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Abstract

Submodular maximization subject to a p-matchoid constraint has various applica-
tions in machine learning, particularly in tasks such as feature selection, video and
text summarization, movie recommendation, graph-based learning, and constraint-
based optimization. We study this problem in the dynamic setting, where a sequence
of insertions and deletions of elements to a p-matchoid M(V, I') occurs over time
and the goal is to efficiently maintain an approximate solution. We propose a dy-
namic algorithm for non-monotone submodular maximization under a p-matchoid
constraint. For a p-matchoid M(V, I) of rank k, defined by a collection of m ma-
troids, our algorithm guarantees a (2p + 2 /p(p + 1) + 1 + €)-approximate solution
at any time ¢ in the update sequence, with an expected amortized query complexity
of O(e pk* log?(k)) per update.

1 Introduction

A p-matchoid M(V, I) consists of m matroids M;(V1, 1), Mo(V>, 1), ..., Myu(Vu, I,,), where
each element in the ground set V appears in the ground sets of at most p of these matroids. Addition-
ally, every subset X C V is an independent set in J if X N V; € I; for any matroid M;(V;, I;). In the
context of submodular maximization subject to a p-matchoid constraint M(V, 1), the objective is
to find an independent set I* € I that maximizes f(I*), where f : 2V — R’ is a (non-monotone)
submodular function defined over subsets of the ground set V.

The p-matchoid constraint has various applications in machine learning, particularly in tasks involving
optimization and constraint satisfaction including the followings:

Feature selection: In feature selection, where the goal is to pick a subset of features that works
well while keeping things simple, p-matchoids can be used to model constraints on the relationships
between features. For example, if certain features are highly correlated or redundant, a p-matchoid
constraint can ensure that only a limited number of such features are chosen together Das and Kempe
[2008]], | Khanna et al.|[2017], Elenberg et al. [2016], Qian and Singer| [[2019]], Quinzan et al.|[2023]].

Video summarization and movie recommendation tasks: Submodular maximization under p-
matchoid constraints is crucial for video summarization [Feldman et al.|[2018]], Mirzasoleiman et al.
[2018]],|Gu et al.| [2023]] and movie recommendation|Harshaw et al.|[2022],[Badanidiyuru et al.| [2020],
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Liu et al.|[2022]], |Tschiatschek et al.|[2018] tasks. It helps select representative content and generate
personalized and diverse recommendations, leading to improved user experience and engagement.

Text summarization: In text summarization [Lin and Bilmes|[2011]], [Bair1 et al. [2015]], |Lin and
Bilmes|[2010], Liu et al|[2013]], summarizing multiple documents together (e.g., news articles on the
same topic or a survey paper) is often necessary. In such scenarios, p-matchoids help ensure that the
resulting summary represents a balanced combination of information from each document.

Viral marketing campaigns: Viral marketing promotes products or services through social sharing
and word-of-mouth for rapid, exponential message spread. p-matchoids can model relationships and
interactions, capturing constraints on information dissemination and influence propagation|Zhang
et al.| [2023]], Jin et al.| [2021]],|Cui et al.| [2021]], Kempe et al.| [2003].

In general, p-matchoids provide a flexible way to add complex rules to optimization problems in
machine learning. By setting p-matchoid constraints, practitioners can adjust optimization algorithms
to meet specific requirements and constraints, resulting in more robust models |(Quinzan et al.| [2021],
Friedrich et al.|[2019]], Wei et al.| [2015]].

In this paper, we study the non-monotone submodular maximization problem under a p-matchoid
constraint in the fully dynamic setting. This model considers a sequence of updates, each of which is
either an insertion or a deletion. Using the notation V;, C V to represent the set of elements present at
any given time ¢, this model assumes that V; is derived from V,_; after the insertion or deletion of an
element e at time ¢.

The ultimate objective of this problem is to maintain an independent set /* € I at each time #, such
that f(I") = OPT,, where OPT, = maxjer jcv, f(I) is the optimal submodular value among any
independent set in J present at time . However, finding an exact solution for this problem, even in
an offline setting where the elements are fixed and provided at once, is NP-hard as it generalizes
problems such as unconstrained non-monotone submodular maximization and monotone submodular
maximization under a cardinality constraint, both of which are known to be NP-hard [Feige et al.
[2011]], Nemhauser et al.| [1978]. Therefore, we focus on developing approximate dynamic algorithms
and use their approximation ratios to evaluate their quality. Also, following prior work, we assume
having an oracle access to the submodular function f, and measure the performance of our algorithms
based on their query complexities.

To underscore some specific aspects of this problem that make it more challenging than some other
similar problems in the literature, we highlight the following:

e The nature of the p-matchoid constraint, which is extremely versatile and generalizes
even complex combinatorial structures such as the intersection of p matroids, p-uniform
hypergraph matching, and by extension, matroid, and cardinality constraints, making it
significantly more complex to handle.

e Function f not being monotone, as non-monotone submodular maximization is inherently
more difficult than its monotone counterpart, evidenced by the weaker approximation guar-
antees and increased complexity it typically yields across different settings and constraints,
adding to the challenge.

e The dynamic setting of the problem, where elements get inserted or deleted adversarially,
and it requires algorithms to adapt to real-time changes.

To date, the most significant advancement in non-monotone submodular maximization in the dynamic
setting is a result presented at NeurIPS’23. In their pioneering study, Banihashem, Biabani, Goudarzi,
Hajiaghayi, Jabbarzade, and Monemizadeh |Banihashem et al.|[2023] proposed a dynamic algorithm
for non-monotone submodular maximization under a cardinality constraint k. Their algorithm
achieves a (8 + €)-approximation while requiring an expected amortized O(e 2k? log>(k)) oracle
queries per update.

Despite this progress, the development of dynamic algorithms for non-monotone submodular maxi-
mization under a matroid constraint, or more generally a p-matchoid constraint, remains an open and
unexplored challenge, one that we address in this study.



1.1 Our contribution and techniques

We present the main result of this paper in the following theorem.

Theorem 1.1 (Main Theorem). Let 0 < € < 1 be a parameter. Let M(V,I) be a p-matchoid
consisting of m matroids M(V1, 1), Mo(V2,12), ..., Myu(V,, I,), and let k denote the size of the
largest independent set in I. Let f : 2V — RZ be a (not necessarily monotone) submodular function
defined over subsets of the ground set V. Then, there exists a dynamic algorithm for maximizing the
function f subject to the p-matchoid constraint M(V, I), which maintains a 2p+2+/p(p + 1)+1+¢€)-
approximate solution at any time t during the sequence of updates, while performing an expected
amortized O(e> pk* log? k) oracle queries per update.

As a byproduct, we obtain another result for the special case of cardinality k, as stated below.

Corollary 1.2. There exists a dynamic algorithm for non-monotone submodular maximization
subject to a matroid constraint of rank k (including the cardinality constraint k), which achieves a
(5.82 + €)-approximate solution using O(e >k* log® k) oracle queries per update.

Our algorithm for the cardinality case is an improvement upon the approximation of the dynamic
algorithm presented by Banihashem et al|Banihashem et al.| [2023]], which maintains a (8 + &)-
approximate solution with an expected amortized O(s2k? log>(k)) oracle queries per update.

Under the assumption that the submodular function f is monotone, the approximation guarantee of
Theorem I.T]|can be strengthened. An adaptation of our algorithm then yields the following side result:

Proposition 1.3. There exists a dynamic algorithm for monotone submodular maximization subject
to a p-matchoid constraint of rank k with (4p + €) approximation guarantee and O(e~> pk* log*(k))
update time.

1.1.1 Overview of our algorithm

We present a dynamic algorithm for non-monotone submodular maximization under p-matchoid
constraints, where the ground set evolves through a sequence of insertions and deletions. Our
approach builds on an offline recursive framework that incrementally constructs a feasible solution by
combining two core ideas: filtering and selective sampling. The offline algorithm processes elements
in multiple levels, iteratively refining the solution by selecting elements with high marginal gain
relative to the structural cost imposed by the p-matchoid constraints. This recursive mechanism forms
the backbone of our dynamic algorithm.

At each level, the algorithm maintains a candidate set and a partial solution. An element is promoted
to the next level only if its marginal contribution outweighs the cost of maintaining feasibility across
the constituent matroids. Within each level, one element is sampled from the surviving candidates
and added to the solution, while conflicting elements are removed. This yields a layered recursive
structure culminating in the final solution.

Our dynamic algorithm is inspired by the streaming algorithm of Feldman, Karbasi, and Kazemi Feld-
man et al.| [2018]], but technical modifications are required to support efficient updates in a fully
dynamic setting. Our key idea is to simulate the behavior of the offline algorithm on an evolving
ground set, while ensuring that the amortized update cost remains low.

Our algorithm incorporates two randomized procedures. The first is an initial sampling phase that
reduces the input size and transforms a non-monotone problem into a more tractable monotone-like
instance. The second is used during updates to guard against adversarially ordered insertions and
deletions. When an element is inserted, it is retained with some probability. If retained, it is evaluated
for inclusion in the current solution, and affected levels may be reconstructed. Similarly, deletions
are handled by checking whether the element contributed to the current solution and selectively
rebuilding the necessary components.

