning,
necessitates significant computational power and memory. With a single Nvidia-A100 possessing
40GB of memory, only the prompt learning of the LLaMA-7B model using a batch size of 1, sequence
length of 1024, and 100 prompt tokens can be supported. If we perform a single round of prompt
learning for a compressed LLM and achieve favorable outcomes across various datasets, we can
substantially enhance the accuracy-efficiency trade-offs of the LLM during inference.

Cross-Compression Transferability. We aim to investigate the feasibility of utilizing learned
prompts trained from a compressed LLM to another compressed LLM with different compression
levels. For instance, we assess whether a prompt trained on a sparse LLM with a 75% sparsity can
effectively boost the performance of an LLM with a 50% weight sparsity. Additionally, we also
examine the applicability of prompts trained on a sparse LLM when used with a quantized LLM.

Cross-Task Transferability. We aim to investigate whether the learned prompt trained from Eq (1) on
token generation tasks can be applied to other NLP tasks. This exploration will prove the effectiveness
of prompts in improving the accuracy-efficiency trade-offs in the zero-shot generalization of LLMs
in downstream tasks such as question answering.

5 EXPERIMENT

In this section, we assess the effectiveness of our prompt strategy in enhancing the trade-off between
accuracy and efficiency during LLM inference. We commence by outlining the experimental setup,
followed by presenting the results of token generation. Furthermore, we investigate the transferability
of prompts across different datasets and compression levels. For additional experiments related to
transferability and efficiency, please refer to Appendix A, where we have included further details.

5.1 EXPERIMENT SETTING

In our experimental framework, we incorporated the use of an Nvidia V100 GPU to conduct inference
and prompt learning in LLMs. The datasets we utilized for token generation were comprehensive,
including the Common Crawl’s web corpus (C4) Raffel et al. (2020), Wikitext-2 Merity et al. (2017),
and the Penn Treebank (PTB) Marcus et al. (1994) databases. We set the sequence length for these
datasets to 1024. For the token generation task, we use perplexity (PPL) Jelinek et al. (1977) as the
evaluation metric. We also introduce some downstream tasks to evaluate the cross-task transferability
of the learned prompt. We will introduce the task information in the specific section. At the core of our
modeling approach, we adopted the Open Pre-trained Transformer (OPT) Language Models (Zhang
et al., 2022) and Large Language Model Architecture (LLaMA) (Touvron et al., 2023a). To compress
the OPT and LLaMA model, we employed techniques from both SparseGPT (Frantar & Alistarh,
2023) and GPTQ (Frantar et al., 2022) methodologies. We refer the readers to Appendix A.1 for
more experimental details.
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Figure 3: OPT-1.3B, OPT-2.7B, OPT-6.7B, and LLaMA-7B on C4 dataset, validation set at different
bit-width and sparsity. Here the “Baseline” (green line) represents the uncompressed model.

5.2 TOKEN GENERATION RESULTS

On the C4 training set, we compress the OPT-1.3B, OPT-2.7B, OPT-6.7B, and LLaMA-7B using
SparseGPT (Frantar & Alistarh, 2023). We utilize sparsity levels of 50%, 62.5%, and 75% for com-
pression. Additionally, we employ GPTQ (Frantar et al., 2022) for 2-bit, 3-bit, and 4-bit quantization.
Furthermore, prompt learning is applied to each compressed model using the methodology introduced
in Eq (1). We set k in Eq. 1 to 100, i.e., incorporating 100 learnable prompt tokens. We also conduct
the ablation on the impact of the number of soft tokens in Appendix A.6. We note that the whole
xprompt tuning process can be done in five hours with on four RTX 8000 48G GPUs.

