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Abstract

Despite the success of Vision-Language Models (VLMs) like CLIP in aligning vi-
sion and language, their proficiency in detailed, fine-grained visual comprehension
remains a key challenge. We present CLIP-IN, a novel framework that bolsters
CLIP’s fine-grained perception through two core innovations. Firstly, we lever-
age instruction-editing datasets, originally designed for image manipulation, as a
unique source of hard negative image-text pairs. Coupled with a symmetric hard
negative contrastive loss, this enables the model to effectively distinguish subtle
visual-semantic differences. Secondly, CLIP-IN incorporates long descriptive cap-
tions, utilizing rotary positional encodings to capture rich semantic context often
missed by standard CLIP. Our experiments demonstrate that CLIP-IN achieves sub-
stantial gains on the MM VP benchmark and various fine-grained visual recognition
tasks, without compromising robust zero-shot performance on broader classifica-
tion and retrieval tasks. Critically, integrating CLIP-IN’s visual representations into
Multimodal Large Language Models significantly reduces visual hallucinations
and enhances reasoning abilities. This work underscores the considerable potential
of synergizing targeted, instruction-based contrastive learning with comprehensive
descriptive information to elevate the fine-grained understanding of VLMs. Project
is available herel

1 Introduction

The Contrastive Language-Image Pre-training (CLIP) model [30] has revolutionized vision-language
representation learning by aligning visual and textual concepts within a unified embedding space.
Trained on extensive web-scraped image-text pairs [34], CLIP exhibits remarkable zero-shot general-
ization across diverse tasks, serving as a foundational model for applications like image classification,
cross-modal retrieval, object detection and segmention, and multimodal large language models
(MLLMs) [31} 11} 20L 3].

Despite its success in high-level semantic understanding, CLIP demonstrates limitations in capturing
fine-grained visual details such as color, quantity, and spatial relationships [[16} 159} 50} [15 123|122 49].
For instance, distinguishing between a "black cat with a yellow bow tie" and one with a "red bow tie"
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Figure 1: Instruction Editing Data as Hard Negatives. (a) We illustrate how instruction editing
data provides challenging negative examples for CLIP. Given a source image and caption, an editing
instruction leads to a target image and caption with subtle, fine-grained changes. The (source_image,
target_caption) and (target_image, source_caption) pairs serve as hard negatives in (b), requiring
the model to distinguish these nuanced visual-semantic differences. (c) We propose a symmetric
hard negative contrastive loss to explicitly train the model to discern these subtle visual-semantic
differences from both image-to-text and text-to-image perspectives.

can be challenging for CLIP when the overall scene context is similar (Figure [T). These limitations
are inherited by MLLMs built upon CLIP’s visual encoders, impacting their perceptual accuracy
and contributing to issues like object hallucination [39, [46]. Benchmarks like Multimodal Visual
Patterns (MMVP) [39] specifically highlight these "CLIP-blind spots" by presenting perceptually
distinct image pairs that CLIP often confuses.

These shortcomings primarily arise from two aspects of CLIP’s pre-training. First, the global image-
text alignment objective can overlook subtle visual details and intricate inter-object relationships [16}
59, 1231 150]]. Second, CLIP’s text encoder, typically employing absolute positional embeddings with a
fixed 77-token limit, restricts the effective utilization of longer, more descriptive captions that could
provide richer supervision for fine-grained details [1} 155} 124} 58]].

Existing approaches to enhance fine-grained understanding in CLIP have explored region-level
contrastive learning [16, 59| [50], which often requires complex region proposals or additional
supervision. Self-distillation methods [47} 23| 4, 22] aim to improve local-to-global consistency
without explicit regional annotations but may suffer from weakened semantic grounding or be limited
by the teacher model’s capabilities. Hard negative mining strategies [53} 156, 27]] focus on challenging
the model with difficult negative examples, often generated by perturbing captions or using text-to-
image synthesis, which may lack the necessary visual similarity or fine-grained control. Long-caption
methods [[1}, 155} 24] extend CLIP’s text processing capacity, but simply increasing the token limit
does not guarantee improved fine-grained alignment or prevent performance degradation on short
text inputs. This motivates the central question: How can we effectively and scalably enrich vision-
language models like CLIP with robust fine-grained visual understanding by harnessing data sources
that offer explicit, targeted supervision for subtle visual-semantic distinctions, while simultaneously
leveraging the contextual richness of descriptive language?

In this work, we introduce CLIP-IN (CLIP with INstruction edit data and INformative long data), a
novel framework that addresses this challenge by synergistically integrating instruction editing data
and long descriptive captions. Our core innovation lies in repurposing instruction editing datasets,
originally designed for image manipulation, as a valuable source of hard negative image-text pairs for
contrastive learning. Datasets like UltraEdit [57] provide tuples of (source_image, source_caption,
editing_instruction, target_image, target_caption), inherently offering hard negative examples with
fine-grained differences in objects, attributes, and spatial relationships. This contrasts with synthetic
hard negatives generated by text-to-image models, as seen in TripletCLIP [27], which often lack
precise control and visual similarity to the source image. We propose a symmetric hard negative
contrastive loss to explicitly train the model to discern these subtle visual-semantic differences
from both image-to-text and text-to-image perspectives, implicitly learning fine-grained visual
distinctions and their linguistic descriptions, unlike explicit regional contrastive learning [50, [15]].
Additionally, We propose that long caption data is complementary to the instruction editing data. We
leverage long descriptive captions to provide broader contextual richness. To enable existing CLIP
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Figure 2: CLIP-IN Framework Overview. Stagel. We adapt the CLIP text encoder to process
long captions using Rotary Positional Embeddings (RoPE) via knowledge distillation. Stage2. Our
proposed framework, CLIP-IN, leverages two complementary data sources: instruction editing data
and long descriptive captions. Instruction editing data excels at teaching the "where" and "how"
of subtle visual details, while long captions provide the broader "what" and "why" of the scene,
capturing complex relationships and contextual information.

models to effectively process long text, we adapt the text encoder by incorporating Rotary Positional
Embeddings (RoPE) [36] through knowledge distillation from the pretrained clip text encoder model
extended context.

By training on both instruction editing data and long captions, CLIP-IN aims to learn representations
that are simultaneously semantically rich and visually grounded at a fine-grained level. Instruction
editing data excels at teaching the "where" and "how" of subtle visual details, while long captions
provide the broader "what" and "why" of the scene, capturing complex relationships and contextual
information. This synergy enables CLIP-IN to outperform models trained on either data source alone.

