
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Multivariate Time Series Anomaly Detection by Capturing
Coarse-Grained Intra- and Inter-Variate Dependencies

Anonymous Author(s)

Abstract
Multivariate time series anomaly detection is essential for failure
management in web application operations, as it directly influences
the effectiveness and timeliness of implementing remedial or pre-
ventive measures. This task is often framed as a semi-supervised
learning problem, where only normal data are available for model
training, primarily due to the labor-intensive nature of data label-
ing and the scarcity of anomalous data. Existing semi-supervised
methods often detect anomalies by capturing intra-variate tempo-
ral dependencies and/or inter-variate relationships to learn normal
patterns, flagging timestamps that deviate from these patterns as
anomalies. However, these approaches often fail to capture salient
intra-variate temporal and inter-variate dependencies in time se-
ries due to their focus on excessively fine granularity, leading to
suboptimal performance. In this study, we introduce MtsCID, a
novel semi-supervised multivariate time series anomaly detection
method. MtsCID employs a dual network architecture: one net-
work operates on the attention maps of multi-scale intra-variate
patches for coarse-grained temporal dependency learning, while
the other works on variates to capture coarse-grained inter-variate
relationships through convolution and interaction with sinusoidal
prototypes. This design enhances the ability to capture the patterns
from both intra-variate temporal dependencies and inter-variate
relationships, resulting in improved performance. Extensive experi-
ments across seven widely used datasets demonstrate that MtsCID
achieves performance comparable or superior to state-of-the-art
benchmark methods.

Keywords
Time Series, Anomaly Detection, Deep Learning, AIOps

1 Introduction
Modern society increasingly relies on web-based application sys-
tems integrated into distributed systems, cloud computing plat-
forms, and Internet of Things (IoT) devices [18, 22, 33]. These
systems function across various sectors, including finance, trans-
portation, telecommunications, media, and industrial operations.
Downtime or service interruptions in these critical infrastructures
can disrupt daily life, create chaos in business operations, and result
in significant financial losses [8, 19, 39].
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To ensure high reliability and availability of these systems, nu-
merous AI-based methods [3–6, 13, 14, 16, 17, 22, 28, 29, 31, 32, 34,
36, 37, 42] have been proposed to detect anomalies from system
operational data, such as service KPIs, as well as system runtime
status data like CPU and memory usage. This data often takes
the form of Multivariate Time Series (MTS). The objective of MTS
anomaly detection is to determine whether time steps in the series
are normal or abnormal.

Despite the vast amount of time series generated daily in these
systems, supervised learning methods often face challenges in this
domain due to the labor-intensive data labeling process and the
scarcity of anomalous instances [14, 36]. As a result, MTS anomaly
detection is typically framed as a semi-supervised learning task,
where only normal data is available for model training.

Traditional machine learning methods, such as Local Outlier
Factor (LOF) [4], One Class Support Vector Machine (OCSVM) [28],
Isolation Forest (iForest) [16], have been widely used for anomaly
detection tasks. These methods treat multivariate observations at
time steps as points in a feature space. Distance or density metrics
are used to assess the proximity of these points to each other. The
points that deviate significantly from the majority are flagged as
anomalies. We refer to this approach as proximity-based. Recently,
proximity-based methods that combine deep representation learn-
ing, such as DeepSVDD [26] and DAGMM [42], have also emerged.
However, this approach often struggles with high accuracy due to
their inability to effectively capture dynamic intra-variate temporal
dependencies and complex inter-variate relationships.

To address the aforementioned issues, many temporal-based
and spatiotemporal-based methods have been developed [5, 14, 15,
29, 30, 36, 37]. For instance, THOC [29] employs a differentiable
hierarchical clustering mechanism to integrate temporal features
across various scales and resolutions for effective normal pattern
learning. AT [36] models prior and series associations between
time steps in series for temporal pattern learning. DCdetector [37]
utilizes two patch-based attention networks for contrastive learning
to capture temporal dependencies in the given time series. We
classify these approaches as temporal-based methods since they
primarily rely on temporal dependencies for anomaly detection.
In contrast, InterFusion [15] leverages a hierarchical Variational
Autoencoder framework to capture both intra-variate temporal and
inter-variate dependencies. Memto [30] presents a memory-guided
reconstruction approach that utilizes a single Transformer network
to capture temporal dependencies, while also integrating inter-
variate associations through the interactions between the derived
representations and a set of memory items. STEN [5] presents a
framework that combines subsequence order prediction, capturing
temporal correlations, with distance prediction, which learns spatial
relationships between sequences. These methods are categorized
into spatiotemporal-based methods. While both temporal-based
and spatiotemporal-based methods enhance the ability to capture
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intricate intra-variate or/and inter-variate dependencies within
time series, they often fail to capture salient intra-variate temporal
and inter-variate dependencies in time series due to their focus
on excessively fine granularity. This limitation can result in their
suboptimal performance in MTS anomaly detection.

