
Under review as a conference paper at ICLR 2024

MODELING COMPLEX MATHEMATICAL REASONING
VIA LARGE LANGUAGE MODEL BASED MATHAGENT

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) face challenges in solving complex mathematical
problems that require comprehensive capacities to parse the statements, associate
domain knowledge, perform compound logical reasoning, and integrate the inter-
mediate rationales. Tackling all these problems once could be arduous for LLMs,
thus leading to confusion in generation. In this work, we explore the potential
of enhancing LLMs with agents by meticulous decomposition and modeling of
mathematical reasoning process. Specifically, we propose a formal description of
the mathematical solving and extend LLMs with an agent-based zero-shot frame-
work named Planner-Reasoner-Executor-Reflector (PRER). We further provide
and implement two MathAgents that define the logical forms and inherent re-
lations via a pool of actions in different grains and orientations: MathAgent-M
adapts its actions to LLMs, while MathAgent-H aligns with humankind. Experi-
ments on miniF2F and MATH have demonstrated the effectiveness of PRER and
proposed MathAgents, achieving an increase of 12.3% (53.9% −→ 66.2%) on the
MiniF2F, 9.2% (49.8% −→ 59.0%) on MATH, and 13.2% (23.2% −→ 35.4%) for
level-5 problems of MATH against GPT-4. Further analytical results provide more
insightful perspectives on exploiting the behaviors of LLMs as agents.

1 INTRODUCTION

Mathematical reasoning is a complicated task that requires the model to recognize the problem, as-
sociate domain knowledge, and determine the reasoning schema (Lu et al., 2023). Despite large
language models (LLMs) (Ouyang et al., 2022; OpenAI, 2023) demonstrating interesting emergent
abilities and impressive performances on NLP tasks (Wei et al., 2022a; Suzgun et al., 2023), solv-
ing complex mathematical problems can still be challenging (Borji, 2023). A possible reason is
that LLM cannot accomplish all the required inferences for complex tasks in one step, leading to
confusion and errors in recognition and generation. Recent studies attempt to extend the LLMs
with agent-based systems to imitate the social interactive behaviors (Shinn et al., 2023; Park et al.,
2023; Wang et al., 2023a), for instance, through task decomposition, cooperation, competition, and
interaction with environments (Xi et al., 2023). Meanwhile, rudimentary concepts of decomposing
the reasoning process into simple steps are also introduced to exploit the potential of LLMs, like
CoT (Wei et al., 2022b; Wang et al., 2023c), Least-to-Most (Zhou et al., 2023b), and ToT (Yao
et al., 2023). However, to the best of our knowledge, systematical decomposition and meticulous
modeling of complex mathematical solving process have not been explored.

To tackle these problems, we summarize the characteristics of mathematical reasoning (MR): (1)
The complex MR follows a multi-step schema (Yang et al., 2018), (2) The complex MR necessi-
tates a fundamental capacity of compound logical reasoning (Allwood et al., 1982) for intermediate
steps, and (3) Domain knowledge (Zheng et al., 2021) could be specifically requisite for advancing
the inference in a single step. We conclude with a practical description of MR below. Fig. 1 illus-
trates a more detailed example. We can decompose the solving process into several steps that each
aims to solve a sub-problem, performing conjunctive reasoning with an undescribed mathematical
theorem: the “AM-GM Inequality”.

Description 1. Mathematical Reasoning (MR): Given a mathematical problem with conditions
and a target, MR aims to implement a transition from the given conditions to the target through

1

Under review as a conference paper at ICLR 2024

Figure 1: A case to illustrate the description of MR. Given a problem, MR includes three critical
processes: decomposing the task, reasoning step by step, and introducing domain knowledge.

finite-step n-fold inference. For each step, the inference process is executed by compound logical
reasoning operations with corresponding mathematical knowledge.