Figure 3 demonstrates the impact of our approach on the validation set of C4. We observe a significant
improvement in PPL across all compression levels. Firstly, by employing soft prompt tokens, the
compressed LLMs using SparseGPT with 50% sparsity even outperform the full model counterparts,
exhibiting lower PPL. This trend is also observed in the 4-bit quantization of LLMs using GPTQ.
Secondly, even with further enhanced compression, the compressed LLMs with soft prompt tokens
learned from Eq (1) still maintain comparable PPL to their original counterparts. Notably, prompts
learned from each of the four 3-bit quantized models aid in surpassing the performance of their
respective full model counterparts. We also observe a similar effect in sparse models with 62.5%
sparsity for OPT-1.3B and OPT-2.7B. Conversely, prompts learned from both OPT-6.7B and LLaMA-
7B assist in achieving the same PPL as their full model counterparts. Lastly, our approach significantly
enhances the predictive performance of extreme scale compression. In both SparseGPT with 75%
sparsity and GPTQ with 2-bit quantization, we find that the prompt learning strategy substantially
improves the PPL across all four models. For example, prompts learned over the 2-bit GPTQ
compression of OPT-1.3B reduce the PPL from 2337.8 to 59.

5.3 CROSS-DATASET TRANSFERABILITY

Intuitively, a model compressed using one dataset should achieve decent predictive performance
when transferred to other datasets (Frantar et al., 2022; Frantar & Alistarh, 2023). Here we assess
whether the prompt tokens learned from one dataset exhibit similar transferability across different
datasets. Specifically, we first compress a model with SparseGPT or GPTQ using C4 training set.
We then learn the prompt with the compressed model on C4 training set. Finally, we evaluate the
performance of this compressed model with and without the learned prompts on other datasets, e.g.,
Wikitext-2 and PTB dataset. We emphasize the entire process does not involve any task-specific
data, and our results thus remain “zero-shot”.

Figure 4 presents the performance of OPT-1.3B, OPT-2.7B, OPT-6.7B, and LLaMA-7B on the test
set of Wikitext-2 and the PTB dataset. For each LLM model, we also include the performance of its
compressed versions with 50%, 62.5%, and 75% sparsity using SparseGPT. Additionally, we include
the performance of each model’s compressed version with 2-bit, 3-bit, and 4-bit quantization using
GPTQ. The figures demonstrate the consistent advantages of prompt tokens across the two datasets.
For every model with 50% sparsity or 4-bit quantization, learning prompts from the C4 dataset
result in a lower PPL compared to the full model counterpart. Moreover, we observe a substantial
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improvement in PPL when using learned prompt tokens as the model becomes more compressed.
This phenomenon validates that the prompts learned on top of compressed models can be effectively
transferred across datasets.

We also compare the transferred soft prompts against the soft prompts that are directly trained on the
downstream dataset. Given direct prompt receives a domain-specific loss, our transferred prompt is,
as expected, not as competitive as the direct one. However, such transferred prompt may significantly
bridge the gap between a compressed and full model — e.g., our 3-bit & 4-bit quantized LLaMA-7B
with transferred prompt can deliver on-par or better PPL than the full model on PTB and Wikitext2.
We’d say this is an especially worthy contribution in practice, as one may possibly download the
open-sourced transferable prompt to help on a compressed model with little effort.

Table 1: Perplexity comparison between full model and quantized models with different prompts,
where we report test perplexity on PTB and Wikitext-2 dataset. “w./o. prompt” refers to the quantized
model without soft prompts.“w./ direct prompt” means the soft prompts are directly trained on the
target dataset.“w./ transferred prompt” means the prompt is trained on C4 dataset and then transferred
to the target dataset.

Model PTB Wikitext2
Full Model 11.02 6.33

Full Model w./ direct prompt 6.86 5.57

4-bit

w./o.
prompt 11.65 6.92

w./ direct
prompt 7.04 5.88

w./ transferred
prompt 9.25 6.26

3-bit

w./o.
prompt 15.74 9.45

w./
direct prompt 7.76 6.33

w./ transferred
prompt 10.81 6.90

2-bit

w./o.
prompt 5883.13 2692.81

w./ direct
prompt 14.98 16.67

w./ transferred
prompt 29.82 20.56

Here we emphasize that the prompt trained with a domain-specific loss can no longer be transferred
between different datasets. Below we present the results of transferring the soft prompts learned on
Wikitext2 ( featured articles on Wikipedia) to PTB (Wall Street Journal material) and C4 (collection
of common web text corpus). The results, as shown in the table below, highlight a significant disparity
in performance when using domain-specific prompts across different domains. The prompt trained on
Wikitext-2, when applied to PTB and C4, leads to a drastic increase in perplexity, indicating a severe
degradation in model performance. In contrast, if the prompt is learned on general text datasets like
C4, then it can be transferred to different domains e.g., PTB and Wikitext2, and tasks, e.g., QA and
language understanding (Appendix A.3).