This paper presents MtsCID, a novel semi-supervised anomaly
detection approach forMultivariate Time Series through captur-
ing Coarse-grained Intra-variate and inter-variate Dependencies.
MtsCID employs a dual-network architecture: one network utilizes
the attention maps of multi-scale intra-variate patches to capture
coarse-grained temporal dependencies between time steps, while
the other focuses on variate interactions, leveraging convolutions,
frequency component-based Transformer and a set of sinusoidal
prototypes to capture coarse-grained inter-variate relationships.
The deviation from normal patterns in each dimension is aggre-
gated to generate losses during training and anomaly scores for each
time step during inference. The resulting anomaly score indicates
whether a given timestamp is anomalous or not. Our approach has
been evaluated on seven commonly used publicly available datasets.
Experimental results demonstrate its effectiveness, achieving com-
parable or superior anomaly detection performance compared to
nine state-of-the-art methods.

In summary, our main contributions are as follows:

(1) A novel time-frequency interleaved learning scheme:
We introduce an novel scheme for learning intra- and inter-
variate dependencies through interleaved processing in
both the time and frequency domains. This method uti-
lizes frequency domain components to align inter-variate
time steps and time domain representation to learn coarse-
grained temporal dependencies, thereby enhancing the cap-
ture of normal patterns within the series and improving
anomaly detection.

(2) A dual-network multivariate time series anomaly de-
tection approach: We propose MtsCID, an anomaly de-
tection method that utilizes a dual-network architecture
for coarse-grained learning of both intra-variate temporal
dependencies and inter-variate relationships. This design
enriches the information embedded in the representations,
enhancing the overall performance of time series anomaly
detection.

(3) Extensive experiments: We compare MtsCID with nine
SOTA baselines on seven widely used public datasets. The
results confirm the effectiveness of MtsCID. In addition,
The ablation experimental results show the efficacy of each
major component in MtsCID.

2 Proposed Approach
2.1 Problem Definition
Given a set of subsequences𝐷 = {𝑋 1, . . . , 𝑋𝑁 }, where𝑁 represents
the total number of subsequences and each 𝑋 𝑖 ∈ R𝑇×𝐶 denotes
a subsequence of observations [𝑥𝑖1, . . . , 𝑥

𝑖
𝐿
], with 𝐿 indicating the

length of the subsequence. Here, 𝑥𝑖𝑡 ∈ R𝐶 represents the multivari-
ate observation vector at time 𝑡 , with𝐶 indicating the total number
of variates. Semi-supervised time series anomaly detection aims to
identify anomalies at the individual time step level within specified

subsequences, assuming that the training subsequences consists
solely of normal observations.

2.2 Approach Overview
WhenMTS subsequences are input into MtsCID, they are processed
through two branches: the upper branch for learning temporal de-
pendencies and the lower branch for learning inter-variate rela-
tionships. As shown in Fig 1, the two branches comprises three
components: the temporal autoencoder network (t-AutoEcoder),
the inter-variate dependency encoder network (i-Encoder), and the
sinusoidal prototypes interaction module (p-i Module).

In the upper branch, each variate in the subsequence is initially
transformed into its frequency components. The fc-Linear, a fre-
quency component-based Linear layer, and fc-Transformer, a fre-
quency component-based Transformer network, are employed to
learn the dependencies of these frequency components. The de-
rived representations are subsequently transformed back to the
time domain and passed through a set of intra-variate ts-Attention
(time-series Attention) networks to learn temporal dependencies
from the attention maps of multi-scale patches. Finally, these repre-
sentations are fed into the decoder to reconstruct input sequences.

In the lower branch, each subsequence is first processed in the
time domain using a convolutional layer with a specific kernel size
to capture local temporal dependencies in the variates. The output
is then fed into the inter-variate fc-Transformer networks to learn
inter-variate relationships in the frequency domain. The resulting
representations are subsequently interacted with a set of sinusoidal
prototypes in the p-i Module for inter-variate relationship pattern
learning.

During training, the reconstruction loss between the input and
the generated sequences from the upper branch is combined with
the output from the lower branch to form a comprehensive loss that
guides model training. During inference, the reconstruction loss
from the upper branch interacts with the output from the lower
branch to produce an anomaly score for each time step in the series,
indicating whether a specific timestamp is anomalous.

Figure 2 provides a brief overview of how the relevant building
blocks function. Next, we will elaborate on each major component
of MtsCID.

2.3 Temporal AutoEncoder Network
(t-AutoEncoder)

The temporal autoencoder network is designed to capture temporal
dependencies between time steps within the series. When time se-
ries subsequences 𝑋 ∈ R𝐵×𝐿×𝐶 are input—where 𝐵 represents the
batch size, 𝐿 is the subsequence length, and 𝐶 denotes the number
of series—each series is first transformed into its frequency compo-
nents 𝐻 ∈ R𝐵×𝑓 ×𝐶 . Here, 𝐻 encompasses the real and imaginary
parts of the frequency components, with 𝐹 representing the number
of frequency components. This transformation is achieved using
the Discrete Fourier Transform (DFT).

The real and imaginary parts of the derived frequency compo-
nents are projected into distinct latent spaces in the fc-Linear net-
work using respective learnable parameters𝑊 (𝑟 ) and𝑊 (𝑖 ) ∈ R𝐶×𝑑 .
Two independent networks for processing real and imaginary parts
are also applied in the subsequent fc-Transformer networks. For
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Figure 1: The overview of MtsCID.

clarity and brevity, we will omit the subscripts in the following
descriptions.