As the model size and training data volume increase, LLMs are already knowledgeable and adept at
solving single-step problems (Bian et al., 2023). Therefore, when generalizing to complex mathe-
matical problems, the key is to elicit LLMs parsing the underlying tasks, determining the reasoning
schema, and dynamically recalling and associating relevant domain knowledge. Inspired by the con-
cept of LLM-based agent systems, in this work, we first evolve a general mathematical agent frame-
work, Planner-Reasoner-Executor-Reflector (PRER), to model the solving process of MR. PRER
includes four critical modules. Planner and Reasoner are the main modules that perform step-by-
step logical reasoning and filter the relevant knowledge to the problem. Executor accomplishes the
current target by employing specific mathematical actions. Considering LLMs do not always per-
form correct calculations or make reasonable inferences, Reflector introduces a self-verification and
self-correction mechanism to improve the stability and fault tolerance of the whole framework.

To deploy PRER in solving mathematical problems, we provide and implement two MathAgents
in different grains and orientations, which mainly differ in Reasoner. MathAgent-M, the model-
aligned system, defines actions that adapt to the inherent behaviors of LLMs. MathAgent-H, the
human-aligned one, includes a human-aligned reasoner whose executable actions contain more
expert-based prior knowledge. To evaluate the proposed MathAgents, we perform experiments
on two complex mathematical benchmarks: miniF2F and MATH. Compared with GPT-4, Math-
Agents achieve improvements of 12.3% on the miniF2F dataset (53.9% −→ 66.2%), 9.2% on
MATH (49.8% −→ 59.0%), and 13.2% (23.2% −→ 35.4%) for level-5 problems of MATH. Results
against other baselines also demonstrate the effectiveness of PRER and two proposed MathAgents
for MR. We then provide an ablation study of MathAgents and analyze the diverse behaviors of LLM
agents. These analytical results further exploit the potential of LLMs for mathematical solvers.

In conclusion, our contributions include:

• To the best of our knowledge, we are the first to systematically decompose and model the
solving process of complex mathematical reasoning, exploring the potential of integrating
the LLMs with agents.

• We extend the LLM-based agent to mathematical reasoning by proposing a general zero-
shot PRER framework. We also provide and implement two MathAgents based on PRER.

• Experiments demonstrated our proposed MathAgents outperform other baselines for com-
plex MR, depicting the promising potential of PRER. Analytical results further reveal the
detailed behaviors of LLM-based agents. We hope it inspires future research.

2 MODELING COMPLEX MATHEMATICAL REASONING VIA MATHAGENTS

2.1 FORMULATION OF MATHEMATICAL REASONING

Based on Description 1 and previous works (Lu et al., 2023), mathematical reasoning can be formu-
lated by Equation 1, where (X, y) ∈ D,X = {x1, x2, · · · , xm} represents the original conditions-
target pair of a problem in the dataset D. For each step, conditions X and the target y are updated
based on the domain knowledge M and logical function fL. When there exists a step n such that
Xn ⊢ yn holds true, the reasoning is completed.

2

Under review as a conference paper at ICLR 2024

Figure 2: PRER framework with two MathAgent systems. The main difference between the two
systems lies in the reasoner (and their corresponding executor).

∃n ∈ N : Xn ⊢ yn

s.t. Xk, yk = fL(Xk−1, yk−1,M), k = 1, 2, · · · , n
X0 = X, y0 = y, (X, y) ∈ D

(1)

Except for some specific cases (like mathematical induction), y is stable during the inference process
as all proofs share the same target, the iteration can be simplified as Xk = fL(Xk−1,M).

As defined in the formulations that describe the multi-step process, the key is to design an open
mathematical knowledge base M and fit a general logical function fL(·,M). Since LLMs have
contained sufficient knowledge to simulate M , we introduce to extend LLMs with mathematical
agents (MathAgent) to formulate fL(·,M). Compared to previous works that introduced external
tools to enhance the LLMs, we focus on constructing MathAgents purely by LLMs to explore the
potential and behaviours of LLMs in building complex agent systems. More details of the evolution
of agents are introduced in Appendix A.

2.2 PLANNER-REASONER-EXECUTOR-REFLECTOR

We propose a MathAgent framework, “Planner-Reasoner-Executor-Reflector” (PRER), to simulate
the logical function fL(·,M) shown in Figure 2. There are four critical modules of Planner, Rea-
soner, Executor, and Reflector with an LLM core.

