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Abstract
The choice of good distances and similarity measures between objects is important
for many machine learning methods. Therefore, many metric learning algorithms
have been developed in recent years, mainly for Euclidean data, in order to improve
performance of classification or clustering methods. However, due to difficulties in
establishing computable, efficient and differentiable distances between attributed
graphs, few metric learning algorithms adapted to graphs have been developed
despite the strong interest of the community. In this paper, we address this issue
by proposing a new Simple Graph Metric Learning - SGML - model with few
trainable parameters based on Simple Graph Convolutional Neural Networks -
SGCN - and elements of Optimal Transport theory. This model allows us to build
an appropriate distance from a database of labeled (attributed) graphs to improve
the performance of simple classification algorithms such as k-NN. This distance
can be quickly trained while maintaining good performance as illustrated by the
experimental studies presented in this paper.

1 Introduction
Classification of attributed graphs has received much attention in recent years because graphs are
well suited to represent a broad class of data in fields such as chemistry, biology, computer science,
etc [1, 2]. Advances were obtained, particularly thanks to the development of graph convolutional
neural networks (GCN) [3–6] of which many actually graph learning model can rely on [7, 8]. GCN
has attracted interest in the recent years, due to their low computational cost, their ability to extract
task-specific information, and their ease of training and integration into various models. Some tackle
classification problems for attributed graphs by leveraging GCN: they characterize and build Euclidean
representations for attributed graphs both in a supervised (e.g. [5, 9]) or unsupervised (e.g. [10, 11])
way. Despite these achievements, classification methods based on direct evaluation of similarity
measures between graphs remain relevant since they can obtain similar, and in some cases even better,
performance [12]. Currently, most of these methods work in a task-agnostic way. However, given the
diversity of graph datasets, we can not expect one similarity measure to be well suited for all of them,
on all learning tasks.

Adapting similarity measures to specific datasets and related tasks help to improve their generality
and their performance. One of such approach is known as Metric Learning (hereafter ML), and has
already been successful for Euclidean data. Xing et al. [13] were the first to propose a Metric Learning
method to improve a specific method and task (k-means for clustering of Euclidean data). This first
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work sparked a strong interest in ML which led to the development of many methods [14–17] for
Euclidean data. In contrast, few of these methods exist for attributed graphs. Existing methods (e.g.,
[18]) rely on iterative procedures which are hardly differentiable, and this makes also scalability
an issue. In the state-of-the-art of classification, neural networks tend to currently dominate in the
literature, yet building simple and learned (hence adapted to data and task) similarity measures
between attributed graphs remain a relevant issue for at least two reasons: it allows to step up simpler
graph classification algorithms, and also it allows to rely on graph kernels [1, 19] which are, as of
today, as efficient on numerous tasks as models relying on graph neural networks.

Our contribution. To address the issue of scalability in Metric Learning for graphs, we propose here
a novel graph ML method, called Simple Graph Metric Learning (SGML). In the first step, attributed
graphs are coded as distributions by combining the attributes and the topology thanks to GCN. Then,
relying on Optimal Transport, we define a novel metric between these distributions, that we call
Restricted Projected Wasserstein, RPW2 for short. RPW2 is differentiable and has a quasi-linear
complexity on the distribution size (in number of bins; this is also the number of nodes); it removes
certain limitations of the well known Sliced Wasserstein (noted SW2) [20]. RPW2 is then used
to build a parametric pseudo-metric between attributed graphs which then has also a quasi-linear
complexity on the graph size (in the number of nodes). The similarity measure proposed in SGML
has a limited number of parameters, and it helps the model to scale efficiently. Next, we focus on the
the k-nearest neighbors (k-NN) method for classification. An advantage of using k-NN is that, if the
learning set grows, one can exploit it at near zero additional cost (since it only requires to store these
new data) on the contrary of SVMs that would require to retrain the whole data (a task quadratic in
size). Since many real datasets (e.g., graphs from social networks, or to detect anomalies on computer
networks) are expected to have a growing size, this property is important for continual learning, and
from an energetic and environmental stance to avoid costly retraining. In order to use k-NN and train
the distance, we propose a novel softmax-based loss function over class point clouds. It appears to be
novel in the context of graph ML and it leads to better results in the explored setting than the usual
ML losses (i.e., those specifically built to improve k-NN for Euclidean data). Our experiments show
that SGML learns a metric increasing significantly the k-NN performance, compared to state-of-art
algorithms for graph similarity measures.