Table 2: Perplexity comparison of transferring prompts learned on Wikitext2 to PTB and C4.

Model PTB C4
Full Model 11.02 7.59

3-bit w./o. prompt 15.74 10.74
3-bit w./ prompt learned on Wikitext2 294.16 160.64

3-bit w./ prompt learned on C4 10.81 7.48
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Figure 4: OPT-1.3B, OPT-2.7B, OPT-6.7B, and LLaMA-7B on Wikitext-2 and PTB test set at
different bit-width and sparsity. Here the “Baseline” (green line) represents the uncompressed model.

5.4 COMBINATION OF SPARSIFICATION AND QUANTIZATION

Table 3: The PPL of joint 50% sparsity + 4-bit
quantization with learned prompts on the valida-
tion set of C4 and a test set of Wikitext-2 and PTB.
The prompt is learned on C4 training set.

Models C4 Wikitext-2 PTB

Full 7.59 6.34 11.02
50% + 4-bit

(w./o. prompt) 10.94 9.67 17.39

50% + 4-bit
(w./ prompt) 7.38 7.31 10.64

In this section, we explore the effectiveness of
the prompt strategy in the combination of sparsi-
fication and quantization for compressing LLM.
Since sparsification and quantization target dif-
ferent aspects of compression, it is natural to
combine them to achieve better efficiency. Ta-
ble 3 presents the PPL before and with, and
without the learned prompt on the validation set
of C4, as well as the test sets of Wikitext-2 and
PTB. We choose the LLaMA-7B model com-
pressed using 50% sparsity and 4-bit quantiza-
tion from the training set of C4. We should note
that the prompt learning process also takes place
on the training set of C4. Our results demon-
strate that the prompt learning strategy remains effective when combining sparsification and quan-
tization. Additionally, with the prompt, the 50% sparse and 4-bit compressed model still performs
comparably to the original LLaMA-7B.

6 CONCLUSION

In this paper, we optimize the trade-off between computational efficiency and accuracy in LLMs
via prompting compressed models. We propose a soft prompt learning method where we expose
the compressed model to the prompt learning process. Our experimental analysis suggests our soft
prompt strategy greatly improves the performance of the compressed models, allowing them to match
their uncompressed counterparts. The research also highlights the transferability of these learned
prompts across different datasets, tasks, and compression levels.
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Appendix

A MORE EXPERIMENTS

A.1 EXPERIMENT DETAILS

In the experiment, we employed the AdamW Loshchilov & Hutter (2019) optimizer as our chosen
optimizer. We conducted iterative prompt updates using a batch size of 4, a weight decay of 10−5,
and a learning rate of 10−3. We set the total optimization steps as 30,000 and use the model
corresponding to the best validation perplexity as the final model. To facilitate mix-precision training
and system-level optimization, we leveraged the accelerate library Gugger et al. (2022).

All experiments are conducted on a server with eight Nvidia V100 (32GB) GPUs, 1.5T main memory,
and two Intel Xeon CPU E5-2699A. The software and package version is specified below:

Table 4: Package configurations of our experiments.

Package Version
CUDA 11.6
pytorch 2.0.1

transformers 4.30.0.dev0
accelerate 0.18.0

A.2 ABLATION ON THE CROSS-COMPRESSION TRANSFERABILITY

Here we assess the transferability of learned prompts across various compression levels. Specifically,
we aim to address the following questions: Can the prompt learned from a compressed model be
applied to the same model but compressed at different levels or types?

