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Abstract

Real-world vision-language applications de-001
mand varying levels of perceptual granularity.002
However, most existing visual large language003
models (VLLMs), such as LLaVA, pre-assume004
a fixed resolution for downstream tasks, which005
leads to subpar performance. To address this006
problem, we first conduct a comprehensive007
and pioneering investigation into the resolu-008
tion preferences of different vision-language009
tasks, revealing a correlation between resolu-010
tion preferences with ❶ image complexity, and011
❷ uncertainty variance of the VLLM at differ-012
ent image input resolutions. Building on this013
insight, we propose an empirical formula to014
determine the optimal resolution for a given015
vision-language task, accounting for these two016
factors as the zeroth-order and first-order terms017
in the Taylor expansion on a given image input.018
Second, based on rigorous experiments, we019
propose a novel parameter-efficient fine-tuning020
technique to extend the visual input resolution021
of pre-trained VLLMs to the identified optimal022
resolution. Extensive experiments on various023
vision-language tasks validate the effectiveness024
of our method.025

1 Introduction026

Visual Large Language Models (VLLMs) repre-027

sent a powerful class of models capable of han-028

dling vision-language tasks (Yin et al., 2023; Liu029

et al., 2023a, 2024; Alayrac et al., 2022). There is030

a growing body of research focused on the appli-031

cation of VLLMs in real-world scenarios, where032

different tasks necessitate varying levels of percep-033

tual granularity. For instance, autonomous driving034

systems require high resolution to capture multi-035

ple objects and intricate details (Zhou et al., 2023;036

Ding et al., 2023), whereas image classification037

tasks involving singular, simple objects can be ef-038

fectively performed at lower resolutions (Li et al.,039

2024a, 2023d; Zhang et al., 2024). Despite this,040

most existing VLLMs, e.g., LLaVA, pre-assume a041
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Figure 1: Resolution preference across eight tasks; ★
marks the optimal resolution for each task.

fixed resolution for downstream tasks, which leads 042

to sub-optimal performance (Liu et al., 2023b,a; 043

Li et al., 2023b). A direct “exhaustive training" 044

strategy to adapt current VLLMs for diverse vision- 045

language applications by training the models at 046

different resolutions during the pre-training phase 047

to create a series of checkpoints corresponding to 048

various image input resolutions, followed by the 049

selection of the most effective checkpoint for down- 050

stream tasks. While this method is viable, it incurs 051

significant training costs. Consequently, we pose 052

the first research question (RQ1): 053

For a given vision-language task, how to accu- 054

rately determine the optimal resolution without 055

such exhaustive training for VLLMs? 056

To answer RQ1, we conduct a comprehensive 057

and pioneering investigation into the resolution 058

preferences across eight widely-studied vision- 059

language tasks, utilizing VLLMs with five varying 060

input image resolutions, as shown in Figure 1. Our 061

findings reveal that directly choosing the lowest 062

(2242) and highest (6722) resolution leads to sub- 063

par performance across tasks. On the other hand, 064

we observe diverse preferences for the intermediate 065

resolutions, with optimal choices scattered among 066

3362, 4482, and 5602. 067
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To determine the resolution preference for dif-068