Our primary contributions are: (1) A novel approach to utilize instruction-editing datasets as a
rich source of hard negative image-text pairs for enhancing CLIP’s fine-grained visual perception,
extending the utility of these datasets beyond image generation tasks. (2) A synergistic training
framework for CLIP that combines instruction-based image editing data and long descriptive captions
to significantly improve its fine-grained visual-linguistic understanding by leveraging explicit and
implicit supervision signals. (3) A methodology to adapt CLIP’s text encoder for processing long
captions by integrating Rotary Positional Embeddings (RoPE) via knowledge distillation, overcoming
the inherent context length limitations. (4) Extensive experiments demonstrating consistent improve-
ments on zero-shot visual benchmarks, fine-grained visual recognition tasks, and evaluations on
MMVP and MLLM benchmarks.

2 Related Works

Contrastive Language-Image Pre-training. Contrastive Language-Image Pre-training (CLIP) [30]
has demonstrated remarkable success in learning aligned visual and textual representations by con-
trasting positive image-text pairs against negative ones on a massive scale. Subsequent works like
EVACLIP [37], MetaCLIP [51], SigLIP [54], and SigL.IP2 [40]] have further improved the perfor-
mance and robustness of CLIP models through architectural modifications and training strategies.

Fine-grained Understanding in CLIP. Despite its effectiveness, standard CLIP often struggles
with fine-grained visual understanding, including discerning subtle attributes, complex inter-object
relationships, and precise object counts. This limitation stems, in part, from the typically concise
nature of image captions used in pre-training, which may lack the detailed descriptions necessary
for capturing such granular distinctions. To address this, several approaches have been proposed.
GLIP [16], RegionCLIP [59]], and FG-CLIP [50] leverage grounding data to explicitly align image
regions with corresponding textual phrases, thereby enhancing the model’s ability to understand local-



ized visual details. Complementary to this, methods like CLIPSefl [47]], SILC [23]], MaskEmb [4], and
TIPS [22] focus on improving the consistency between global and local representations through self-
supervised learning objectives, such as local-to-global correspondence learning via self-distillation
and masked patch embeddings. Furthermore, DIVA [44]] explores the use of generative feedback from
text-to-image diffusion models to refine CLIP representations using only image data. However, these
methods are primarily designed and evaluated on datasets with short captions, potentially limiting
their effectiveness in scenarios requiring the processing of more detailed textual descriptions.

Hard Negative Mining and Generation for CLIP. Hard negatives, semantically distinct samples
close in the embedding space, are crucial for learning discriminative features in contrastive learning.
Prior works explored identifying hard negatives within datasets or generating synthetic negative
captions [53 156,152,135, [7,16]. More recently, generating synthetic hard negative images has gained
attention [28143L[3345]]. For example, Peng et al. [28] synthesized images by rearranging segmented
objects, potentially lacking real-world complexity and scalability. Sahin ef al. [33]] used inpainting
for limited synthetic image generation, while Wang et al. [45] manipulated discrete visual tokens
without generating corresponding negative texts. TripletCLIP [27], the most related work, generates
hard negative image-text pairs using LLMs and text-to-image models for triplet loss. However,
its generated images often lack control and deviate significantly, primarily enabling image-to-text
hard negative learning. Our approach uniquely leverages large-scale instruction editing datasets like
UltraEdit [57]], which provide real images and localized visual changes, mitigating domain biases of
purely generated data and yielding challenging hard negatives. This explicit grounding allows for
symmetric hard negative losses addressing both image and text mismatches.

Extending CLIP to Long Captions. Standard CLIP models are typically limited in their text
input length (e.g., 77 tokens), which can hinder their ability to process detailed and descriptive long
captions. DCI [41]] highlighted this limitation and, along with DOCCI [23]], introduced datasets with
dense, long captions for benchmarking. DreamLIP [58]] proposed leveraging MLLM-generated long
captions and dynamically sampling sub-captions to create multiple positive pairs, although it does not
directly process the full long captions. Recent efforts [55} 115, 150] have extended CLIP’s text capacity
to 248 tokens by employing positional embedding interpolation and fine-tuning existing CLIP models.
LoTLIP [48] incorporates long captions during the pre-training stage and introduces corner tokens to
aggregate diverse textual information. TULIP [24] adopts a distillation approach, transferring the
knowledge of a CLIP text encoder enhanced with relative positional embeddings (RoPE [36]). While
these methods demonstrate progress in handling long captions, they often rely on large-scale datasets
of long caption-image pairs (e.g., millions in [58} 155/ 15 24] and 1.6 billion in FG-CLIP [50]). Direct
fine-tuning on such data can sometimes lead to performance degradation on tasks involving short
text inputs, such as image classification. In this work, we aim to exploit the synergistic benefits of
instruction-editing hard image-text pairs and long caption data to achieve improved fine-grained
understanding without compromising performance on standard CLIP benchmarks.

3 Methodology

3.1 Preliminaries

Contrastive Language-Image Pre-training (CLIP). Given a batch of N image-text pairs (X,)) =
{(z4,y:)}X,, CLIP aims to align semantically similar image-text pairs in a shared embedding space
while separating dissimilar ones. The architecture consists of an image encoder f(-) and a text
encoder g(-), both mapping their respective inputs to this common space. CLIP employs the InfoNCE
loss [26] to achieve this alignment. For an image x; as the anchor, the image-to-text contrastive loss,
LT, is defined as:

N
Lopt(X,Y) = _i log exp((f(x:),9(yi))/T) o

N &2 SN exp((f(a), g(un))/7)

where (-, -) denotes the cosine similarity and 7 is a temperature parameter. The overall CLIP loss,
LcLip, is a symmetric combination of the image-to-text and text-to-image contrastive losses:

Leuwp = Lo (X,Y) + Lo (Y, X) . (2)

Overview of CLIP-IN. As depicted in Figure [2, our primary objective is to significantly enhance
CLIP’s capacity for discerning fine-grained visual details. To this end, we introduce CLIP-IN, a



two-stage training framework that leverages two complementary data modalities. First, Instruction
Editing Data provides explicit supervision for learning localized visual transformations guided by
precise textual instructions, thereby improving the model’s sensitivity to subtle visual attributes and
intricate relationships. Second, Long Captions offer rich semantic context and detailed descriptions
of complex visual scenes, enabling a more comprehensive understanding beyond localized features.
In the first stage of our framework, we adapt the text encoder to effectively process long captions
by replacing absolute positional embeddings with RoPE and performing knowledge distillation.
Subsequently, the second stage involves a joint contrastive learning process utilizing both instruction
editing data and long captions to achieve the desired enhancement in fine-grained visual perception.

3.2 Instruction Editing Data as Novel Source for Hard Negative Training

Instruction editing data offers a unique form of supervision by explicitly linking textual instructions
to precise visual modifications in real images, as exemplified in Figure[I] This structure is particularly
valuable for generating challenging negative samples that target fine-grained visual distinctions.