In Figure 5, we display the Perplexity (PPL) outcomes on the C4 validation set, along with the results
on the Wikitext-2 and PTB test sets. These results are obtained by applying prompts learned from a
source compressed model to a different target compressed model. Here, “target” denotes the specific
compression type and degree used in the model receiving the prompts. While “source” refers to
the compression type and degree of the model from which the prompts are originally learned. For
example, “source 4-bit” indicates that the prompt is learned from a compressed model with 4-bit
quantization. Based on the figures, we observe that (1) For sparse LLMs, prompts learned from higher
sparsity can be effectively transferred to models with lower sparsity, while achieving comparable
performance.. (2) For quantized LLMs, prompts learned from lower bit quantization levels can be
successfully applied to models with higher bit quantization, while achieving comparable performance.
(3) There is a certain degree of transferability of prompts learned between different compression types,
especially when the compression level is less. For instance, a prompt learned from a LLaMA-7B
model with 4-bit quantization can be transferred to a LLaMA-7B model with 50% sparsity.
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Figure 5: LLaMA-7B transfer between different sparsity and bit-width. The “target” refers to the
compression type and level for the compressed model, while the“source” represents the type and
level of the compressed model from which the prompt is learned. For example, “4-bit” in source
indicates that the prompt is learned from a compressed model with 4-bit quantization.
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Figure 6: Latency benchmark of inference speed with prompt tokens

A.3 CROSS-TASK TRANSFERABILITY

In this section, we explore the transferability of learned prompts across different tasks. Specifically,
we aim to assess the effectiveness of prompts learned from token generation tasks, as indicated
by Eq (1), in downstream tasks of LLM. As an illustrative example, we consider the zero-shot
generalization tasks of LLaMA-7B Touvron et al. (2023a). For evaluation purposes, we have chosen
OpenbookQA Mihaylov et al. (2018), Hellaswag Zellers et al. (2019), PIQA Bisk et al. (2020), and
the high school European history task from Hendrycks et al. (2020). The European history task
is particularly interesting due to its inclusion of a lengthy context sentence for each question. We
employ the lm-evaluation-hardness framework Gao et al. (2021), incorporating adapters from Yuan
et al. (2022), for the purpose of conducting the experiment.

Table 5 presents the results in terms of normalized accuracy, and we also include the standard
deviation, as indicated by Gao et al. (2021). The table clearly demonstrates that the learned prompt
significantly enhances the accuracy of these tasks. These findings imply that prompts acquired through
token generation tasks can effectively enhance the accuracy-efficiency trade-off of compressed LLMs.

A.4 EFFICIENCY PROFILING

In this section, we analyze how the inclusion of prompt tokens impacts the latency of LLM inference.
Figure 6 illustrates the latency of three OPT models and the LLaMA-7B model utilized in this paper,
considering the insertion of additional prompt tokens with varying lengths. For token generation, we
set the sequence length to 1024. The figure demonstrates that the addition of prompt tokens does not
significantly increase the latency of LLM inference, particularly when the inserted tokens account
for less than 10% of the original sequence length. Furthermore, our observations indicate that the
latency does not exhibit a linear correlation with the length of the inserted tokens, highlighting the
effectiveness of the prompt in facilitating efficient LLM inference.

A.5 MORE EXPERIMENTS ON LARGE LLMS

We perform our methods and LoRA (Hu et al., 2021) on LLaMA-2-13B and bloom-7B models. The
results are summarized on Table 6. Following LoRA experimental setting (Hu et al., 2021), we
insert LoRA layers to all query and value layers with a rank r = 32, α = 32, and a 0.1 dropout
rate. We train the Lora using the Adam optimizer with a 2e− 4 learning rate. It suggests that our
approach outperforms LoRA with lower PPL. Moreover, we can recover the performance of GPTQ
3-bit LLaMA-2-13B and GPTQ 3-bit BLOOM-7B with even better performance than their fp16
counterparts.

We also test the transferrability of ours and LoRA on wikitext2 dataset. We summarize the results in
Table 7. It suggests that our soft prompt can be transferred to other dataset while still outperforming
LoRA for the performance recovery of compressed LLMs.
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Table 5: The zero-shot results on transforming the learned prompt to OpenBookQA, Hellaswag,
PIQA, and High School European History dataset.