ferent tasks, we propose two heuristic methods:069

❶ image complexity, which measures the intrin-070

sic complexity of a given image [❖ Secion 3.2.1].071

❷ uncertainty variance, which measures the vari-072

ance of uncertainty in the model predictions at dif-073

ferent image input resolutions [❖ Secion 3.2.2].074

These two heuristic methods can be regarded as the075

zeroth-order and the first-order terms in the Tay-076

lor expansion over image inputs [❖ Section 3.2.3].077

Through empirical analysis across eight vision-078

language tasks, we find that both the complexity079

scores and model uncertainty variance exhibit a080

generally positive correlation with the preferred081

resolution for each task. Building on this insight,082

we propose an empirical formula integrating both083

heuristics to determine the optimal resolution for084

each vision-language task. We utilize three refer-085

ence tasks to optimize a single hyperparameter of086

this empirical formula, and the fitting results across087

five additional tasks affirm its generalizability.088

Once the optimal resolution for a given vision-089

language task is identified, the next step is adapt-090

ing the current VLLM to the identified resolu-091

tion. While the training-free method exists for092

resolution extension, we empirically find it would093

lead to performance degradation, suggesting that094

training-based approaches are essential. However,095

re-training a VLLM with another resolution from096

scratch incurs significant costs. This prompts our097

second research question (RQ2):098

How to efficiently adapt a pre-trained VLLM to099

the designated resolution without compromising on100

the performance?101

To tackle this problem, we propose a post-102

training strategy that extends the image input reso-103

lution of an existing VLLM checkpoint. We con-104

duct a preliminary experiment to identify which105

parameters within the VLLM are crucial for per-106

formance enhancement. Based on the findings, we107

propose a parameter-efficient fine-tuning (PEFT)108

approach, which only requires updating a few pa-109

rameters in each VLLM component: the positional110

embedding parameters of the visual encoder, the111

projector parameters, and the LoRA adapter pa-112

rameters of the LLM backbone. Empirical studies113

show that our method achieves the best efficiency-114

performance Pareto front. In summary, this paper115

has the following contributions:116

• Novel Discovery. Through a comprehensive and117

pioneering investigation, we discover that differ-118

ent vision-language tasks prefer distinct resolu- 119

tions. 120

• Empirical Formula. We find these preferences 121

correlated with image complexity and model un- 122

certainty variance on samples at different input 123

image resolutions, which can be interpreted as 124

two terms in a Taylor Expansion of image in- 125

puts. We then propose an empirical formula to 126

adaptively determine the optimal resolution for 127

various downstream vision-language tasks with- 128

out exhaustively training VLLMs. 129

• Efficient Adaptation. We introduce a PEFT ap- 130

proach to extend the input image resolution of 131

LLaVA through post-training, containing three 132

components, including vision module PEFT, lan- 133

guage module PEFT, and the projector tuning. 134

2 Related Work 135

Vision Large Language Models (VLLMs). Vi- 136

sion Large Language Models (VLLMs) extend the 137

capabilities of Large Language Models (LLMs) to 138

multimodal tasks, enabling them to process both 139

text and visual inputs (Alayrac et al., 2022; Liu 140

et al., 2023a). This work focuses on VLLMs based 141

on encoder-decoder architectures with modality 142

connectors. 143

Dynamic Resolution in VLLMs. Dynamic res- 144

olution handling has become an important aspect 145

of VLLMs, particularly for tasks involving images 146

of varying sizes and aspect ratios. Models like 147

Qwen2VL (Wang et al., 2024), MiniCPM (Yao 148

et al., 2024), and LLaVA-UHD (Guo et al., 2025) 149

have introduced strategies for processing high- 150

resolution images dynamically. Unlike these meth- 151

ods, which often require architecture changes 152

and from-scratch training, our approach uses a 153

lightweight post-training strategy to adapt existing 154

VLLM checkpoints for varying image resolutions. 155

Due to page limitations, more details are pro- 156

vided in Appendix A. 157

3 Methodology 158

This section elaborates on our proposed method- 159

ology. Section 3.1 presents an overview, followed 160

by a detailed explanation of each component in 161

Sections 3.2 and 3.3. 162

3.1 Method Framework 163

Figure 2 illustrates our approach, which consists 164

of two key components. The first component fo- 165
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Figure 2: Our method comprises two components: the first component identifies the optimal image input resolution
for a given vision-language task (depicted in green), while the second component adapts the VLLM to the selected
image input resolution (depicted in blue).

cuses on task-specific resolution selection, where166

we introduce two heuristic approaches to determine167

the optimal resolution for a given vision-language168

task, detailed in Secion 3.2.1 and 3.2.2. We explore169

the theoretical connection between these heuristics170

and the Taylor expansion in Secion 3.2.3, leading171

to an empirical formula that facilitates task-wise172

resolution selection in Section 3.2.4.173

After identifying the optimal resolution, the sec-174

ond component adapts the VLLM to this specific175

resolution using a PEFT approach. This involves176

post-training a existing VLLM checkpoint without177

retraining the model from scratch. The PEFT adap-178

tation process is discussed in detail in Section 3.3.179

3.2 Task-wise Optimal Resolution Selection180

As highlighted in Section 1, different vision-181

language tasks have varying requirements for the182

perceptual capacity of VLLMs. Therefore, it is183

critical to do task-wise resolution selection. While184

tuning VLLMs at different image input resolutions185

and obtaining the best-performing one is feasible, it186

imposes heavy training costs, which leads to RQ1.187

In this section, we propose a training-free method188

for determining the optimal resolution for a spe-189

cific vision-language task, utilizing two heuristic190

approaches. We then derive an empirical formula191

to guide the resolution selection process.192

3.2.1 Measuring Image Complexity193

The initial step in VLLM processing is the percep-194

tion of visual input. Intuitively, images with vary-195

ing complexity levels demand different degrees of196

perceptual capacity, with more complex images re-197

quiring finer granularity in perception. Thus, for198

any given vision-language task, image complexity199

can serve as an indicator of resolution preference.200

We propose to use Mahon and Lukasiewicz 201

(2023) to measure image complexity, which ap- 202

plies hierarchical clustering on image pixels and 203

leverages the minimum description length principle 204

to determine the number of clusters. The average 205

image complexity across samples of the specific 206

task serves as an indicator for determining the ap- 207

propriate resolution. 208

3.2.2 Measuring Uncertainty Variance across 209

resolutions 210

In addition to the image complexity, which ad- 211

dresses only the visual aspects of a task, it is crucial 212

to account for the model uncertainty of VLLMs, as 213

it provides insights into the interaction between 214

the visual and linguistic components of vision- 215

language tasks. Furthermore, the method in Sec- 216

tion 3.2.1 only captures static complexity, neglect- 217

ing the effects of varying image resolutions. To 218

complement this, we introduce the second heuristic 219

approach based on model uncertainty. 220

Specifically, for a VLLM pre-trained at a fixed 221

resolution (e.g., 3362 for LLaVA), we extend the vi- 222

sual encoder’s resolution using position embedding 223

interpolation, following methods employed in pre- 224

vious studies (Bai et al., 2023; Li et al., 2023b). We 225

denote the original model as M1 and the extended- 226

resolution model as M2. We first apply random 227

augmentation to the images from the task, follow- 228

ing the existing RandAugment algorithm (Cubuk 229

et al., 2020). After augmentation, inference is con- 230

ducted on the task samples using models M1 and 231

M2, from which we extract the softmax probabil- 232

ities corresponding to each generated token. To 233

quantify the uncertainty associated with each to- 234

ken, we calculate the information entropy using 235

H(p) = −
∑n

i=1 pi log pi. Here, H(x) represents 236
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the entropy for token x, where p(xi) is the softmax237