Subsequently, the fc-Transformer network processes the pre-
vious output to generate representations, �̂� ∈ R𝐵×𝑓 ×𝑑 for each
frequency component. Notably, the 𝑄 , 𝐾 , and 𝑉 inputs to the fc-
Transformer network are derived from the same source. In line with
standard Transformer architecture, a residual connection and layer
normalization are utilized to enhance these representations. The
resulting representations are then transformed back to the time
domain using the inverse Discrete Fourier Transform (iDFT) as
𝑍 ∈ R𝐵×𝐿×𝑑 .

Next, 𝑍 , generated from the previous step, is transformed into
differently sized patches in a channel-independent manner, de-
noted as {𝑍𝑝1 , . . . , 𝑍𝑝𝑚 }, where 𝑍𝑝𝑖 ∈ R(𝐵×𝑑 )×𝑛𝑖×𝑝𝑖 represents a
matrix with patch number 𝑛𝑖 and patch size 𝑝𝑖 , for 𝑖 ∈ {1, . . . ,𝑚},
with𝑚 indicating the number of multi-scale patches. Each 𝑍𝑝𝑖 is
then fed into an intra-variate ts-Attention network to generate
corresponding attention maps 𝐴𝑝𝑖 ∈ R(𝐵×𝑑 )×𝑛𝑖×𝑛𝑖 for the patched
subsequences, which capture intra-variate temporal dependencies
at a specific granularity. The derived attention maps 𝐴𝑝𝑖 are subse-
quently mapped back to their original patch sizes using learnable
parameters 𝑀𝑝𝑖 ∈ R𝑛𝑖×𝑝𝑖 . All the projected attention maps are
then averaged and transformed back into the input subsequence
format through an unpatch operation, resulting in 𝑍 ∈ R𝐵×𝐿×𝑑 .
Finally, these 𝑍 are passed into the decoder module, consisting of
a linear layer, to obtain the reconstructed sequences 𝑋 ∈ R𝐵×𝐿×𝐶 .
The mathematical formulas for our Temporal AutoEncoder are as
follows:

𝐻 = DFT(𝑋 ) (1)

𝑄 = 𝐾 = 𝑉 = 𝐻𝑊 (2)

�̂� = Softmax
(
𝑄𝐾𝑇
√
𝑑

)
𝑉 (3)

𝑍 = LayerNorm
(
iDFT(�̂� +𝑉 )

)
(4)

𝑍𝑝𝑖 = Patch(𝑍 ) (5)

𝐴𝑝𝑖 = Softmax

(
𝑍𝑝𝑖𝑍𝑝𝑖

𝑇

√
𝑝𝑖

)
𝑀𝑝𝑖 (6)

𝑍 = Unpatch( 1
𝑚

𝑚∑︁
𝑖=1

𝐴𝑝𝑖 ) (7)

𝑋 = Decoder(𝑍 ) (8)

We opt for fc-Linear and fc-Transformer operating in the fre-
quency domain based on two key assumptions: 1) Time series data
in the frequency domain may reveal more salient patterns com-
pared to those in the time domain, as they are less influenced by
individual time steps. 2) Since time series values are continuous,
their representations in the frequency domain significantly reduces
their population. This reduction may enhance the determinism of
subsequent reconstructions when learning the pattern from nor-
mal samples. In the later ablation study section, our experimental
results will show that the effectiveness in detection performance
using frequency domain representations is better than using time
domain representations.

2.4 Inter-variate Dependency Encoder Network
(i-Encoder)

Prior studies have demonstrated that inter-variate relationships can
enhance anomaly detection in multivariate time series [5, 15, 30].
In this study, we employ an independent inter-variate dependency
encoder network to capture these relationships from normal time
series subsequences. Since each variate measures different aspects
of the monitored system, they often exhibit varying periodicities,
making it challenging to learn their normal combination patterns
at time steps.

3
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Figure 2: The building blocks in MtsCID.

To address this challenge, we first input the time series subse-
quences 𝑋 ∈ R𝐵×𝐿×𝐶 into a 1D-convolution network. The kernel
size of the convolution network is assumed as 𝑘 . This process yields
corresponding representations, 𝑇 ∈ R𝐵×𝐶×𝐿 , which capture lo-
cal temporal dependencies in variates. The derived representation
offers two key benefits: 1) Capturing coarse-grained temporal de-
pendencies enhances the semantic representations of individual
time steps, making it more robust to noise interference. 2) It can
mitigate the issues related to potential misalignment of time steps
across variates that may occur during data collection, as well as
challenges posed by unsynchronized variates.

The derived representations 𝑇 is then transformed into its fre-
quency components, 𝐸 ∈ R𝐵×𝐶×𝑓 . Then, a fc-Transformer network
is employed to capture inter-variate relationships in the frequency
domain, generating the representations 𝐽 ∈ R𝐵×𝐶×𝑓 . Notably, the
inter-variate fc-Transformer processes data along the variate di-
mension, while the intra-variate fc-Transformer in the temporal
autoencoder operates along the time step dimension. A detailed
comparison can be seen in Figure 2.

