
Robust Transfer for Bayesian Optimization
with Prior-Data Fitted Networks

Yucen Lily Li∗
New York University, Meta

Sam Daulton
Meta

Samuel Müller
Meta

Andrew Gordon Wilson
New York University

Eytan Bakshy
Meta

Abstract

Bayesian optimization is a sample-efficient optimization technique for black-box
optimization, and leveraging historical information from related tasks can greatly
improve its performance. Gaussian processes (GPs) are commonly used to model
this multi-task data; however, they trade off complexity with expressivity. Jointly
modeling all tasks can be computationally infeasible for GPs, while scalable
approaches may fail to effectively utilize inter-task relationships. Moreover, these
methods are often prone to negative transfer, where the inclusion of unrelated tasks
degrades predictive performance. In this paper, we present Multi-Task Prior-Data
Fitted Networks (MTPFNs), a multi-task model that efficiently and jointly models
all tasks and data points. We show that MTPFNs serve as a compelling surrogate
model that is robust to negative transfer, and their flexibility enables more efficient
exploration. We demonstrate the effectiveness of our approach across a variety of
synthetic and real-world benchmarks including hyperparameter optimization.

1 Introduction

Black-box optimization is widely used for tuning parameters in scientific settings and industrial
applications to optimize the outputs of resource-intensive processes that do not have a known
analytical form and for which gradients are not available. For example, a practitioner may wish to
tune the hyperparameters of a machine learning model to maximize the log-likelihood on a validation
set (AutoML) [29], a chemist may aim to design a reaction by choosing the concentrations and
experiment conditions to maximize the resulting product [28], or an engineer may seek to find an
optimal design for a new automobile that maximizes a safety-fuel economy trade-off [21].

When sample efficiency is important, model-based optimization methods that select the next batch of
designs conditional upon the previously observed evaluations are often used. Bayesian optimization is
a popular technique for these settings because of its strong theoretical guarantees and strong empirical
performance. For even greater efficiency (i.e. for few-shot optimization), transfer learning can be
employed to extract knowledge from previous evaluations on related functions to aid modeling and
optimizing the target function. For example, when tuning the hyperparameters for a machine learning
model, one may have access to previous model evaluations with slightly different training data.
Bayesian optimization can be employed in the transfer learning setting by using a multi-task prior
to model the relationship between different tasks. However, such approaches have limitations. The
commonly used Gaussian Process surrogate models have strong assumptions on how the different
tasks are correlated, which create trade-offs between data efficiency (making stronger assumptions

∗Correspondence to: yucenli@nyu.edu

Accepted at third SPIGM Workshop @ NeurIPS 2025

about separability and coregionalization) [4] and robustness (ensembling single-task models) against
negative transfer [31]. The appropriate model that strikes the right balance between efficient, flexible
transfer and robustness to negative transfer is hard to compute in the classical Gaussian process setup.

Prior-data Fitted Networks (PFNs) [22] offer an attractive alternative to Gaussian Processes because
they are capable of approximating the posterior for any prior over functions that can be sampled from
(including Gaussian Processes), which enables doing Bayesian inference with complex, bespoke
priors. However, PFNs have only been applied to single-task settings so far.

In this work, we propose Multi-Task Prior-data Fitted Networks (MTPFNs). By training with a novel
data generating process (prior) that generates data from both related and unrelated tasks, we build
MTPFNs that generalize better in classical transfer tasks compared to previous GP-based approaches,
while being more robust to negative transfer from irrelevant auxiliary sources. We demonstrate
the efficacy of MTPFNs as a surrogate model in Bayesian optimization on synthetic problems and
real-world AutoML benchmarks.

2 Background and Related Work

Bayesian optimization (BO) is a sample-efficient method for black-box optimization that aims to find
the global optimum of an expensive-to-evaluate function with minimal function evaluations [12]. BO
employs a iterative approach: a probabilistic surrogate model is fit to a set of observations, and an
acquisition function then uses this model’s posterior distribution to select the next input to evaluate
by balancing exploration of uncertain regions against exploitation of promising areas. Finally, we
evaluate the function at the selected point, add the new observation to our data, and proceed to the
next iteration. In multi-task settings, the surrogate model can leverage auxiliary data from related
functions to improve its predictions for the target task. A detailed description of the multi-task
Bayesian optimization problem setting is provided in Appendix A.1.

2.1 Multi-Task Surrogate Models

One approach to model multi-task data for BO is to jointly model the full collection of target and
auxiliary data using a single GP with a multi-task kernel [4, 30, 35, 26, 18]. We will refer to these
models as multi-task GPs (MTGPs). While these joint modeling approaches are effective in the
low-data regime, they become computationally infeasible as we scale the number of tasks and data
points due to their cubic complexity in the total number of data evaluations.

The intrinsic coregionalization model ICM, 14 is a common choice of MTGP due to its simplicity
and was proposed in Swersky et al. [30] for multi-task BO. The ICM models the functions with a
kernel that decomposes into two components

k((x, t), (x′, t′)) = kinputs(x, x
′) · ktasks(t, t

′),

where kinputs is a kernel (often RBF or Matérn) that represents the covariance between inputs and ktasks
captures the covariance between tasks. Because this model assumes a single shared latent function
across all tasks, it can efficiently transfer knowledge between similar tasks; however, the ICM model
may perform poorly when this assumption does not hold and the tasks have distinct characteristics,
e.g., when they should be modeled with different lengthscales.

Many methods fit separate GPs to each auxiliary task and ensemble their predictions to inform the
target task [13, 10, 33, 7]. Although these approaches are scalable, they are not able to jointly capture
information across the related tasks and instead rely on heuristics to determine the relevance of each
GP. Tighineanu et al. [31] propose a scalable joint modeling approach between the target task and
auxiliary tasks; however, this does not model the correlations between the auxiliary tasks, thereby not
taking advantage of the entire dataset. In contrast, we propose a scalable method that jointly models
the full interaction between all data points and tasks. See Appendix A.2 for further discussion of
multi-task GP methods.

2.2 Bayesian Optimization with Transformers

For single-task Bayesian optimization, there has been a growing interest in using neural-network
based approaches. OptFormer [6] directly predicts proposals for the next x, but requires large amounts
of domain data during training. Transformer neural processes (TNP) [24] and prior fitted networks

2

Target Task Source Task (Related) MTPFN (Ours) TabPFNv2 TabPFNv2 (Target-Only)

Source Task (Related) Source Task (Unrelated) ICM ScaML GP (Target-Only)

(a) Four-task problem setting

Target Task Source Task (Related) MTPFN (Ours) TabPFNv2 TabPFNv2 (Target-Only)

Source Task (Related) Source Task (Unrelated) ICM ScaML GP (Target-Only)

(b) Model predictions on the target task

Figure 1: MTPFNs effectively transfer information from related tasks while remaining robust to
unrelated tasks. Compared to joint models such as ICM, ScaML, and TabPFNv2 with a categorical
task variable, our MTPFN demonstrates improved robustness to the unrelated source task (red). The
MTPFN is also able to borrow strength from the related source tasks (green) and outperforms models
which only consider the target task. We plot the mean and 95% confidence intervals for each model.