probability of the ith token and n is the number of238

possible tokens in the vocabulary. We denote the239

entropy values derived from M1 and M2 as U1240

and U2, respectively, which provide a measure of241

uncertainty in the model’s predictions.242

The uncertainty variance is computed as the ra-243

tio of the difference between U1 and U2 to U1, as244

shown in r = U2−U1
U1

. Here, V (T ) represents the245

uncertainty variance for task T . This ratio quan-246

tifies how much the uncertainty changes between247

the two VLLMs, with higher values indicating a248

greater impact of resolution on the model’s uncer-249

tainty. This ratio is averaged across all generated250

tokens for a given sample, and the final uncertainty251

variance is computed by averaging this ratio across252

all samples in the task.253

This heuristic approach serves two functions: (1)254

it computes entropy based on the tokens generated255

by VLLM, thus accounting for both visual and256

linguistic features during inference; and (2) it quan-257

tifies the variance caused by resolution changes,258

thereby capturing the dynamic effects of resolution259

shifts. Unlike the static image complexity heuristic,260

this method emphasizes the impact of resolution261

shifts, making these two heuristics complementary.262

Notably, we extend the image input resolution263

of VLLM without tuning the model parameters,264

allowing us to avoid additional training costs.265

3.2.3 Designing Heuristic from the Taylor266

Expansion Perspective267

We further interpret the two heuristics from the per-268

spective of a Taylor expansion, aiming to establish269

a formal connection between these two heuristics270

and the actual model inference process.271

Specifically, let the function F (I,R) repre-272

sent the comprehensive evaluation metric of the273

VLLM’s performance when processing an image274

I at resolution R. It is an abstract and conceptual275

function modeling the model’s performance, which276

may take different forms depending on the task277

(e.g., accuracy in VQA tasks). Our objective is278

to decompose this function to identify key factors279

influencing model performance, which can, in turn,280

guide the resolution selection process. To facilitate281

this analysis, we assume that F (I,R) satisfies the282

mathematical properties necessary for performing283

a Taylor expansion with respect to the input vari-284

able R. The Taylor expansion of F (I,R) defined285

over resolution R is shown in Equation 1. In this286

equation, F (I,R0) corresponds to the zeroth-order287

term, representing the model’s evaluation of image 288

I at resolution R0, which can be interpreted as the 289

model’s performance based on the intrinsic com- 290

plexity of the image. The first-order term captures 291

the change in the evaluation metric as the resolu- 292

tion shifts from R0 to R, thereby quantifying the 293

sensitivity of model uncertainty to resolution varia- 294

tions. For simplicity, we neglect the higher-order 295

terms, which account for the nonlinear effects of 296

resolution changes, and obtain the simplified form 297

F (I,R) ≈ C(I) + V (I) · ∆R. This expression 298

highlights the inherent complexity of the image 299

(C(I)) and the linear change in model uncertainty 300

due to resolution variations (V (I) ·∆R). 301

F (I,R) = F (I,R0) +
∂F

∂R

∣∣∣∣
R=R0

(R−R0)

+
1

2!

∂2F

∂R2

∣∣∣∣
R=R0

(R−R0)
2 + · · ·

(1) 302

This derivation provides a principled approach 303

to analyzing the factors influencing resolution se- 304

lection. Through this analysis, we observe that 305

the two heuristics address distinct yet complemen- 306

tary aspects of the resolution selection process. The 307

first heuristic, image complexity, primarily captures 308

the static and intrinsic characteristics of the image, 309

whereas the second heuristic, uncertainty variance, 310

emphasizes the dynamic effects introduced by res- 311

olution adjustments. These two intuitive heuristics 312

complement each other, forming a robust frame- 313

work for resolution selection. 314

3.2.4 Empirical Formula 315

Given these two heuristics, we hypothesize that im- 316

age complexity and uncertainty variance are posi- 317

tively correlated with the preferred resolution. Con- 318

sequently, we propose Equation 2 to determine the 319

optimal resolution for a specific vision-language 320

task T : 321

Reso(T ) = Reso0(1 + k × C(T )× V (T )) (2) 322

In this empirical formula, C(T ) represents the av- 323

eraged normalized image complexity for task T , 324

V (T ) denotes the averaged uncertainty variance 325

across different image input resolutions on task T , 326

k is a user-specified hyperparameter, and Reso0 327

is the baseline image input resolution of the origi- 328

nal VLLM. The expression 1 + k ×C(T )× V (T ) 329

quantifies the scaling factor between the baseline 330

and the preferred resolution. In practice, the value 331

of k can be adjusted based on prior experience. 332
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Table 1: A comprehensive investigation conducted to explore resolution preferences across eight vision-language
tasks. For each task, the accuracy scores corresponding to five different resolutions are presented.

Resolution SciQA-IMG VizWiz VQAv2 GQA TextVQA OKVQA MMBench MMBench-CN

224× 224 67.23 49.81 77.72 62.81 54.35 46.60 64.86 56.19
336× 336 69.56 50.39 78.53 61.98 58.25 47.95 64.60 58.76
448× 448 68.07 49.67 80.19 63.87 60.25 47.60 64.18 58.16
560× 560 68.72 47.61 78.71 61.77 58.86 50.86 67.70 61.08
672× 672 66.39 46.63 78.04 61.82 56.98 50.72 65.72 59.54