The derived representations 𝐽 , which capture inter-variate re-
lationships, are then transformed back into the time domain. A
residual connection and layer normalization are applied, result-
ing in the final representations 𝑂 ∈ R𝐵×𝐿×𝐶 . The mathematical
expressions summarizing this process are presented as follows:

𝑇 = 𝐶𝑜𝑛𝑣1𝑑 (𝑋 ) (9)

𝐸 = 𝐷𝐹𝑇 (𝑇 ) (10)

𝐽 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 ( 𝐸𝐸
𝑇√︁
𝑓
)𝐸 (11)

𝑂 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑖𝐷𝐹𝑇 (𝐽 ) + 𝑋 ) (12)

2.5 Sinusoidal Prototypes Interaction Module
(p-i Module)

In the inter-variate dependency encoder network, while the derived
representations 𝑂 capture inter-variate relationships, the combina-
tions of variables at time steps remain complex and challenging for
learning salient normal patterns. To address this issue, we aim to
simplify these complex combinations into a limited set, making it
easier to learn normal inter-variate relationship patterns.

In the study by Song et al. [30], the authors demonstrate that
incorporating memory items, also known as prototypes, can en-
hance the learning of inter-variate normal patterns. Inspired by
their work, we develop a sinusoidal Prototypes Interaction Module.
Unlike their dynamic memory updating mechanism, we utilize a
set of fixed memory items 𝑀 ∈ R𝐶×𝐿 , derived from sinusoidal
functions with varying periodicity, defined as follows:

𝑀 ∈ R𝐿×𝐶 , 𝑀𝑖, 𝑗 = cos
(
2𝜋
𝐿

· 𝑖 · 𝑗
)

for 𝑖 = 0, 1, . . . , 𝐿 − 1 and 𝑗 = 0, 1, . . . ,𝐶 − 1.

By using fixed memory items, we avoid the instability issue in
model trainingmentioned in [30]. Furthermore, since these memory
items are derived from sinusoidal functions with different periodic-
ity, their combinations along the time step dimension approximate
a limited set. As shown in the experimental section, this approach
enhances the salience of patterns across inter-variate relationships,
thereby improving both robustness and detection accuracy, even
without the need for additional two-phase training and clustering
processes as described in [30].

Following the practice in [30], we multiply representations 𝑂
, generated from the inter-variate dependency encoder network,
with our fixed sinusoidal prototypes through dot product, followed
by the SoftMax operation, as follows:

𝑤𝑡𝑖 =
exp(< 𝑂:,𝑡,:, 𝑀𝑖,: > /𝜏)∑𝐿
𝑗=1 exp(< 𝑂:,𝑡,:, 𝑀𝑗,: > /𝜏)

(13)

2.6 Learning Tasks
MtsCID utilizes two learning tasks, i.e., temporal dependency recon-
struction task and prototype-oriented learning task, to effectively
guide model optimization during training. These tasks corresponds
to two specific losses: the 𝐿𝑡−𝑟𝑒𝑐 , and the 𝐿𝑖−𝑒𝑛𝑡 .

2.6.1 Temporal Dependency Reconstruction Task. For the temporal
dependency learning branch, i.e. the upper branch, a reconstruction
loss is utilized between the input and the reconstructed ones to
direct its network for optimization. The reconstruction loss 𝐿𝑡−𝑟𝑒𝑐
is defined as 𝐿2 loss between 𝑋 and 𝑋 :

𝐿𝑡−𝑟𝑒𝑐 =
1
𝐵

𝐵∑︁
𝑠=1

∥𝑋𝑠 − 𝑋𝑠 ∥22 (14)

2.6.2 Prototype-Oriented Learning Task. For the inter-variate de-
pendency learning branch, i.e. the lower branch, we adopt the
practice from the study [30] that an entropy loss 𝐿𝑖−𝑒𝑛𝑡 as our
auxiliary loss for regularization on𝑊 derived in Equation 13:

𝐿𝑖−𝑒𝑛𝑡 =
1
𝐵

𝐵∑︁
𝑠=1

𝐿∑︁
𝑡=1

𝐶∑︁
𝑖=1

−𝑤𝑡,𝑖𝑙𝑜𝑔(𝑤𝑡,𝑖 ) (15)

During the training phase, The objective function 𝐿 is to mini-
mize the combination of loss term Equation (14) and Equation (15)
as follows:

𝐿 = 𝐿𝑡−𝑟𝑒𝑐 + 𝜆𝐿𝑖−𝑒𝑛𝑡 (16)

where 𝜆 denotes a hyper-parameter for weighting coefficient.
4
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Table 1: Overview of datasets used in the experiments.