(PFNs) [22] are transformers trained to approximate the posterior predictive distribution given a
data generating function, and they have demonstrated strong empirical performance in Bayesian
optimization tasks [23, 25] and prediction for tabular data [15].

A PFN, denoted by fθ, takes as input a dataset D and test point xtest and outputs a distribution over
the target variable p(ytest|xtest,D). To train fθ to approximate the posterior predictive distribution, we
repeatedly sample datasets by first sampling a hypothesis h ∼ p(h) which defines a datasets’ input-
output relationship, and then sampling a dataset D ∼ p(D|h). The PFN parameters θ are optimized
by minimizing the negative log-likelihood on held-out test examples across datasets, expressed as
LNLL = ED∼p(D|h)[− log fθ(ytest|xtest,Dtrain)], where D is split into Dtrain ∪{(xtest, ytest)}. Although
TNPs and PFNs have been successfully applied to Bayesian optimization in the single-task setting
[23, 25], there has been no prior work which explores the use of in-context transfer of related
tasks. Existing PFN methods treat each optimization task independently; in contrast, our multi-task
framework allows the model to transfer knowledge across related tasks during inference.

2.3 Long Contexts

Because of the increased number of tasks and data-points required for multi-task Bayesian optimiza-
tion, the underlying architecture needs to support significantly longer context windows compared to
the single-task setting. Various approaches have been proposed to extend the attention mechanisms in
transformers to longer contexts, such as sparse attention [3, 36], hierarchical attention [34, 5], and
others [19, 20]. See Zhuang et al. [37] for a survey of efficient methods.

3 Method

In this section, we present the Multi-Task Prior-Data Fitted Network (MTPFN), a scalable model that
transfers relevant knowledge from auxiliary tasks to model a target task via in-context learning.

3.1 Data Generation Process

PFNs are trained to approximate the posterior of a data generation process (DGP), and the design of
this prior has a significant influence on the model’s predictive performance. While various DGPs
have been proposed in previous works [e.g. 1, 15, 23], the multi-task setting which poses unique
challenges. For one, multi-task problems can exhibit complex relationships between tasks, where
information from one task may inform the predictions of another through shared latent structures.
Additionally, real-world scenarios frequently contain unrelated or noisy tasks which do not provide
any useful information; in these settings, it is important for the model to not be negatively impacted.

To address these challenges, we propose a multi-task DGP that learns complex relationships between
relevant tasks while mitigating corruption from irrelevant tasks. Our approach combines two key

3

Feature Encoder

Source 1

x1, y1 xn, yn[TASK] …

Target

x1, y1 xn, yn[TASK] …

Source K

x1, y1 xn, yn[TASK] … x…

Output Layer

Intra-Task Encoder Intra-Task Encoder Intra-Task Encoder

Intra-Task Encoder Intra-Task Encoder Intra-Task Encoder

Inter-Task Encoder

μ, σ2

x N

Figure 2: MTPFNs use hierarchical attention and jointly model data across information sources.

insights: when tasks are truly related, strong transfer can be achieved by sharing statistical properties
like lengthscales across tasks; however, since we cannot know a priori which auxiliary tasks will be
helpful, the model must explicitly account for task irrelevance. Our DGP models task relationships
through a shared covariance structure when tasks are related and introduces a probability p ∈ [0, 1]
that each auxiliary task is instead modeled independently when it would be irrelevant or harmful. We
present the full algorithm Algorithm A.1, with additional discussion and ablations for alternative
DGPs in Appendix B.

In Figure 1, we demonstrate the performance of various models in a synthetic multi-task setting,
where three of the tasks share a latent structure and have the same lengthscale, while the fourth task
does not contribute relevant information. We see that existing GP models and PFN priors, such as
those used in TabPFNv2 [15], do not work well in this multi-task setting because these models will
be influenced by the data from unrelated tasks. In contrast, our MTPFN, trained on our novel data
generation procedure, is robust to the irrelevant tasks and accurately mirrors the true behavior. This
underscores the benefit of our robust prior generation process.

3.2 Hierarchical Attention Mechanism

For multi-task regression problems, it is important to consider how the task itself should be encoded
within the model. Two natural approaches include representing the associated task as a categorical
feature or as a continuous task embedding. Although straightforward, these methods have distinct
limitations: they require the maximum number of tasks to be specified during train-time, and they
will not generalize to larger number of tasks. Furthermore, the model’s representation of a task is
fixed and isn’t influenced by the data points associated with that task, limiting the model’s ability to
adapt to the relevance of the task-specific data. See Appendix C for more details.

To address these limitations, we propose a novel scalable attention mechanism for PFNs that ef-
fectively leverages the natural hierarchical structure of multi-task data, as shown in Figure 2. Our
approach applies hierarchical attention [34] to the multi-task regression setting and uses specialized
transformer blocks to separately model intra-task and inter-task relationships.

For intra-task encoding, we introduce a learnable “[Task]” token to each task that summarizes task-
specific properties. The intra-task transformer blocks are responsible for learning the relationships of
the data points within each task, By performing attention over these points, the intra-task block updates

4

0 10 20 30 40
BO Iterations

0.2

0.4

0.6

0.8

1.0
0 Unrelated Tasks

0 10 20 30 40
BO Iterations

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Re

gr
et

1 Unrelated Task

0 10 20 30 40
BO Iterations

0.4

0.6

0.8

1.0
2 Unrelated Tasks

0 10 20 30 40
BO Iterations

0.4

0.6

0.8

1.0
3 Unrelated Tasks

ScaML ICM GP MTPFN (p=0.0) MTPFN (p=0.1) MTPFN (p=0.2)

Figure 3: MTPFNs are robust to negative transfer from unrelated tasks. We evaluate BO across
four multi-task settings, where the target task is related to {0, ..., 3} out of 3 auxiliary tasks. We
compare the performance of MTPFNs with different p, where p represents the probability that an
auxiliary task was drawn independently from the target task during training. As we increase the
number of unrelated tasks during evaluation, the MTPFNs which were exposed to unrelated tasks
during training (p > 0) outperform the ICM model, which suffers from negative transfer. We plot the
mean and standard error of the mean over 5 trials.

the embeddings for each data point and also updates the “[Task]” token with a summary embedding
for the task, requiring O(D2) total compute per task. Then, the inter-task encoders, responsible for
learning the relationship between tasks, attend to these summary “[Task]” embeddings, with O(T 2)
complexity. This hierarchical design reduces the overall attention complexity from the naive global
setting of O(D2T 2) to O(D2T + T 2), enabling significantly longer contexts while still allowing
for every data point to influence others. We interleave the intra-task and inter-task blocks in our
architecture, although Chalkidis et al. [5] show that other topologies may also be effective

Our hierarchical attention directly addresses many of the limitations of other task encoders. First, our
attention mechanism naturally handles inputs of varying lengths, allowing the model to generalize to
any number of tasks. This flexibility ensures that even if the model encounters more tasks at test time
than it did during training, it can still meaningfully integrate new task representations. Furthermore,
our approach enables the model to dynamically learn task representations which depend on the data
from the task, and its representation of each task evolves through the many layers of attention. This
enables tasks with similar patterns to develop similar representations, allowing the model to better
capture the potentially complex relationships between tasks.