3.3 Parameter-efficient Resolution Adaptation333

After determining the optimal resolution for a given334

task, the next step is adapting the VLLM to the335

selected resolution. To answer RQ2, We propose336

a parameter-efficient fine-tuning (PEFT) approach337

that post-train an existing VLLM checkpoint, thus338

avoiding retraining from scratch.339

As depicted in Figure 2, existing VLLMs (e.g.,340

LLaVA) consist of three main components: a vi-341

sual encoder, a projector mapping visual features342

to the text embedding space, and an LLM back-343

bone generating language tokens. Increasing input344

resolution introduces more image patches, causing345

incompatibility with the original position embed-346

dings. To address this, we interpolate the posi-347

tion embeddings from the initial number of patches348

(e.g., 242) to the extended number (e.g., 322), fol-349

lowing previous research (Bai et al., 2023; Li et al.,350

2023b). Although this allows the VLLM to process351

extended resolutions, performance degrades with-352

out further adaptation (as discussed in Secion 3.2).353

To counter this performance decline, we employ354

a PEFT method that fine-tunes three key compo-355

nents: (1) position embeddings within the visual356

encoder, essential for handling additional patches;357

(2) the lightweight projector parameters; and (3)358

the parameters of the LoRA adapters integrated359

into the LLM backbone. By keeping all other pa-360

rameters frozen, the PEFT approach offers an ef-361

ficient method for adaptation. Figure 2 provides362

a visual representation of the components that are363

fine-tuned versus those that remain frozen.364

4 Experiments365

This section presents the empirical evaluation of366

our proposed method. We first introduce the im-367

plementation details in Section 4.1, followed by368

an in-depth analysis of the results, including the369

investigation into resolution preferences, task-wise370

resolution selection, and the findings from the abla-371

tion study in Section 4.2, 4.3, and 4.4, respectively.372

4.1 Implementation Details 373

VLLM Selection. For our experiments, we select 374

the LLaVA-1.5-7B checkpoint (Liu et al., 2023b) 375

as the representative VLLM for evaluation. 376

Resolution Configurations. We explore five im- 377

age resolutions: 2242, 3362, 4482, 5602, and 6722. 378

These values cover the resolution spectrum com- 379

monly used in previous studies (Liu et al., 2023b,a). 380

Vision-Language Tasks. Our evaluation encom- 381

passes eight vision-language tasks, with details in- 382

troduced in Appendix B.1. 383

Baseline Methods. In addition to the original 384

LLaVA model, we compare our method with sev- 385

eral state-of-the-art approaches. Besides, we report 386

the performance of position embedding interpola- 387

tion as a representative of the training-free methods 388

to extend the image input resolution of VLLMs. 389

The details are introduced in Appendix B.2. 390

Post-training Details. To initialize the position em- 391

bedding parameters of the visual encoder (Vision 392

Transformer) in LLaVA during resolution adap- 393

tation, we employ extended position embeddings 394

derived through positional embedding interpola- 395

tion, as described in Appendix B.2. Following the 396

instructions provided by the LLaVA authors1, we 397

concentrate on stage 2 fine-tuning, incorporating 398

the additional parameters for position embeddings 399

in the visual encoder, alongside the LoRA adapter 400

and projector parameters. The fine-tuning process 401

utilizes images from five datasets: COCO (Lin 402

et al., 2014), GQA (Hudson and Manning, 2019), 403

OCR-VQA (Mishra et al., 2019), TextVQA (Singh 404

et al., 2019), and Visual Genome (Krishna et al., 405

2017). For more details on the construction of the 406

image-text pairs used in training, we refer readers 407

to (Liu et al., 2023a). 408

More details about method implementation and 409

PEFT are introduced in Appendix B.3 and B.4. 410

1https://github.com/haotian-
liu/LLaVA/tree/main?tab=readme-ov-file#train
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Table 2: Distributions of image complexity and uncertainty variance across eight tasks.

vizwiz SciQA-IMG TextVQA GQA VQAv2 OKVQA MMBench MMBench-CN

Resolution Preference 336× 336 448× 448 560× 560

Complexity (C) 0.2191 0.1437 0.2919 0.3236 0.3017 0.3112 0.2323 0.2329
Average 0.1814 0.3058 0.2588

Uncertainty Variance (V) 1.83% 6.47% 4.88% 5.34% 5.26% 6.72% 10.79% 10.45%
Average 4.15% 5.16% 9.32%

C × V 0.0040 0.0093 0.0142 0.0173 0.0159 0.0209 0.0251 0.0243
Average 0.0067 0.0158 0.0234

Table 3: Comparison between our method and baseline approaches, highlighting the best scores in bold. ∗indicates
that the training images or annotations of the datasets were observed during training.

Method LLM Resolution Post-training VQAv2 GQA TextVQA OKVQA MMBench MMBench-CN

BLIP-2 Vicuna-13B 224× 224 - 65.00 41.00 42.50 - - -
InstructBLIP Vicuna-7B 224× 224 - - 49.20 50.10 - 36.00 23.70
InstructBLIP Vicuna-13B 224× 224 - - 49.50 50.70 - - -
Shikra Vicuna-13B 224× 224 - 77.40∗ - - - 58.80 -
IDEFICS-9B LLaMA-7B 224× 224 - 50.90 38.40 25.90 - 48.20 25.20
IDEFICS-80B LLaMA-65B 224× 224 - 60.00 45.20 30.90 - 54.50 38.10
Qwen-VL Qwen-7B 448× 448 - 78.80∗ 59.30∗ 63.80∗ - 38.20 7.40
Qwen-VL-Chat Qwen-7B 448× 448 - 78.20∗ 57.50∗ 61.50∗ - 60.60 56.70

LLaVA-1.5 Vicuna-7B 336× 336 - 78.53∗ 61.98∗ 58.25 47.95 64.60 58.76
LLaVA-1.5 Vicuna-7B 448× 448 ✗ 77.82∗ 61.29∗ 56.61 47.38 63.32 57.73
LLaVA-1.5 Vicuna-7B 448× 448 ✓ 80.19∗ 63.87∗ 60.25 47.60 64.18 58.16
LLaVA-1.5 Vicuna-7B 560× 560 ✓ 78.71∗ 61.77∗ 58.86 50.86 67.70 61.08
LLaVA-1.5 Vicuna-7B Adaptive ✓ 80.19∗ 63.87∗ 60.25 50.86 67.70 61.08

LLaVA-1.5 Vicuna-13B 336× 336 - 80.00∗ 63.30∗ 61.30 - 67.70 63.60

VisWiz SciQA-IMG TextVQA VQAv2 GQA OKVQA MMBench-CN MMBench
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Figure 3: The product of two heuristic scores exhibits a
consistent correlation with resolution preferences.