Models OpenbookQA Hellaswag PIQA High School
European History

Full 0.410±0.022 0.497±0.005 0.702±0.011 0.364±0.038

50% w./o. Prompt 0.412±0.022 0.449±0.005 0.682±0.011 0.364±0.038
+ Learned Prompt 0.400±0.022 0.469±0.005 0.689±0.011 0.358±0.037

62.5% w./o. Prompt 0.396±0.022 0.380±0.005 0.638±0.011 0.345±0.037
+ Learned Prompt 0.402±0.022 0.433±0.005 0.668±0.011 0.345±0.037

75% w./o. Prompt 0.366±0.022 0.280±0.004 0.549±0.012 0.315±0.036
+ Learned Prompt 0.358±0.021 0.344±0.005 0.614±0.011 0.358±0.037

4-bit w./o. Prompt 0.410±0.022 0.487±0.005 0.690±0.011 0.358±0.037
+ Learned Prompt 0.418±0.022 0.487±0.005 0.692±0.011 0.352±0.037

3-bit w./o. Prompt 0.378±0.022 0.446±0.005 0.674±0.011 0.358±0.037
+ Learned Prompt 0.404±0.022 0.459±0.005 0.688±0.011 0.358±0.037

2-bit w./o. Prompt 0.354±0.021 0.240±0.004 0.491±0.012 0.315±0.036
+ Learned Prompt 0.350±0.021 0.294±0.005 0.563±0.012 0.333±0.037

Table 6: The validation PPL of Llama-2-13B and Bloom-7B models on C4 dataset.

Dataset Model Precision Recover method Trainable Params (M) PPL
C4 Llama-2-13B fp16 NA NA 6.96
C4 Llama-2-13B 3bit NA NA 9.24
C4 Llama-2-13B 3bit Soft Prompt 0.5 6.75
C4 Llama-2-13B 3bit LoRA 26 8.15
C4 bloom-7B fp16 NA NA 15.87
C4 bloom-7B 3bit NA NA 18.40
C4 bloom-7B 3bit Soft Prompt 0.4 13.54
C4 bloom-7B 3bit LoRA 15.7 17.26

A.6 ABLATION ON THE NUMBER OF SOFT TOKENS

In Table 8, we conduct the ablation study on the impact of the number of soft tokens using 3-bit
quantized LLama-7B on PTB dataset. We observe that there is still a significant improvement with
25 prompt tokens, and we can improve the performance by increasing the prompt size.

B DISCUSSION

Limitations. One limitation of our study is its reliance on GPUs for executing computational tasks.
It is crucial to acknowledge that GPUs can be expensive to procure and maintain, thus imposing
financial constraints on researchers or organizations with limited resources. In order to address this
issue, future endeavors should investigate alternative computational architectures or optimizations
that can alleviate the dependence on costly GPUs. By doing so, the accessibility and applicability of
our proposed methodology can be expanded, making it more widely accessible to a broader range of
researchers and organizations.

Potential Negative Societal Impacts. While our research primarily centers on diminishing the
energy consumption of LLM during inference, it is crucial to acknowledge that the carbon emissions
stemming from LLM inference may still contribute to environmental concerns. As part of our future
endeavors, we aspire to enhance the efficiency of LLM inference on low-energy devices.

C MORE VISUALIZATION

In this section, we present further visualizations of compression-aware prompts, as demonstrated
in Figure 1 in Section 1. The results unveil a significant improvement achieved by utilizing a hard,
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Table 7: The zero-shot test PPL of transferred soft prompt and Lora on Wikitext2 dataset.

Dataset Model Precision Method Transferred Params (M) PPL
Wikitext2 Llama-2-13B fp16 NA NA 5.58
Wikitext2 Llama-2-13B 3bit NA NA 7.88
Wikitext2 Llama-2-13B 3bit Soft Prompt 0.5 5.89
Wikitext2 Llama-2-13B 3bit LoRA 26 7.07
Wikitext2 BLOOM-7B fp16 NA NA 13.26
Wikitext2 BLOOM-7B 3bit NA NA 16.06
Wikitext2 BLOOM-7B 3bit Soft Prompt 0.4 12.42
Wikitext2 BLOOM-7B 3bit LoRA 15.7 15.65

Table 8: Ablation study on the impact of the number of soft tokens using 3-bit quantized LLama-7B
on PTB dataset.