This design ensures that each update has low expected cost while maintaining near-optimal perfor-
mance guarantees. A complete description of the algorithm appears in Section 4]



1.1.2 Comparison with prior dynamic and streaming algorithms

Several dynamic and streaming algorithms exist for submodular maximization under various con-
straints such as cardinality, matroid, and p-matchoid constraints. However, our algorithm differs in
several key aspects that we summarize below:

Streaming vs. dynamic models. The algorithm by Feldman et al. [Feldman et al.| [2018]] is
specifically designed for the insertion-only streaming setting, and it cannot naturally handle deletions.
In the streaming model, once an element is deleted, we must reassess all previously seen elements
to find a replacement—this typically requires Q(n) oracle queries. In contrast, the dynamic model
demands efficient handling of both insertions and deletions. Applying the streaming algorithm in a
dynamic setting would require reconstructing the solution from scratch after every deletion, resulting
in linear query complexity per update, which is computationally prohibitive.

Matroid vs. p-matchoid constraints. p-matchoid constraints are a generalization of matroid
constraints, which makes adapting existing algorithms more challenging. For example, the algorithm
of Banihashem et al. Banihashem et al.| [2024] depends on a monotonicity property essential for
performing binary search over levels. This property holds in matroids but not in general p-matchoids.
Hence, their approach cannot be extended to p-matchoids.

To illustrate the failure of monotonicity in p-matchoids, consider the following counterexample.
Let V¥V = {1,2,3} and define a 2-matchoid composed of two matroids. The first has ground set
{1,2} and allows only one element, i.e., 7| = {0,{1},{2}}. The second has ground set {1, 3} with
I, ={0,{1},{3}}. Thus, the independent sets of the matchoid are 7 = {0, {1}, {2}, {3}, {2, 3}}.

Now consider an additive submodular function with f({3}) < f({1}) < f({2})/10. Suppose A; = {1}
is selected at level 1. At level 2, adding element 2 requires removing 1 (due to matroid 1), giving
A, = {2}. Since 1 is now absent, we can include element 3 at level 3, resulting in Az = {2, 3}. Thus,
element 3 can be added at level 3 but not at level 1 due to conflict with 1, violating monotonicity
assumptions. This shows the binary search technique used for matroids fails for p-matchoids.

Monotone vs. non-monotone functions. Our algorithm also handles non-monotone submodular
functions, unlike the method of Monemizadeh [Monemizadeh|[2020]], which is designed for monotone
functions under cardinality constraints. Monemizadeh’s algorithm samples O(e~2 log n) elements
to ensure a sufficiently good one is selected, whereas we require only a single sample due to our
algorithmic structure and more refined analysis.

Cardinality vs. p-matchoid constraints. The algorithm by Banihashem et al. [Banihashem et al.
[2023]] is specific to cardinality constraints and achieves an (8 + €)-approximation for non-monotone
submodular functions. Since cardinality is a special case of p-matchoid constraints, our algorithm
generalizes their result while improving the approximation factor to (5.82 + €).

2 Related work

Submodular maximization under a cardinality constraint k in the dynamic model was first studied
at NeurIPS’20 by Lattanzi, Mitrovic, Norouzi-Fard, Tarnawski, and Zadimoghaddam [Lattanzi et al.
[2020], and independently by Monemizadeh Monemizadeh| [2020]. Both papers demonstrated
how to maintain a (2 + €)-approximate solution for this problem while having fast query time.
The amortized query complexity of the dynamic algorithm presented in [Lattanzi et al.[[2020] is
o 10g6(k) logz(n)) in expectation. And the algorithm presented in [Monemizadeh|[2020] has an
expected amortized O(e>k* log>(n)) query complexity. Later, Chen and Peng Chen and Peng [2022]
showed that developing a c-approximation dynamic algorithm for any ¢ < 2 requires an amortized
query complexity polynomial in the size of the ground set V.

Recently, at ICML 2023, Duetting, Fusco, Lattanzi, Norouzi-Fard, and Zadimoghaddam Duetting
et al.| [2023] studied monotone submodular maximization under a matroid constraint in the dynamic
model and proposed a dynamic (4 + €)-approximation algorithm with an amortized expected query
complexity of O(g log(k) logz(n) log3 (’f)). Simultaneously, Banihashem, Biabani, Goudarzi, Haji-
aghayi, Jabbarzade, and Monemizadeh [Banihashem et al.|[2024]] tackled the same problem with the
same approximation guarantee but with improved query complexity. Specifically, their algorithm
achieves a worst-case expected query complexity of O(klog(k) log® (lz‘)). Additionally, the authors
in [Banihashem et al.[[2024]] improved the query complexity of the dynamic algorithm proposed
inMonemizadeh| [2020]] for the cardinality constraint to an expected O(ke™ logz(k)).



All these results are for monotone submodular maximization problems. The only result for non-
monotone submodular maximization within the dynamic setting is a recent result presented at
NeurIPS’23 by Banihashem, Biabani, Goudarzi, Hajiaghayi, Jabbarzade, and Monemizadeh Bani-
hashem et al.|[2023]] who presented a dynamic algorithm for non-monotone submodular maximization
under the cardinality constraint k. This dynamic algorithm maintains a (8 + &)-approximate solution
for cardinality constraint while having an expected amortized O(s2k? log®(k)) oracle queries per
update.

Submodular maximization problems have also been studied in the streaming model. Badanidiyuru,
Mirzasoleiman, Karbasi, and Krause Badanidiyuru et al.|[2014] investigated monotone submodular
maximization under a cardinality constraint k£ and proposed an insertion-only streaming algorithm
with a (2 + €)-approximation guarantee. Chekuri, Gupta, and Quanrud |Chekuri et al.| [2015]] presented
a O(p)-approximation single-pass streaming algorithm for maximizing non-monotone submodu-
lar functions subject to p-matchoid constraints using O(klogk) space. Feldman, Karbasi, and
Kazemi Feldman et al.|[2018]] and Mirzasoleiman, Jegelka, and Krause Mirzasoleiman et al.| [2018]]
subsequently developed streaming algorithms with improved approximation guarantees for maxi-
mizing non-monotone functions under p-matchoid constraints. Specifically, the streaming algorithm
in|Feldman et al.|[2018]], which was an inspiration for our dynamic algorithm has the same approxi-
mation guarantee of = 4p + 2 — o(1) as our algorithm, and uses O(k) space and O(km/ p) query calls
per element.

3 Models and definitions

Let V denote a ground set. A function f : 2V — R is termed submodular if it satisfies the
inequality f(A U {e}) — f(A) = f(BU{e}) — f(B) forall A C BC V and e ¢ B. For a subset A C V
and an element e € V, the difference A(elA) = f(A +e) — f (As commonly referred to as the
marginal gain of adding e to A. If f satisfies f(A U e) > f(A) for all choices of A and e, meaning
that all marginal gains are non-negative, we refer to f as monotone. Conversely, we refer to f as
non-monotone if the marginal gain of adding an element to a subset is not necessarily non-negative;
that is, there could be a subset A and an element ¢ ¢ A such that f(A U e) < f(A).

Matroids and p-matchoids. A matroid M(V, I) is defined by a ground set V and a nonempty
downward-closed set system I C 2", where I consists of independent sets. It satisfies the exchange
axiom: for any pair of independent sets A, B € 7 with |A| < |B|, there exists an element x € B\ A
such that A U {x} € 7. Any subset of the ground set V that is not independent is labeled as dependent.
A maximal independent set, which becomes dependent upon the addition of any other element,
is known as a basis for the matroid M(V, I). Conversely, a circuit in a matroid M(V, 1) is a
minimal dependent subset of V, meaning a dependent set whose proper subsets are all independent.
Given a subset A of V, the rank of A, denoted as rank(A), represents the maximum cardinality of an
independent subset within A.

An p-matchoid M(V, I') consists of m matroids M;(Vy,11), My(V2, 13), ..., Myu(Vu, I,,) such
that each element in the ground set V appears in the ground sets of at most p of these matroids. The
set 7 of independent sets is defined as the collection of all subsets of V whose projection onto any

ground set V; is an independent set in Z;. In other words, 7 = {S c2V: vrSnVie L-}.

A classic example is the 2-matchoid representing the classical matching problem. In this case, given
an unweighted graph G(V, E), a set M C E is a matching of G if and only if every vertex u € V is
incident to at most one edge of M. We can define a 2-matchoid M(V, I') for G with ground set
V = E as the edge set of G and independent set 7 representing all valid matchings in G. Specifically,
for each vertex v, a matroid M, (V,, Z,) is defined, where V, represents the edges in V incident to
v. An edge set X C V is independent in M, (V,,T,) if [ X N V,| < 1. Thus, any edge set X C V
is an independent set in the 2-matchoid M(V, 1) (i.e., X € T) if and only if X is a valid matching in G.

Definition 3.1 (p-matchoid submodular maximization). Consider a submodular function f : 2V —
R0 (not necessarily monotone). The goal in p-matchoid submodular maximization or submodular
maximization subject to the p-matchoid constraint M(V, 1) is to find an independent set I* € I that
maximizes f(/*). In other words, if we denote the maximum submodular value of an independent

2For a set A and an element e, we may represent the union of sets A and {e} as A + e or A U e for convenience.
Similarly, when considering a set A with an element ¢ € A, we may denote A \ {e}as A —eor A\ e.



setin J as OPT = max,ey f(I), then I* € 7 is an independent set that achieves the optimal value
f*) = OPT.