4.2 Analyzing Resolution Preferences Across411

Vision-Language Tasks412

We systematically analyze resolution preferences413

across vision-language tasks, summarized in Ta-414

ble 1. Two key findings emerge: ❶ Performance is415

suboptimal at very low (2242) or very high (6722)416

resolutions—low resolution limits visual detail cap-417

ture, while high resolution disrupts adaptation and418

introduces irrelevant tokens. ❷ Optimal resolutions419

lie in the mid-range (3362, 4482, 5602), varying by420

task, underscoring the need for task-specific reso-421

lution selection.422

After identifying task-specific resolution prefer-423

ences, we explore the correlation between optimal424

resolutions and our proposed heuristics of image 425

complexity and uncertainty variance, as shown in 426

Table 2. We can draw the following conclusions: 427

❶ No increasing trend is observed between 4482 428

and 5602 in image complexity, but a noticeable gap 429

exists between 3362 and 4482, suggesting that im- 430

age complexity differentiates tasks favoring 3362 431

from those preferring higher resolutions. ❷ There 432

is a positive correlation between preferred resolu- 433

tion and uncertainty variance across tasks, with an 434

upward trend showing that uncertainty variance re- 435

liably indicates resolution preference. ❸ Some ex- 436

ceptions exist, e.g., GQA prefers lower resolution 437

than MMbench but has higher image complexity, 438

and SciQA-IMG has higher uncertainty variance 439

but favors a lower resolution than TextVQA. Multi- 440

plying the scores of two heuristics provides a more 441

consistent correlation, as shown in Figure 3. 442

4.3 Evaluating Heuristic-Based Task-Specific 443

Resolution Selection 444

The investigation presents the correlation between 445

task-specific resolution preferences and two heuris- 446

tic approaches, especially when their scores are 447

combined. In this section, we describe how the 448

hyperparameter values are determined in the em- 449
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Figure 4: Applying the empirical formula to determine the optimal resolution for vision-language tasks.

pirical formula and summarize the performance of450

models using this strategy.451

4.3.1 Applying the empirical formula to452

determine the optimal resolution453

To optimize the hyperparameter in Equation 2, we454

select three reference tasks representing different455

visual perception requirements (Figure 6 in Ap-456

pendix D shows task images). Tasks with simpler457

images (e.g., Figure 6a) are considered low res-458

olution, while complex images (e.g., Figure 6c)459

require higher resolutions. Intermediate tasks (e.g.,460

Figure 6b) represent medium resolution. SciQA-461

IMG, VQAv2, and OKVQA are separately chosen462

to reflect low, medium, and high resolution needs.463

When tuning the hyperparameter k, we focus on464

3362, 4482, and 5602. The constant Reso0 is set465

to 336 (default LLaVA resolution). The formula466

selects the resolution based on the value of k. For467

example, a value of 500 leads to 4482.468

Figure 4a visualizes the relationship between hy-469

perparameter values and selected resolutions. For470

simplicity, we select k = 34, which results in op-471

timal resolution selection for the reference tasks.472

Additionally, as shown in Figure 4b, this value473

generalizes well to other tasks, achieving the best474

resolution for each.475

So far, we have utilized the mean value of image476

complexity and uncertainty variance to characterize477

the specific task. In Appendix C, we analyze the478

sample-level distributions of image complexity and479

uncertainty variance, as well as their impact on the480

empirical formula performance.481

4.3.2 Overall results of Task-wise Adaptive 482

Model and Baselines 483

Table 3 presents the performance of baseline meth- 484

ods and LLaVA variants across six tasks that de- 485

mand high visual perception capacity from VLLMs. 486

Among the LLaVA variants, the training-free 487

method to extend the input resolution through PE 488

interpolation shows performance degradation at 489

varying levels. This confirms that the position em- 490

beddings in the visual encoder and LLM backbone 491

in LLaVA cannot fully adapt to the increased num- 492

ber of image tokens without post-training. On the 493

other hand, the task-wise adaptive LLaVA variant, 494

which optimally selects the input resolution for 495

each task, achieves the best overall performance 496

compared to fixed-resolution LLaVA variants, re- 497

gardless of whether the resolution is 3362, 4482, 498

or 5602. Notably, the task-wise adaptive LLaVA 499

variant with a 7B backbone performs comparably 500

to the 13B variant, underscoring the importance of 501

adaptive perception capacity in VLLMs. 502

When comparing the task-wise adaptive LLaVA 503

variant with other state-of-the-art baselines, it out- 504

performs all but the TextVQA task. In the case of 505

TextVQA, the Qwen-VL and Qwen-VL-Chat meth- 506

ods have observed training images or annotations 507

of the dataset during their training. Importantly, 508

as previous studies (McKinzie et al., 2024a) have 509

highlighted, resolution plays a crucial role during 510

pretraining. The Qwen-VL series are pretrained at 511

an image resolution of 4482, while the LLaVA vari- 512

ants were fine-tuned at extended image resolutions 513

in a post-training phase with far fewer data (665K) 514

compared to Qwen’s 1.4B pretraining and 50M 515

fine-tuning samples. Nevertheless, the task-wise 516

adaptive LLaVA variant achieves better overall re- 517
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Resolution ViT PE Projector LoRA Adapter VQAv2 GQA TextVQA

336× 336 - - - 78.53 (−2.07%) 61.98 (−2.96%) 58.25 (−3.32%)
448× 448 ✗ ✗ ✗ 77.82 (−2.96%) 61.29 (−4.04%) 56.61 (−6.04%)
448× 448 ✓ ✗ ✗ 75.32 (−6.07%) 59.98 (−6.09%) 53.44 (−11.30%)
448× 448 ✗ ✓ ✗ 72.94 (−9.04%) 55.31 (−13.40%) 51.41 (−14.67%)
448× 448 ✗ ✓ ✓ 79.47 (−0.90%) 63.41 (−0.72%) 58.06 (−3.63%)
336× 336 ✓ ✓ ✓ 79.33 (−1.07%) 63.33 (−0.85%) 58.19 (−3.42%)
448× 448 ✓ ✓ ✓ 80.19 63.87 60.25

Table 4: Ablation Analysis of PEFT Components, ✗ and ✓ indicate whether the module is post-trained.