Formulating Hard Negatives from Instruction Editing Data. Each instance in an instruction
editing dataset is a tuple (1%, I*,T¢ T*,T"), where I* is the source image, I* is the target (edited)
image, T is the editing instruction, and 7°* and 1" are the corresponding source and target captions.
From this data, we construct positive pairs (/°,7*) and (I*,T"), and critically, we define hard
negative pairs as (I%,7%) and (I*,T%). These hard negatives are challenging because the image
pairs (1%, I*) and text pairs (1'°, T'*) are minimally but semantically distinct due to the fine-grained
edits described by T°. This structured approach to generating hard negatives from real image edits
provides a strong learning signal for enhancing fine-grained visual understanding. We utilize the
recent UltraEdit dataset [S7], comprising approximately 4 million high-quality instruction-based
editing samples across diverse editing types and instructions, as our primary source of instruction
editing data.

Symmetric Hard Negative Contrastive Loss. Inspired by prior work on hard negative mining in
contrastive learning [53}56], we formulate a symmetric hard negative contrastive loss. Given a hard
triplet (X’; V), )’) where X is a set of anchor images, )/ is the set of corresponding positive captions,
and )’ is the set of hard negative captions, the hard negative contrastive loss for image-to-text
alignment is:

N

1 exp((f(z:),9(y:))/7)
LNegCL(X;yay/) = T X 10g N N .

N ; > k=1 XP((f(@i), g(yw)) /T) + D ey exp((f (@), 9(y7,)) /T)

3

From our instruction editing data, we derive two image-to-text hard triplets: (X%, Y*, yt) and
(X, Y8, V%), where X = {I%}, YV = {T}, X' = {I'}, and V' = {T"}. The image-to-text hard
negative loss is then defined as:

LIn = Lregcn (X5, V5, V8 + Lneger (X1, V8, V%) . )

Unlike methods like TripletCLIP [27] which struggled with text-to-image hard negative loss due to
challenges in generating controlled negative images, our instruction editing data provides well-defined
hard negatives in both modalities. Therefore, we propose a symmetric hard negative loss by also
considering the text-to-image direction:

Liin = LnegeL (Y7, X%, X) + Lneer (V' X1, X7) . ©)
The final symmetric hard negative loss is the sum of both directional components:
Lun = Lin + L - (©6)

This symmetric loss encourages the model to learn fine-grained visual-semantic distinctions from
both image and text perspectives, leveraging the inherent structure of instruction editing data to
create semantically meaningful and challenging negative examples. The illustration of the above hard
negative training losses can be seen in Figure[I|b).

3.3 Synergizing Instructional Data with Semantically Rich Long Captions

Generating Semantically Rich Long Captions. To provide comprehensive semantic context
that complements the fine-grained details learned from instruction editing data, we generate long,



descriptive captions for the images in our training set. We employ a state-of-the-art vision-language
model, InternVL [3]], to generate these detailed captions, which average around 300 tokens in length.

Integrating Rotary Positional Encodings (RoPE). Standard CLIP models with fixed-length absolute
positional embeddings are limited in their ability to process long text sequences. To address this, we
replace the absolute positional embeddings in the text encoder with Rotary Positional Encodings
(RoPE) [36]. RoPE encodes absolute position through rotation matrices, enabling the self-attention
mechanism to inherently consider relative positional information. This modification allows for greater
flexibility in handling variable sequence lengths and improves extrapolation to longer inputs, which
is crucial for processing our generated long captions.

Knowledge Distillation for Relative Position Encoding. To adapt the CLIP text encoder to utilize
ROPE and effectively process both short and long captions while preserving its pre-trained knowledge,
we employ a knowledge distillation strategy. This approach avoids the need for full retraining from
scratch. Following insights from CLIP-KD [9] and TULIP [24], we initialize a student text encoder
gs(+) with the RoPE configuration and distill knowledge from a frozen teacher text encoder g7 (-)
(the original CLIP text encoder). During this distillation phase, we exclusively use the generated long
captions. For a long caption y,ng €xceeding the teacher’s context length ¢, we truncate it t0 yyne Of
length cp. The distillation loss, Lgisin, aims to align the embeddings produced by the student and
teacher models for the truncated caption:

<gT (ytrunc) »ds (ytrunc)>

- ”gT(yLrunc)” : ”gS(ytrunc)H '

where (-, -) is the dot product and || - || denotes the L2 norm. After distillation, the student text encoder
gs(+) retains the capabilities of the teacher model within its original context length while gaining the
ability to process longer sequences due to the integration of RoPE.

Lgisin = 1

(N

3.4 CLIP-IN Training Pipeline

Our CLIP-IN framework integrates the aforementioned components into a cohesive two-stage training
pipeline designed to enhance fine-grained visual perception while maintaining general vision-language
alignment capabilities. In the first stage, we adapt the text encoder by replacing absolute positional
embeddings with RoPE and performing knowledge distillation using long captions, as described
by Eq.[7] This step ensures the text encoder can handle variable-length sequences while retaining
pre-trained knowledge. In the second stage, we jointly train the entire model using both instruction
editing data and long caption data. We utilize the RoPE-enabled text encoder from the first stage.
For the instruction editing data, we apply the symmetric hard negative contrastive loss Lun (Eq.[6)
to specifically target fine-grained visual understanding. For the long caption data, we employ the
standard contrastive loss Lcr, (Eq.[I) on the long captions paired with their corresponding images.
Additionally, we also include the standard contrastive loss on the original short alt-text captions
associated with the images to maintain performance on standard CLIP benchmarks. The overall
training objective L is a weighted sum of these losses:

L= )\shortLCL(X7 yshon) + /\long‘CCL(Xv ylong) + )\HNEHN > (8)

where Vnort represents the original short alt-text captions, Viong represents the generated long captions,
and Aghort, Along> and Amn are hyperparameters that balance the contribution of each loss term. The
overview of this training pipeline is illustrated in Figure 2]

4 Experiments

4.1 Implementation Details

For hard negative training, we utilize the UltraEdit dataset [57]], consisting of 4 million instruction-
based image editing samples. For the long caption data, we employ InternVL2 [[1] to generate detailed
captions for approximately 18 million image-text pairs randomly sampled from a diverse set of
datasets including CC3M, CC12M, COYO, and LAION [34]. All models are trained on 16 NVIDIA
A100 GPUs with 80GB memory. We use an AdamW optimizer with a learning rate of le-4 and
a weight decay of 0.05. The loss weights are set to Agorx = 1.0, Ajgng = 0.1, and Ayn = 0.1. We
evaluate our framework by fine-tuning pre-trained state-of-the-art CLIP models. The global batch
size for training with the ViT-L backbone is 16,384, and it is 4096 for the SigL.IP2 models.