The article is organized as follows. In Section 2, we discuss related works on graph metric learning
and on optimal transport theory applied to the construction of attributed graphs similarity measures.
Section 3 provides useful notations and definitions needed for the present work. The SGML model is
defined in Section 4. Finally, in Section 5, we present various numerical experiments assessing the
efficiency of our model. These experiments show that in various conditions, SGML has great ability
to build accurate distance with competitive performance with the state-of-the-art in classification of
graphs, both in context of k-NN and kernel-based methods, and that despite its limited number of
parameters. A main advantage of the proposed SGML method is also its simplicity, hence leading to
a scalable and efficient method for graph Metric Learning. We conclude in Section 6.
Societal Impact The contribution is essentially fundamental, and we do not see any direct and
immediate potential negative societal impact. Conversely, the scalability of the method will help to
alleviate the energy consumption of ML on graphs.

2 Related Works

2.1 Graph Metric Learning

About ML for graphs, we can notably mention a series of works [21–23] that consist in learning
a metric through Graph Edit Distance (GED). The major disadvantage of these methods is the
complexity of the computation of the GED which can be only done for very small graphs.

Following the introduction of GCN, an approach based on Siamese neural networks has been proposed
in [24] for the study of brain connectivity signals, represented as graphs signals. In this specific case,
all graphs are the same and they differ only by the signal they carry. This makes this method not
applicable to most of datasets. More recently models without neural networks have been proposed:
[18] present Interpretable Graph Metric Learning which builds a similarity measure by counting the
most relevant subgraphs to perform a classification task. However, their method cannot handle large
graphs. [25] proposes to learn a kernel based on graph persistent homology. The resulting model is
also efficient, but it has the disadvantage of not being able to deal with discrete features in graphs.
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As seen, existing work on graph ML are either limited by the assumptions made to build their model,
or too costly, or not suitable to actually leverage simple (classification) algorithms and increase their
performance. To obtain a simple graph ML procedure that is not itself too costly, we need to have a
similarity measure between graphs that can be computed quickly. To construct such a distance, recent
works suggest that Optimal Transport is an appropriate tool.

2.2 Optimal Transport for Graphs

Optimal Transport (OT) has been put forward as a good approach to quickly compute similarity
measures between graphs, relying on the the fact that it provides tools for computing metric between
distributions [26]. Recent studies have shown that efficient distances and kernels for graphs can be
built from this theory. Fused-Gromov-Wasserstein [27] is such a metric (distance in a mathematical
sense) using OT to compare graphs through both their structures and attributes. Notably it allows
one to compute barycenter of a set of graphs, and interpolation between graphs. Experimentally, it
leads to good results in classification. Its bi-quadratic complexity in the size of graphs is its main
drawback, even if it can be reduced to cubic cost with entropic regularization.

In [28] an OT based approach to compare graphs is developed. It uses OT between specific signals on
the graphs. Thanks to a Gaussian distribution hypothesis, the analytical expression of the OT between
these signals is derived. While the model provides good results, it is initially limited to graphs having
the same size, and a task of node alignment (which has a cubic complexity) must be performed. [29]
relaxes the condition on size, yet the focus remains on graph alignment of non attributed graphs.

[12] has proposed the Wasserstein Weisfeiler-Lehman (WWL) method which can be seen as an
evolution of the previous work [28] without the two hypotheses, neither on the size of the graphs nor
on the specificity of the graph signals. In addition, a non trainable GCN is used to build task-agnostic
characteristics which are then compared through OT. This pseudo-metric is then used to build an
efficient kernel for graph classification. Unfortunately this model requires the computation of the
optimal transport map which has a cubic cost (or quadratic with entropy regularization).

While these models are efficient on classification tasks, their complexity remains high, and they are
not fast enough (being quadratic or more) to be incorporated in a framework of Metric Learning.
A part of our contribution is to provide such an optimal transport-based fast similarity measure for
attributed graphs, with no restriction on the nature of the graphs (and their attributes) to be compared.