sults than the Qwen-VL series.518

The superior performance of the task-wise519

adaptive LLaVA variant across multiple vision-520

language tasks demonstrates that, compared to521

fixed-resolution approaches, adaptive resolution522

selection is more suitable for real-world applica-523

tions. So far, we have verified the effectiveness of524

our proposed task-wise resolution selection strat-525

egy through the generalization of the empirical for-526

mula and the overall experimental results, answer-527

ing RQ1.528

4.4 Ablation Analysis of PEFT Components529

for Performance530

To evaluate the contribution of each component in531

our PEFT method, we conduct an ablation study532

(Table 4), examining the impact of tuning three key533

parameters: position embeddings in the visual en-534

coder, LoRA adapters in the LLM backbone, and535

projector parameters. We also assess whether per-536

formance gains stem from the additional training537

epoch introduced by post-training by conducting538

full training at the original resolution (3362).539

Results show that tuning each component is cru-540

cial. Tuning only position embeddings or projector541

parameters leads to significant drops, even com-542

pared to training-free positional embedding inter-543

polation. While jointly tuning projector parameters544

and LoRA adapters improves performance, it re-545

mains suboptimal without tuning position embed-546

dings. Additionally, post-training at 3362 provides547

only marginal gains over full training or projector +548

LoRA tuning at 4482. Notably, on TextVQA, post-549

training at 3362 offers no improvement over the550

original checkpoint, suggesting that gains at 4482551

primarily stem from enhanced perceptual capabili-552

ties rather than additional training.553

Overall, our results highlight the importance of554

each component in PEFT and validate its effective-555

ness in addressing RQ2.556

5 Case Study557

As summarized in Appendix E, we present two case558

studies illustrating the impact of image complexity559

and uncertainty variance on VLLM performance. 560

Table 8 compares the performance of a VLLM 561

when presented with two images of differing com- 562

plexity levels, as measured by our method. Both im- 563

ages are associated with the same question, which 564

asks the model to identify "who is standing." For 565

the image with lower complexity (Figure 7a), the 566

VLLM at a resolution of 3362 correctly identifies 567

the woman standing. Conversely, for the image 568

characterized by a more intricate background (Fig- 569

ure 7b), the model fails to provide the correct iden- 570

tification. This outcome indicates that an increased 571

image input resolution is essential for effectively 572

processing more visually complex images. 573

Table 9 examines a scenario where the same im- 574

age is used to answer two questions of differing 575

difficulty. The image shows a room’s interior. For 576

the easier question about the material of a sheet, 577

the VLLM at 3362 resolution provides a correct 578

answer. However, for the more complex question 579

about the location of a smaller object (a tap), the 580

model fails at 3362 but succeeds at 4482, highlight- 581

ing improved performance with higher resolution. 582

Uncertainty variance is low for the simpler ques- 583

tion but significantly higher for the complex one, 584

supporting the hypothesis in Section 3.2.4. 585

6 Conclusion 586

In this paper, we take a step towards adapting 587

VLLMs to real-world applications by providing an 588

in-depth investigation of resolution preferences in 589

different vision-language tasks. Based on the find- 590

ings, we introduce an empirical formula that com- 591

bines image complexity and uncertainty variance 592

to make task-specific resolution selection without 593

the need for retraining. Additionally, we propose a 594

PEFT approach, enabling extension of the image in- 595

put resolution for existing VLLM checkpoints. We 596

expect that our research will offer valuable insights 597

for the VLLM research community. 598
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Limitations & Future Work599

Our current work has several limitations. Due600

to computational constraints in an academic en-601

vironment, we were unable to conduct experiments602

with larger LLM backbones or retrain models from603

scratch. This restricts the scope of comparison, par-604

ticularly against methods requiring extensive per-605

taining. Moreover, our proposed approach focuses606

on task-level resolution selection. Future work will607

explore more granular resolution strategies, such as608

dynamic sample-level resolution adaptation, which609

could further improve performance for heteroge-610

neous tasks.611

Ethical Statement612

This study leverages publicly available datasets613

(e.g., VQAv2, GQA, TextVQA, OKVQA, MM-614

Bench) and pre-trained models (e.g., LLaVA) for615

evaluation and experimentation. These datasets616

and models are widely recognized benchmarks617

in the vision-language research community, dis-618

tributed under licenses permitting academic and619

non-commercial use. All artifacts were used in620

accordance with their intended purposes, without621

modifications or new data collection. The dataset622

creators’ documentation ensures compliance with623

ethical guidelines, including the absence of person-624

ally identifiable or offensive content.625

No ethics review board approval was required, as626

this research does not involve human subject data or627

sensitive information. However, we acknowledge628

that the underlying datasets may contain biases or629

inaccuracies, which could affect model fairness and630

generalization. Future research should explore bias631

mitigation strategies to ensure fair and responsi-632

ble deployment of vision-language models. The633

derivative findings, such as task-specific resolution634

adaptation strategies, remain compatible with the635

original licenses and intended use.636
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Vision Large Language Models. Vision Large 913

Language Models (VLLM), as one the most ca- 914

pable and popular solutions to multimodal tasks, 915

extends the reasoning and generating ability of 916

Large Language Model (LLM) beyond language 917

modalities such as image, video, and audio (McK- 918

inzie et al., 2024b; Tong et al., 2024; Xue et al., 919

2024). VLLM according to their architecture (Liu 920

et al., 2023b; Driess et al., 2023; fuy; Team, 2024). 921

The encoder-decoder VLLM introduces additional 922

multimodal encoders and a modality connector 923

to project multimodal features into the spaces of 924
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language models. The implementations of modal-925