Datasets #Entities #Dims. Training Testing Testing
#Timesteps #Timesteps %Anomalies

SMAP 55 25 135,183 427,617 13.13%
MSL 27 55 58,317 73,729 10.72%
SMD 28 25 708,405 708,420 4.16%
PSM 1 25 55,541 34,387 3.13%
SWaT 1 51 496,800 449,919 11.98%
GECCO 1 9 69,260 69,260 1.05%
SWAN 5 38 60,000 60,000 32.6%

2.7 Anomaly Detection
During inference, the deviations from the learned normal patterns
in the two branches, specifically the Temporal Deviation (𝑇𝐷) and
Relationship Deviation (𝑅𝐷), are combined to generate anomaly
scores for each time step in the input. The 𝑇𝐷 (𝑋𝑡,:, 𝑋𝑡,:) is defined
as the distance between the input 𝑋𝑡,: ∈ R𝐶 and the reconstructed
input𝑋𝑡,: ∈ R𝐶 at time 𝑡 . The𝑅𝐷 (𝑂𝑡,:, 𝑀:,:) is defined as the distance
between each 𝑂𝑡,: and its nearest memory step 𝑚𝑠,:. The formal
definitions of the Anomaly Scores (AScore) are as follows:

𝐴𝑆𝑐𝑜𝑟𝑒 (𝑋 ) = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 ( [𝑅𝐷 (𝑂𝑡,:, 𝑀:,:)]) ◦ [𝑇𝐷 (𝑋𝑡,:, 𝑋𝑡,:)] (17)

where ◦ is element-wise multiplication and and𝐴𝑆𝑐𝑜𝑟𝑒 (𝑋 ) ∈ R𝐿

is anomaly score at each time step. These anomaly scores with
higher scores indicating a higher likelihood of the corresponding
time steps as anomalies.

3 Experimental Setting
3.1 Datasets
We evaluate MtsCID on two groups of seven widely used real-world
MTS datasets. A summary of these datasets is provided in Table 1,
along with further descriptions below.

• SMAP (Soil Moisture Active Passive) [11] is a dataset of soil
samples and telemetry information using the Mars rover
by NASA, while MSL (Mars Science Laboratory) [11] corre-
sponds to the sensor and actuator data for the Mars rover
itself. SMD (Server Machine Dataset) [31] is a five-week
long dataset of stacked traces of the resource utilization of
28 machines from a compute cluster. PSM (Pooled Server
Metrics) [1] is collected internally frommultiple application
server nodes at eBay with 25 dimensions. SWaT (Secure
Water Treatment) [20] is gathered from a real-world water
treatment plant, including 7 days of normal operations and
4 days of abnormal operations.

• NIPS-TS-GECCO [21], referred to as GECCO, comprises
drinking water quality data for the Internet of Things and
was published at the 2018 Genetic and Evolutionary Compu-
tation Conference. NIPS-TS-SWAN [2, 12], known as SWAN,
is an openly accessible, comprehensive MTS benchmark
derived from solar photospheric vector magnetograms in
the Space Weather HMI Active Region Patch series. Both
datasets are sourced from [37].

3.2 Evaluation Metrics
In this study, we employ three groups of evaluation metrics.

• The first group of metrics includes point-adjustment Preci-
sion, Recall, and F1-score, which are widely used in time
series anomaly detection [30, 31, 34–38, 40]. This approach
acknowledges that anomalies typically manifest as contigu-
ous segments rather than isolated points. Consequently,
if any point within a contiguous segment is detected as
anomalous, the entire segment is deemed correctly identi-
fied. Following the methodology in [5], we utilize the best
F1 score to mitigate biases from threshold settings.

• The second group is Affiliation Precision, Recall and F1
Score [10], which are also used in recent studies [5, 22, 37]:
This set of metrics incorporates duration measures between
ground truth and predictions, addressing limitations of
other metrics that ignore temporal adjacency and event
duration. Due to space constraints, we present only the
Affiliation F1-score (AF-F1).

• VUS-ROC/VUS-PR [23] are used as the third group of met-
rics in our study, which are also used in recent studies [5,
22, 37]. These metrics extend the ROC-AUC and PR-AUC
measures. VUS-ROC (Volume Under the ROC Surface) and
VUS-PR (Volume Under the PR Surface) address biases in-
troduced by point adjustment by evaluating the overall
volume under the respective curves.

3.3 Implementation and Environment
Following the approach in [30], we generate sub-sequences using
a non-overlapping sliding window of length 100 to create fixed-
length inputs for each dataset. The training data is then divided
into 80% for training and 20% for validation. In the t-AutoEncoder
network, we set the number of multi-scale patches to𝑚 = 2, with
𝑝𝑖 taking values from [10, 20]. The i-Encoder network is configured
with a 1D convolution layer featuring a kernel size of (𝑘 = 5).

We implemented MtsCID using PyTorch 1.11.0. The model was
trained with the AdamW optimizer and employed polynomial learn-
ing rate decay, starting at 2 × 10−3 and gradually decreasing to
5 × 10−5. A mini-batch size of 64 was used, and training continued
for up to 20 epochs, with early stopping applied if performance did
not improve for 10 consecutive iterations. All experiments were
conducted on a Linux server Ubuntu 20.04 equipped with an AMD
Ryzen 3.5GHz CPU, 96 GB of memory, and an RTX2080Ti with 11
GB of GPU memory.