Planner assumes the function of task decomposition (planning in the figure). For the nth step,
when given the conditions Xn, the target yn, and the memory mn, the action an can be selected by
Equation 2, where fPL is the planning function in Planner.

an,m
1
n = fPL(Xn, yn,mn) (2)

Reasoner adopts logical operations fRS(·,M) to infer the intermediate result by Equation 3. In
complex mathematical reasoning, some situations in Equation 1 cannot be tackled only by Reasoner.
Therefore, we introduce Executor with three topologies to achieve the updation of Xn and yn.

X ′
n, y

′
n, tn,m

2
n = fRS(an, Xn, yn,m

1
n,M, fEX(an, Xn,M)) (3)

fEX is the executing function, and tn ∈ {Line,Decomposition, Integration} is the first-order
topology of the inference. Line is the linear topology that matches Xk = fL(Xk−1,M) .
Decomposition and Integration are adopted to fit Equation 1, and introduce non-linear struc-
tures and sub-tasks that can be solved by recursion.

3

Under review as a conference paper at ICLR 2024

Table 1: Action descriptions of both MathAgents. The Logical, Mathematical, and Auxiliary classes
can roughly correspond to INFER, ASSOCIATE, and OBSERVE in MathAgent-M.

Module Class Action Description
Planner - Plan Select the next-step action.

Reasoner
(Agent-M)

- Infer Infer new rationales using deduction methods.
- Associate Seek associations to uncover valuable external knowledge.
- Observe Analyze and discuss existing conditions.

Reasoner
(Agent-H)

Logical

Infer Perform a general text-based reasoning.
Calculate Focus on calculation or formula derivation.
Disprove Involve negation or counterproof.
Classify Perform classification discussion with finite cases.
Induce Perform mathematical induction.

Mathematical Associate Seek applicable theorems and formulas for the inference.
Construct Design auxiliary conditions or variables.

Auxiliary
Analyze Guide the exploration via discussion or analysis.
Rethink Think again outside the box.
Integrate Integrate all sub-tasks.

Reflector
- Check Verify whether the inference is reasonable.
- Summarize Summarize conditions/memories
- StopCheck Determine whether reasoning needs to be stopped.

Reflector is adopted to validate the effectiveness of the inference and to judge whether to stop or
not by Equation 4, where in is the stopping indicator of the inference process. Actually, Equation 4
contains three functions: validating, stop-checking, and summarizing. If the output of the validating
function is “True”, (Xn+1, yn+1) is equivalent to (X ′

n, y
′
n); Otherwise, (Xn+1, yn+1) = (Xn, yn)

holds. Stop-checking is to generate in, while the summarizing function is to summarize the updated
conditions and target.

Xn+1, yn+1, in,mn+1 = fRF (X
′
n, y

′
n, Xn, yn,m

2
n) (4)

All these modules are simulated by the LLM core with diverse prompts. The final logical function
fL(·,M) is represented by the composition of fPL(·), fRS(·,M),fEX(·,M), and fRF (·), shown
in Equation 5. In addition, the memory is always updated in all modules. Furthermore, Planner
includes an addition function, preprocessing, to decompose the original problem into the form of
(X, y). This function does not participate in iterative reasoning.

fL(·,M) = fPL(·) ◦ fRS(·,M, fEX(·,M)) ◦ fRF (·) (5)

Based on the PRER framework, we design two MathAgent systems: MathAgent-M and MathAgent-
H, which will be illustrated in the next two sections.

2.3 MODEL-ALIGNED MATHAGENT AND HUMAN-ALIGNED MATHAGENT

Both our proposed MathAgents share a similar Planner, but differ at Reasoners and Executors. The
Reasoner of the Model-aligned MathAgent (MathAgent-M) applies three coarse-grained actions:
INFER, ASSOCIATE, and OBSERVE, as shown in Table 1. We do not impose any constraint on the
reasoning process of MathAgent-M. Instead, the Planner are allowed to choose actions on its own
and determine whether to execute the SUMMARY and STOPCHECK. Therefore, the solving process
of MathAgent-M adopt a linear topology, which means we can directly update the conditions through
Equation 6, where fM is the integration of fRS and fEX in MathAgent-M:

Xn+1 = fM (an, Xn,M), an ∈ {INFER, ASSOCIATE, OBSERVE} (6)

We also allowed the Planner to make its own decision to invoke CHECK, but the results showed a
certain decline. We therefore removed CHECK for MathAgent-M in all our experiments.