ity connector include: the projector that directly926

maps features into language model (Liu et al., 2024,927

2023a,b); the resampler that compresses the visual928

feature and inserts cross-gated attention layers into929

the LLM decoder (Alayrac et al., 2022; Awadalla930

et al., 2023; Li et al., 2023a). This study mainly931

focuses on the LLaVA-style VLLM, which adopts932

encoder-decoder architecture with a projector con-933

nector.934

High resolution VLLM The high-resolution935

problem of VLLM is attracting attention because936

of its prevalence in downstream tasks, such as937

OCR and document analysis. However, it remains938

challenging because high-resolution images are939

underrepresented in the training data, making it940

difficult to generalize for popular MLLMs. High-941

resolution VLLM solutions can be roughly divided942

into two classes: (1) using high-resolution vision943

encoders that directly support high-resolution in-944

put (Hong et al., 2023; Li et al., 2024b; Lv et al.,945

2023; Wei et al., 2023); (2) the patchification that946

cuts the high-resolution image into smaller patches947

to be processed on standard vision encoders (wen948

Dong et al., 2024; Hu et al., 2024; Feng et al.,949

2023; Li et al., 2023d; Xu et al., 2024). How-950

ever, these solutions lack the flexibility for differ-951

ent resolution inputs, which can be computation-952

ally expensive. To solve this, FlexAttention uses953

dual tokenization that only processes a few highly-954

attended high-resolution tokens in the deeper LLM955

layers, achieving near 40% reduction in computa-956

tional cost compared to standard LLaVA (Li et al.,957

2024a). NVLM (Dai et al., 2024) introduces 1-D958

tile-tagging for tile-based dynamic high-resolution959

images, which can significantly improve the perfor-960

mance of OCR-related tasks, but sometimes under-961

mine the accuracy of reasoning-related tasks. Un-962

like these methods, which presuppose a fixed reso-963

lution for downstream applications, our approach964

implements a task-wise resolution adaptation strat-965

egy, employing different resolutions for tasks with966

different perceptual demands. Additionally, we en-967

hance image input resolution through a parameter-968

efficient post-training method, circumventing the969

need for training from scratch to minimize costs.970

B More Implementation Details971

B.1 Vision-Language Tasks972

Science-QA (Lu et al., 2022), a multimodal sci-973

ence question answering benchmark featuring over974

21k multiple-choice questions on diverse topics. 975

The visual component includes natural images and 976

diagrams, testing the model’s ability to integrate 977

both textual and visual information for coherent 978

reasoning and explanation generation. Vizwiz (Gu- 979

rari et al., 2018), a dataset derived from real-world 980

images paired with spoken questions from visually 981

impaired individuals. This task assesses a model’s 982

ability to process low-quality, unstructured images 983

and generate accurate responses to conversational 984

queries. VQAv2 (Goyal et al., 2017), an expanded 985

version of the original Visual Question Answer- 986

ing (VQA) dataset, designed to reduce language 987

biases. It challenges models to deeply understand 988

visual content in order to answer questions about 989

pairs of semantically similar yet visually distinct 990

images. TextVQA (Singh et al., 2019), a dataset 991

focusing on a model’s capacity to read and reason 992

about textual elements in images, evaluating its 993

ability to integrate Optical Character Recognition 994

(OCR) with visual reasoning to answer questions. 995

OKVQA (Marino et al., 2019), a benchmark that 996

requires models to leverage external knowledge 997

beyond image and question analysis, necessitating 998

access to and reasoning with unstructured knowl- 999

edge sources for accurate answers. GQA (Hudson 1000

and Manning, 2019), a dataset designed for real- 1001

world visual reasoning and compositional ques- 1002

tion answering, requiring models to demonstrate 1003

strong multi-modal understanding, logical reason- 1004

ing, and the ability to answer questions that necessi- 1005

tate connecting information across both visual and 1006

linguistic domains. MMBench (Liu et al., 2023c), 1007

a comprehensive multimodal evaluation set with 1008

over 2,974 multiple-choice questions across 20 1009

ability dimensions, providing a robust assessment 1010

of various vision-language skills, such as reason- 1011

ing, comprehension, and explanation generation. 1012

MMBench-CN, a variant of MMBench focusing 1013

on tasks involving Chinese text and images, eval- 1014

uating the model’s proficiency in processing and 1015

understanding multilingual data. 1016

B.2 Baseline Methods 1017

In addition to the original LLaVA model, we com- 1018

pare our method with several state-of-the-art ap- 1019

proaches, including BLIP-2 (Li et al., 2023c), In- 1020

structBLIP (Dai et al., 2024) (with LLM back- 1021

bones at two scales), Shikra (Chen et al., 2023), 1022

and IDEFICS (IDEFICS, 2023) (also with LLM 1023

backbones at two scales), as well as Qwen-VL and 1024

Qwen-VL-Chat (Bai et al., 2023). The results for 1025
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these baseline methods, along with LLaVA with1026

the Vicuna-13B backbone, are cited from previ-1027

ous work (Liu et al., 2023a). For LLaVA with a1028

Vicuna-7B backbone, we report our reproduced1029

results across different vision-language tasks.1030

As a training-free baseline to extend the im-1031

age input resolution, we apply positional embed-1032

ding interpolation to extend the position embed-1033

dings of the vision encoder in LLaVA. This tech-1034

nique, widely used for Vision Transformers in1035

VLLMs (Bai et al., 2023; Li et al., 2023b), allows1036

models to handle higher image input resolutions1037

than their original training resolution. We evalu-1038

ate the performance of this extension without any1039

additional training of the projector and the LLM1040

backbone.1041

B.3 Method details1042

Image Complexity Heuristic Approach Image1043

complexity for vision-language tasks is calculated1044

using an open-source tool2. We utilize the author-1045

recommended hyperparameters: the number of1046

clusters is set to 8, and the subsample rate is 0.8.1047

To reduce computational overhead, the input image1048

resolution is set to 112×112, and two cluster levels1049

are used, with their combined scores yielding the1050

final complexity value. The complexity scores are1051

normalized via min-max scaling, where the mini-1052

mum and maximum values are computed from 1001053

sampled images from the ImageNet dataset (Deng1054

et al., 2009).1055

RandAugment Perturbation on Image Input1056

When assessing model variance across different1057

resolutions, we apply random perturbations to each1058

input image using the RandAugment algorithm,1059

implemented via an existing tool3. For each im-1060

age, we perform three random augmentations. To1061

mitigate the effects of randomness and enhance re-1062

sult stability, we repeat the variance measurement1063

process three times, each using a different random1064

seed. The final uncertainty variance is obtained by1065

averaging the results from these three iterations.1066

B.4 More Parameter-Efficient Fine-Tuning1067

Details1068

The standard training hyperparameters are largely1069

preserved, as outlined in Table 5, with two no-1070

table adjustments for image resolutions of 5602 and1071

6722: (1) The learning rate is reduced from 2e− 51072

2https://github.com/Lou1sM/meaningful_image_complexity
3https://github.com/TorchSSL/TorchSSL/blob/main/datasets/