Oracle queries. We assume that the access to matchoid M(V, 7) is through an oracle that answers
the following types of queries.

e Submodular value oracle: The oracle provides access to a submodular function f : 2V —
R20, allowing retrieval of the value f(A) for any subset A C V. In this query access model,
computing the marginal gain f(A U {e}) — f(A) is achieved through two queries: f(A U {e})
and f(A), where A C Vande € V.

e Matroid independence oracle: The oracle allows access to a matroid M;(V;, ;) of
a p-matchoid M(V, 7). For any subset S C V, the oracle answers whether S is an
independent set in matroid M;(V;, I;) or if it is dependent. In other words, it determines if
S e’ i

We assess the time complexity of an algorithm that (approximately) solves p-matchoid submodular
maximization in terms of its query complexity, defined as the number of queries made to either the
submodular value oracle for f or the matroid independence oracle for 7.

Dynamic Model. Consider a sequence S comprising insertions and deletions of elements from an
underlying ground set V. Let S, denote the sequence of the first  updates (insertions or deletions)
from S. The term time t refers to the moment after the first  updates of the sequence S have been
executed. We define V; as the set of elements that have been inserted until time 7 but have not been
deleted since their latest insertion.

In dynamic p-matchoid submodular maximization, our goal is to have an approximate solution of
OPT; = maxy,.cy,er f(I;) at any time t. We use the term dynamic a-approximate algorithm to refer
to such an algorithm whose output solution at every timestep ¢ is guaranteed to have a function value
that is at least @~ - OPT,.

The performance of dynamic algorithms is evaluated based on their update time, which measures
the computational effort required to maintain a feasible solution between two consecutive updates.
Accordingly, the query complexity of a dynamic a-approximate algorithm for p-matchoid submodular
maximization denotes the number of oracle queries (value or independence) required to compute an
independent set whose submodular value is an a-approximation of OPT),, given all computations
performed up to time ¢ — 1.

Our dynamic algorithm operates within the oblivious adversarial model|Carter and Wegman|[1977].
In this model, the adversary determines the elements in the set V and their arrival order. However, the
adversary remains unaware of the random bits used in the algorithm and, therefore, cannot adaptively
choose updates in response to the algorithm’s randomly guided choices. It is assumed that the
adversary prepares the complete input sequence (of insertions and deletions) before the algorithm
starts running.

4 Offline and Dynamic algorithms for p-matchoid

First, we explain our offline method provided in Algorithm I|that given a ground set V, computes an
approximate solution for submodular maximization subject to p-matchoid constraints. This algorithm
is fully executed by invoking the Intt(V) procedure, which solves the problem in the offline scenario
or acts as a pre-processing step in the dynamic scenario, in which case V may be either empty or
not. Then, we show how we handle the insertion and deletion of elements in Algorithm E} Note
that throughout the paper, we assume access to a parameter MAX that approximates the maximum
submodular value up to a factor of 2; formally, max,cy f(v) < MAX < 2max,ey f(v). This is a
standard assumption, which we show how to lift by maintaining parallel runs in Appendix B}

4.1 Offline algorithm

In the beginning, our offline algorithm employs a random sampling procedure named RATESAMPLING
that intuitively transforms a non-monotone submodular maximization instance into a monotone one.
Once the initial sampling is complete, the algorithm uses a recursive procedure to refine a solution
from the remaining elements at different levels. At any level i, we maintain two sets A; and B;. The set
B; is the set of every element e € B;_; whose marginal gain in case of addition to A;_; is large enough



Algorithm 1 MATcHOIDCONSTRUCTION

Procedure Inmr(V):

1: Ag « 0, and By < RareSampLING(V)

2: Return REcursioN(Ag, By)
Procedure RATES amPLING(V):

Procedure EXTENSION(A;_1,¢;):

1:

Set Welght w(ei) — A(eilAi_l)

20 Aj — A — Uile) + e

3:

Return A,’

1: Sample each element e € V i.i.d with proba- Procedure FINDSwaps(A;-i, e):

bilityg = (p+ Vp2 +p+ 17!

2: Return sampled set By in Step 1
Procedure REecursion(A;_i, Bi_1):

1: B; « FILTERING(A;_1, Bi-1)

2: if |B;| > O then

3:  Sample an element ¢; € B; uniformly at

random
A; <« EXTENSION(A;_1, ¢;)
Return RecursioN(A;, B;)
cLetif—i—1
7: Return A;-
Procedure FiLTERING(A;_1, Bi_1):
1: Bi — 0
2: for every element e € B,_; do
3:  U,(e) < FINDSwaPS(A;_1, €)

AN

4:  store Uj(e) for element e as it may be used
later in Procedure EXTENSION

5 if U;(e) # FawL then

6: B[ — Bi Ue

7: Return B;

1:

AN S

7:

U;(e) <« DEPENDENCYDETECTION(A;_1, €)
ce— 1+ %

eMAX }

T « max {(1 +¢) - w(U(e)), 53¢

if A(elA;_1) = 7 then
Return U;(e)

else
Return FaL

Procedure DEPENDENCYDETECTION(A,_{, €):

1: Uie) < 0
2: for j=1tomdo

3:

4
5:
6:
7:

if (A + e) N (Vj ¢ Ij then

Xj — {6’ S Ai,ll(A,-,l—e’+e)ﬂ(Vj (S IJ}
Xj « argmingey, w(e')
Ui(e) < Uj(e) + x;

Return U;(e)

to offset the loss of the elements we would need to delete from A;_; to preserve its independence,
and the set A; is the solution computed at the first i levels. In the end, we denote the number of the
last constructed level by i*, and A;» would be our final solution. This recursive procedure relies on a
filtering process and a second sampling process designed to outmaneuver the adversary.

Initial sampling The first sampling process samples elements of V with probability g = (p +
Vp2+p+ 1) € O(p~") and discards elements that are not sampled. This simple sampling process
is well-established [Fahrbach et al.| [2019]], Mirzasoleiman et al.| [2018]], [Feldman et al.|[2018]] as a
technique to transform an instance of non-monotone submodular maximization into a monotone one.
It even speeds up the algorithm as it reduces the number of elements to process.

Algorithm 2 UppATEOPERATIONS

Procedure INsert(e):

1: With probability 1 — g Ignore e and return

2: By — By+e
3: fori « 1toi* do

4:  Ui(e) < FINDSwaPS(A;_1, €)
5. if Ui(e) = FAIL then

6: Return

7 Bi— B +e

8:  With probability r; =

@ e e
@ A; « EXTENSION(A;_1, €})
®  Return Recursion(4;, B;)

Procedure DELETE(e):
1: fori < Otoi* do

2:

AN A

10:
11:

if ¢ ¢ B; then

Return

B~ Bi—e
if ¢; = ¢ then

if |B;| > O then
Sample an element e; € B; uniformly
at random
A; <« EXTENSION(A;_1, €;)
Return Recursion(A;, B;)
Leti* «i-1
Return A;-




Filtering. The inputs to the filtering procedure at an arbitrary level i are the sets A;_; and B;_;. In
this procedure, for each e € B;_; we decide whether to keep or filter this element at this level based
on its suitability for addition to A;_;. Note that if e is later selected for addition to A;_;, we fix its
weight as w(e) = A(e | A;-1), where A(e | A) := f(A U {e}) — f(A) denotes the marginal gain of e with
respect to A.

Adding e to A;,_; may violate its independency. To address this, we compute a set U; of elements
that would need to be removed to make it independent again. Formally, we start with an empty set
U;, then for each matroid M;(V;, I ;) of p-matchoid M(V, I) for which (A;_; +e)NV; & T, we
identify the element ¢’ € A;_; with minimum weight that (A;.; +e —¢’)NV; € I; and add ¢’ to
Ui(e).

Once Uj(e) is computed, we consider two cases: If the marginal gain of adding e to A;_; is significant
enough to offset deleting U;(e), specifically if A(elA;—1) > (1 + /1 + é) * Dereuye) W(e'), then e will

be added to a survivor set B;, which was initialized as an empty set at the beginning of this level. If
this condition is not met, e gets filtered out.

Sampling and Extension. At the end of the filtering step in level i, set B; is the set of survivors.
We sample one of the survivors, say e; € B;, and obtain the new solution set A; = A;_; + ¢; — Ui(e;).
In addition, we set the weight of sampled element e; to w(e;) = A(e;|A;i—1).

Our sampling strategy is similar to that of Monemizadeh [Monemizadeh|[2020] who used a similar
method for dynamic (monotone) submodular maximization under a cardinality constraint. However,
in that work, he samples O(e~2 log(n)) elements to guarantee that one of the sampled elements has a
marginal gain above a predetermined threshold. In contrast, our sampling strategy requires sampling
just one element, and our filtering guarantees that the marginal gain of this element is sufficiently
large.

4.2 Insertion and deletion algorithms

Upon the insertion of an element e, we ignore e with probability 1 — g and terminate the insertion
algorithm. Otherwise (i.e., with probability ¢), we iterate through levels i € {1,...,i*} and check
if we can add e to the survivor set B;. If this is the case, we then reconstruct levels i, ..., * with
probability ﬁ.