4

Under review as a conference paper at ICLR 2024

Human-aligned MathAgent (MathAgent-H) adopts a series of human-aligned actions, including log-
ical , mathematical, and auxiliary actions (Table 1). Logical action imitates the process of human
logical reasoning. For instance, INFER and CALCULATE introduce the similar conjunctive reason-
ing (∧) operator, while DISPROVE simulate a hypothetical reasoning (¬) operator. INDUCE focuses
on induction reasoning, incorporate prior domain knowledge, and CLASSIFY seeks to perform dis-
junctive reasoning (∨). Logical actions can also be seen as refinements of INFER in MathAgent-M.
Meanwhile, mathematical actions and auxiliary actions extend and refine ASSOCIATE and OBSERVE
of MathAgent-M separately, providing more operations to complete the inference.

In addition, Executor introduces three topologies to imitate human thought (see Figure 2). For ex-
ample, INFER and ASSOCIATE follow a Line topology meeting the simplified equation, updating
the conditions directly by combining newly generated and original conditions. An exception is DIS-
PROVE, which needs to update Xn and yn simultaneously, thus is the case of Formula Equation 1.
CLASSIFY and INDUCE share the Decomposition topology which transfers the original problem
(X, y) into a list of sub-problems {(Xi, yi)|i = 1, 2, · · · ,m}. Instead, INTEGRATE re-integrates all
sub-solutions. We can represented the updating by Equation 7, where fH is the integration of fRS

and fEX in MathAgent-H.


Xn+1, yn+1 = fH(Xn, yn,M), an = DISPROVE
{(Xi

n, y
i
n)|i = 1, 2, · · · ,m} = fH(Xn, yn,M), an ∈ {CLASSIFY, INDUCE}

Xn+1 = fH({(Xi
n, y

i
n)|i = 1, 2, · · · ,m}, yn,M), an = INTEGRATE

Xn+1 = Xn ∪ fH(Xn,M), Otherwise

(7)

Execution on Mathematical Reasoning: To implement the proposed MathAgents for MR prob-
lems, we adopted a coupling method of LLM and programming. We prompt LLM to accomplish
the main functions, and achieves logical connections by program. All prompts are depicted in Ap-
pendix B, and algorithms of MathAgent-M and MathAgent-H are presented in Appendix C.

3 EXPERIMENTS

Datasets. We evaluate both our proposed MathAgents on two challenging datasets of mathemat-
ical reasoning: (1) MATH dataset(Hendrycks et al., 2021) which covers 7 topics with challenging
competition mathematics problems, containing a total of 5000 questions for testing, and (2) MiniF2F
dataset(Zheng et al., 2021) which comprises 488 high-school math competition questions, evenly
divided into a testset and a valset. In our experiments, the Minif2f dataset provides final results or
targets for proving, whereas the MATH dataset does not offer final answers for reasoning.

Models. We conducted our experiments by utilizing the powerful GPT-4 (“gpt-4-0613”) (OpenAI,
2023) as our fundamental model and baseline, employed via OpenAI API. To ensure the repro-
ducibility, we adopt greedy decoding in all cases, i.e., the temperature is set to 0.

Baselines. For the MiniF2F dataset, we compared our methods with (1) FMSCL (Polu et al.,
2022) and (2) Autoformalization (Wu et al., 2022) that both are finetuned with expert iteration, (3)
ReProver (Yang et al., 2023) that interacts with Lean by retrieval-augmented LLMs, (4) DSP (Jiang
et al., 2022b) that prompting Minerva (Lewkowycz et al., 2022) to reason in a multi-stage schema,
and (5) Decomposing-the-Enigma (Zhao et al., 2023) that decomposing the reasoning process into
sub-goals, prompted with dynamic demonstrations selected by a specific diffusion model. For the
MATH dataset, we compared our approachs with (6) WizardMath (Luo et al., 2023) and (7) MAM-
MOTH (Yue et al., 2023) that both are specifically fine-tuned models, (8) CR (Zhang et al., 2023) that
prompting LLMs to emulate human thoughts in a cumulative and iterative manner, (9) Complexity-
Complexity-CoT (Fu et al., 2022) that provides a complexity-based selection strategy of demonstra-
tions, and (10) PHP (Zheng Chuanyang, 2023) that improves the reasoning by hint-based iteration.
Note that our proposed MathAgents are accomplished only by LLM cores under zero-shot setting.