3 Background on Metric Learning and Optimal Transport

Notations. Let us consider a finite dataset X = {xi}|X|i=1 whose elements are in Rq . The dataset comes
with a set of labels E = {ei}|E|i=1 and a labeling function E : X ! E. We note P(X) ⇢ P(Rq) the set
of discrete probability over X ⇢ Rq . �x is the Dirac distribution centered in x. We note d a metric
on X. It verifies the following properties: Symmetry - 8(x,y) 2 X2

, d(x,y) = d(y,x); Identity
of indiscernibles - 8(x,y) 2 X2

, d(x,y) = 0 , x = y; Triangle inequality - 8(x,y, z) 2
X3

, d(x, z)  d(x,y) + d(y, z). d is referred to as a pseudo-metric when it follows these properties
except the identity of indiscernibles. In this article, the term "distance" will be used sometimes
in an informal way as a synonym of discrepancy or measures of similarity. Additionally the term
"distribution" will always refer to discrete distribution.

3.1 Learning a metric

For ML, we suppose that a dataset X is given with the knowledge of two sets: S (similar) and D
(dissimilar), containing pairs of some elements of X. The goal is to build a parametric distance d✓ in
such a way that the pairs of elements in S should be close while the pairs in D should be far away1.
These sets are often built from the labeling function of X such that {xi,xj} 2 S if E(xi) = E(xj)
otherwise {xi,xj} 2 D. An optimization problem depending on d✓, S and D is then defined with a
loss function F suitable for the purpose:

max
✓

F(d✓,S,D) (1)

1Some algorithms use a third type of information, which consists of triples indicating that a given element
must be closer to such element than to another element [16].
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We denote ✓
⇤ the optimal parameters. The interest for building such a distance d✓⇤ with respect to

information in D and S lies in the fact that X is often included in a larger set, containing elements
which are not labeled. The goal is that the obtained distance d✓⇤ will ease learning algorithm to find
these missing labels. A part of our work will be to introduce a new and suitable loss function F in
metric learning literature for the problem of metric learning for graphs.

3.2 Optimal transport

Let us consider two finite datasets X, X0, and two distributions µ 2 P(X) et ⌫ 2 P(X0) on these sets:

µ =
X

xi2X
ai�xi and ⌫ =

X

x0
i2X0

bi�x0
i

(2)

with ai � 0, bi � 0, n = |X|, n0 = |X0|, and
Pn

i=1 ai = 1,
Pn0

i=1 bi = 1. Given a continuous cost
function c : Rq ⇥ Rq ! R+, one can build from optimal transport a metric between distributions
with support in Rq , the so-called 2-Wasserstein distance W2 :

W2(µ, ⌫) = inf
⇡i,j2⇧a,b

⇣ n,n0X

i,j=1

⇡i,jc(xi,x
0
j)

2
⌘ 1

2 (3)

⇧a,b is the set of joint distributions on X ⇥ X0, ⇡ =
Pn,n0

i,j=1 ⇡i,j�(xi,x0
j)

whose marginals are the
distributions µ =

P
x0

i2X0 ⇡(·,x0
i) and ⌫ =

P
xi2X ⇡(xi, ·). We note ⇡

⇤ 2 ⇧a,b the optimal
distribution (or coupling, or map) giving the solution of this problem. The cost function c is taken
as 2-norm: c(xi,x0

j) = ||xi � x0
j ||2, leading hence to the 2-Wasserstein distance. This defines an

efficient way to compare distributions. One could use differentiable versions (w.r.t the parameters of
a distribution) by considering the 1-Wasserstein [30] or the entropic regularization of W2 [26, 31].
Still, they are not suitable for metric learning because of the (initial) complexity (when n = n

0) in
O(n3 log n), or O(n2 log(n)) with entropic regularization thanks to the Sinkhorn algorithm [26].

Sliced Wasserstein distance (SW2). In order to drastically reduce the cost for computing the OT,
[20] has proposed a modified metric SW2 which consists to compare the measures µ and ⌫ via their
one dimensional projections. Let ✓ 2 Sq�1 be a vector of the unit sphere of Rq . Distributions µ and
⌫ projected along ✓ are denoted µ✓ =

P
xi2X ai�xi·✓ and ⌫✓ =

P
x0
i2X0 bi�xi·✓ . SW2 is defined as

follows:

SW2(µ, ⌫)
2 =

Z

Sq�1

W2(µ✓, ⌫✓)
2
d✓ (4)

The advantage of this formulation stems from the quasi-linearity in n (or n0) of the computation
cost of W2 distance between one dimensional distributions. The integral can be estimated via a
Monte-Carlo sampling. The complexity is then (when n

0  n) at most O(M(n log n)) with M

the number of samples (uniformly) drawn from Sq�1. However, [32] shows that SW2 is a biased
downwards compared to W2, since the vector ✓ for projection determines at the same time the OT
plans and also the cost of transport; this leads to a less effective distance.