For deleting an element e, we iterate through levels {1, ...,i"}. Ateach level i, we check if e is the
element that has been sampled at level i. If this is the case, similar to the insertion algorithm, we
reconstruct levels 7, ..., " in a recursive manner.

5 Analysis

In this section, we provide a sketch of our analysis including some notations and definitions. The
detailed proofs are provided in Appendix

Survivors are elements of a set B;_; that are included in set B;. Formally, we define them as follows:

Definition 5.1 (Survivor). Let 1 < i < i* be a level. We call an element e, a survivor for level i if
AlelAi-) = (1 + 1+ %) - Derete) W(E).

In this definition, U;(e) denotes the set of dependent elements that must get removed from the
independent set A;_; so that e can be added to it. More precisely, for every matroid M;(V;, ;) in the
matchoid M((V, D),if (A1 +e)N (Vj o2 Ij, we define Xj ={e €A ((Aj-q — e +e)Nn (V]) S Ij},
the set of elements whose removal would restore independence in matroid M;(V;, I ;) after the
addition of e. We then select the element x; = arg minycx; w(e’) with the smallest weight among
those in X; and add it to U;(e).

In the analysis of our randomized algorithm, we denote the random variable itself as x for any variable
x, and x represents its value during execution. The key random variables used in our analysis are as
follows:

e We denote e; as the random variable corresponding to the sampled element e; at level i.

e B, represents the random variable corresponding to the set B;.



e The random variable i* corresponds to i*, the index of the last non-empty level created.

o We define C; = (ey,...,ei_1,Bo,...,B;) as the random variable corresponding to configura-
tion C; = (ey,...,€i-1,Bo, ..., B;) up to level i.

When observing an update at time ¢, it is crucial to differentiate between random variables e;, B;, i*,
and C; and their respective values before and after the update. To this end, we employ the notations
Y™ and Y~ to represent a random variable and its value before time #. We continue to use Y and Y to
denote them at the current time after the execution of the update.

We divide the analysis of the dynamic algorithm algorithm into several steps. We first define a set of
invariants and we show that we can maintain them in the course of the dynamic algorithm. Having
these invariants in hand, we prove the approximation guarantee and the query complexity of the
algorithm.

Step 1: Invariants. Initially, we introduce the following set of invariants.
1. Survivor: B; ={e € B;i_1 : Ale|lAi-1) > (1 + /1 + %) cecueywe) forall 1 <i <i* + 1.

2. Starter: By = RATESAMPLING(V) and Ay = ()

3. Weight: For 1 <i <i", e; € B; and w(e;) = Alei|Ai—1)
4. Independent: For 1 <i<i*,A; = Ai_1 +¢; — Ui(e;)
5. Terminator: By =0

6. Uniform invariant: Ple; = eli* > iand C; = C;] = ﬁ -1[e € B;].

Step 2: Maintenance of invariants. Next, we demonstrate the validity of the invariants at the end
of the execution of MarcHoiDConsTRUCTION. We also show that these invariants remain preserved
following each insertion and deletion operation. Specifically, we establish the following lemmas.

Lemma 5.2. At the end of Algorithm MATcHOIDCONSTRUCTION all invariants hold.

Lemma 5.3. If before the insertion or deletion of an element e, the invariants hold, then they also
hold after the execution of INserT(e) and DELETE(e), respectively.

Step 3: Query complexity. Subsequently, we establish bounds on the expected worst-case query
complexity of both insertion and deletion operations. Formally, we prove the following result.
Theorem 5.4. The expected query complexity of each insert/delete for all runs is (™3 pk* log*(k)).

Step 4: Approximation guarantee. Finally, we demonstrate that, assuming the invariants hold,
an independent set A € I of the matchoid M(V, I) can be reported, with a submodular value

approximating the optimal solution by 2p +2+/p(p + 1) + 1 + &).

Theorem 5.5. Suppose that the invariants hold in every run of UPDATEOPERATIONS. Let A; be
the independent set that Algorithm UpDATEOPERATIONS returns. Then, the set A satisfies (2p +

24p(p+1)+1+¢)- f(Ar) = OPT, where OPT = maxycy f(I).
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A Omitted proofs
We begin proving the main theorem of our paper by first introducing basic probabilistic terminology.

Conditional expectation. For a function x and a set A, we denote x[A] as the function x restricted
to the domain A. For an event E, we define 1 [E] as the indicator function of E, i.e., 1 [E] is set to
one if E holds and zero otherwise. When dealing with random variables and their values, we use
bold and non-bold letters, respectively. For instance, a random variable is denoted as X, and its value
is represented by X. We use the notations P [X] and E [X] for the probability and expectation of a
random variable X. For events A and B, the notation P [A|B] denotes "the conditional probability of
A given B" or "the probability of A under the condition B". For an event A with nonzero probability
and a discrete random variable X, we denote by E [X]A] the conditional expectation of X given A,
ie., E[X|A] = X, x - P[X = x|A]. Similarly, for discrete random variables X and Y, the conditional
expectation of X given Y is denoted by E [X|Y = y].

A.1 Maintenance of survivor invariant

We first prove that the survivor invariant holds at the end of the algorithm MATcHOIDCONSTRUCTION.
Later, we show that it holds after the execution of INserT(e¢) and DeLETE(e) provided it was upheld
before the insertion or deletion of an element e. We employ a similar methodology to demonstrate
the preservation of the remaining invariants. In particular, we first prove them for the algorithm
MarcuaoipConstrucTioNand then for INSErT(e) and DELETE(e).

Survivor invariant for MarcaomnConsTrucTION(V):  We inductively prove that survivor invariant
holds for any element e and any level i < i*. For the base case i = 0, if any arbitrary element e € V is
sampled with probability ¢, element e will be in By. Otherwise, it will not be added to Bj.

Now, let us consider an arbitrary element e that is in survivor set B;_; of a level i — 1 where
1 < i < i*. Recall that Uj(e) is the set of dependent elements that needs to be deleted from
independent set A;_; so that e can be added to it. In the algorithm FrteriNG, we check if A(e|A;—;) >

1+ 1+ é) * Diereu;q ) W(e'). If that is the case, e is added to B;, otherwise, e is not added to B;.
Thus, the survivor invariant holds.

Survivor invariant for INsert(e): We first give a few useful facts and for that, define variables r
and s as follows.

v¢ Let s be the largest i € [0,i*” + 1] such that e is added to B; .

v¢ If there is alevel i € [i*7] in which ¢; = e, then we let r be i. Otherwise, we let r be i*™ + 1.
We consider two cases.

@ Case | happens if r < i*~. Then, we know that Subroutines ExTensioNn and RECURSION
have been invoked. In addition, we have ¢, = eand s = r.

@ Case 2 occurs if » = i*~ + 1 which means Subroutines EXTENsION and REcURSION have
never been invoked for INserT(e). Thus, the last level i* after inserting e is the same
last level i*~ before inserting e. That is, i* = i*~. Note that, we must have s # i*~ + 1,
since otherwise, we have |B;._ ,| = 0 and |B;-;1| = 1. Therefore, we have invoked
Subroutines ExTension and Recursion for this level what means i* > i*~ which is not
the case. Thus, s <r =17 + 1.

We handle Insert(v). Therefore, for any i < r, we have not made any change in variables e, w(e;), or
A7 because we have not invoked Subroutines ExTension and Recursion for those levels upon insertion
of e. Hence, the following facts are correct.

Fact A.1. Foranyi€ [1,r) wehave: @¢; =e; @ w(e;) =w(e;) ©A; =A;. Fori=0,we have
A= A7,

By the definition of s, we add e to the set By, for each i € [0, 5] and we have s < r. In addition, by
invoking Subroutines ExTension and Recursion for level » + 1, nothing happens to the variables in
levels that are less than » + 1. Thus, we obtain the following fact.

Fact A.2. Foranyi € [1,s], we have B; = B, +e.

Fact A.3. Foranyi€ [s+ 1,r], we have B; = B} .
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Figure 1: Visualisation of two cases upon INSERT(e).
Next, we show that the survivor invariant holds, i.e., B; = {e € B;_; : Ale|A;_1) > (1 + /1 + %) .

Qe W)} fori € [1,7"].

First, let us consider i € [1, s]. By the assumption, the survivor invariant holds before the the insertion
of element e at time ¢. That is, B; = {e € B | : A(elA7 ) > (1 + /1 + %) * Yoeve W (€)} for
i € [1,s]. Using Fact[A.2} B; = B; + v holds for all i € [1, s]. Thus,

[ 1
Bi=B +v=1{ec B, AllAi )= (1+ 4|1+ —)- Z w(e)} +v
p e’eUi(e)

={e€eB_ U} A(elA ) = (1 + 4 ’1 + l)~ Z w (e} .
p e’el;(e)

According to Fact|A.1| forany i € [1,s] C [1,7) we have: @ e; =¢; @ w(e) =w(e;) OA; =A".
Therefore, we obtain the following:

[ 1
Bi=B; +v={e€Bi:AelAi)) > (1+ [1+—)- Z w(e)} .
p e’elU;(e)

Recall that if Case 1 occurs, r = 5. Since in this case, Subroutines ExTension and RecursioN have
been invoked, we know that the survivor invariant will be held for all level [s + 1, i*]. However, if
Case 2 happens, we need to prove that the survivor invariant is held for all levels [s + 1,i*].