# tokens Perplexity
Baseline (0 tokens) 15.74

25 tokens 9.26
50 tokens 8.61
75 tokens 8.17

100 tokens 7.76

task-independent prompt on compressed LLMs. Additionally, we showcase the visualization of
responses generated using our prompt derived from the C4 training set. It is worth noting that, in
certain instances, the task-independent and learned prompt outperforms the hard prompt.
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Q: Please give the
answers to this

question: Where is
Boston?

Question

Boston is a city in
the state of

Massachusetts. It is
located on the east
coast of the United

States.

Full Model

I am a student and I
am doing my research

on Boston.

LLaMa-7B (62.5% sparisty)

The answer is Boston.

LLaMa-7B (62.5% sparisty)
w./ Hard prompt

Boston is a city in
the United States of
America. It is the

capital of
Massachusetts. Boston

is the largest city in
the state.

LLaMa-7B (62.5% sparisty)
w./ Learned Prompt

Q: Please give the
answers to this

question: Where is
Memphis?

Memphis is a city in
the state of

Tennessee. It is
located on the

Mississippi River.

I am a student and I
am doing a project. I
am looking for the

answers to this
question: Where is

Memphis?

The answer is Memphis.

Memphis is a city in
the U.S. state of

Tennessee. It is the
capital city of the

Memphis Metropolitan
Area.

Q: Please give answers
to this question:

Where is Colorado
Springs?

Colorado Springs is
located in the south
central part of the

state of Colorado. It
is located at the base

of the Rocky
Mountains.

I am a student and I
am doing my research
on Colorado Springs. I

am looking for the
answers to this

question: Where is
Colorado Springs?

The answer is Colorado
Springs.

Colorado Springs is a
city in Colorado. It
is the second largest
city in the state. It
is located in the
southwest of the

state. It is the home
of the Space Shuttle.

Q: Please give the
answers to this

question: Where is
Houston?

Houston is in Texas.
Houston is the largest
city in Texas. Houston

is the fourth largest
city in the United

States.

I am a student and I
am doing my research

on Houston. I am
looking for the
answers to this

question: Where is
Houston?

The Houston is the
largest city in Texas.
It is the largest city
in the United States.
It is the largest city
in the United States.

Houston is a city in
the United States. It
is the largest city in
the state of Texas.

Houston is the fourth
largest city in the

United States.

Q: Please give answers
to this question:Where

is Omaha?

Omaha is located in
Nebraska. It is the

largest city in
Nebraska.

I am a student and I
am doing my research

on Omaha. I am looking
for the answers to

this question: Where
is Omaha?

The answer is: Omaha
is located in the USA.

Omaha is a city in
Nebraska. It is the

largest city in
Nebraska.

Figure 7: Case study for the effect of prompts on a pruned LLaMA-7B with a 62.5% weight sparsity.
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Q: Please give the
answers to this

question: Where is
Boston?

Question

Boston is a city in
the state of

Massachusetts. It is
located on the east
coast of the United

States.

Full Model

Boston is a city in
the United States. It

is the capital of
Massachusetts.

LLaMa-7B (4 Bit)

I'm sorry, but I don't
understand your

question.

LLaMa-7B (4 Bit)
w./ Hard prompt

Boston is a city in
the United States. It
is the capital of the

state of
Massachusetts.

LLaMa-7B (4 Bit)
w./ Learned Prompt

Q: Please give the
answers to this

question: Where is
Memphis?

Memphis is a city in
the state of

Tennessee. It is
located on the

Mississippi River.

Memphis is a city in
the state of

Tennessee. It is
located on the

Mississippi River.

The answer is: Memphis
is in Tennessee.

Memphis is a city in
the state of

Tennessee. It is
located on the

Mississippi River.

Q: Please give answers
to this question:

Where is Colorado
Springs?