3.1 MAIN RESULT

Our main results are shown in Table 2 and Table 3. We tested two proposed MathAgents and GPT4
based on “gpt-4-0613” with greedy decoding, and compared the baselines as reported in their papers.

5

Under review as a conference paper at ICLR 2024

Table 2: Accuracy on MATH dataset. We highlighted the best in bold, underlined the second best,
and compare with GPT4 in the parentheses. CCOT denotes the complexity prompting (Fu et al.,
2022). Besides, CR (Zhang et al., 2023) only used 500 test examples.

Method MATH Dataset Overall
Alg Prob Geo InterAlg NumTh PreAlg Precal

previous reported SOTAs
WizardMath (Luo et al., 2023) 33.3 17.3 15.7 7.1 16.3 41.7 12.6 22.7
MAmmoTH (Yue et al., 2023) - - - - - - - 46.8
CR* (k=4) (Zhang et al., 2023) 79.3 57.9 39.0 28.9 54.8 71.8 30.4 54.20
GPT4+CCOT (k=8) (Zheng Chuanyang, 2023) 70.8 53.1 36.5 23.4 49.6 71.6 26.7 50.36
+PHP (k=8) (Zheng Chuanyang, 2023) 74.3 56.3 41.9 26.3 55.7 73.8 29.8 53.90
implemented based on GPT4 (“gpt-4-0613”)
GPT4 (OpenAI, 2023) 66.3 53.5 41.5 23.7 43.0 74.5 29.7 49.76

MathAgent-M (ours) 64.3 54.6 44.1 27.2 45.4 74.4 31.5 50.88
(-2.0) (+1.9) (+2.6) (+3.5) (+2.4) (-0.1) (+1.8) (+1.12)

Math Agent-H (ours) 76.0 62.0 47.6 31.0 59.1 83.5 36.8 59.02
(+9.7) (+8.5) (+6.1) (+7.3) (+16.1) (+9.0) (+7.1) (+9.26)

Table 3: Accuracy on MiniF2F. We highlighted the best
in bold, underlined the second best, and compare with
GPT4 in the parentheses.

Method MiniF2F Overall
valid test

FMSCL (Polu et al., 2022) 33.6 29.6 31.6
Auto (Wu et al., 2022) 37.3 35.2 36.3
ReProver (Yang et al., 2023) - 26.5 -
DSP (Jiang et al., 2022b) 43.9 37.7 40.8
DeEnigma (Zhao et al., 2023) 48 45.5 46.8
GPT4 (OpenAI, 2023) 56.6 51.2 53.9

MathAgent-M 62.3 61.5 61.9
(+5.7) (+10.3) (+8.0)

MathAgent-H 65.6 66.8 66.2
(+9.0) (+15.6) (+12.3)

Table 4: Ablation study on MiniF2F. We
examine MathAgent-H by ablating a cat-
egory of actions once.

Method MiniF2F-test

Agent-M Agent-H

GPT4 50.0 50.0
w/ agents 56.0 71.0

- Preprocessing - 62.0

- Association 53.0 52.0
- Inference 42.0 55.0
- Observation 51.0 47.0

- Verification - 56.0
- Summarization - 57.0

MathAgents achieve SOTA performances on challenging mathematical datasets. MathAgent-
H exhibits an average enhancement of 9.26% over GPT4 on MATH, and outperforms baselines in
all 7 topics. MathAgent-M demonstrates an average improvement of 1.12% compared to GPT4, and
achieves the second best in 3 topics. On miniF2F, both agents surpass GPT4 and other SOTAs. In
general, MathAgent-M achieves 61.9%, surpassing GPT4 by 8.0%, while MathAgent-H achieves a
SOTA performance of 66.2%, showcasing an improvement of 12.3% over GPT4.

Human-aligned MathAgent-H works better than model-aligned MathAgent-M. Overall,
MathAgent-H outperforms MathAgent-M in all topics, with a lead of 8.14% and 4.3% on MATH
and MiniF2F respectively. An interesting phenomenon is that MathAgent-M has a decline compared
to GPT4 in subjects of Algebra and PreAlgbra, which are relatively easier but requires more numer-
ical calculations. We speculate that this is because the decomposition and the modeling of reasoning
process magnify the inherent weakness in calculation of LLMs.