Thus, we are in Case 2 and we need to prove the survivor invariant for all levels [s + 1, i*]. We have
r=i"+1=i+1. According to Fact forany i € [s + 1,i* + 1], we have B; = B;.

/ 1
Bi=B ={e€B_, : AllA) > (1+ 1|1+ —)- Z wo (@)} .
p e’elU;(e)
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Once again, using Fact forany i € [1,7) we have: @ ¢; = ¢; @ w(e,) = w(e)) OA; = A7

what means
[ 1
Bi={e€Bi:ACA) >+ {|1+—)- Z w(e)) .
p e’elU;(e)

This essentially means that the survivor invariant holds after INSERT(e).

Survivor invariant for DELETE(¢):  Similar to INserT(e), We first define variables r and s as follows.
Y¢ Let s be the largest i € [0,i*” + 1] from which e is deleted from B; .

¢ Ifthereis alevel i € [1,7*"]in which e; = e, then we let r be i. Otherwise, we let r be i*~ + 1.
We consider two cases.

@ Case | happens if r < i*~. Then, we know that Subroutines ExTensioN and RECURSION
have been invoked. In addition, we have ¢, = e and s = r.

@ Case 2 occurs if » = i*~ + 1 which means Subroutines ExTension and REcursioN have
never been invoked for INserT(e). Thus, the last level i* after deleting e is the same last
level i*~ before deleting e. That is, i* = i*~. Note that, we must have s < r ="~ + 1,
since otherwise, we have |B;.__,| = 1 which cannot be the case.

Our update is DELETE(V). Thus, in any level i € [1, i*), we do not make any change in in these levels
other than removing the element e from B} if i < s.

Fact A4. Foranyie€ [1,r) wehave: @e¢; =¢; @w(e)=w(e;) OA; =A . Fori=0,wehave
Ai = Az_

Fact A.5. For any i € [0, 5], it holds that B; = B; \{v} and for any i € [s + 1, r], we have B, = B} .
By the assumption, the survivor invariant holds before the the deletion of element e at time . That is,
B ={eeB_|:AllA_Dz(1+ J1+ é) - Dereuyey W (€} fori € [1, s]. Thus, using Fact for
ie[l,s]

1
B; = B;\le}) = {e € B ;\{e} : AelA) > (1 + \/1 + ) DLW,

e’elU;(e)

and forie[s+ 1,r],

[ 1
Bi=B ={e€ B, : AllA ) > (1+ 1|1+ —)- Z w(e)} .
p e’eUi(e)

Since by Fact forany i€ [1,r) wehave @ e; = ¢, @ w(e;) =w (e;) O A; = A;, we conclude

that
Bi=B\le) = le € By : AelAi) = (1+ 1 + %)- 3w
e’elU;(e)

what proves that the survivor invariant holds for i € [1, r) after the deletion of element e. Recall that
if r < i*~, Subroutines ExTeENnsioN and RecursioN have been invoked, therefore, we know that the
survivor invariant will be held for all levels [r, i*].

A.2 Maintenance of starter invariant

Starter invariant for INsert(¢): Recall that in Subroutine RateSampLING(V), we sample each

element e € V i.i.d with probability g = (p + +/p2 + p + 1)~! and let By be the set of elements that
are sampled. By our assumption, we have B = RATESamPLING(V™) and A = 0.

Upon insertion of an element e, we add it to B, with probability g. Observe that we always add e
to the ground set. Thus, V = V™ + e. Condition of this event which happens with probability g,
we have By = B, + e. Thus, By = RATESAMPLING(V™ + ¢) = RATESAMPLING(V). In addition, using

Fact we have Ag = A; = 0.
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Starter invariant for DELETE(e): By our assumption, we have B = RateESampLinG(V™) and Aj = 0.
Moreover, Vo = V\le}. If e € B, (what happens with probability g), we then remove it from B .
That is, By = B; \{e} = RareSampLING(V ™ \{e}) = RatESAMPLING(V). Using Fact[A.4] A; = A7 = 0.

This proves that the starter invariant holds after insertion or deletion of an arbitrary element e.

A.3 Maintenance of independent invariant

We assume that the independent invariant holds until time ¢. That is, for any level 1 < i < i*7,
A7 = A, +e; — Ui(e;). Upon the insertion or deletion of an arbitrary element e at time ¢, we show
that A; = A;_1 + e; — Uj(e;) for any level 1 < i <i*.

Remarkably, we can establish this invariant for both insertions and deletions simultaneously, without
the need for separate consideration of each operation. Indeed, according to Facts[A.T|and[A.4] upon
the insertion or deletion of an arbitrary element e at time 7, for any i € [1,7) we have @ ¢; = e}
w(e;)) =w(e;) O A; =A; andfori =0, we have A; = A7. Thus, A; = A = A, +e —Ude;).

Now, observe that forany j <i—1<r,wehave @ e; =¢; @ w(e;)) =w(¢;) O A;=A] and for
Jj=0,wehave A; = AJT. This essentially means that A; = A;_; + e; — U;(e;) for any level 1 <i <i*.
Also, recall that if » < i*~, Subroutines ExTeEnsioN and RecursioN have been invoked, therefore, we
know that the independent invariant will be held for all levels [r, i*].

A.4 Maintenance of weight invariant

Next, we show that the weight invariant holds. That is, assuming that for 1 <i <i*", e; € B; and
w(e;) = A(e; |A;_ ;). We show that upon the insertion or deletion of an arbitrary element e at time ¢,
e; € B; and w(e;) = Ae;]A;_q) for 1 <i <i*.

Weight invariant for Insert(e): According to Fact , for any i € [1, 5], we have B; = B; + ¢ and
forany i € [s + 1, 7], we have B; = B; using Fact[A.3| Thus, B; C B;.

Using Fact[A.1] for any i € [1,7) we have @ ¢; = ¢; @ w(e;) = w(¢;) O A; = A7. Fori =0, we
have A; = A;". Therefore, e; = ¢; € B; C B, for any i € [1,i"). This essentially means that ¢; € B;.

Next we need to show w(e;) = A(elAi=1) = f(Ai-1 + e;)) — f(Ai—1). For any i € [1,r), we have
w(e;) = w(e;) and e; = e; . Then, w™(e;) = w™(e;). Moreover, the assumption of this lemma implies
that w™(e;) = Ale; 1A;_)) = f(A_, +e7) — f(A_)). Since ¢; = e;, we obtain f(A_, +¢;) - f(A._)) =
f(Ai—1 + ;) — f(A;_1). Putting everything together, for any i € [1, r) we have

wie) =w(e) =w(e;) = f(A_ +¢;) = f(AZ) = f(Aim1 + &) = f(Ain1) = Alei|Ainr) -

Weight invariant for DELETE(e): We next prove that the weight invariant holds upon deletion of an
element e at time #. According to Fact[A.4} forany i € [1,r) we have @ ¢; = ¢; @ w(e;) = w(¢;) ©
A; = A7 . In addition, for i = 0, we have A; = A;. From the definition of » we know that e; € R \{e}.
Using Fact[A.5] for any i € [0, 5], it holds that B; = B; \{v} and for any i € [s+ 1, 7], we have B; = B; .
Therefore, B; = B; \{v} which means that ¢; = e; € B, \{e} = B;.

By the assumption, we have w™(e;) = A(e; 1A ) = f(A,_, +¢e;) = f(A__,) . Thus, foranyi € [1,7)
we have w(e;) = w(e;) = w(e;) = f(A_, +¢) = f(A)) = f(Aii1 + ) = f(Ain) = AleilAinr)
which completes the proof that the weight invariant holds upon deletion of an element e at time ¢.

A.5 Maintenance of terminator invariant

Next, we prove that the terminator invariant holds. That is, upon the insertion or deletion of an
arbitrary element e at time ¢, we have B;-y; = 0 assuming that B;,_, = 0 holds.

By the definition of r, if < i*~ we know that r is the level where e, = e upon insertion or deletion of
an element e at time 7, we know that Subroutines ExTension and Recursion have been invoked. In
addition, we have s = r. If this happens, REcursioNsubroutine terminates when |B;| > 0. As the result,
we have i* = i — 1 which means that B;-.; = 0.

However, if r = i*~ + 1, we know that Subroutines ExTensioN and ReEcursioN have never been invoked
for InserT(e) and DEeLETE(e) . Thus, the last level i* after inserting e is the same last level i*~ before
inserting e. That is, i = i*~. Note that, we must have s # i*~ + 1, since otherwise, we have |B,_,,| =0
and |B;-41| = 1. Therefore, we have invoked Subroutines ExTension and Recursion for this level what

means i* > i*~ which is not the case. Thus, s < r ="~ + 1 which means B;-,; = B,_ | = 0.
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A.6 Maintenance of uniform invariant

We now prove that the uniform invariant holds. That is, for any { < {* we have
Ple;=¢li* >iand C; = C;] = ﬁ -1 [e € B;]. Consider the time when the element e; is sampled. At
this time, all of the random values in C; are realized. By construction, e; is sampled uniformly at
random from B;. Therefore, at this time the claim holds. Additionally, none of the values in C; are

changed afterwards in the execution. Therefore, the claim holds at the end of the execution as well.