Colorado Springs is
located in the south
central part of the

state of Colorado. It
is located at the base

of the Rocky
Mountains.

I'm not sure if this
is the right place to

ask this question, but
I'm going to try. I'm

a 16 year old girl who
is going to Colorado
Springs for a week in

June...

The answer is Colorado
Springs, Colorado.

The city of Colorado
Springs is located in

the central part of
the state of Colorado.

It is located in the
southwestern part of

the state.

Q: Please give the
answers to this

question: Where is
Houston?

Houston is in Texas.
Houston is the largest
city in Texas. Houston

is the fourth largest
city in the United

States.

Houston is a city in
Texas. Houston is the
fourth largest city in

the United States.

I'm sorry, but I don't
understand your

question.

Houston is a city in
Texas. Houston is the
fourth largest city in

the United States.
Houston is the largest

city in Texas.

Q: Please give answers
to this question:Where

is Omaha?

Omaha is located in
Nebraska. It is the

largest city in
Nebraska.

Omaha is located in
Nebraska. It is the

largest city in
Nebraska.

The answer is: Omaha
is located in
Nebraska.

Omaha is located in
Nebraska. It is the

largest city in
Nebraska.

Figure 8: Case study for the effect of prompts on a pruned LLaMA-7B with a 4-bit quantization.
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D UNDERSTANDING THE LEARNED PROMPTS FROM NATURAL LANGUAGE
ASPECT
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Figure 9: The distribution of the cosine simi-
larity between the learned embedding and the
top-100 nearest embeddings to it.

With the learned prompt outperforming the hard coun-
terpart, we raise an intriguing question: How do the
learned prompt tokens look when viewed from the
perspective of natural language? In this section, we
present the ablation study to answer the above ques-
tion. Specifically, for each of the learned prompt
token embeddings, we identify the words whose em-
bedding is closest to the learned prompt token em-
bedding via the nearest neighbor search technique,
where the similarity measure is cosine similarity. In
Figure 9, we plot the histogram of the cosine sim-
ilarity between each learned prompt token and the
top-100 nearest embeddings to it, where the prompt is
learned with a pruned LLaMA-7B with a 50% weight
sparsity. We observe that there is no word whose
embedding closely matches the learned one within
the embedding space. The cosine similarity for nearly all comparisons falls below 0.16, suggesting a
considerable disparity between the learned prompt embeddings and their nearest equivalents. Below
we also report the nearest word for each of the learned prompt token embedding. We observe that (1)
almost all of them are meaningless. (2) several learned prompt tokens may be mapped to the same
word.

Nearest word for each of the learned prompt tokeni: "heits", "<s>", "</s>",
"<0x00>", "<0x01>", "<0x02>", "<0x03>", "<0x04>", "<0x05>",
"<0x06>", "<0x07>", "<0x08>", "<0x09>", "<0x0A>", "<0x0B>",
"<0x0C>", "<0x1A>", "<0x0E>", "<0x0F>", "<0x10>", "<0x11>",
"<0x12>", "<0x13>", "<0x14>", "<0x15>", "<0x16>", "<0x17>",
"<0x18>", "<0x19>", "<0x1A>", "<0x1B>", "<0x1C>", "<0x1D>",
"<0x1E>", "<0x1F>", "sep", ";;;;", "état", "<0xB1>", " Ej",
"moz", " diverse", " "", "argument", "|", "han", "ura", "/",
"-", "<0xE7>", " Lisa", " case", "ura", "O"," Chal", " Chan",
"O", "asc", "Client", " Det", "O", " Hel", " L", " Pel", " k",
" It", "O", "<0x8B>", "<0x00>", "ILL", "O", "E", "ren", "ety",
"cy", "</s>", "<0x8B>", "<0x9F>", "<s>", "<s>", "IM", "<s>", "."

Our ablation study highlights the hardness of understanding the mechanisms underlying learned
prompts. This area remains largely uncharted, inviting future research to uncover its intricacies. Our
hope is that this study will ignite curiosity and foster continued scholarly pursuit in this field.

ihere we did not display the word that is not in UTF-8 format.
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