4 Results and Analysis
4.1 The Effectiveness of MtsCID
To evaluate the effectiveness of our proposed method, we compare
MtsCID with nine state-of-the-art semi-supervised methods. The
baseline methods include proximity-based approaches—iForest [16],
DeepSVDD [26], and DAGMM [42]; temporal-based methods—
THOC [29], Anomaly Transformer [36], andDCdetector [37]; spatio-
temporal-basedmodels—InterFusion [15],MEMTO [30], and STEN [5].
In our comparative analysis, the implementations of the baseline
approaches were obtained from their public repositories. To ensure
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Table 2: Overall Performance Comparison of All Methods in Point-Adjustment Metrics.

Method SMD MSL SMAP SWaT PSM

P R F1 P R F1 P R F1 P R F1 P R F1

iForest[16] 42.31 73.29 53.64 53.94 86.54 66.45 52.39 59.07 55.53 49.29 44.95 47.02 76.09 92.45 83.48

DeepSVDD[26] 78.54 79.67 79.10 91.92 76.63 83.58 89.93 56.02 69.04 80.42 84.45 82.39 95.41 86.49 90.73

DAGMM [42] 67.30 49.89 57.30 89.60 63.93 74.62 86.45 56.73 68.51 89.92 57.84 70.40 93.49 70.03 80.08

THOC [29] 79.76 90.95 84.99 88.45 90.97 89.69 92.06 89.34 90.68 83.94 86.36 85.13 88.14 90.99 89.54

A.T [36] 91.33 94.50 92.88 92.09 96.23 94.10 94.32 99.02 96.61 92.00 99.08 95.40 98.08 98.31 98.19

DCdetector [37] 84.14 88.60 86.28 90.42 94.14 92.21 95.32 97.86 96.57 96.87 99.21 98.02 98.21 98.27 98.24

InterFusion [15] 87.02 85.43 86.22 81.28 92.70 86.62 89.77 88.52 89.14 80.59 85.58 83.01 83.61 83.45 83.52

MEMTO [30] 89.17 94.68 91.84 92.25 96.10 94.13 93.80 99.41 96.52 92.83 99.96 96.26 98.37 99.04 98.50

STEN [5] 83.58 83.11 83.29 90.17 94.91 92.42 96.49 96.52 96.49 91.83 99.12 95.31 97.74 98.02 97.88

MtsCID 91.50 95.37 93.39 93.37 96.97 95.13 95.90 98.79 97.32 94.16 99.82 96.91 98.57 98.51 98.54

1 P, R, and F1 refer to Precision, Recall, and F1-score, respectively. The results represent percentages.
2 We reproduced the results for Anomaly Transformer, DCdetector, MEMTO, and STEN, while adopting the reported performance from [30] for the other baselines.
3 In the table, values that are underlined represent the second-best metrics, while those in bold indicate the best metrics.

Table 3: Multi-Metrics Performance Comparison Results on Recent SOTA Methods.

Method Metrics SMD MSL SMAP SWaT PSM GECCO SWAN

Anomaly Transformer [36]

F1 92.88 94.10 96.61 95.40 98.19 44.53 73.86
AF-F1 74.11 67.54 67.31 53.22 65.90 70.37 7.30
VUS-PR 72.53 84.83 92.18 95.06 92.48 10.14 90.99
VUS-ROC 82.89 94.33 97.66 98.39 94.18 61.66 89.38

DCdetector [37]

F1 86.28 92.21 96.57 98.02 98.24 37.08 73.59
AF-F1 66.04 66.91 67.68 69.75 63.78 63.19 6.02
VUS-PR 60.79 83.40 92.39 97.32 91.10 10.08 91.83
VUS-ROC 78.63 94.45 97.32 98.90 90.54 60.19 88.55

MEMTO [30]

F1 91.84 94.13 96.52 96.26 98.50 54.25 73.93
AF-F1 70.71 67.27 66.72 34.97 66.46 16.21 0.53
VUS-PR 72.58 85.93 92.17 95.58 94.00 17.96 93.68
VUS-ROC 82.38 88.87 97.09 98.43 92.72 61.98 86.33

STEN [5]

F1 83.29 92.42 96.49 95.31 97.88 36.34 73.85
AF-F1 64.02 63.46 66.86 70.98 59.94 48.44 2.65
VUS-PR 61.37 85.26 94.10 90.62 94.70 15.74 92.92
VUS-ROC 91.29 95.59 98.30 98.38 96.71 86.06 92.11

MtsCID

F1 93.39 95.13 97.32 96.91 98.54 77.10 74.29
AF-F1 74.46 68.20 67.68 57.01 67.56 73.40 8.69
VUS-PR 79.12 87.61 94.02 95.83 93.50 35.90 93.62
VUS-ROC 84.22 89.46 96.71 98.30 91.59 72.38 86.45

1 Underlined figures represent the second-best metrics, while those in bold indicate the best metrics.

consistency, we adhered to the parameters provided by their re-
spective implementations unless otherwise specified. Each method
was executed five times for each dataset, and the resulting values
were averaged to report the final results.