In this section, we prove the uniform invariant, i.e., we show that for any i < i* we have
Ple;=¢li* >iand C;, = C;] = ﬁ - 1 [e € B;]. We first that the invariant holds after calling IniT
because we sample ¢; to be uniformly at random from B; and none of the value of C; are changed after
this sampling. The main thing to prove is that the invariant holds after each insertion and deletion

operation.

Assume that the invariant holds before some update which is either the insertion or deletion of an
element v. we will prove that it holds after the update as well. We use the superscript ~ to denote
values before the update, e.g., e; denotes the value of ¢; before the update. When no superscript is
used, we are referring to values after the update. By assumption, the invariant holds before the update,

i.e., for any 7 and e, and any C; such that P [i*_ >i,C; = C,-] > () we have we have

1

P [eT E

F=eliT2i Gl =G| = —-TeeB] . (1)

We need to show that after the update, for any arbitrary i and e, and any C; such that
Pli* > i,C; = C;] > 0 we have

1
P[ei=€|i*2isci=Ci]=ﬁ']l[eEBi] .

Note that P [e; = e|i* > i, C; = C;], is only defined when P[i* > i, C; = C;] > 0, which means that
given the input and considering the behavior of our algorithm including its random choices, it is
possible to reach a state where i* > i and C; = C;.

A.6.1 Insertions

If v ¢ By, then it means that the data structure has ignored v, which in turn implies that C; = C; and
e; = ¢;, and i = i*~ which means the claim follows from the induction assumption. Formally, the
following claim holds.

Claim A.6. If v ¢ By, then events {i* > i, C; = C;} and {i*" 2,C_ =Ci,v¢ Bo} are equivalent.
Furthermore, the event implies that e; = e; .

Proof. The first direction of equivalency is clear; if we have {i* > i, C; = C;} then the algorithm has
ignored v because otherwise we would have v € By = By. Therefore, we have i~ = i* and C; = C,.
For the other direction, since v ¢ By we know that the algorithm has ignored v which means that
i*” =i" and C; = C; as before.

Since the event implies that the algorithm has ignored v, we have €; = ¢; for all i. o

Given the above claim, for all C; such that v ¢ By,
Ple;=e|i" >i,C; = C]
=Ple; =¢|i" 2i,Ci; = Ci1,v ¢ By
=Ple; =¢|i" 2i,C7, = Ci

1
= —1leeB],
| B; |

Here, for the second equality we have used the fact that the realization of e; is independent of
whether v € By. This is because the algorithm decides whether or not v € By by flipping a coin with
probability 1 — g afte e; is realized.

We therefore focus on C; for which v € B.
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For any i, let P; denote the random variable that is 1 if we invoke REcURsION(A j, B;) for some j < i,
and equals O otherwise. We first show that

1
P[e,‘=€|i*2i,ci=ci,P,‘_]ZI]ZE'H[(SEB,‘] . 2)

This is because e; is obtained by sampling uniformly at random from B; and at the time of the
sampling, the values in C; are realized and they do not change afterwards.

‘We now consider the case where P;,_; = 0. We claim that
1

P[ei=e|i*2i,Ci=C,-,P,~,1=0]=ﬁ~]l[eeBi] . (3)
If v ¢ B;, then we have B; = B and ¢; = ¢;. Define C; as C; = (Bo\ {v},..., B\ {v},e1,...,ei1).
Define the event o as

o= {l*_ > l,Cl_ = Ci_,v S B(),Pl‘_l = 0}

Claim A.7. For any C; such that P[i* >i,C; = C;,P,_; =0] > 0, the event o is equivalent to
{i*>2i,C;=C;, P,y =0}

Proof. Assume that the said event holds. We first note that i~ > i; if this is not the case then P;_; = 0
implies that i* < i as well which is not possible. Additionally, we must have C; = C; because
P;_; = O ensures that e; = e; for all j < i and the only difference between B; and B’ is that the former
may possibly contain v. Finally, we have v € B, given the assumption on C; made in the beginning of
the proof. We note that since we assumed that P [i* > i, C; = C;, P;_; = 0] > 0, this further means
thatP[O',C,' = Ci,] > 0.

For the converse, assume that o holds. Since P;_; = 0, we have i* = i*~. We therefore need to

show that C; = C;. The values in ey, ..., e;_; are not changed so e; = e =¢ by definition of C; .

Additionally, the values of By, ..., B; are now deterministic because we have fixed the realization

of the coin flips occurring with probability |1Tl-| by assuming P;,_; = 0, and we have assumed
J

v € By. Therefore, there is only one possible value for C;. Therefore, either P[C; = C; | o] = 0 or
P[C; = C;| o] = 1. We have already proved that P[C; = C;, 0] > 0, which means we must have
P[C; = C;| o] = 1, finishing the proof. ]

Claim A.8. P[P;=0| 0] = “l‘;ff]

Proof. If o holds then P;_; = 0 which means that P; = 0 if and only if the algorithm flips the coin
in Line [2] to invoke recursion. If v ¢ B;, then this cannot happen because Line [2] would never be
executed. If v € B;, then we note that this happens with probability ﬁ because of Line [2| Note that

at the time this line is executed, the values of i*~, C;, Bo, P;_1. m]

Combining the above claims we obtain

P[ei =e| i">1,C;, =C;,Pi =0]
—Ple = e| o] (Claim[A9)

=wP[ei=e|o—,Pi=1]+(1—%)P[ei=e|mﬂ=0] (Claim &)
=%Me:vn(l—%)P[egemn:m, ()

where for the final equality we have used the fact that if REcursion(A;, B;) is invoked (i.e., if P; = 1),
then we must have e; = v. We next calculate P[e; = ¢ | o, P; = 0]. We begin by observing that if
P; = 0, then we must have e; = e;_; which means

Ple,=e|o,Pi=0]=Ple; =e|0o,P;=0], 5)

Define the event o’ as ¢’ = {i*” >i,C;=C;,ve BO}, i.e., o’ satisfies oo = {o’,P;_1 = 0}.
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Claim A.9. Conditioned on the event {i**‘ >i,C; = Ci‘}, the events {v € By, P; = 0} and e; = e are
independent.

Proof. In order to have v € By and P; = 0, the insertion algorithm should not ignore v and for all j
such that we reach line [2] we need to flip the coin such that REcursion is not invoked. The realization
of e; has no effect on this. For By, the coint is always flipped with the same probability and for

P; = 0, if the coins are flipped, they are always flipped with the same probability ﬁ, and whether

or not the coin is flipped (i.e., Line E]is executed) depends only the value of B; and A ;_j, neither of
which are affected by the realization of e; . O

Given the above claim,

Ple; =e|o,P; =0]

=Ple;=e| i =2i,C;=C;,veByP; =0] (Definition of o)
=Ple; =e|i" 2i,C; =C;] (Claim[A.9)
1]ecB;|
= v (Induction assumption (1))
1[e € B\ {v}] .
= —— (Definition of B;)
| Bi\ {v}| / /

Combined with Equation (@) and Equation (3)), this gives us
P[e,‘ =e|i">i,C;,=C;,P; = O]
_1[veB,e=v] +(1 ]l[veB,-])]l[eEB,-\{v}]
| B; | | Bi | | Bi\ {v}|
We therefore need to show that the above expression is the same as ﬂ[l";? il This is easy to check
however using a case by case analysis. If v ¢ B;, then the first term vanishes and the second term
becomes LB a5 required. If v € B; then the expression can be rewritten as

| B;i|
Ile=v] |Bi|-11[ee€ B\{v}]

Plej=e|i">i,C;=Ci,X; =0] = 1B + |Bi| |B;|—1
_lle=v] 1llee B\l
| Bi | | B; |

Depending on whether e # v or e = v, either the first term or (respectively) the second term disappears
and the other term equals ”;j. This proves Equation (3)) which combined with Equation (@) finishes
the proof.

A.6.2 Deletion

For any i, let P; denote the random variable that is 1 if we invoke REcUuRsIoN(A j, B;) for some j < i,
and equals O otherwise. We first claim that

1
]P[eizeli*zi,CizC,»,P,-zl]zm-]l[eeBi] . (©6)

As in the case of insertion, this is because e; is obtained by sampling uniformly at random from B;
and at the time of the sampling, the values in C; are realized and they do not change afterwards.

‘We next show that
1
P[e,-zeli*zi,C,-zCi,P,:O]:ﬁﬂl[eeB,«] . 7)

We start by evaluating the left hand side. We first claim that the event {i* > i, C; = C;, P; = 0} implies
the event i~ > i. This is because if i~ < i, then P; = 0 means that REcURrSION is not invoked by
deletion, which in turn means that i* = i*~, contradicting the assumption i* > i. Since i*~ > i, the

value of C; is defined. We condition on the value of C;. Formally,

Ple,=e|i">i,C;=Ci,P;=0] =Ec; [Ple;=e|i" 2i,C; = Ci,P; =0,C; =C/]], (8
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where in the above expectation, the value of C; is sampled from the distribution of C; condi-
tioned on {i* > i, C; = C;, P; = 0}. We note that all the values considered in the expectation satisfy

P[i2i,Ci=C,P;=0,C; =C;| > 0.