Projected Wasserstein distance (PW2). When n = n
0, PW2 is introduced by [32] in answer

to previous limitations. PW2 is computed similarly as SW2, but for each projection ✓, the one
dimensional optimal transport plan ⇡

✓,⇤ between µ✓ and ⌫✓ is used with the original distributions µ
and ⌫ so as to compute the transport cost:

PW2(µ, ⌫)
2 =

Z

Sq�1

n,n0X

i,j=1

⇡
✓,⇤
i,j ||xi � x0

j ||22d✓ (5)

They show that this formulation defines a metric, has good properties and is more suitable for several
learning tasks, e.g. generative tasks or reinforcement learning. Unfortunately their result holds only
for uniform distributions of the same size. Our method rely on an extended version of this definition,
involving distributions of different sizes and not necessarily uniform.
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4 A Simple and Scalable Graph Metric Learning
Let us consider a dataset G of attributed graphs with labeling set E and labeling function E . For a
given graph G 2 G having A as adjacency matrix, we call n the number of node of the graph. Each
node i of G carry features X(i, :) 2 Rq; thus X 2 Rn⇥q is the matrix of attributes of the graph.

4.1 From graph to distribution

Previous works using OT (pseudo-)metric have shown that comparing graphs through the signal they
carry is a good way to compare them; we follow this path. The first step of our learning method
consists in the generation of features jointly representative of the structure of each graph G and the
attributes of their nodes X . We use for this purpose Simple GCN [6], a streamlined version of GCN
in which all the intermediate non-linearities have been removed. This choice is dictated by the need to
strongly reduce the number of trainable parameters, and it accelerates the training without degrading
its performance compared to other GCN. This Simple GCN creates features as:

Y = ReLU( eArX⇥) (6)

where X 2 Rn⇥q are the initial attributes of the nodes, eA = A+ In (where In is the identity matrix
of Rn) and Y 2 Rn⇥p are the features computed by SGCN. The neighborhood exploration depth r

of this GCN is one of the hyperparameters of the method, along with the dimension p of the extracted
features Y . The coefficients of the matrix ⇥ 2 Rq⇥p of this GCN are the (only) trainable weights of
the method. We will always choose p  q, so the method has at most q2 trainable parameters. From
the extracted features Y , we define a uniform distribution whose suport is the nodes’ characteristics:

D⇥(G,X) =
nX

i=1

1

n
�Y (i,:) (7)

This first step is similar to WWL [12], except that we consider a trainable GCN, ⇥ being the trainable
parameters. In eq. (7), both the structure G and the attributes X are accounted for. Next, we propose
a novel way to evaluate the similarity between attributed graphs using these distributions.

4.2 From distributions to distance

The distances between graphs are computed as a distance between their representative distributions
(Eq. (7)) with OT; specifically, we propose a novel one, called Restricted Projected Wasserstein (and
noted RPW2) extending PW2 previously introduced in [32].

Restricted Projected Sliced-Wasserstein. In [32], PW2 is only defined for uniform distributions
when n = n

0. We extend this definition to cases n 6= n
0, and we remove the constraint of uniformity.

We show in Appendix A.1 that it still defines a metric (on discrete distribution space).