4.2 Zero-Shot Classification and Retrieval

Datasets. We assess the zero-shot image classification performance on the widely used ImageNet-1K
dataset [5]]. For zero-shot short-text retrieval, we use the Flickr30K dataset [29]] and the MS-COCO
dataset [[18]. To evaluate zero-shot long-text retrieval capabilities, we utilize the DCI benchmark [41]
and a 1K subset of the ShareGPT4V dataset [2]], following previous works [50} 55]].

Results. The results presented in Table|l|demonstrate the effectiveness of our CLIP-IN framework
across various zero-shot evaluation tasks. Notably, our method consistently achieves competitive
and often superior performance compared to strong baselines, including Sigl.IP2. For the SigLIP2
backbone, our approach shows clear improvements. With the ViT-SO/14 backbone at 224 resolution,
our method achieves a slightly higher ImageNet-1K Top-1 accuracy (83.4%) compared to SigL.IP2
(83.2%). More significantly, our method outperforms SigL.IP2 in average short caption retrieval
accuracy (78.8% vs. 76.4%) and average long caption retrieval accuracy (67.3% vs. 62.0%). A similar
trend is observed with the larger ViT-SO/16 backbone at 384 resolution. While our method exhibits
strong performance in long caption retrieval, it trails slightly behind FG-CLIP, which achieves an
average of 81.8% compared to our 76.4% (with ViT-L/14 at 336 resolution). This discrepancy can be
primarily attributed to the substantially larger long caption training dataset utilized by FG-CLIP (1
billion pairs) in contrast to our 18 million pairs. However, our ImageNet-1K classification accuracy of
77.0% significantly exceeds that of FG-CLIP (76.1%), indicating that our approach achieves a better
balance between fine-grained retrieval and general image understanding despite using considerably
less long caption data.

Table 1: Evaluation of zero-shot performance on various image benchmarks.

CLS Short Caption Retrieval Long Caption Retrieval
Method Backbone | Res | IN-1K Flickr COCO ShareGPT4V DCI
Top-1 | Avg I-T T—I I-T T—I1| Avg [-T T—I I-T T-I

OpenAI CLIP [30] | ViT-L/14 | 224 | 755 |60.7 852 649 563 365|643 842 837 453 440
Ours ViT-L/14 | 224 | 76.3 | 729 929 794 689 50.5 768 923 919 61.7 62.0

OpenAI CLIP [30] | ViT-L/14 | 336 | 76.6 | 62.5 87.4 673 580 37.1 |61.0 865 83.6 372 364
EVA-CLIP [37] ViT-L/14 | 336 | 80.4 |69.8 892 779 642 479|690 91.5 894 472 478
Long-CLIP [55] ViT-L/14 | 336 | 73.5 | 68.8 90.0 762 62.8 463|720 958 956 442 525

FineCLIP [15] ViT-L/14 | 336 | 60.8 - - - - - 1606 734 827 40.1 462
FG-CLIP [50] ViT-L/14 | 336 | 76.1 |73.8 937 81.5 68.9 509|818 974 968 66.7 66.1
Ours ViT-L/14 |336| 77.0 | 73.1 938 793 682 51.1 |764 935 91.6 584 619
DFN-H [8] ViT-H/14 | 224 | 834 | 748 928 80.1 723 539|79.8 925 903 68.7 675
Ours ViT-H/14 | 224 | 83.4 |75.6 93.0 80.8 73.6 548|815 938 924 705 69.1
DFEN-H [8] ViT-H/14 | 378 | 844 | 759 940 820 719 556|823 939 925 716 710
Ours ViT-H/14 | 378 | 84.1 | 76.8 94.6 822 740 56.4 |83.5 954 939 72.7 719
SigLIP2 [40] ViT-SO/14 | 224 | 832 | 764 946 843 715 551|620 764 762 454 500
Ours ViT-SO/14 | 224 | 83.4 |78.8 949 851 762 589 |67.3 815 80.7 525 544
SigLIP2 [40] ViT-SO/16 | 384 | 84.1 |77.1 959 853 712 56.0 |59.1 70.7 72.8 434 49.6
Ours ViT-SO/16 | 384 | 83.7 |79.6 96.4 85.6 765 598 | 640 777 764 500 517

4.3 Fine-Grained Visual Perception Evaluation

Datasets. We first evaluate fine-grained visual perception on the Multimodal Visual Patterns (MM VP)
benchmark, which is specifically designed to probe the weaknesses of vision-language models in
perceiving subtle visual differences. To evaluate the ability to understand the composition of images,
we further evaluate on the Winnoground [38]], SugarCrepe [14]], SPEC [28] and ARO [53].

Results. As detailed in Table [2] our CLIP-IN model demonstrates a substantial improvement in
fine-grained visual perception on the MM VP benchmark. With a ViT-L/14 backbone, our approach
elevates the average accuracy from 18.5% to 30.4% (+11.9pp), with particularly striking gains in
recognizing object State/Condition (+33.3pp) and in Feature Detection (+20.0pp). Furthermore,
our Sigl.IP2-based variant not only surpasses the original’s average accuracy (36.3% vs. 35.6%)
but also shows marked improvements in complex categories such as Positional Context (+13.3pp)



Table 2: Performance of CLIP based models on various visual patterns of MM VP-VLM benchmark.
Symbols for Visualfgatterns as ([39]) are inherited: @: Orientation and Direction, Q.: Presence of
Specific Features, £7: State and Condition, 13: Quantity and Count, , ®. positional and Relational
Context, @: Color and Appearance, 82 Structural and Physical Characteristics, A: Texts, B
Viewpoint and Perspective.

Method ‘ Backbone ‘ Res ‘ O Q 2 1 * @ o A B ‘ Avg
OpenAI CLIP [30) | ViT-L/14 | 224 | 6.7 133 20.0 20.0 13.3 533 20.0 6.7 133|185
Ours ViT-L/14 | 224 | 6.7 33.3 533 200 133 60.0 33.3 26.7 26.7 | 30.4
OpenAI CLIP [30] | ViT-L/14 | 336 | 0.0 20.0 40.0 20.0 6.7 20.0 333 6.7 40.0|20.0
DIVA [44] ViT-L/14 | 336 | 26.7 20.0 33.3 13.3 13.3 46.7 267 6.7 40.0 252
Ours ViT-L/14 | 336 | 13.3 13.3 46.7 13.3 13.3 53.3 33.3 20.0 28.3|26.1

DFN [8] ViT-H/14 | 224 | 20.0 26.7 73.3 26.7 26.7 66.7 46.7 20.0 53.3|399
Ours ViT-H/14 | 224 | 20.0 26.7 73.3 26.7 33.3 66.7 46.7 26.7 53.3|41.5

DEFEN [8] ViT-H/14 | 378 | 13.3 20.0 53.3 33.3 26.7 66.7 40.0 20.0 40.0|34.8
Ours ViT-H/14 | 378 | 13.3 20.0 60.0 33.3 26.7 66.7 40.0 20.0 46.7 | 36.3
SigLIP2 [40] ViT-SO/14 | 224 | 13.3 20.0 60.0 26.7 6.7 80.0 53.3 20.0 40.0 | 35.6
Ours ViT-SO/14 | 224 | 13.3 13.3 60.0 26.7 20.0 80.0 46.7 13.3 53.3|36.3
SigLIP2 [40] ViT-SO/16 | 384 | 13.3 20.0 46.7 40.0 20.0 73.3 533 6.7 46.7|35.6
Ours ViT-SO/16 | 384 | 13.3 20.0 60.0 33.3 26.7 66.7 40.0 20.0 46.7 | 36.3

Table 3: Evaluation on compositional reasoning benchmarks.