Consider some C; such that P [i* >i,C,=C;,P; =0, Ci‘ = Ci‘]. We claim that rewrite the event
{i* >i,C;=C,P;=0,C; = Cl.‘} is equivalent to {i*" >i,C =C;,P; = 0}. It is clear that the first
event implies the second event. As for the other direction, we note that the realization of C; fully
determines the realization of C;; specifically, since P; = 0 we have B; = Bj‘.\ {v} for all j < i and
e =e; for all j < i. Therefore, P[i* >0, Ci=C,P;=0[i"" 2i,C; = Ci’] is either 0 or 1. We

know that it cannot be 0 however because by assumption, P [i* 2i,C;=C,P;=0,C; = Ci‘] > 0.
Therefore, it must be 1 which means C; = C;. Finally, since P; = 0 we have i* = i~ > i. We note
that P; = 0 itself implies that ; = e; . Therefore, we can rewrite the probability inside the expectation
in Equation (8] as

P[e,‘ =el|li">i,C;=C;,P; = O,C; = C:]

=Ple; =¢|i" 2i.C; = C P =0]

P[Pi=0]¢ =i 2i,C; =C;|Ple; =eli*"2i,C; =C|

= (Bayes’ Rule)
P[Pi=0i2iC; =C]

We first claim that v # e; for all j < i. This is because if v = e; for some j < i, then

P|P; = 0]i*" 2 i,C; = C;| = 0 because the deletion of v (which is e7) would invoke RECURSION.

By assumption however, we only considered values of C; for which P [le =C;,P; = 0] > 0 in the
expectation in Equation (8.

Given this, we have P; = 0 if and only if v # e;. It follows that
1 [v € B:]
P[Pi:O|i*’_Zi,Ci_=C;]:P[e;¢V|i*’_Zi,Ci—=Ci_]=l—v
i
and
=C-

1

P[P=0lef =i 2i,C =Ci]=P[e; #vef =ei 20 CF

L

]=1[e#v].
By induction hypothesis (Equation (T)),
1|e e B7]

Ple; =e|i*™ >i,C; =C] = 5]

i i
Putting it all together we obtain

LfeeBy|TLle#v]
P[ei=€|i*Zi,C,‘ZC,‘,P,‘ZO,CIZC;]= —.
|B:|(1— ]l[VEBi])

| ;|

If v ¢ B;, then we have B; = B; and the above expression turns into
TleeB]l[e#v] 1l[e€ B
| B; | |Bi|
where for the equality we have used the fact that if ¢ € B; we must have e # v since v ¢ B;. If v € B,
then the above expression becomes
TleeB;U{v}]T[e#v] Tlee€ B
1 - . ’
(B + D -zhs) 1Bl
where for the equality we have used the fact that e € B; {v} and e # v is equivalent to e € B; to rewrite

the numerator and simplified (| B;|+ 1) (1 — ﬁ to

|Bi|
- | Bi | ’
|Bi|+1
to rewrite the denominator. We have therefore proved Equation (7) which finishes the proof together
with Equation ().

(I1Bi|+1)
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A.7 Query complexity

To analyze the query complexity of this algorithm, we first prove that checking if an element e can be
added to level i requires O(p - log(k)) oracle queries due to Lemma[A.T0] Consequently, the FiLTERING
algorithm requires O(|B}| - p - log(k)) queries to operate on level j.

Therefore, running Recursion on level i requires O™ - |B;| - p - log(k)) oracle calls to construct levels
i,i+1,...,i". Given the uniform invariant, in each update, we reconstruct at level i with probability
1/B;. Thus, the expected number of oracle calls for reconstructing at level i is O(* p log(k)).

Summing this up for all levels, the expected number of oracle calls is O((i*)? p log(k)), which can be
written as O(s™> pk* log(k)) because of Lemma

Finally, as mentioned in Section each element is applied in 0(10g(§)) parallel runs, resulting in a
total query complexity of O(s> pk* log?(k)).

Lemma A.10 (Lemma 3.2 in Banihashem et al.|[2024]]). Let I € 1 ; be an independent set of matroid
Mi(V;, 1)) and e be an element such that 1 U {e} ¢ I ;. Define X; :=1{e’ : [ —¢ +e € I;}. Let
w: 1U {e} = R be an arbitrary weight function and define x;j = argmingex,w(e’). The element x;
can be found using at most O(log(k)) oracle queries.

Lemma A.11. The number of levels i* is at most O (g)

Proof. For each element e € V, we have f(e) < MAX. Therefore, because of submodularity, we
have w(e) = f(elA;) < f(e) < MAX. Thus, we can conclude that w(A;) = },eq,. w(e) < k- MAX.

Moreover, if at level i, we add element ¢;, we have two cases:
o If ¢; does not replace any other elements, given the survivor invariant, w(e;) > #, which

means w(A;) — w(A;_y) > £MAX,

o If the element removes a set of elements U;(e;), its weight should be larger than (1+ /1 + é)

times the total weight of the removed elements in U;(e;). This means removing elements of
Ui(e;) and adding e; adds at least /1 + 1 - w(Ui(e;)) > \[1 + 1. 2MAX > eMAX,

Since after each level, the value of w(A;) increases by at least 8'N§<AX and it cannot exceed k - MAX,
the number of levels is at most

k-MAX k2
&MAX o
k

Next, we analyze the query complexity of calling REcursion on level i.
Lemma A.12. The total cost of calling REcursion(i) is at most O(s™' pk? - |B| - log(k)).

Proof. Based on Lemma[A.T0] inside the for loop of DepENDENCYDETECTION requires O(log(k)) query
calls to find a replacing element. Since each element is inside at most p matroids, we need to run
inside that for loop p times, which makes the query complexity of DeEpENDENCYDETECTION O(p - log(k)).

Since FinpSwaps calls DEpENDENCYDETECTION, and FILTERING calls FiInDSwaps on every element of | By,
one step of Recursion needs O(|B;| - p - log(k)) oracle calls.

As we proved in Lemma , the depth of recursion in REcursIon is at most O (g) Therefore, the
query complexity of REcursion(i) is O (s’lk2 “|Bil-p- log(k)). ]

Lemma A.13. For a specified value of MAX, each update operation in Algorithm UpDATEOPERATIONS
has query complexity at most O(s~*pk* log(k)).

Proof. Based on the uniform invariant, when we insert or delete an element, for each level i < i*, we

1 1
call Recursion(i) with probability ﬁ -1 [e € B;], which is at most ﬁ Using Lemma|A.12| the
i i
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query complexity for calling REcursion(i) is O(s™! pk? - |B;| - log(k)). Therefore, the expected number
of queries caused by level i is bounded by

I?l-l -0(s7' pI® - B - log(®) = O (57 pk* log(k)).

As Lemma bounds the number of levels by i* = O (k:z), we calculate the expected number of
query calls for each update by summing the expected number of query calls at each level:

i*

Z O (&7 pk* log(k)) < O (&7 pk* log(k)) .

i=1

To create an algorithm that operates independently of the value of MAX, we employ a strategy of
guessing MAX up to a factor of 2 using parallel runs. Each element is inserted into only log(k/¢)
instances of the algorithm. Consequently, we achieve the total query complexity as claimed in
Theorem 5.4

A.8 Approximation guarantee

In this section, we aim to establish the approximation guarantee of our algorithm. For this purpose, we
make the assumption that elements are not randomly discarded at the beginning. Instead, we discard
them with probability 1 — g when attempting to add them to our solution. While this adjustment does
not affect the solution itself, it simplifies the proof of the approximation factor. We denote the set of
elements discarded in this approach as R, and we use M to represent the set of elements filtered in
FinpSwaps because their marginal gain was less than %.

Before starting the proofs, we introduce some useful variables and notations. First, we define
A = Ufz]Ai as the union of solutions at all levels. Additionally, we introduce a crucial notation for
our proofs:

Definition A.14. Let e € V be an element and S C V be a set of elements. Let i > 0 be the largest
number such that e € B;. We define f(e : §) := A(elS \ B;), which calculates the marginal gain
of adding e to a subset of § containing only elements that have been selected or filtered in levels
preceding the level of selecting or filtering e. Note that w(e) = A(e|A;—1) = A(e|]Ai—1\B;) = f(e : Ai-1),
where w is the weight function defined in Algorithm Forsets T,S C V, we define f(T : S) :=
ZeET f (6 : S )

Additionally, for every element e € V, we define d(e) as the first level i such that e ¢ A; U B;.

Now we represent several lemmas from Feldman et al.| [2018]] and utilize them in our proofs. In the
following, we use the constant ¢, defined as ¢ := /1 + é.

A
Lemma A.15 (Lemma 7 in|Feldman et al.| [2018]]). f(A"\ Ay : A;) < M
c

1
Lemma A.16 (Corollary 8 in|Feldman et al.[[2018]]). f(A") < % - f(Ap).

Lemma A.17 (Proposition 10 in|[Feldman et al. [2018]]). For every independent set S €V \ (M UR),
there exists a mapping ¢s from elements of S to multi-subsets of A’ such that:

e Each element e € A appears at most p times in the multi-sets of {¢s(e) | e € S}.
e Each element e € A’ \ Ay appears at most p — 1 times in the multi-sets of {¢s(e) | e € S }.
o Each element e € S \ A’ satisfies w(e) < (1 +¢) - Xoeps(e) f(€ 1 Adgerry-1)-

o Lach element e € S N A’ satisfies w(e) < f(e' : Agey-1) for every e € ¢s(e), and the
multi-set ¢s(e) contains exactly p elements (including repetitions).