4 Advantages of MTPFNs

MTPFNs are a compelling surrogate model for multi-task settings: they are capable of efficiently
scaling to large multi-task datasets, and their flexibility enables them to effectively adapt to diverse
information sources. In contrast, although multi-task GPs are commonly used for multi-task regres-
sion, these models often contain strong assumptions. Furthermore, they often trade off efficiency
and expressiveness: methods which jointly model all tasks capture cross-task interactions, but are
computationally expensive, while scalable methods may ignore important inter-task interactions. In
this section, we provide explicit demonstrations of the strengths of MTPFNs for multi-task learning.
PFNs can be trained off a wide range of data generating processes.

4.1 MTPFNs are robust to negative transfer

For GPs, the lengthscales are important hyperparameters that control how sensitive the covariance
is to changes in the inputs. When modeling multiple tasks, it is often assumed that these tasks all
share the same lengthscales (implied by the ICM model). However, this behavior may not be true
in practice, and GPs with the ICM kernel may fail to accurately model the problem and suffer from
negative transfer, where the inclusion of information from one task hurts the performance on another.
In contrast, the flexibility of MTPFNs allow us to train them in a way that explicitly reduces the
impacts of negative transfer, as explained in Section 3.1.

In Figure 3, we evaluate the performance of MTPFNs trained with varying proportions of unrelated
tasks. In this evaluation setting, there are three auxiliary tasks, where one, two, or three auxiliary
tasks are unrelated to the target task. When only one of the auxiliary tasks is unrelated, we find that
all of the multi-task methods perform similarly. However, as we increase the number of unrelated

5

0.00 0.25 0.50 0.75 1.00

2

1

0

1

2

3

4
PFN NLL: 0.18

0.00 0.25 0.50 0.75 1.00

2

1

0

1

2

3

4
Joint (ICM) NLL: -0.20

0.00 0.25 0.50 0.75 1.00

2

1

0

1

2

3

4
Ensemble (ScaML) NLL: 19529.32

Target
Source 1

Source 2
True

± 2
End of Source 1

0 5 10 15 20 25 30 35 40
BO Iterations

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Re

gr
et

ICM (NUTS)
ICM
GP
ScaML
MTPFN

Figure 4: MTPFNs jointly model the data from the target and all auxiliary tasks and perform
fully Bayesian inference. (Left): MTPFNs perform similarly to other joint models like ICM and
outperform ensemble-based models like ScaML. (Right): MTPFNs have comparable performance to
fully Bayesian methods like ICM with MCMC (NUTS) sampling.

auxiliary tasks to two out of three, we find that the MTPFNs trained on data with a higher proportion
of corrupted tasks outperform the ICM, which is more sensitive to negative transfer. When we
increase the number of unrelated auxiliary tasks to three out of three, we find that the MTPFN trained
with p = 0.2 is comparable to the single-task GP, which is the underlying DGP for this problem.

4.2 MTPFNs efficiently model inter-task relationships

Many existing Gaussian process surrogate models trade off modeling inter-task relationships with
efficiency. To demonstrate the capabilities of MTPFNs, we design a synthetic regression problem
with multiple auxiliary tasks to highlight the importance of joint modeling. In this setting, all of
the data points across all source tasks are drawn from the same function, and this function is highly
correlated with the target task. However, there are regions of the input domain where the relevant
source tasks do not have any overlap with the target task. Therefore, the model will only be able to
make accurate predictions if it is able to leverage the relationship between source tasks.

In Figure 4 (Left), we visualize the predictive distributions of MTPFNs, ICM, and ScaML. We see it
is necessary to jointly model the target task along with all of the auxiliary tasks, as done by MTPFNs
and ICM, in order to accurately predict the behavior of the target task across the entire domain.
In contrast, ensemble methods such as ScaML, which do not model the joint interactions between
auxiliary tasks, are unable to capture the relevant information to make accurate predictions.

Although powerful, traditional joint modeling methods like ICM are unable to scale to a large number
of tasks and data points. In Appendix D, we benchmark the runtimes of multi-task models as we
increase the number of tasks and the number of data points per task, and we find that this problem
quickly becomes unmanageable for ICM. In contrast, MTPFNs are able to scale to large amounts of
data while jointly modeling all interactions.

4.3 MTPFNs quickly perform fully Bayesian inference

Müller et al. [22] demonstrate that transformers which are trained to minimize the negative log-
likelihood over held-out data from a data-generating process naturally perform Bayesian inference
by implicitly learning the posterior predictive distribution. Specifically, when the model is trained
to minimize the expected NLL across sufficiently many datasets which are sampled from the data-
generation prior, the final model outputs a posterior predictive distribution which marginalizes over
all of the possible samples from the prior which are consistent with the observed data.

The ability for PFNs to perform fully Bayesian inference also holds in the multi-task setting: we
train MTPFNs on datasets sampled from the ICM model. In Figure 4 (Right), we use an ICM to
generate 5 different multi-task datasets with 3 input dimensions, each with 2 samples from the target
task and 20 samples from each of the 3 auxiliary tasks. The auxiliary tasks have varying amounts of
correlations with the target task. We then perform 10 runs of Bayesian inference for each multi-task
dataset and summarize the results. We find that MTPFNs perform comparably to the fully Bayesian
inference using MCMC sampling through NUTS. This fully Bayesian approach is particularly helpful
in the setting where there are very few observations per task and thus there should be high uncertainty
over the true inter-task covariance. The ICM model with MAP estimation does not account for this

6

MT FT ST

0.5

0.0

0.5

1.0

1.5

Ne
ga

tiv
e

Lo
g

Lik
el

ih
oo

d

LR (In Domain)

MT FT ST

1

2

3

4

5

6
SVM (Out of Domain)

MT FT ST
3

2

1

0

1

2

3

4

GP Draw (Out of Domain)

MTPFN Fine-Tuned Single-Task Original Single-Task
0 2000 4000 6000 8000 10000

of LR Train Datasets for Fine-Tuning

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ne
ga

tiv
e

Lo
g

Lik
el

ih
oo

d

LR (In Domain)
SVM (Out of Domain)
GP Draw (Out of Domain)

Figure 5: MTPFNs, which use domain data through in-context learning, match the performance
of Fine-Tuned PFNs on in-domain data while generalizing better to other domains. (Left):
MTPFNs have comparable NLLs to Fine-Tuned PFNs on in-domain data (LR) and outperform
Fine-Tuned PFNs on other domains (SVM and GP Draws). (Right): As we fine-tune on more
in-domain data, the NLL for Fine-Tuned PFNs significantly worsens for other domains.

uncertainty and under-performs in this setting. Furthermore, the MTPFN is able to make predictions
using one forward pass of the model in approximately 0.5 seconds on average, while NUTS takes
orders of magnitudes longer at 352 seconds per iteration. We showcase further demonstrations of the
importance of fully Bayesian inference in Appendix D.