augmentation/randaugment.py

Table 5: Hyperparameters at two training stages

Hyperparameter batch size lr lr schedule weight decay epoch optimizer max tokens

Stage 1 256 1e-3
cosinie decay 0 1 AdamW 2048

Stage 2 128 2e-4

Table 6: Training time cost

Resolution 224× 224 336× 336 448× 448 560× 560 672× 672

Training Time Cost 11h 50m 16h 17m 24h 7m 32h 29min 124h 44m

to 1e−5 to prevent training loss explosion observed 1073

with the original rate. (2) The maximum number 1074

of tokens is increased from 2048 to 3072 and 4096, 1075

respectively, to accommodate the increased number 1076

of image tokens. 1077

Post-training experiments are conducted on eight 1078

NVIDIA GeForce RTX 4090 GPUs, with training 1079

time costs detailed in Table 6. Due to GPU memory 1080

limitations, DeepSpeed ZeRO-3 was employed for 1081

training at the resolution of 6722, while ZeRO-2 1082

was used for other resolutions. This accounts for 1083

the significant increase in training time between 1084

6722 and 5602. 1085

In the ablation study (Section 4.4), we separately 1086

fine-tune only the projector and only the position 1087

embeddings, using the stage 1 setting for consis- 1088

tency with the goals of the different training stages. 1089

The corresponding hyperparameters are also de- 1090

tailed in Table 5. 1091

C Impact of Statistical Distributions on 1092

Empirical Formula Performance 1093

To evaluate the extent to which the statistical distri- 1094

butions of complexity C(T ) and uncertainty vari- 1095

ance V (T ) influence the performance of the em- 1096

pirical formula, we present the standard deviations 1097

of C(T ) and V (T ) for each vision-language task, 1098

along with their respective ratios to the mean val- 1099

ues. These statistics are detailed in Table 7. 1100

The results indicate that C(T ) exhibits relatively 1101

low variance across tasks, whereas V (T ) shows 1102

substantially higher variability. This observation 1103

justifies our decision to adopt task-wise selection 1104

instead of sample-wise selection, as the higher vari- 1105

ability in V (T ) at the sample level complicates 1106

consistent prediction. 1107

To further assess the influence of C(T ) and 1108

V (T ) variance on the effectiveness of the empirical 1109

formula, we conducted an additional experiment. 1110

Specifically, we randomly sampled subsets of vary- 1111

ing proportions from the original dataset and com- 1112

puted the average C(T ) and V (T ) values for these 1113
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Table 7: Statistical characteristics of C(T ) and V (T ) in each task. SD represents Standard Deviation, and Ratio
indicates the ratio of the standard deviation to the mean.

Task C(T ) SD C(T ) Ratio V (T ) SD V (T ) Ratio

ScienceQA-IMG 3.3633 0.2384 0.4398 2.5466

Vizwiz 2.4405 0.1541 0.3383 6.0196

VQAv2 2.2005 0.1242 0.7925 4.2562

GQA 1.6582 0.0910 1.2595 4.9103

TextVQA 2.3057 0.1318 0.5258 3.3405

OKVQA 2.1958 0.1224 0.5487 3.7711

MMBench 3.5426 0.2196 1.2040 2.8915

MMBench-CN 3.5482 0.2197 1.0840 2.8310

Figure 5: Relationship between sampling ratio and the
success rate of the empirical formula.

subsets to estimate task-level statistics. We then1114

evaluated the empirical formula, previously tuned1115

using a hyperparameter k on three reference tasks,1116

to predict the optimal resolution across all tasks1117

under these conditions.1118

The sampling proportions vary from 10% to1119

50%, with each experiment repeated 10 times us-1120

ing different random seeds. The success rate was1121

defined as the percentage of instances where the1122

empirical formula accurately predicted the optimal1123

resolution for all tasks. The results, presented in1124

Figure 5, reveal the following key findings: (1) At1125

a sampling ratio of 40%, the success rate reaches1126

100%, demonstrating the empirical formula’s ro-1127

bustness in predicting the optimal resolution. (2)1128

At a sampling ratio of 10%, the success rate drops1129

to 50%, indicating that a smaller subset size intro-1130

duces variability that adversely affects prediction1131

accuracy.1132

These findings highlight that while reducing the1133

dataset size can lower computational costs, exces-1134

sively small subsets may lead to suboptimal pre-1135

dictions. Moreover, the current approach relies1136

on random sampling; future exploration of more 1137

advanced sampling strategies that select representa- 1138

tive samples could potentially achieve high success 1139

rates with smaller subsets. 1140

D Reference Tasks 1141

We utilize three reference tasks to determine the 1142

hyperparameter in Equation 2. Figure 6 presents 1143

three image samples from each reference task. 1144

E Case Study 1145

Table 8 and Table 9 demonstrate two case studies, 1146

illustrating the impact of image complexity and un- 1147

certainty variance on the performance of VLLMs. 1148

The two selected examples are drawn from the 1149

GQA dataset (Hudson and Manning, 2019). 1150

Image Figure 7a Figure 7b
Question Who is standing?

Prediction(336× 336) woman umpire
Correct Answer woman batter
Image Complexity 11.35 20.62

Table 8: Same question with images in different com-
plexity levels.

Image Figure 7c

Question What is the sheet
made of?

Are there stoves
near the freezer to
the right of the tap?

Prediction(336× 336) plastic NO
Prediction(448× 448) plastic YES
Correct Answer plastic YES
Uncertainty Variance 0.42% 16.51%

Table 9: Same image with questions in different diffi-
culty levels.
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(a) Single and simple object: Ethane
is (). A. an elementary substance B. a
compound

(b) Middle-level complexity: Are all
the animals the same?

(c) Multiple objects: What is the brand
being advertised?

Figure 6: We select three reference tasks with images in different levels of complexity to optimize the hyperparameter
in Equation 2.

(a) (b) (c)
Figure 7: Three case study images
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