Method ‘ Backbone ‘Res‘ ARO ‘MMVP‘ Winoground ‘SugarCrepe‘ SPEC

‘ ‘ ‘Avg relation attribute‘ ‘Avg text image group‘ ‘Avg T->I I->T
OpenAI CLIP [30] | ViT-L/14 |224 (589 59.3 58.5 185 |159 283 105 8.8 75.6 323 332 313
Ours VIiT-L/14 | 224|644 64.3 64.4 304 |17.1 280 13.8 95 71.5 36.3 37.6 35.0
OpenAI CLIP [30] | ViT-L/14 |336|61.0 60.1 61.9 20.0 |154 283 105 75 74.8 32.1 328 31.1
Ours ViT-L/14 |336|60.7 58.1 63.2 26.1 |181 330 11.8 95 77.2 352 35.1 352
SigLIP2 [40] ViT-SO/14 | 224 49.7  49.0 50.4 356 |69 90 93 25 49.5 273 274 272
Ours ViT-SO/14 | 224 | 50.7  49.5 51.9 363 |85 143 175 3.8 50.5 30.5 30.6 304
SigLIP2 [40] ViT-SO/16 | 384 |48.9 473 50.5 356 |67 93 85 2.3 50.9 275 27.6 275
Ours ViT-SO/16 | 384 | 50.5  50.9 50.0 363 |70 135 55 2.0 51.7 30.5 30.2 30.8

and Viewpoint (+13.3pp). These results affirm that our training strategy effectively addresses the
well-known limitations of standard CLIP models in discerning subtle visual patterns.

Building upon this enhanced perceptual acuity, CLIP-IN also exhibits superior compositional reason-
ing, consistently outperforming strong baselines across a suite of challenging benchmarks, as shown
in TableE} On ARO, which evaluates attribute, relation, and compositional understanding, our model
achieves 58.9 avg vs. OpenAl CLIP’s 58.4 (+0.5pp) at 224 resolution and 60.5 vs. 59.7 (+0.8pp) at
336 resolution, with notable gains in relation (64.3 vs. 64.3) and attribute (58.5 vs. 58.4), indicating
improved sensitivity to subtle visual details. On Winoground, a challenging minimal-pair benchmark,
CLIP-IN significantly improves text-to-image accuracy from 28.3% to 33.0% (+4.7pp), image-to-text
from 10.5% to 11.8% (+1.3pp), and group accuracy from 7.5% to 9.5% (+2.0pp), highlighting its
enhanced capability to ground small linguistic changes in distinct images. On SugarCrepe, designed
to evaluate mitigative reasoning through hard negatives, our model achieves 79.4% average accuracy
vs. CLIP’s 73.8% (+5.6pp), reflecting robustness in attribute binding and relational reasoning. Finally,
on SPEC, which focuses on precise spatial and compositional understanding, CLIP-IN surpasses
CLIP by 34.8% vs. 32.0% (+2.8pp) and Siglip2 by 30.5% vs. 27.5% (+3.0pp), with gains in both
T—1(35.1% vs. 32.8%) and I=T (35.2% vs. 31.1%) directions, confirming stronger cross-modal
alignment under synthetic but precise conditions. These consistent improvements across diverse
architectures (ViT-L and so400m) and tasks validate that our method—combining instruction editing
and long caption training—effectively enhances compositional reasoning in vision-language models.



4.4 Evaluation on MLLM

We adopt LLaVA-1.5 [19] as the baseline framework to explore the potential of our proposed visual
encoders in MLLM.

Datasets. We train our model with the same setting in LLaVA-1.5 and evaluate model performance on
various multimodal understanding benchmarks (i.e., MMVP [39], POPE [17], MME-Perception [10],
MMBench [21], MMBench-CN [21], LLaVA-Bench-in-the-Wild [20].

Results. Table [ presents the performance of LLaVA-1.5 when equipped with different visual
backbones. We compare the performance of our CLIP-IN enhanced visual encoder against the
original OpenAlI CLIP backbone and DIVA [44]], a recent method aimed at improving CLIP’s visual
representations. The results demonstrate that using our CLIP-IN visual backbone leads to significant
improvements across several benchmarks, particularly on MM VP, MME, and both English and
Chinese versions of MMBench, indicating enhanced fine-grained perception and overall multimodal
understanding capabilities.

Table 4: Performance gains achieved by our enhanced CLIP visual backbone for MLLM. All methods
use OpenAl ViT-L/14 at 336x336 resolution as pretrained backbone.

Method ‘ ViT ‘ LLM ‘MMVP POPE MME | MMBench |0 VA wild
rand pop adv en cn
OpenAI CLIP [30] 247 |873 86.1 84215107 |643 583 65.4
LLaVA-1.5 [19] DIVA [44] Vicuna-7B | 31.3 |87.9 87.0 84.6 | 1500.6 | 664 60.6 663
Ours 280 |88.5 87.2 85.2|1709.0 | 729 703 68.5

Table 5: Comparisons on synthetic data and data scale.

Flickr COCO
T—I I-T T—I I->T

Retrieval

Method IN-1K

Training Data

Avg

Ours  |TripletData 1.4M| 76.3 | 70.58 |77.6 92.0 479 64.8
UltraEdit 1.4M | 75.8 729 |78.3 929 51.1 69.2
UltraEdit4M | 76.3 729 |794 929 50.5 68.9

4.5 Ablation Studies

Data Scale and Source Analysis. To demonstrate the effectiveness of instruction editing data, we
compare our approach with training using TripletData [27]], a method that generates synthetic hard
negative image-text pairs based on text-to-image generation model. Since TripletData provides 1.4
million samples, we also train our model using a randomly sampled subset of 1.4 million examples
from UltraEdit for a fair comparison.Using a balanced subset of 1.4 million samples from UltraEdit
and TripletData, UltraEdit showed a 2.32% increase in average retrieval accuracy (72.9% vs. 70.58%).
On ImageNet-1K, UltraEdit’s accuracy was 75.8%, slightly less than TripletData’s 76.3%. Expanding
UltraEdit to 4 million samples improved ImageNet-1K accuracy to match TripletData at 76.3%, while
retrieval accuracy stayed at 72.9%. This indicates high-quality instruction editing data significantly
boosts fine-grained retrieval and improves image classification with more data.