4.4 MTPFNs can leverage domain data

When making predictions with PFNs, domain data can be incorporated through fine-tuning or in-
context learning. Fine-tuning updates model parameters to adapt to specific domains, enabling
specialization but at high computational cost and risk of overfitting that hurts generalization. Alterna-
tively, MTPFNs use in-context learning, where models trained on multi-task data utilize auxiliary
information during inference without parameter updates.

In Figure 5, we demonstrate these benefits on the HPOBench dataset [8] for Logistic Regression
(LR), which contains 25 tasks with 4 held out for evaluation. We compare three approaches: (1)
the “Original Single-Task”, a general-purpose single-task model trained on Gaussian process draws
with an RBF kernel; (2) the “Fine-Tuned Single-Task”, the same base model after fine-tuning on
data from the 25 LR training tasks; and (3) “MTPFNs”, our method that uses only the 4 hold-out
tasks in-context during inference, without any fine-tuning on the 25 training tasks. We evaluate all
models by measuring negative log likelihood on the LR evaluation set as well as on other domains
(SVM hyperparameter optimization and GP draws) to assess generalization. Further details about the
empirical setup can be found in Appendix E.

The results clearly demonstrate the benefits of MTPFNs over fine-tuned approaches. While fine-tuning
does improve performance on the target LR domain, it comes at a severe cost to generalization: as we
fine-tune on more LR samples, the performance on SVM and GP domains deteriorates significantly
due to overfitting. In contrast, MTPFNs, which use in-context learning, achieve comparable perfor-
mance on the target domain while maintaining strong generalization across all evaluated datasets.
This approach is also computationally efficient, requiring no parameter updates.

5 Optimization benchmarks

We demonstrate the effectiveness of MTPFNs across various transfer learning tasks for machine
learning hyper-optimization. We show that the models are able to effectively utilize domain data
while remaining robust to negative transfer in the context of Bayesian optimization.

For our empirical results, we use a transformer backbone with 23 attention layers, where twelve
intra-task attention layers are interwoven between eleven inter-task layers. Each attention layer
has 4 attention heads with a hidden size of 512. The model is trained on approximately 50 million
synthetically generated datasets as described in Section 3.1, with a batch size of 16 and AdamW with
a learning rate of 1e-4 and cosine annealing.

We compare our method, MTPFN, to several baselines: (1) ICM [14], a joint method which trains a
multi-task GP on the combined target and auxiliary data; (2) ScaML [31], an ensemble method that
fits individual GPs to each auxiliary task; and (3) a single-task GP which only uses the target task and
ignores the auxiliary tasks. Our results were implemented using BoTorch [2] and GPyTorch [11].

7

0 20 40
BO Iterations

0.00

0.25

0.50

0.75

1.00

No
rm

al
ize

d
Re

gr
et

SVM

0 20 40
BO Iterations

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Re

gr
et

XGB

0 20 40
BO Iterations

0.00

0.25

0.50

0.75

1.00

No
rm

al
ize

d
Re

gr
et

RF

0 20 40
BO Iterations

0.00

0.25

0.50

0.75

1.00

No
rm

al
ize

d
Re

gr
et

LR

0 20 40
BO Iterations

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Re

gr
et

NN
ScaML ICM GP MTPFN

0 10 20 30 40
BO Iterations

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Re

gr
et

Naval Propulsion

0 10 20 30 40
BO Iterations

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Re

gr
et

Parkinson's

0 10 20 30 40
BO Iterations

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Re

gr
et

Protein Structure

0 10 20 30 40
BO Iterations

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Re

gr
et

Slice Localization

Figure 6: MTPFNs are competitive across many hyperparameter optimization benchmarks.
Each plot shows the normalized regret for Bayesian optimization loop that was initialized with 3
auxiliary tasks, 20 observations from auxiliary task, and 5 observations from the target task. (Top):
HPOBench benchmarks (Bottom): Tabular FC-Net benchmarks.

5.1 Benchmarks

We compare the effectiveness of the methods on a set of hyperparameter optimization problems
for machine learning model through HPOBench [8]. Following Tighineanu et al. [31], we consider
the hyperparameter optimization for five types of models: support vector machines (SVM), logistic
regression (LR), XGBoost (XGB), neural networks (NN), and random forest (RF). For each setting,
we randomly sample one task to be the target function, and we sample 3 auxiliary tasks from the
meta-data. We randomly sample 5 points from the target task and 20 points from each of the
auxiliary tasks to use as the initialization for Bayesian inference. We measure the normalized regret
(f∗ − fbest)/(f

∗ − f0) where f∗ is the optimal value, fbest is the best value so far, and f0 is the initial
value. We run 100 replicates, each with a different combination of target task and auxiliary task
initializations, and we plot the mean and one standard error.

We share the results of our benchmark in the top panel of Figure 6, and MTPFNs are competitive
across all of the model types. Specifically, we find that in instances where the meta-tasks contain
helpful information (ScaML and ICM outperform GP), the MTPFNs are also able to effectively
utilize this data. Furthermore, in cases like XGB where there is negative transfer for the ICM model,
we find that MTPFNs are more robust and perform similarly to the standard single-task GP.

We also consider tabular FC-Net benchmarks from: Slice Localization, Protein Structure, Naval
Propulsion, and Parkinson’s Telemonitoring. For each benchmark, we set the benchmark to be the
target task, and we use the three other tabular dataset as the auxiliary tasks. We initialize our Bayesian
optimization problem with a random sample of 5 points from the target task and 20 points from each
auxiliary task. We report the average normalized regret over 20 trials in the bottom panel of Figure 6.
MTPFNs work well on these tabular datasets, often outperforming the other baselines.

6 Discussion

In this work, we present MTPFNs, a scalable and robust surrogate model for Bayesian optimization.
By jointly modeling multiple information sources through in-context learning, MTPFNs are able
to effectively use historical data and transfer knowledge across tasks. We introduce a novel data-
generation process which enables the model to be more robust to negative transfer, and we also
present a novel hierarchical attention mechanism. Our empirical results demonstrate that our method
is competitive across a wide range of multi-task benchmarks.

Our results highlight the effectiveness of leveraging domain data through in-context learning.
MTPFNs are able to successfully capture the complex relationships between the information sources
and thus can leverage auxiliary information without expensive model-fitting or fine-tuning procedures.