In order to compute this quantity, we could rely on Monte-Carlo sampling, and the complexity would
be O(Mpn log(n)). This can be prohibitive due to the term pM . In order to have an even more
scalable model, we restrict the projections to be alongside the basis vectors {uk}pk=1 of Rp only.
This choice stems from a spanning constraint that allows us to define a quantity (named Restricted
PW2, or RPW2 for short) verifying the identity of indiscernibles without increasing significantly
the computing time (see Appendix A.1). This guarantees that RPW2 is also a metric of discrete
distribution space as PW2 (see also Appendix A.1). Therefore it can always distinguish distributions
that are different but also (associated with the continuity) that, when two distributions are getting
closer, then RPW2 tends towards 0; this is important in ML context. RPW2 is expressed as:

RPW2(µ, ⌫)
2 =

1

p

pX

k=1

n,n0X

i,j=1

⇡
uk,⇤
i,j ||xi � x0

j ||22 (8)

Note that RPW2 defines a metric therefore it should considered as such and not as an attempt to
approximate PW2. A major advantage of RPW2 is that it is defined by a deterministic formula; this
avoids the variability introduced by a Monte-Carlo sampling (when one would need to evaluate PW2

or SW2). Anyway, we can notice that for a given uk, many ⇡
uk
i,j may be optimal for the projected

distribution on uk, while they may lead to different values when computing Eq. (8). In order to have
an unambiguous and deterministic definition, in such cases we can choose among admissible optimal
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transport maps the one which minimizes Eq. (8). In fact it is even necessary for it to be a metric.
However since this case is quite rare, in our implementation we simply took the first one returned by
our sorting algorithm. The complexity of RPW2 is given by O(p2n log(n)) which saves a factor M

p
as compared to PW2 and this term is often greater than 10.

From RPW2, we define a parametric distance d
RPW2
⇥ between two attributed graphs (G,X) and

(G0
,X0) :

d
RPW2
⇥ (G,G0) = RPW2(D⇥(G,X),D⇥(G0

,X0)) (9)

All the metric learning experiments will be conducted using this distance, excepted in an ablative
study where we report the use of SW2 and PW2. Note that dRPW2

⇥ is a pseudo-metric, since there
are different graphs that can have the same features outputted by the GCN, hence leading to similar
representative distribution, therefore the identity of indiscernibles is not verified.

4.3 Loss for training distance: the Nearest Class Cloud Metric Learning

The last element to complete our model is to define the loss function F for Eq. (1). We propose
here a new loss function for the purpose of improving the k-nearest neighbors method. Actually
there are classical losses already efficient for this purpose: one can notably mention Large Margin
Nearest Neighbor (LMNN) [15] and Neighbourhood Component Analysis (NCA)[14]. However,
the optimization is done using a gradient descent algorithm. Since computing all pairwise distances
between graphs at each step of gradient descent would be intractable for large datasets, we have
to train our loss in a batch way. In this context, LMNN may be not relevant since this method
works locally and a batch is often not representative of the true neighborhood of an element of the
dataset. On the contrary NCA loss can be trained in a batch way, as it relies on a probability model
which tends to attract elements with the same label with each other, wherever they are. However,
preliminary experiments showed only a slight improvement of the k-NN with NCA. Therefore we
have constructed a new loss which proposes a different way to ensure the same condition (see
Appendix A.2) and which experimentally works better in our setting (see Ablative study, Sec. 5.4).
The model is called Nearest Cloud Class Metric Learning (NCCML); the probability of being labeled
by e 2 E for a graph G depends on the distance to the point clouds of a class (hence the name of the
method):

p⇥(e|G) =
exp

⇣
�
P

Gi2G
E(Gi)=e

d
RPW2
⇥ (G,Gi)2

⌘

P
e02E exp

⇣
�
P

Gi2G
E(Gi)=e0

d
RPW2
⇥ (G,Gi)2

⌘ . (10)

Given this probability, we want to construct the distance d
RPW2
⇥ maximizing the probability that the

labeled graphs in the dataset have the correct labels, which leads to solve the following problem:

max
⇥

FG
⇥ = max

⇥

X

Gi2G,E(Gi) 6=;

log p⇥(E(Gi)|Gi). (11)

By maximizing this loss, we construct a distance which, for each element, favors its relative distance
to elements of the same labels compared to those of different labels. This should favor k-NN,
especially when k > 1. We will show in the experiments that, in this specific context, NCCML
exhibits better performance than NCA. More details on NCCML can be found in Appendix A.2.

4.4 Computational aspects

We test, in the next Section, the proposed metric learning method with RPW2 (and SW2 or PW2

in ablative studies).

Optimization. In terms of optimization, we can differentiate directly with respect to one dimensional
distribution parameters of Wasserstein distance, thus we can also differentiate through RPW2

(Eq. (8)) (and also approximation of SW2 (Eq. (4)) or PW2). Self-differentiation techniques can
be used on these expressions (see [26]). We implemented our algorithm in tensorflow2. The

2The implementation can be found in the supplementary material.
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Algorithm 1 SGML: High-level algorithm to build d
RPW2
⇥⇤ .