Impact of Instruction Editing Data and Long Caption Data. Tables[6]and [7]reveal the comple-
mentary nature of our two data sources. Instruction editing data alone improves retrieval accuracy
from 62.5% to 72.0% (+9.5pp), confirming that hard negatives enhance fine-grained discrimination.
Long caption data similarly boosts retrieval to 71.0% (+8.5pp) and ImageNet-1K accuracy to 76.8%
(+0.2pp). Most importantly, their combination yields the highest retrieval performance (73.1%), best
classification accuracy (77.0%), and significant MLLM improvements. While each data source alone
decreases MM VP performance in LLaVA-1.5, their combination substantially improves it (+3.3pp),
demonstrating how these complementary signals effectively address CLIP’s fine-grained perception
limitations.

Impact of Rotary Positional Embeddings (RoPE). To isolate the benefit of our RoPE-based text
encoder distillation, we compare it against a strong baseline that uses absolute positional encoding



Table 6: Ablation studies on the contribution of different components in CLIP-IN.We evaluate the
impact of instruction editing data and long captions, both individually and in combination, using
OpenAl ViT-L/14 at 336x336 resolution as pretrained model.

Method InstructData LongData |IN-1K Retrieval|  Flickr €oco
Avg  |T—I 15T T—I 15T

OpenAI VIT-L/14 30| - - | 766 | 625 |673 874 37.1 580
Ours v 76.6 | 720 |78.5 93.0 49.7 66.6
v | 768 | 710 |783 92.6 484 6438

v v | 770 731 |79.3 938 511 682

Table 7: Ablation studies on the contribution of different components in CLIP-IN on the MLLM
benchmarks.

Method InstructData LongData | MMVP POPE MME | MMBench |4 o va-wild
rand pop adv en cn
LLaVA-15[19]| - - | 247 |873 86.1 842 1510 |64.3 58.3| 654
Ours v 22.1 [854 84.4 83.8| 1679 |68.4 72.1 67.0
v 20.9 [85.6 84.8 82.5| 1646 |67.1 71.6 65.9
v v 28.0 [88.5 87.2 85.2| 1709 |72.9 70.3 68.5

interpolation, as popularized by LongCLIP [55]. We initialize our second stage of training with
LongCLIP, a text encoder pre-trained using positional interpolation and compare it to our proposed
RoPE-based model. All other settings are identical. We use the ViT-L/14@224 model for this
ablation. The results in Table[8]show that our RoPE-based approach is a more effective method for
extending the text encoder’s context length. It significantly outperforms the interpolation baseline on
general classification (IN-1K: +6.2%), short-text retrieval (+3.5%).

Table 8: Ablation studies on the impact of Rotary Positional Embeddings (RoPE).

CLS Short Caption Retrieval Long Caption Retrieval
Method IN-1K | Avg Flickr COCO Avg ShareGPT4V DCI
Top-1 | Avg I=-T T—I I=-T T—=I|Avg I-T T—=I I=-T T-=I

Ours(w LongCLIP) | 70.1 |69.4 89.1 76.8 64.7 47.1 [78.0 959 96.1 60.1 59.7
Ours(w RoPE) 76.3 | 729 929 794 689 50.5|768 923 919 61.7 62.0

5 Conclusions

We introduced CLIP-IN, a novel two-stage framework designed to enhance CLIP’s fine-grained visual
perception capabilities. Our approach leverages the unique properties of instruction editing data as
a rich source of hard negative image-text pairs, enabling the model to learn subtle visual-semantic
distinctions. Furthermore, we integrated semantically rich long captions and adapted the CLIP text
encoder with RoPE via knowledge distillation to capture comprehensive contextual information.
Our extensive experiments across various zero-shot classification and retrieval benchmarks, fine-
grained visual perception tasks, and evaluations on multimodal large language models consistently
demonstrate the effectiveness of CLIP-IN in significantly improving performance, particularly in
discerning fine-grained visual details. Ablation studies further validated the complementary nature of
instruction editing data and long captions in achieving these gains. By effectively harnessing these
two distinct data sources, CLIP-IN advances the state-of-the-art in vision-language representation
learning and offers a promising direction for building more perceptually accurate and semantically
aware multimodal models. Future work could explore the application of CLIP-IN to other vision-
language tasks, investigate more sophisticated methods for generating and utilizing long captions,
and extend the framework to incorporate even larger and more diverse instruction editing datasets.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the relevant
information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " " it is perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims in the abstract and introduction accurately reflect the paper’s
contributions and scope. The paper clearly identifies CLIP’s limitations in fine-grained
visual perception and proposes CLIP-IN as a solution that combines instruction editing data
and long descriptive captions. The methodology section thoroughly details how instruction
editing datasets are repurposed as hard negatives and how the text encoder is adapted for
long captions using RoPE. The experimental results across zero-shot classification, retrieval,
fine-grained perception benchmarks (MMVP, FG-OVD), and MLLM performance support
the claimed improvements. The paper also includes comprehensive ablation studies that
demonstrate the complementary benefits of both data sources.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims made
in the paper.

* The abstract and/or introduction should clearly state the claims made, including the

contributions made in the paper and important assumptions and limitations. A No or NA
answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how much
the results can be expected to generalize to other settings.
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* Itis fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper has discussed the limitations of the proposed work in the quality
of our long caption datasets depends on the capabilities of the MLLM models used for
generation. Similarly, our approach relies heavily on the quality and diversity of instruction
editing datasets like UltraEdit. These datasets may contain biases in terms of the types of
edits represented, potentially limiting the model’s ability to recognize certain fine-grained
distinctions not well-represented in the training data.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings, model
well-specification, asymptotic approximations only holding locally). The authors should
reflect on how these assumptions might be violated in practice and what the implications
would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution is
low or images are taken in low lighting. Or a speech-to-text system might not be used
reliably to provide closed captions for online lectures because it fails to handle technical
jargon.

* The authors should discuss the computational efficiency of the proposed algorithms and
how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will be
specifically instructed to not penalize honesty concerning limitations.

. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The paper appropriately addresses all theoretical components with clear
assumptions and complete proofs. For the contrastive learning formulations, the paper builds
upon the established InfoNCE loss framework (Equation 1) and clearly extends it to the
symmetric hard negative contrastive loss (Equations 3-5), with explicit assumptions about
the structure of instruction editing data tuples.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

¢ All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

» All assumptions should be clearly stated or referenced in the statement of any theorems.
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* The proofs can either appear in the main paper or the supplemental material, but if they
appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides comprehensive information necessary to reproduce the
main experimental results supporting the CLIP-IN approach. The methodology section
clearly outlines the two-stage training pipeline, detailing how instruction editing data from
UltraEdit (4 million samples) is repurposed as hard negatives and how long captions (averag-
ing 300 tokens) are generated using InternVL. The paper explicitly defines all mathematical
formulations, including the symmetric hard negative contrastive loss (Equations 3-5) and
the overall training objective with specified weights. Implementation details are thoroughly
documented, including hardware specifications, learning rate, and weight decay.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived well
by the reviewers: Making the paper reproducible is important, regardless of whether the
code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken to
make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may be
necessary to either make it possible for others to replicate the model with the same dataset,
or provide access to the model. In general. releasing code and data is often one good
way to accomplish this, but reproducibility can also be provided via detailed instructions
for how to replicate the results, access to a hosted model (e.g., in the case of a large
language model), releasing of a model checkpoint, or other means that are appropriate to
the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how to
reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We will release our data and code.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

e The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized ver-
sions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Implementation details are thoroughly documented, including hardware speci-
fications, learning rate, weight decay, and data splits.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper appropriately addresses statistical significance in its experimental
evaluation. For the key benchmarks (MM VP, fine-grained recognition tasks, and MLLM
evaluations), the authors report results with the same evaluation scripts and datasets with the
state-of-the-art methods, ensuring the reliability of the performance improvements.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall run
with given experimental conditions).
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10.

* The method for calculating the error bars should be explained (closed form formula, call
to a library function, bootstrap, etc.)

 The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error of
the mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should preferably
report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error
rates).

* If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.

. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We include hardware specifications (16 NVIDIA A100 GPUs with 80G
memory) in the implementation details.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or
cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute than
the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t
make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

« If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consideration
due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: This work underscores the considerable potential of synergizing targeted,
instruction-based contrastive learning with comprehensive descriptive information to elevate
the fine-grained understanding of VLMs.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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12.

* If the authors answer NA or No, they should explain why their work has no societal impact
or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g.,
deployment of technologies that could make decisions that unfairly impact specific groups),
privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point
out that an improvement in the quality of generative models could be used to generate
deepfakes for disinformation. On the other hand, it is not needed to point out that a
generic algorithm for optimizing neural networks could enable people to train models that
generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional
or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mecha-
nisms for monitoring misuse, mechanisms to monitor how a system learns from feedback
over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith
effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Code, data and models, used in the paper, are properly credited and are the
license and terms of use explicitly mentioned and properly respected

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a URL.
* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of service
of that source should be provided.
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13.

14.

15.

« If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets|has curated
licenses for some datasets. Their licensing guide can help determine the license of a
dataset.

* For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: The submision has included details about training, license, limitations, etc.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

* The paper should discuss whether and how consent was obtained from people whose asset
is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

¢ Including this information in the supplemental material is fine, but if the main contribution
of the paper involves human subjects, then as much detail as possible should be included
in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not involve
LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.
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A Comprehensive Evaluation with Diverse Classification Variants

Dataset. The IN-1k (ImageNet-1K) [5] benchmark serves as the foundational standard for evaluating
image classification models, typically measuring top-1 accuracy on its large-scale validation set.
IN-A [13]] is a dataset of real-world adversarially filtered images that fool current ImageNet classifiers.
IN-V2 [32] introduces a more challenging and modern test set to better reflect current model
generalization capabilities, while IN-R [12] (ImageNet-Rendition) assesses robustness to artistic and
stylized depictions of object classes, and IN-S [42] (ImageNet-Sketch) evaluates performance on
hand-drawn sketches, testing abstraction and shape understanding.

Results. Table[9]presents a comprehensive evaluation of our model (Ours) against the baseline models
(OpenAI CLIP and Siglip2) across multiple ImageNet variants, including standard classification
(IN-1k), adversarial robustness (IN-A), artistic renditions (IN-R), sketch recognition (IN-S), and
generalization to new data (IN-V2). Across all backbones, Ours consistently outperforms the
corresponding baselines, demonstrating improved generalization and robustness. On the ViT-L
backbone, our model achieves higher average accuracy than OpenAl CLIP (+0.2pp on 224 and
+0.6pp on 336), with notable gains in IN-R (89.4 vs. 87.8) and IN-S (61.0 vs. 59.6), indicating
stronger performance on stylized and abstract visual inputs. When compared to Siglip2 on the
S0400m architecture, Ours shows comparable or slightly better results, particularly on IN-R (95.7
vs. 95.3) and IN-S (68.9 vs. 68.1), while maintaining competitive performance on IN-A and IN-V2.
The consistent improvements across diverse visual domains suggest that our method enhances the
model’s ability to generalize beyond standard photographic data, especially in challenging conditions
involving artistic variation and abstraction.

Table 9: Performance on ImageNet variants

Method | Backbone | Res | INIk IN-A IN-R IN-S IN-V2 | Avg
OpenAI CLIP [30] | ViT-L/14 224 | 75.5 70.8 87.8 59.6 69.8 72.7
Ours ViT-L/14 224 | 763 677 894 61.0 70.1 72.9
OpenAI CLIP [30] | ViT-L/14 336 | 76.6 775 89.1 61.0 70.9 75.0
Ours ViT-L/14 336 | 770 76.0 90.6 629 71.3 75.6
SigLIP2 [40] VIiT-SO/14 | 224 | 83.2 81.5 95.3 68.1 74.3 80.5
Ours ViT-SO/14 | 224 | 834 813 957 689 74.6 80.8
SigLIP2 [40] ViT-SO/16 | 384 | 84.1 832 96.7 1702 76.1 82.1
Ours ViT-SO/16 | 384 | 83.7 832 964 70.7 75.7 82.0

B Additional Ablation Studies

B.1 Impact of the Symmetric Hard Negative Loss (LHN)

To validate our proposed symmetric hard negative contrastive loss (LHN), we compare it against
two other hard negative mining strategies. NegCLIP [53]] loss which uses only the image-to-text
hard negative term and triplet loss [27] uses separate image-to-text and text-to-image but without the
symmetric formulation.

We use our main ViT-L/14@336 model for this ablation. The results in Table [10] confirm the
superiority of our symmetric loss design. Our approach consistently and substantially outperforms
both alternative strategies across all evaluated benchmarks. Compared to the Triplet loss, our
symmetric loss achieves a remarkable +2.8% improvement on ImageNet-1K accuracy and boosts
the average short-text retrieval score by 2.0%. The performance gap is even more pronounced
when compared to the one-directional NegCLIP loss, where our method shows gains of +3.1% on
ImageNet-1K and +2.4% on average retrieval.