8

References

[1] Adriaensen, S., Rakotoarison, H., Müller, S., and Hutter, F. Efficient bayesian learning curve
extrapolation using prior-data fitted networks, 2023. URL https://arxiv.org/abs/2310.
20447.

[2] Balandat, M., Karrer, B., Jiang, D., Daulton, S., Letham, B., Wilson, A. G., and Bakshy, E.
Botorch: A framework for efficient monte-carlo bayesian optimization. Advances in neural
information processing systems, 33:21524–21538, 2020.

[3] Beltagy, I., Peters, M. E., and Cohan, A. Longformer: The long-document transformer. arXiv
preprint arXiv:2004.05150, 2020.

[4] Bonilla, E. V., Chai, K., and Williams, C. Multi-task gaussian process prediction. In Platt, J.,
Koller, D., Singer, Y., and Roweis, S. (eds.), Advances in Neural Information Processing Sys-
tems, volume 20. Curran Associates, Inc., 2007. URL https://proceedings.neurips.cc/
paper_files/paper/2007/file/66368270ffd51418ec58bd793f2d9b1b-Paper.pdf.

[5] Chalkidis, I., Dai, X., Fergadiotis, M., Malakasiotis, P., and Elliott, D. An exploration of
hierarchical attention transformers for efficient long document classification. arXiv preprint
arXiv:2210.05529, 2022.

[6] Chen, Y., Song, X., Lee, C., Wang, Z., Zhang, R., Dohan, D., Kawakami, K., Kochanski, G.,
Doucet, A., Ranzato, M., et al. Towards learning universal hyperparameter optimizers with
transformers. Advances in Neural Information Processing Systems, 35:32053–32068, 2022.

[7] Dai, Z., Chen, Y., Yu, H., Low, B. K. H., and Jaillet, P. On provably robust meta-bayesian
optimization. In Uncertainty in Artificial Intelligence, pp. 475–485. PMLR, 2022.

[8] Eggensperger, K., Müller, P., Mallik, N., Feurer, M., Sass, R., Klein, A., Awad, N., Lindauer, M.,
and Hutter, F. HPOBench: A collection of reproducible multi-fidelity benchmark problems for
HPO. In Thirty-fifth Conference on Neural Information Processing Systems Datasets and Bench-
marks Track (Round 2), 2021. URL https://openreview.net/forum?id=1k4rJYEwda-.

[9] Fan, Z., Han, X., and Wang, Z. Hyperbo+: Pre-training a universal prior for bayesian optimiza-
tion with hierarchical gaussian processes. arXiv preprint arXiv:2212.10538, 2022.

[10] Feurer, M., Letham, B., and Bakshy, E. Scalable meta-learning for bayesian optimization using
ranking-weighted gaussian process ensembles. In AutoML Workshop at ICML, volume 7, pp. 5,
2018.

[11] Gardner, J. R., Pleiss, G., Bindel, D., Weinberger, K. Q., and Wilson, A. G. Gpytorch:
Blackbox matrix-matrix gaussian process inference with gpu acceleration. In Advances in
Neural Information Processing Systems, 2018.

[12] Garnett, R. Bayesian Optimization. Cambridge University Press, 2023.

[13] Golovin, D., Solnik, B., Moitra, S., Kochanski, G., Karro, J., and Sculley, D. Google vizier: A
service for black-box optimization. In Proceedings of the 23rd ACM SIGKDD international
conference on knowledge discovery and data mining, pp. 1487–1495, 2017.

[14] Goovaerts, P. Geostatistics for natural resources evaluation, volume 483. Oxford University
Press, 1997.

[15] Hollmann, N., Müller, S., Purucker, L., Krishnakumar, A., Körfer, M., Hoo, S. B., Schirrmeister,
R. T., and Hutter, F. Accurate predictions on small data with a tabular foundation model. Nature,
637(8045):319–326, 2025.

[16] Hvarfner, C., Hellsten, E. O., and Nardi, L. Vanilla Bayesian optimization performs great in
high dimensions. In Salakhutdinov, R., Kolter, Z., Heller, K., Weller, A., Oliver, N., Scarlett,
J., and Berkenkamp, F. (eds.), Proceedings of the 41st International Conference on Machine
Learning, volume 235 of Proceedings of Machine Learning Research, pp. 20793–20817. PMLR,
21–27 Jul 2024. URL https://proceedings.mlr.press/v235/hvarfner24a.html.

9

https://arxiv.org/abs/2310.20447
https://arxiv.org/abs/2310.20447
https://proceedings.neurips.cc/paper_files/paper/2007/file/66368270ffd51418ec58bd793f2d9b1b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2007/file/66368270ffd51418ec58bd793f2d9b1b-Paper.pdf
https://openreview.net/forum?id=1k4rJYEwda-
https://proceedings.mlr.press/v235/hvarfner24a.html

[17] Jones, D. R., Schonlau, M., and Welch, W. J. Efficient global optimization of expensive
black-box functions. Journal of Global Optimization, 13:455–492, 1998.

[18] Joy, T. T., Rana, S., Gupta, S., and Venkatesh, S. A flexible transfer learning framework for
bayesian optimization with convergence guarantee. Expert Systems with Applications, 115:
656–672, 2019.

[19] Katharopoulos, A., Vyas, A., Pappas, N., and Fleuret, F. Transformers are rnns: Fast autoregres-
sive transformers with linear attention. In International conference on machine learning, pp.
5156–5165. PMLR, 2020.

[20] Kitaev, N., Kaiser, Ł., and Levskaya, A. Reformer: The efficient transformer. arXiv preprint
arXiv:2001.04451, 2020.

[21] Liao, X., Li, Q., Yang, X., Zhang, W., and Li, W. Multiobjective optimization for crash
safety design of vehicles using stepwise regression model. Structural and Multidisciplinary
Optimization, 35:561–569, 06 2008. doi: 10.1007/s00158-007-0163-x.

[22] Müller, S., Hollmann, N., Arango, S. P., Grabocka, J., and Hutter, F. Transformers can do
bayesian inference. arXiv preprint arXiv:2112.10510, 2021.

[23] Müller, S., Feurer, M., Hollmann, N., and Hutter, F. Pfns4bo: In-context learning for bayesian
optimization. In International Conference on Machine Learning, pp. 25444–25470. PMLR,
2023.

[24] Nguyen, T. and Grover, A. Transformer neural processes: Uncertainty-aware meta learning
via sequence modeling. In International Conference on Machine Learning, pp. 16569–16594.
PMLR, 2022.

[25] Nguyen, T., Zhang, Q., Yang, B., Lee, C., Bornschein, J., Miao, Y., Perel, S., Chen, Y., and
Song, X. Predicting from strings: Language model embeddings for bayesian optimization, 2024.
URL https://arxiv.org/abs/2410.10190.

[26] Poloczek, M., Wang, J., and Frazier, P. Multi-information source optimization. Advances in
neural information processing systems, 30, 2017.