Require: A dataset of attributed graphs G and their labeling function E .
for each epoch e 2 {1, . . . , E} do

Build a partition: [kBk = G such that Bk \Bk0 = ;.
for each batch Bk do

for each graph pair (G,G0) 2 Bk ⇥Bk do
Compute distance d

RPW2
⇥ (G,G0) (Eq. (9))

Compute �FBk
⇥ (Eq. (11)) and apply an iteration of Adam descent algorithm.

return all pairwise distance d
RPW2
⇥⇤ in G.

minimization of the loss is performed by batch and stochastic gradient descent (in particular with the
optimizer Adam [33]).

Parameters. The following default parameters are used (unless otherwise indicated in the text):
learning rate lr = 0.999 ⇤ 10�2, number of epochs E = 10, batch size B = 8, and the GCN output
features size p = min(5, q). For experiments involving SW2 and PW2, the sampling number is set
to M = 50 which is a common value used in the literature.

Time complexity. Theoretically, the training time is negligible compared to the computation of
all pairwise distances; therefore we focus on this last step for the time complexity analysis (see
Appendix A.5 for runtimes per dataset). If we denote ñ the number of average nodes of a graph,
the total complexity of this computation with RPW2 (resp. SW2) is given by O(|G|ñ(p2 + ñrp) +
|G|2p2ñ log ñ) (resp. O(|G|ñ(p2 + ñrp) + |G|2pMñ log ñ)). The first terms occur for application
of GCN and the latest for computing distances. In practice, for not too large ñ values, a quadratic
implementation exploiting vectorization can be faster (see section 5.2). Furthermore, one can see that
the GCN becomes the limiting element for scaling (on graph sizes); in practice, the sparsity of the
adjacency matrix and the optimizations on GPUs limit this problem. However, it is still an active
research topic to determine the less expensive ways to characterize the nodes [34, 35].

Spatial Complexity. Our quadratic implementation mentioned above requires to store in memory a
tensor of size O(ñ2

p) for RPW2 and O(ñ2
M) for SW2 or PW2. The sequential implementation

has a O(ñ) spatial complexity (more details on these implementations are in Appendix A.3). Anyway
for both implementations, for the dataset of graphs considered, SGML is very cheap in terms of
memory consumption in regards of actual GPU capability.

5 Experiments
5.1 Datasets

For the experiments, we use a large panel of data sets from the literature [2]3: ENZYMES, PROTEINS,
IMDB-B, IMDB-M, MUTAG, BZER, COX2 and NCI1. More information on these datasets can
be found in Appendix A.4. Additional details about the following experiments can be found in
Appendix A.7 for reproducibility. When a dataset has discrete features, they are one-hot encoded.

5.2 RPW2 Running times

We have generated uniform random (normal) distributions with support in R5 of size ranging from
101 to 106. These sizes of the distributions correspond to graph sizes n (number of nodes). The
choice of R5 is motivated by the usual good performance of ML when performed in small dimension.
We compare the running time to compute the distance between these distributions with W2, We

2 ,
(W2 with entropic regularization parameter � = 100), SW2 using POT [36] library, PW2 and
RPW2. For RPW2 we compare both the quadratic and the sequential (numpy) implementations
we developed. The results can be found on Figure 1. Additional details and results are given in
Appendix A.6.

As expected SW2, PW2 and RPW2 are the methods scaling the best: we obtain the expected
(quasi) linear slope for all three methods O(n log n). As soon as n > 104, These three methods

3http://graphkernels.cs.tu-dortmund.de
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Figure 1: Run time comparisons.

allows to compute distances between distributions of several orders of magnitude larger for the same
time as W2 and We

2 . Although SW2, PW2 and RPW2 scale mostly the same, SW2 seems a bit
faster than PW2 and RPW2. However, the slope of RPW2 is a little bit smaller than SW2 one.
(See Appendix A.6.) Anyway, we will show in the next experiment (Sec. 5.4) that RPW2 builds
better metrics than SW2. Finally, note that the quadratic implementation of RPW2 is the fastest for
samples with less than 200 instances, which is the case for the datasets considered in the following
experiments.