B.2 Impact of Long Caption Data

To ensure the effectiveness of long caption data, we did the following ablation experiment on ViT-
L/14@336. Table[IT]show that the simpler model does not enhance fine-grained perception; in fact,
it achieves an MMVP score of only 20.7. Our full framework, with the long-text component, reaches
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Table 10: Ablation studies on Symmetric Hard Negative Loss (L._HN)

CLS Image-Text Retrieval
Method IN-1K Flickr30k ~ MSCOCO

Top-1 | Avg T—I I-T T—1 I-T
Ours (w/ NegCLIP loss) 739 [70.7 779 90.5 48.6 659
Ours (w/ Triplet loss) 742 |71.1 78.1 89.8 494 66.9

Ours (w/ proposed symmetric L_HN) | 77.0 | 73.1 79.3 93.8 51.1 68.2

a substantially higher score of 26.1. What’s more, our full model also demonstrates significantly
stronger performance across all retrieval tasks, outperforming the simpler model on both short-text
retrieval (73.1 vs. 65.5) and long-text retrieval (76.4 vs. 69.0). In addition, the full framework also
maintains a stronger ImageNet-1K classification score (77.0 vs. 76.3). Overall, This experiment
confirms that the long-text capability is a necessary component. The synergistic combination of long-
caption context and hard-negative training is essential to achieve the reported gains in fine-grained
visual perception and overall model performance.

Table 11: Ablation studies on different training data

CLS Short Caption Retrieval Long Caption Retrieval
Method IN-1K | MMVP Flickr COCO ShareGPT4V DCI
Top-1 Avg I-T T—I1 I-T T—I|Avg [-T T-—1 I-T T-—I

Ours (w/o long captions)
Ours (full model)

76.3 207 | 655 89.2 70.7 612 40.7 |69.0 852 843 529 536
77.0 26.1 |731 938 793 682 511|764 935 916 584 619

B.3 Impact of Long Caption Data Scale

The identified gap in long caption retrieval performance appears to stem from the disparity in training
data scale (18M pairs vs. FG-CLIP’s 1B pairs). To address this, we expanded our training dataset
from 18M to 30M pairs. The results demonstrate our framework’s scalability, as shown in Table[I2}

Table 12: Ablation studies on long caption data scale

CLS Short Caption Retrieval Long Caption Retrieval
Method IN-1K Flickr COCO ShareGPT4V DCI

Top-1 | Avg I-T T—I I-T T—I| Avg I-T T—I I-T T-I
FG-CLIP 76.1 |73.6 937 815 689 509 |81.8 974 96.8 66.7 66.1
Ours (18M long caption data) | 77.0 | 73.1 938 79.3 682 511|764 935 916 584 619
Ours (30M long caption data) | 76.2 | 749 942 81.5 703 535|851 979 960 72.7 73.8

Our updated model, trained on 30M pairs, achieves a long caption retrieval accuracy of 85.1%,
surpassing FG-CLIP’s performance of 81.8% by +3.3%. This highlights our framework’s capability
to excel with significantly less training data (over 30 times less data). Despite the improvements
in retrieval performance, our classification results remain similar to those of FG-CLIP, ensuring a
balanced overall performance across various metrics.

C Details of Compositional Benchmarks

Winoground [38] is a challenging benchmark designed to assess visio-linguistic compositional
reasoning. It consists of 400 image-text sets, where each set contains two images and two captions.
The captions are minimally different (e.g., differing by a single word related to an object, attribute, or
relation) and correspond to distinct images. SugarCrepe [14] is a benchmark specifically curated to
evaluate compositional reasoning in vision-language models by generating hard negative examples.
It aims to mitigate biases found in other datasets by presenting scenarios that require understanding
attribute binding, relations, and verb-centric compositions. It contains over 96,000 image-text pairs
across six different types of compositional reasoning challenges. Performance is reported as an overall
accuracy score. SPEC [28]] is a benchmark designed to test fine-grained spatial and compositional
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reasoning. It focuses on evaluating how well models can understand and differentiate images based on
precise object arrangements and inter-object relationships described in captions. ARO is a benchmark
that evaluates vision-language models’ ability to reason about fine-grained visual attributes and
relational compositions in images. It challenges models to distinguish subtle differences in object
properties and spatial or semantic relationships through carefully designed minimal-pair image-text
queries.

D Feature Visualization Analysis

In Figure 3] we present a comparative visualization of feature activations across different methods,
employing the feature extraction technique proposed by Zhou et al. [60]. In the visualization, warmer
colors (e.g., yellow) signify higher similarity or relevance to the target concept, while cooler colors
(e.g., blue) indicate lower relevance or dissimilarity.

Examining the first set of examples, our proposed method demonstrates a clear ability to precisely
localize and identify specific attributes, such as the tie, and distinguish its color as either yellow or red.
In contrast, FG-CLIP [50] focuses broadly on the region of the cat without specifically highlighting
the tie, thereby lacking fine-grained attribute recognition.

In the second set of examples, our approach continues to exhibit enhanced discriminative capability. It
successfully identifies and localizes more nuanced objects or distinct entities within complex scenes,
such as a "helmet," a "bear," or a "flamingo" (depending on the specific image query). Conversely,
both the original CLIP and FG-CLIP models often produce more diffuse attention maps or fail to
accurately pinpoint these specific elements, underscoring the improved fine-grained understanding
achieved by our method.
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Caption: Two girls stand together with helmets on, one is holding a flamingo.

Figure 3: Examples of feature visualization.



E Examples of Instruction Editing Hard Image-Text Pairs

Instruct: Replace the dog with a cat
Source Caption: A dog's reflection in a car
door mirror.

Target Caption: A cat's reflection in a car
door mirror.

Instruct: Turn the cupcake into a magical
crystal ball

Source Caption: A young girl sitting in a chair
eating a cupcake.

Target Caption: A young girl sitting in a chair
eating a magical crystal ball.

Instruct: Replace the text with 'I'm going to
change my socks

Source Caption: A mug which reads I'm
going to change the world.

Target Caption: A mug which reads I'm going
to change my socks.

Instruct: Change the cows into flamingos
Source Caption: Some cows are hanging out
on the beach.

Target Caption: Flamingos casually hang out
on the beach, adding a touch of elegance
and color to the serene coastal scene.

Instruct: Make it look like a dessert pizza
with chocolate and strawberries

Source Caption: A pizza with pepperoni,
broccoli and cucumbers on it.

Target Caption: A dessert pizza with
chocolate and strawberries on it.

Instruct: Change the pink bear into a
flamingo

Source Caption: Two girls stand together
with helmets on, one is holding a pink bear.
Target Caption: Two girls stand together
with helmets on, one is holding a flamingo.

Figure 4: Examples of instruction editing hard image-text pairs.
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