[27] Rasmussen, C. E. Gaussian Processes in Machine Learning, pp. 63–71. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2004.

[28] Shields, B. J., Stevens, J., Li, J., Parasram, M., Damani, F., Alvarado, J. I. M., Janey, J. M.,
Adams, R. P., and Doyle, A. G. Bayesian reaction optimization as a tool for chemical synthesis.
Nature, 590(7844):89–96, 2021.

[29] Snoek, J., Larochelle, H., and Adams, R. P. Practical bayesian optimization of machine learning
algorithms. In Advances in neural information processing systems, pp. 2951–2959, 2012.

[30] Swersky, K., Snoek, J., and Adams, R. P. Multi-task bayesian optimization. Advances in neural
information processing systems, 26, 2013.

[31] Tighineanu, P., Grossberger, L., Baireuther, P., Skubch, K., Falkner, S., Vinogradska, J., and
Berkenkamp, F. Scalable meta-learning with gaussian processes. In International Conference
on Artificial Intelligence and Statistics, pp. 1981–1989. PMLR, 2024.

[32] Wang, Z., Dahl, G. E., Swersky, K., Lee, C., Nado, Z., Gilmer, J., Snoek, J., and Ghahramani,
Z. Pre-trained gaussian processes for bayesian optimization. Journal of Machine Learning
Research, 25(212):1–83, 2024.

[33] Wistuba, M., Schilling, N., and Schmidt-Thieme, L. Scalable gaussian process-based transfer
surrogates for hyperparameter optimization. Machine Learning, 107(1):43–78, 2018.

[34] Wu, C., Wu, F., Qi, T., and Huang, Y. Hi-transformer: Hierarchical interactive transformer for
efficient and effective long document modeling. arXiv preprint arXiv:2106.01040, 2021.

[35] Yogatama, D. and Mann, G. Efficient transfer learning method for automatic hyperparameter
tuning. In Artificial intelligence and statistics, pp. 1077–1085. PMLR, 2014.

10

https://arxiv.org/abs/2410.10190

[36] Zaheer, M., Guruganesh, G., Dubey, K. A., Ainslie, J., Alberti, C., Ontanon, S., Pham, P.,
Ravula, A., Wang, Q., Yang, L., et al. Big bird: Transformers for longer sequences. Advances
in neural information processing systems, 33:17283–17297, 2020.

[37] Zhuang, B., Liu, J., Pan, Z., He, H., Weng, Y., and Shen, C. A survey on efficient training of
transformers. arXiv preprint arXiv:2302.01107, 2023.

11

A Background

A.1 Bayesian Optimization

Bayesian optimization (BO) [12] is a sample-efficient black-box optimization method. Given a
function f and a compact search space X ⊂ RD, BO aims to find the global maximum2 x∗ =
argmaxx∈X f(x) by iteratively selecting points to evaluate, conditional on observations made
previously. Typically, the observations are corrupted by noise y = f(x) + ϵ(x) where ϵ(x) is a noise
process. At each step t, a probabilistic model (often a Gaussian process [27]) parameterized by θ
is fit to the data collected so far Dt = {(xi, yi)}ti=1. An acquisition function a(x; θ) (e.g. expected
improvement [17]), which balances exploration and exploitation, then uses the model’s posterior
distribution p(f |Dt, θ) to determine the next point to evaluate xt+1 = argmaxx a(x; θ). Finally,
we evaluate the function for the selected point xt+1, add the new observation to the set of function
evaluations Dt+1 = Dt ∪ {(xt+1, yt+1)}, and proceed to the next iteration. The surrogate model is
the key determinant of how successful BO will be, and therefore improvements in the model typically
lead to improvements in performance [16].

In the multi-task setting, we have access to auxiliary data from functions which may be similar to the
black-box function we wish to optimize. Formally, we aim to find the global optimum of a target task
(denoted by task ID 0) x∗ = argmaxx∈X f0(x) while having access to evaluations from auxiliary
tasks {fk}Kk=1, which we assumed are defined over the same search space. Compared to single-task
BO, each observation consists of an additional task index k, and the dataset is Dt = {(xi, yi, ki)}nt

i=1.
The acquisition function a(x; θ) is then used to select the next point for the target task 0. Successful
multi-task BO requires a surrogate model that is able to correctly infer the relationship between the
tasks and use this information effectively.

A.2 Multi-Task Surrogate Models

There are other multi-task models which require weaker assumptions. For example, the linear model
of coregionalization LMC, 14 is a generalization of the ICM, which uses multiple latent functions that
are linearly combined for each task, instead of assuming a single latent function for all tasks. However,
although this model is more flexible than the ICM, it has increased computational complexity and
may lead to overfitting.

Alternative approaches which focus on scaling to large multi-task datasets have also been proposed.
Many methods fit separate GPs to each auxiliary task and ensemble their predictions to inform the
target task [13, 10, 33, 7]. Although these approaches are scalable, they are not able to jointly capture
information across the related tasks and instead rely on heuristics to determine the relevance of each
GP. Other methods use the auxiliary data to learn a better prior over GP hyperparameters for the
target task [32, 9]; however, these methods are unable to utilize the specific information within each
task. Tighineanu et al. [31] propose a scalable joint modeling approach between the target task and
auxiliary tasks; however, this does not model the correlations between the auxiliary tasks, thereby not
taking advantage of the entire dataset. In contrast, we propose a scalable method that jointly models
the full interaction between all data points and tasks.

2Or equivalently the global minimum. Without loss of generality we consider maximization.

12

B Data Generation Processes for PFNs

MTPFNs are flexible and have the capacity to incorporate various data generation processes during
training. In this section, we explore the impacts of various data generation processes for MTPFNs,
each designed to capture distinct inductive biases which improve model performance across different
types of tasks.

B.1 Robust Isotropic Full-Rank ICM

Algorithm A.1 Data Generation Using a Robust Isotropic Full-Rank ICM

Require: Sequence length n, number of tasks T , unrelated task probability p
▷ Input Sampling and Task Assignment

1: Sample inputs {xi}ni=1 ∼ Uniform([0, 1]d)
2: Sample task proportions π ∼ Dirichlet(α)
3: for i = 1 to n do
4: Sample task ID ti ∼ Categorical(π)
5: end for

▷ Isotropic ICM Covariance Structure
6: Sample task covariance matrix KT ∼ LKJ(η = 1)
7: Sample input lengthscale ℓ ∼ Gamma(3, 6)
8: Define input covariance KX on {xi}ni=1 as RBF kernel with lengthscale ℓ
9: Compute full ICM kernel K = KT ⊗KX

10: Sample y ∼ N (0,K)
▷ Sampling Unrelated Tasks

11: for each source task j do
12: With probability p:
13: Sample new lengthscale ℓj ∼ Gamma(3, 6)

14: Define RBF kernel K(j)
X on {xi : ti = j} using ℓj

15: Resample y(j) ∼ N (0,K
(j)
X)

16: end for

In the main text, we train PFNs with the data generation process described in Algorithm A.1: we
sample datapoints across tasks from a full-rank isotropic ICM model. This approach assumes that
all the input dimensions share identical lengthscales; this assumption imposes a strong prior on the
relationship between tasks, and enables effective information transfer across related tasks when the
assumption is met. This data generation process enables us to learn information across related tasks,
since the full-rank isotropic model makes strong assumptions.