We first evaluate MtsCID against all the aforementioned base-
lines using point-adjustment metrics across five datasets, with re-
sults presented in Table 2. Since recent methods, including Anomaly
Transformer, DCdetector, MEMTO, and STEN, outperform other
baselines, we focus our multi-metric comparison of MtsCID primar-
ily on these models. This comparison includes the aforementioned

five datasets, as well as two additional, more challenging datasets
(GECCO and SWAN) that feature a wider variety of anomalies.

The experimental results in Tables 2 and 3 demonstrate that
MtsCID achieves robust and superior performance across all datasets.
Specifically, MtsCID secures the highest F1 and AF-F1 scores in six
out of seven datasets, and the second-best F1 score in the remain-
ing dataset, outperforming all baseline methods. Notably, on the
challenging GECCO dataset, MtsCID demonstrates a significant
advantage in the F1 metric, outperforming the second-best baseline
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by 42.12%. MEMTO also achieves consistently excellent results, indi-
cating that leveraging prototypes enhances detection performance
by providing additional information. While DCdetector and STEN
perform well, closely matching MtsCID’s effectiveness across most
datasets, there is a notable disparity in detection effectiveness on
the SMD and GECCO dataset.

Furthermore, We can see from Table 2 and Table 3 that the meth-
ods leveraging temporal and spatiotemporal dependencies consis-
tently outperform all proximity-based methods, underscoring the
importance of capturing dependencies among features in time se-
ries. However, spatiotemporal-based methods like STEN do not
always surpass temporal-based methods such as Anomaly Trans-
former and DCdetector, likely because temporal dependencies are
the primary indicators for identifying anomalies. This suggests that
spatial features require careful design for improved performance.

4.2 Ablation studies
In this section, we aim to thoroughly examine the effectiveness
of each major component within MtsCID on the final results. To
accomplish this, we conduct ablation studies that categorize the
MtsCID variants into three distinct groups:

• Network Branch Ablation: We compare variants that
exclude either the upper branch or lower branch.

• Coarse-Grained Processing Ablation: We compare vari-
ants that either exclude the intra-variate ts-Attention layer
in the t-AutoEncoder network or replace the convolution
layer with a linear layer in the i-Encoder network.

• Frequency Processing Ablation: We evaluate variants
that replace all frequency component-based networks with
time domain counterparts.

The results are presented in Table 4. It is clear that MtsCID with
dual networks (without subscripts) consistently outperforms sin-
gle network counterparts (where "to" indicates the t-AutoEncoder
branch and "io" indicates the i-Encoder branch). These findings
empirically support our hypothesis that integrating both tempo-
ral dependency and inter-variate relationship learning in MtsCID
enhances the model’s ability to learn patterns from normal time
series, facilitating better anomaly detection.

The results in Table 4. also show thatMtsCIDwith coarse-grained
processing consistently outperforms their counterparts without one
of the coarse-grained treatments. This empirically confirms that
coarse-grained processing in temporal dependency learning and
inter-variate relationship learning in MtsCID enhances the model’s
ability to learn patterns from normal time series, facilitating better
anomaly detection.

Table 4 also provides a clear comparison between MtsCID and its
variants subscripts with 𝑡𝑑 (The t-AutoEncoder and i-Encoder both
operate on the time domain rather than on the frequency domain)
across datasets. The experimental results empirically support our
claim that working on the frequency domain facilitates the trained
model in effectively learning normal patterns.

4.3 Sensitivity studies
4.3.1 Loss Weights Sensitivity. In the previous experiments, all
assessments were conducted with the hyperparameter set at 𝜆 = 0.1.
To further investigate the impact of this weight, we performed a

sensitivity analysis by varying the hyperparameter within the range
of 10−3 to 102. As shown in Figure 3a, the model’s performance
is largely insensitive to the variations in hyperparameter choices
for the loss weight. Therefore, we have decided to keep the current
hyperparameter setting.

4.3.2 Sensitivity Analysis of Multi-Scale Patch Settings. To explore
the impact of multi-scale patch settings, we conducted a sensitivity
analysis with patches configured as {[5, 10], [10, 20], [5, 10, 20]}.
As illustrated in Figure 3b, detection performance showed slight
variations based on patch settings. Consequently, we have chosen
to use the [10, 20] configuration.

4.3.3 Sensitivity Analysis of Convolution Kernel Settings. To further
investigate the impact of kernel settings, we conducted a sensitivity
analysis with kernels set to {1, 3, 5, 7, 9}. As shown in Figure 3c, per-
formance slightly fluctuated with different kernel settings, except
for the SMD dataset, where performance decreased as kernel size
increased. A kernel size of 5 yielded relatively higher results across
the other datasets, leading us to choose this size.

4.4 Scalability Studies
To evaluate the scalability of MtsCID, we conducted runtime com-
parisons with baseline methods, highlighting the efficiency of our
proposed approach. Figure 3d presents the average training and
testing times per epoch for these methods. For conciseness, we
focus on the experimental results from the MSL dataset, where
MtsCID demonstrates superior efficiency in both training and test-
ing compared to all the other baseline methods. This indicates that
MtsCID has strong scalability potential for real-world applications.