3.2 ABLATION STUDIES

We conducted ablation studies of MathAgents, using 100 test examples from MiniF2F, examining
the preprocessing (dividing the statements and target), three action categories of Reasoner, and two
components in Reflector. Results are displayed in the table 4, presenting overall decreases.

Refined actions of Reasoner play a pivotal and unique role. Results of MathAgent-M indicate
that segregating and conceptualizing the reasoning process yield benefits. Interestingly, removing

6

Under review as a conference paper at ICLR 2024

Figure 3: Frequency (%) of action scheduling at different difficulty levels/topics.

’

Figure 4: Steps of invoking actions and frequency of CHECK on different difficulty level for com-
pleting a reasoning. When CHECK determines an error occurs, the Reasoner will retry the last action.

such a coarse-grained action may cause LLMs’ attempt to complete the delegated tasks via other
actions. In contrast, removing modules of Reasoner resulted in larger decrease for MathAgent-H
compared to Planner and Reflector. We hypothesize that the refined actions prioritize their own
functions for further cooperation and thus are more essential and cannot be removed.

Restricting and aligning LLMs by human thoughts can enhance the reasoning. In
MathAgent-M, we offer broad outlines of general actions for the LLMs to independently select their
actions. Conversely, MathAgent-H establishes more rigid logical processes through fine-grained
actions and programming, including preprocessing the problem and reflecting after each step. The
results indicate emulating human thoughts to regulate LLMs could result in better reasoning.

3.3 ANALYTICAL RESULTS

We present analytical results to elucidate the behaviours of MathAgents. In Fig 3, we supply the
statistical data of action calls. We further illustrate the required steps for accomplishing a problem
in Fig. 4 and efficiencies of MathAgents at varying difficulty levels in Fig. 5.

Refined actions can cooperate better to tackle complex tasks. Fig 3 shows INFER and CALCU-
LATE played the dominant role. When the difficulty increases, their occurrences tend to diminish.
We observe that MathAgent-H exhibits a consistent shift in actions’ proportion, where other actions
may serve as collaborators for CALCULATE. Conversely, the proportion in MathAgent-M fluctuates
slightly, suggesting the coarse-grained actions could be less effective for collaboration.

MathAgent-H achieved better trade-off between inference and cost with CHECK. As shown
in Fig. 4, the average steps increase for both agents when the difficulty increases. The cost of
MathAgent-H is relatively less, but it invests more in CHECK and retry, indicating that LLM strug-
gles to complete complex tasks once but improves through past failures. Fig. 5 shows that both
agents advance especially on complex tasks and CHECK leads to a high precision, i.e., correctly

7

Under review as a conference paper at ICLR 2024

Figure 5: Accuracy on different difficulty levels of MATH and MiniF2F, as well as the performances
of CHECK in MathAgent-H on 100 samples of MiniF2F-test.

If ! " = $"! − &"" + " + 5, and ! −3 = 2, then what is the value of ! 3 ?

Problem

We have ! −3 =
$ −3 ! − & −3 " +
(−3) + 5 = 2.

Simplifying gives 81$ −
9& − 3 + 5 = 2, so

81$ − 9& = 0. Since

!(") is an even function

(because every term is

even except for the

constant term), !(−3) =
!(3), so !(3) = 1.

GPT-4
Turn 1: (Action-Calculate)

Now, we know that the function !(") = $"! − &"" + " + 5	is an even function

because the powers of " are all even except for the term ". An even function

satisfies the property !(−") = !(") for all " in the domain of !. Therefore,

!(−3) = !(3), which means 2 = !(3).
Turn 2: (Action-Check)

The proof is incorrect because it incorrectly states that !(−3) = !(3)	due to !(")
being an even function. However, !(") is not an even function.

Turn 3: (Action-Calculate)

Given that !(") = $"! − &"" + " + 5 and !(−3) = 2, we can substitute " = −3
into the equation to get: 81a-9b=0 . Substituting " = 3 into the equation, we get:

!(3) = $(3)!−(3)"+3 + 5. This simplifies to: 81$ − 9& + 8 = 8.