To improve our model’s robustness to negative transfer, we also incorporate an additional hyperpa-
rameter p ∈ [0, 1] which dictates the relatedness of the tasks during training. Specifically, p is the
probability that any given source task is drawn independently from the target task, and thus may have
completely different behaviors and lengthscales. Our data generation procedure enables the model to
see a diverse group of datasets which consist of a mix of related and unrelated source tasks.

This p hyperparameter plays a crucial part in the robustness of the model against negative transfer:
because the model is able to see many examples of unrelated tasks during training, it becomes more
robust to seeing unrelated tasks during inference time and is less likely to be negatively impacted
from irrelevant information.

We first introduce inter-task relationships by sampling from an ICM MTGP, where the ICM’s
assumption of a shared lengthscale across tasks enables strong transfer when the tasks are related.
Specifically, we sample an inter-task covariance matrix from an LKJ prior with a concentration of 1.0,
which provides us with a diverse set of relationships between tasks, and we sample the shared RBF
kernel lengthscale from a Gamma (3, 6) prior following the default lengthscale prior in BoTorch v1.11
[2]. To prevent negative transfer, our DGP explicitly encodes the belief that each source task may be
irrelevant to the target task by introducing a probability p ∈ [0, 1] that the task is instead modeled
independently using a separate RBF GP with its own lengthscale. In the following sections, we
present results under a simple and transparent DGP, but different priors and more sophisticated DGPs
can easily be accommodated within the PFN framework. See Appendix B for additional discussions.

13

0.25

0.50

0.75

1.00

1.25

1.50

1.75

M
SE

RF

0.25

0.50

0.75

1.00

1.25

1.50

1.75

M
SE

XGB

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

M
SE

SVM

0.2

0.4

0.6

0.8

1.0

1.2

M
SE

LR

0.5

1.0

1.5

2.0

M
SE

NN

0

5

10

15

NL
L

RF

0

2

4

6

8

10

12

NL
L

XGB

0

5

10

15

20

NL
L

SVM

5

0

5

10

15

20

25

30

NL
L

LR

2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

NL
L

NN

GP ICM ScaML MTPFN p=0.0 MTPFN p=0.1 MTPFN p=0.2

Figure A.1: As we increase p (the probability that each source task is unrelated to the target task
during data generation), the model becomes more robust to negative transfer and achieves better
performance on real-world benchmarks. We visualize the model’s predictive performance on the
HPOBench dataset, where we sample 5 data points from the target task and 20 data points each from
three source tasks. We plot the average MSE and NLL on holdout data from the target task across 25
trials.

0.2

0.4

0.6

0.8

M
SE

RF

0.2

0.4

0.6

0.8

1.0

1.2

M
SE

XGB

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
SE

SVM

0.2

0.4

0.6

0.8

1.0
M

SE

LR

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

M
SE

NN

2

0

2

4

6

NL
L

RF

0

2

4

6

8

NL
L

XGB

2

0

2

4

6

8

10

NL
L

SVM

5

0

5

10

15

20

25

NL
L

LR

2

0

2

4

6

8

10

NL
L

NN

ISO p=0.0 ISO p=0.1 ISO p=0.2 ARD p=0.0 ARD p=0.1 ARD p=0.2

Figure A.2: MTPFNs trained with the ARD data generation process tend to outperform MTPFNs
trained with the isotropic process (ISO) and achieve lower MSE and NLLs on HPOBench problems.

In Figure A.1, we study the impact of p on the model’s ability to accurately predict the empirical data
from HPOBench. Specifically, for each model type (SVM, LR, XGB, NN, and RF), we randomly
sample one task to be the target task, and we sample 3 auxiliary tasks from the metadata. The target
task is randomly initialized with 5 samples, and we also sample 20 points for each of the auxiliary
tasks. We measure the mean squared error (MSE) and the negative log-likelihood (NLL) of each
surrogate model on heldout examples from the target task, and we repeat this procedure 25 times and
plot the average MSE and NLL for each trial.

We find that increasing p, which increases the diversity of the data that the model sees during training,
leads to improved model performance on real-world benchmarks. We see that the MTPFN trained
with p = 0.2 consistently outperforms other MTPFNs trained with lower values of p, and this MTPFN
also outperforms baselines such as the standard ICM model, which assumes that all tasks share the
same lengthscale.

B.2 Full-Rank ICM with Automatic Relevance Determination

We can also relax the assumption that all of the input dimensions share the same lengthscale, and
instead sample datapoints from an ICM model with Automatic Relevance Determination (ARD),
where we assume that each input dimensions has an independent lengthscale. This enables the PFNs

14

Algorithm A.2 Data Generation Using a Robust ARD Full-Rank ICM

Require: Sequence length n, number of tasks T , unrelated task probability p
▷ Input Sampling and Task Assignment

1: Sample inputs {xi}ni=1 ∼ Uniform([0, 1]d)
2: Sample task proportions π ∼ Dirichlet(α)
3: for i = 1 to n do
4: Sample task ID ti ∼ Categorical(π)
5: end for

▷ ARD ICM Covariance Structure
6: Sample task covariance matrix KT ∼ LKJ(η = 1)
7: Sample independent input lengthscales: ℓ = (ℓ1, . . . , ℓd) ∼ Gamma(3, 6)d

8: Define input covariance KX on {xi}ni=1 as an RBF kernel with ARD lengthscales ℓ
9: Compute full ICM kernel K = KT ⊗KX

10: Sample y ∼ N (0,K)
▷ Sampling Unrelated Tasks

11: for each source task j do
12: With probability p:
13: Sample new lengthscale ℓj ∼ Gamma(3, 6)

14: Define RBF kernel K(j)
X on {xi : ti = j} using ℓj

15: Resample y(j) ∼ N (0,K
(j)
X)

16: end for

to have more flexibility and fit more complex problems; however, this weaker assumption may reduce
the model’s ability to effective transfer information compared to the isotropic settings. We describe
this data generation process in Algorithm A.2 and highlight the differences from the isotropic data
generation in green.

In Figure A.2, we compare the performance of the MTPFN trained with isotropic lengthscales (ISO)
to the performance of the MTPFNs trained with the ARD lengthscales. This experiment follows
an identical setup to Figure A.1, where we sample 5 points from a target task and 20 points each
from 3 source tasks, and evaluate the MTPFNs on held-out data from the target task. We plot the
experiments across 25 trials.