Table 1: Results of the main experiments for datasets of graphs with discrete attributes. Features
are node labels for NCI1, PROTEINS and ENZYMES; and degrees for others. Accuracy is in bold
green when it is the best of its block. For FGW-WL (resp. PSCN), depth is set to 4 (resp. 10).

Method MUTAG NCI1 PROTEINS ENZYMES IMDB-M IMDB-B

k-NN
RPW2 90.00± 7.60 72.12± 1.65 70.18± 4.01 49.00± 8.17 45.00± 5.46 68.90± 5.45
Net-LSD-h 84.90 65.89 64.89 31.99 40.51 68.04
FGSD 86.47 75.77 65.30 41.58 41.14 69.54
NetSimile 84.09 66.56 62.45 33.23 40.97 69.20

SVM & GCN
RPW2 88.95± 7.61 74.84± 1.81 74.55± 4.19 54.00± 7.07 51.00± 5.44 72.00± 3.16
WWL 87.27± 1.50 85.75± 0.25 74.28± 0.56 59.13± 0.80 7 7
FGW 83.26± 10.30 72.82± 1.46 7 7 48.00± 3.22 63.80± 3.49
FGW-WL 88.42± 5.67 86.42± 1.63 7 7 7 7
WL-OA 87.15± 1.82 86.08± 0.27 76.37± 0.30 58.97± 0.82 7 7
PSCN 83.47± 10.26 70.65± 2.58 58.34± 7.71 7 7 7

5.3 Supervised classification

We evaluate the method in two ways: by using k-NN directly on the computed distances, and by using
a SVM with a custom kernel built from the model proposed. We eventually compare the method to
several (pseudo-) metric and distances from literature such as NetLSD [37], WWL [12], FGW [27].

k-Nearest Neighbors. Datasets are split in a training (90%) and test set (10%). For each of
them we train RPW2 following Algorithm 1 (in the appendix) on the training set with only one
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Table 2: Results of the main experiments for datasets of graphs with continuous attributes
graphs datasets. The best accuracy are in bold green. Note that for PROTEINS, ENZYMES and
CUNEIFORM we concatenate continuous attributes with discrete attributes to build an extended
continuous attributes (see Appendix A.7 for more details).

Method BZR COX2 PROTEINS ENZYMES CUNEIFORM

RPW2 (kNN) 85.61± 2.98 79.79± 2.18 71.79± 4.47 51.66± 5.16 54.81± 12.26

SVM & GCN
RPW2 84.39± 3.81 78.51± 0.01 74.29± 4.11 48.83± 4.78 64.44± 10.50
WWL 84.42± 2.03 78.29± 0.47 77.91± 0.80 73.25± 0.87 7
FGW 85.12± 4.15 77.23± 4.86 74.55± 2.74 71.00± 6.76 76.67± 7.04
PROPAK 79.51± 5.02 77.66± 3.95 61.34± 4.38 71.67± 5.63 12.59± 6.67
HGK-SP 76.42± 0.72 72.57± 1.18 75.78± 0.17 66.36± 0.37 7
PSCN [K = 10] (GCN) 80.00± 4.47 71.70± 3.57 67.95± 11.28 26.67± 4.77 25.19± 7.73

hyperparameter to adjust: the depth of SGCN taken as r = {1, 2, 3, 4} for all datasets, except for
MUTAG for which we go up to 7. The training is done for each parameter r during 10 epochs. A
5-fold cross validation of the number of neighbors k = {1, 2, 3, 5, 7} to be considered is performed
on the training set using the considered distance. Then for the best k⇤, we keep the associated
validation accuracy, and we finally train a k-NN on the whole training set and evaluate its accuracy on
test set. This experiment is averaged on 10 runs. The final test accuracy retained is the one associated
to the largest validation accuracy. In this procedure, test set labels were never seen during neither
training nor validation. Results are given in the first lines of Table 1 for graphs having labeled nodes
and of Table 2 for graphs with continuous attributes.

The learning metric framework combined with k-NN allows us to obtain good performance in
classification tasks, in particular for datasets of graphs with continuous attributes. The exception
is ENZYMES where we can see a lower net performance. For discrete attributes, SGML performs
slightly below the state-of-the-art, yet it outperforms the existing distances classically combined with
k-NN. Experiments show that our graph ML distance framework is efficient.