5 Discussion
5.1 Why does MtsCID Work?
In this section, we present two key reasons why MtsCID outper-
forms relevant baseline methods. First, MtsCID extracts salient
patterns from attention maps generated by multi-scale patches and
inter-variate relationships revealed through convolution operations,
rather than relying on excessively fine-grained time steps, result-
ing in improved performance. Second, by integrating frequency
domain processing with time domain operations, MtsCID aligns
time steps across variates, reducing interference frommisalignment.
This combination enhances its ability to capture normal patterns
from inter-variate relationships, ultimately improving detection
performance.

5.2 Limitations and Future Work
While our experiments demonstrate the effectiveness of MtsCID
for MTS anomaly detection, it does have limitations. Currently,
the temporal dependencies between time steps and inter-variate
relationships are learned independently during training, which may
lead to the loss of valuable information that could enhance anomaly
identification. In future work, we plan to explore self-supervised
techniques to better capture these connections and improve perfor-
mance. Additionally, the utilization of information in the frequency
domain remains underdeveloped, making it worthwhile to investi-
gate this further in our upcoming research.
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Table 4: Ablation Experiments for Network Architecture and Operating Domain.

Category Ablation Method SMD MSL SMAP SWaT PSM

Component Invariant F1 F1 F1 F1 F1

Network i-Encoder Network MtsCIDto 88.45 91.96 95.18 91.45 96.58

t-AutoEncoder Network MtsCIDio 83.23 89.84 94.09 96.42 97.02

Granularity Processing Multi-Scale Patch Attention MtsCIDco 93.13 94.91 96.87 96.78 98.41

Convolution MtsCIDao 92.05 94.73 97.01 96.41 98.11

Domain Frequency Domain Processing MtsCIDtd 91.22 94.89 96.72 96.65 98.43

/ With All Components MtsCID 93.39 95.13 97.32 96.91 98.54

(a) Loss coefficient sensitivity. (b) Patch setting sensitivity. (c) Kernel setting sensitivity. (d) Scalability analysis.

Figure 3: Sensitivity and Scalability Analysis.

6 Related Work
Existing MTS Anomaly Detection Methods. From the perspec-

tive of label utilization, existing methods can be categorized into
supervised, semi-supervised, and unsupervised approaches. Super-
vised methods, such as AutoEncoder [27], LSTM-VAE [24], Spectral
Residual [25], and RobustTAD [9], deliver competitive performance
but are limited by the labor-intensive labeling process and the
scarcity of anomalies. Unsupervised methods, like GANF [7] and
MTGFlow [41], eliminate the need for labels but often produce
sub-optimal results due to the lack of guidance. In contrast, semi-
supervised methods—including all baseline methods in our experi-
mental evaluation, such as THOC [29], InterFusion [15], Anomaly
Transformer [36], DCdetector [37], MEMTO [30], and STEN [5]—
leverage abundant normal data while reducing reliance on rare
anomalies. This approach enhances detection performance and
eases data requirements. Our proposed method also follows a semi-
supervised approach.

From the perspective of feature utilization, existing methods
for MTS anomaly detection can be categorized into step-based
and attention map-based approaches. Step-based methods learn
normal patterns from individual time steps in variates or their
latent representations, with notable examples including iForest [16],
DAGMM [42], DeepSVDD [26], THOC [29], InterFusion [15], ME-
MTO [30], and STEN [5]. Since each time step plays a significant
role in these methods, they often struggle to capture meaningful
semantics in variates effectively. In contrast, attention map-based
methods leverage attention mechanisms to analyze relationships
across segments of time steps. By focusing on attention maps rather
than each time step, these methods capture more salient patterns,
leading to improved results. Representative approaches include the
Anomaly Transformer [36] and DCdetector [37]. In our proposed

method, we utilize attention maps as features in one branch of the
framework to facilitate intra-variate temporal dependency learning.

Prototype-based Time Series Anomaly Detection. Prototype-based
approach leverages a set of prototypes, representing normal pat-
terns extracted during training, to improve anomaly differentiation.
A notable example is MEMTO [30], which leverages prototypes con-
structed by a two-phase training process that combines clustering
with incremental updates to enhance anomaly identification. In our
proposed method, we employ a set of fixed prototypes that do not
require updates. This approach mitigates instability during model
training and eliminates additional processing like clustering and
two-phase training, enhancing both robustness and time efficiency
while maintaining comparable performance.

7 Conclusion
In this paper, we introduce MtsCID, a novel semi-supervised ap-
proach to MTS anomaly detection. MtsCID features a dual-network
framework: an intra-variate temporal dependency learning net-
work for capturing coarse-grained temporal patterns from attention
maps, and an inter-variate relationship learning network combined
with a sinusoidal prototypes interaction module for inter-variate
relationship learning. This design is further enhanced by networks
operating in the frequency domain, allowing the model to leverage
information from both the time and frequency domains for effective
normal pattern learning. Through the collaboration of these com-
ponents, MtsCID effectively captures highly discriminative normal
patterns from temporal dependencies and inter-variate relation-
ships, enabling better discrimination of anomalous timestamps in
the time series. Our extensive experiments on seven widely used
public datasets demonstrate the effectiveness of MtsCID.

Our source code and experimental data are available at https:
//anonymous.4open.science/r/MtsCID-2D2B/.
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