We find that the improved flexibility of the ARD lengthscale generally enables the model to have
better performance on the testing data, with the ARD outperforming ISO across many datasets.
However, in some settings such as SVM, we find that the model performance of the isotropic ICM
and the ARD ICM are comparable. This similar performance may be because the assumption of the
shared lengthscale across input dimension is satisfied in this setting, so the additional flexibility of
the ARD is unnecessary.

15

C Task Representation

For multi-task regression problems, the encoding of the task can influence how the model integrates
information from the various sources and impact its ability to learn helpful relationships and differen-
tiate between tasks with irrelevant characteristics. In this section, we describe two straight-forward
methods to represent the task information, and we discuss their implementations and also describe
their limitations for our problem setting.

Categorical Feature For a data point (xi, yi), its associated task can be represented as a categorical
feature ti ∈ {1, 2, . . . , T}, where T is the number of distinct tasks. We can represent ti using a
one-hot encoding 1ti ∈ {0, 1}T , and the final input is formed by concatenating the original feature
vector with the one-hot encoding x′

i = [xi;1ti]. Although simple, this approach does not provide the
model with information related to the task itself. Furthermore, the maximum number of tasks must
be specified at train-time, and the model is also unable to generalize to a larger number of tasks at
test-time since the categorical feature has a fixed number of dimensions.

Task Embedding Rather than directly using the one-hot encoding of the task, we can use a task
encoder to map the task ti to a continuous embedding vector eti ∈ Rd, where d is the embedding
dimension of the model. This embedding is jointly learned with the model parameters, allowing
the task representation to adapt to task-specific characteristics. The original input (xi, yi) is first
transformed into a feature zi = ϕ(xi, yi), and then this feature is combined with the task embedding
z′i = zi + eti . This approach integrates the task information directly into the feature space; however,
the representation for the task is still learned independently of the information within each task, and
the model remains unable to generalize to more tasks at test-time.

16

D Additional Empirical Results

MTPFNs are able to do Bayesian inference with a single forward pass. Furthermore, our proposed
hierarchical attention mechanism enables the MTPFN to scale in O(TD2 + T 2), where D is the
number of data points per task and T is the number of tasks. We compare the runtime of MTPFNs to
joint-modeling methods such as ICM and ensemble-based methods such as ScaML in Figure A.3.
We see that MTPFNs are able to perform inference on an order of magnitude more data points and
tasks compared to traditional GP methods.

100 200 300
Number of samples per task

0

2

4

6

8

10

12

Ti
m

e
(s

)

5 Tasks

101 102 103

Number of tasks

0

2

4

6

8

10

12

Ti
m

e
(s

)

50 Samples per Task
Joint (ICM)
Ensemble (ScaML)
MTPFN

Figure A.3: MTPFNs are significantly faster than alternative GP-based methods.

When trained on a data-generation process that draws samples from a multi-task GP with an ICM kerel,
we see in Figure A.4 that the MTPFN and the ICM have comparable behavior across varying levels
of correlations. Between the tasks. Furthermore, in low-data settings demonstrated by Figure A.5, we
find that the MTPFN outperforms the ICM kernel because it considers the uncertainty over the task
covariance matrix.

0 5 10 15 20 25 30
BO Iterations

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 R
eg

re
t

Features: 3, Tasks: 4, Lengthscale: Sampled
Task Corr: 0.30, Uncorr Tasks: 0
Target Obs: 5, Source Obs: 20

Random
GP
MTGP
PFN (0% Uncorr)

0 5 10 15 20 25 30
BO Iterations

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 R
eg

re
t

Features: 3, Tasks: 4, Lengthscale: Sampled
Task Corr: 0.60, Uncorr Tasks: 0
Target Obs: 5, Source Obs: 20

Random
GP
MTGP
PFN (0% Uncorr)

0 5 10 15 20 25 30
BO Iterations

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 R
eg

re
t

Features: 3, Tasks: 4, Lengthscale: Sampled
Task Corr: 0.90, Uncorr Tasks: 0
Target Obs: 5, Source Obs: 20

Random
GP
MTGP
PFN (0% Uncorr)

Figure A.4: ICM PFNs are comparable to MTGPs across varying levels of correlations between tasks.

0 5 10 15 20 25 30
BO Iterations

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 R
eg

re
t

Features: 3, Tasks: 4, Lengthscale: 0.20
Task Corr: 0.30, Uncorr Tasks: 0
Target Obs: 1, Source Obs: 20

Random
GP
MTGP
PFN (0% Uncorr)

0 5 10 15 20 25 30
BO Iterations

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 R
eg

re
t

Features: 3, Tasks: 4, Lengthscale: 0.20
Task Corr: 0.60, Uncorr Tasks: 0
Target Obs: 1, Source Obs: 20

Random
GP
MTGP
PFN (0% Uncorr)

0 5 10 15 20 25 30
BO Iterations

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 R
eg

re
t

Features: 3, Tasks: 4, Lengthscale: 0.20
Task Corr: 0.90, Uncorr Tasks: 0
Target Obs: 1, Source Obs: 20

Random
GP
MTGP
PFN (0% Uncorr)

Figure A.5: In low-data settings, ICM PFNs, which approximate fully Bayesian inference, outperform
MTGPs with MAP estimation. ICM PFNs are comparable to MTGPs across varying levels of
correlations between tasks.

17

E Training details

E.1 Single-Task PFN Training

The data generation process for the single-task PFN randomly samples inputs x from the unit cube,
and then samples the corresponding outputs y by drawing a sample from a GP with an RBF kernel
with a lengthscale sampled from Gamma(3, 6). For this experiment, we use a fixed feature size of 2.

We train an 8-layer standard transformer (not hierarchical attention) with an embedding size of 256
on this data generation process for 4 million sampled datasets, with a batch size of 16, and AdamW
with a learning rate of 1e-4 and cosine annealing.

E.2 Fine-tuning Single-Task PFN

To fine-tune on the LR dataset, we develop a subsampling data-generation procedure: On the 20
training tasks, we subsample within one task to get 50 x, y. We uniformly select some number of
them to be used as ICL training, and the remaining to be used as the test.

We fine-tune our model with a batch size of 16, and AdamW with a learning rate of 1e-4 and cosine
annealing.

18

	Introduction
	Background and Related Work
	Multi-Task Surrogate Models
	Bayesian Optimization with Transformers
	Long Contexts

	Method
	Data Generation Process
	Hierarchical Attention Mechanism

	Advantages of MTPFNs
	MTPFNs are robust to negative transfer
	MTPFNs efficiently model inter-task relationships
	MTPFNs quickly perform fully Bayesian inference
	MTPFNs can leverage domain data

	Optimization benchmarks
	Benchmarks

	Discussion
	Background
	Bayesian Optimization
	Multi-Task Surrogate Models

	Data Generation Processes for PFNs
	Robust Isotropic Full-Rank ICM
	Full-Rank ICM with Automatic Relevance Determination

	Task Representation
	Additional Empirical Results
	Training details
	Single-Task PFN Training
	Fine-tuning Single-Task PFN