Note: This procedure is very similar to the one used by WWL, except that the parameter k is replaced
by the corresponding parameters of their kernel (see next section).

SVM. To compare to graph kernel methods, the experiment described in the previous section is
reproduced using a SVM for classification. The kernel KRPW2 = exp(��d

RPW2
⇥⇤ ) is built from

the constructed distance. In this experiment, kernel hyperparameter � and SVM hyperparameter C
are tuned similarly as the parameter k above. The set of possible � (resp. C) values are 6 (resp. 12)
regularly spaced values between 10�4 and 101 (resp. 10�4 and 105 including 1). The results are
provided in Table 1 (bottom part).

In this part of the table, one can see that the distance learned with our model performs as well as other
OT distances when used as a kernel, on the majority of the datasets. We reach or are slightly above
state of the art results on 5 datasets over 6 but are still below on NCI1. We recall that our method is
specifically designed for the k-nearest neighbors method and that its computational complexity is
much lower than many of the best methods on these datasets (notably WWL and FGW).

5.4 Ablative study

We perform experiments to justify the design choice of our model. Specifically we show that these
choices effectively help to improve k-NN performance by reproducing the experiments above (with
k-NN) on different versions of the method without some (or all) of our propositions.

Raw model. Without any of our novel propositions, the method would be equivalent to WWL, which
corresponds to use the Wasserstein distance between distributions of Eq. (7), where Y is generated
with GIN [5], a non trainable GCN. This specific case corresponds to the first column denoted WWL
of Table 3. We see that even if there are datasets where there is a loss of performance, others benefit
from the learned metrics. Moreover we remind that our distance is much less expensive to use than
W2 on which WWL is based.
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Table 3: Ablative study results. Acc. is the accuracy. � is the difference in accuracy between the
model of the column and the proposed one SGML whose results are on Table. 1. Red negative (resp.
Green positive) number means that our model performs better (resp. worse).

Dataset WWL SGML - SW2 SGML - NCA SGML - PW2

Method Acc. � Acc. � Acc. � Acc. �

BZR 78.05 - 7.56 82.93 - 2.68 83.41 - 2.20 84.39 - 1.22
COX2 78.51 -1.26 78.30 - 1.49 77.66 - 2.13 78.94 - 0.85
MUTAG 83.68 - 6.32 86.84 - 3.16 87.37 - 2.63 90.00 0.00
NCI1 80.43 5.31 69.03 - 3.09 69.66 - 2.46 72.90 0.78
PROTEINS 71.60 1.42 71.34 1.16 71.70 1.52 70.54 0.36
IMDB-B 68.20 - 0.7 68.20 -0.70 67.40 -1.5 68.80 - 0.10
IMDB-M 48.73 3.73 42.33 -2.67 42.73 -2.27 44.13 - 0.87
ENZYMES 56.00 7.00 44.33 - 4.67 55.33 6.33 44.83 -4.17

SGML with SW2. This second ablative study is in the second column, denoted SGML-SW2, of
Table 3, and is related to replacing RPW2 by SW2. The result clearly validates our choice to use
RPW2 instead of SW2. Our model is the best one except on one dataset.

SGML with NCA. For this experiment we replaced the loss NCCML by the NCA loss. The result
is in the third column, SGML - NCA of Table 3. It appears that NCCML is often more appropriate
than NCA in our specific ML framework.

SGML with PW2. For this final experiment we used PW2 instead of RPW2. This experiments
show that PW2 and RPW2 have equivalent results. This suggests that projecting only on the
canonical basis is sufficiently informative while still being less costly.

Globally, the ablative study is in favor of the choices proposed for SGML. The driving idea in the
present article of choosing simple and scalable methods over more complex ones, leads to competitive
performance while allowing full scalability.

6 Conclusion
In this article, we proposed a metric learning method for attributed graphs, specifically to increase the
performance of k-NN. We have shown experimentally that it can indeed achieve performance similar
or even superior to the state of the art. However, a theoretical work on the properties of RPW2 will
be useful to allow us to better understand when it does not perform well. Appendix A.9 presents some
additional elements on the limits of the work. In addition, further work may easily adapt SGML to
perform other tasks like graph clustering or regression, with an appropriate (and probably different)
ML loss.
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