Theorem A.18. E[f(A’ U OPT)] < 92 . E[f(A)] + &f (OPT).

23



Proof. First, we break A’ U OPT into a union of four sets:

(A’ UOPT) < f(A)) + Z AelA) + Z AelA)) + Z AlelA") (submodularity)
OPT\(A’URUM) OPTNR OPTNM
<A+ DT wE@ Y we+ Y wie) (w(e) = AlelA) = Ae|A"))
OPT\(A’"URUM) OPTNR OPTNAM
<P A+ Sow@+ Y we+ Y. we. (Lemma[&T8)
¢ OPT\(A’URUM) OPTNR OPTNM

If wesetS = OPT \(RUM), we can use Lemma to bound the second term of the last expression:
DowE@sU+o > (@ Saer).

OPT\(A"URUM) ecOPT\(A'URUM)
e’ €porr\rum(e)

Moreover,
fl@ :Saery-)+p- Y. we)

¢cOPT\(A’"URUM) c€OPTNA’
e’ €porr\rum(e)

IA

f€ S aen-1) (LemmalAI7)
ecOPT\A’
e’ €porr\rum)(e)

SP'Zf(e:Ai*)'i‘(P—l)' Z fle:Sae-1) (Lemma[A.17)

ecA eeA\Aj
_1
Sp-f(A,-*)+pT - f(Ar) (LemmaAT3)
_dtop =1
= c f(Ai).

Combining all together, we get:

favorny < 8 pan v a0 [P a3 e
¢ ¢ eeOPTNA’
+ Z w(e) + Z w(e)
OPTNR OPTNM
=M~f(Aw)—(l+c)p Z w(e) + Z w(e) + Z w(e).
¢ €cOPTNA’ ecOPTNR OPTNM

We can bound the last term given that for each element e € M, we have w(e) < # < &OPD and

|OPT| < k, we can conclude that

w(e) < ef(OPT).

e€cOPTNM

Now, we want to show that the expectations of the second term and the third term are equal. Consider
an arbitrary element e € OPT. Based on our assumption discussed at the beginning of this section
about discarding elements randomly, if they were going to be added to the solution instead of being
discarded at the beginning, each time an element is considered for addition to the solution, with
probability ¢ it will be added to A’ and with probability 1 — g it will be discarded, which means it
will be added to R. Therefore, we have

E[l[e € A’]-w(e)] E[l[e € R] - w(e)]
q I-q
where 1 [X] is set to one if X holds and is set to zero otherwise. Rearranging the above equality, we

have
E[ > w(e)}=%-E[ > w(e)}=(1+c)p~E > w(e)},

ecOPTNR ecOPTNA’ ecOPTNA’

>
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where the last equality comes from the fact that the equality é —1 = (1+c¢)p holds for g =

(p+p*+p+Dltandc= ,/1+%.

By combining the above, we get

2
f(A’UOPT) < W - f(Ar) + ef(OPT).

O

Lemma A.19 (Lemma 2.2 in[Buchbinder et al.|[2014]). Let g : 2V — R* be a submodular function.
Let S be a random subset of V such that each element appears in S with probability at most g, not
necessarily independently. We have E[g(S)] = (1 — q)g(0).

Proof of Theorem[5.5;  Let’s define g(S) = f(S U OPT). Since g is a non-negative submodular
function, and each element will be discarded with probability 1 — ¢, meaning it can appear in A’ with
probability at most ¢, we can use Lemma[A.19|to conclude that

1
E[f(A" U OPT)] = E[g(A)] = (1 - 9)g(0) = (1 — ¢) f(OPT) = ~f(OPT),

where the last equality holds because the equation 1 — g = % forg=(p+ \p2+p+ 1)~ and

c= L/1+ % Combining this with Theorem|A.18] we get

2
QLD gl fan)) +ef(OPT) = * - F(OPT),

or rearranging it as

c

1 1
E[f(A:)] > ———— |- — | foPT) =
A= (1+c)2p(c S)f( . [2p+2 Pp+1)+1

- &' | fopr).

]

Proof of Proposition[1.3; The proof of this result is analogous to the proof of the main result[T.T}
with the key difference that its approximation guarantee follows directly from Theorem [A.T8] which
relies solely on the equation é — 1 = (1 + ¢)p, unlike the proof of Theorem which also uses the

equation 1 — g = % This flexibility allows the approximation ratio to be optimized by adjusting the

parameters and setting c = 1 and g = 2p + 1)7\.

B Removing known MAX assumption

In this section, we show how to remove the assumption that we know a parameter MAX satisfying
maX,cp f(v) < MAX < 2max, ey f(v). While the techniques here are standard in the literature for
both dynamic and streaming |Kazemi et al.| [2019], [Lattanzi et al.| [2020]], Banihashem et al.| [2024]
submodular optimization, we here provide the approach and the proof for completeness.

B.1 Overview of the reduction

Let A denote a dynamic algorithm that operates without this knowledge, i.e., the algorithm presented
in the paper. We will maintain parallel runs of the algorithm A in memory which try to guess the
value MAX. Formally, for any integer i, possibly negative, let A; denote a run of the algorithm A
with the parameter MAX set to 2. Note that we will not actually initialize these runs for all i and will
only do so for some values based on the inserted elements.

When an element v is inserted, define I, as
I, := {i : ZZi <flv) < 2’}

For each i € 1,, if the instance A; is not initialized, then we initialize it. Next, for all i € I, we insert
vin A,.

When an element is deleted, we delete it from all ‘A; for i € I,,.

We always output the maximum answer among all parallel runs that are initialized. We note that this
does not require any queries.
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B.2 Analysis of query complexity

Since |1, | < log(k/€), and initializing A; with an empty ground set does not require any queries, the
expected query complexity of the algorithm is O(log(k/€)) times the expected query complexity of
A

B.3 Analysis of approximation guarantee

We first consider an alternative version of the algorithm in which we set I, to be

I, = {i D f) < 2i}

We claim that the output of this version is the same as the version described in Section[B.I] Note that
this new algorithm is used for the purpose of analysis only and is not actually used for implementation.

This is because if f(v) < §2i, then the algorithm simply discards it given the check in FinpSwaps. For

the new version of the algorithm, set i’ such that 2" ' < f(v) < 2. Given the analysis in Section |Al
the output of A; provides the desired approximation guarantee. Since we are always taking the
output of the A; with the best output, our output provides the desired approximation guarantee as
well.

26



NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: The abstract and introduction clearly and accurately state the claims.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

e The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

e The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

e Itis fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The assumptions made in the paper as well as the results are clearly stated and
therefore the limitations are clear.

Guidelines:

e The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

e The authors are encouraged to create a separate "Limitations" section in their paper.

e The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

e The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

e The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

e The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

e If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

e While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
Justification: A complete proof of theoretical results is provided.
Guidelines:
e The answer NA means that the paper does not include theoretical results.

e All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

o All assumptions should be clearly stated or referenced in the statement of any theorems.

e The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

o Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification: The paper makes a significant theoretical contribution and does not include
experimental results.

Guidelines:
e The answer NA means that the paper does not include experiments.

o If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

o If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

e Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

e While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: The paper makes a significant theoretical contribution and does not include
experimental results.

Guidelines:
e The answer NA means that paper does not include experiments requiring code.

e Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

e While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

e The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

e The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

e The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

e At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

e Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification: The paper makes a significant theoretical contribution and does not include
experimental results.

Guidelines:
e The answer NA means that the paper does not include experiments.

e The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.
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o The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: The paper makes a significant theoretical contribution and does not include
experimental results.

Guidelines:
e The answer NA means that the paper does not include experiments.

e The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

e The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

e The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

e The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

e For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: The paper makes a significant theoretical contribution and does not include
experimental results.

Guidelines:
e The answer NA means that the paper does not include experiments.

e The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

e The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

e The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
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10.

11.

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: Conforms to the guidelines
Guidelines:
e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

e The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: The paper is theoretical in nature and does not have societal impact.
Guidelines:

e The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

o Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

e The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

e The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

o If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

e The answer NA means that the paper poses no such risks.
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e Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

e Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

e We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:
e The answer NA means that the paper does not use existing assets.
e The authors should cite the original paper that produced the code package or dataset.

e The authors should state which version of the asset is used and, if possible, include a
URL.

e The name of the license (e.g., CC-BY 4.0) should be included for each asset.

e For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

o For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

o If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: No new assets are released.
Guidelines:
e The answer NA means that the paper does not release new assets.

e Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

e The paper should discuss whether and how consent was obtained from people whose
asset is used.

e At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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15.

16.

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not use crowdsourcing.
Guidelines:

o The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

¢ Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

e According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing.
Guidelines:

e The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

e Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

e We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

o For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: No LLMs were used in conducting the research or generating the results.
Guidelines:

e The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

e Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLN)
for what should or should not be described.
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