MathAgent-H
Turn 1: (Action-Infer)

Since the function !(") is a

polynomial of even degree and all the

terms have even powers or are

constants, it is an even function.

Therefore, !(−3) 	= 	!(3). So,

!(3) 	= 	2.

Turn 2: (Action-Summarize)

Since the function !(") is an even

function, we have !(−3) 	= 	!(3).
Given that !(−3) 	= 	2, we can

conclude that !(3) 	= 	1.

MathAgent-M

Figure 6: Case study on miniF2F. The highlights in yellow are incorrect propositions, while the
highlighted green part indicates this mistake. The highlight in blue shows a revised proposition.

identified true answers. However, the recall rate could be relatively poor. We therefore suggest to
retry last action to mitigate the harm when CHECK is wrong, instead of generating any guidance.

3.4 CASE STUDY AND ERROR ANALYSIS

We provide a case study to further understand the MathAgent systems. Figure 6 gives an exam-
ple. GPT-4 mistakenly considers the function of f(x) = ax4 − bx2 + x + 5 as an even function.
MathAgent-M also cannot revise this mistake. However, MathAgent-H finds this mistake and tack-
les the mathematical problem by CHECK. This case shows PRER’s ability to revise mathematical
hallucination of LLMs.

Table 5: Error analysis of PRER.

ErrorType Prop.(%)
P: select improper action. 25.9
E: systematic execution bugs. 8.7
D: lack of idea/knowledge. 29.6
R: calculation/symbolic error. 35.8

To evaluate the potential and constraints of PRER, we
perform an error analysis as shown in Table 5, taking
MathAgent-H as an example. There are four primary
error categories: planning, execution, directional, and
reasoning errors. We measure and analyze their per-
centages on miniF2F- test. Planning and execution
errors are specific for MathAgents. We observe that
the executing errors only account for 8.7%, while the
proportion of planning errors is 25.9%, indicating the
main limitation of MathAgents is that they may fail to
parse the statements and devise a reasonable schema. Directional and reasoning errors also pose sig-
nificant challenges (29.6% and 35.8%). For instance, the LLMs may not know the problem-solving
strategies, the necessary formulas, or be prone to make computational errors and symbolical errors.

However, such directional and reasoning errors primarily stem from a lack of related knowledge
or inadequacies in handling symbols and quantities. Although Reflector can alleviate the impact,
it cannot fundamentally tackle these issues. Possible solutions include that pretraining LLMs with
symbolic modeling internally, or introducing external tools as shown in Figure A1.

8

Under review as a conference paper at ICLR 2024

4 RELATED WORKS

4.1 ELICIT THE MATHEMATICAL ABILITIES OF LARGE LANGUAGE MODELS

Early works usually attempted to pre-train specific models for solving mathematical problems (Tay-
lor et al., 2022; Lewkowycz et al., 2022; Zhao et al., 2022), based on carefully selected mathematical
corpus. Since the reasoning capability of language model can significantly benefit from the general
corpus like text and code (Wang & Komatsuzaki, 2021; Brown et al., 2020; Touvron et al., 2023,
inter alia), some works also choose to fine-tune the general language model to elicit the informal
mathematical abilities (Jiang et al., 2021; Han et al., 2021; Lample et al., 2022; Jiang et al., 2022a).

With the large-scale unsupervised pre-training technique, recent LLMs show interesting emergent
abilities (Wei et al., 2022a), e.g., generalize from in-context prompts by learning the potential for-
mats (Webson & Pavlick, 2022; Min et al., 2022; Pan et al., 2023). Instruction tuning further extend
it to zero-shot by training LLMs to follow general instructions (Wei et al., 2021; Ouyang et al., 2022).
One area of research therefore attempt to improve the performances by designing high-quality ex-
amples or instructing the model to generate executable programs of specific languages like Python
code (Imani et al., 2023; Gao et al., 2022) or Isabelle/HOL code (Wu et al., 2022).

However, LLMs can struggle to directly generalize to complex problems and accomplish reasoning
in a single step. Therefore, the idea of agent system has been introduced, trying to address this issue.

4.2 MODELING REASONING PROCESS VIA LLM-BASED AGENTS

One area of research that introduced the rudimentary concepts of agents is to prompt the LLMs to
behaviour aligned with human, thereby implicitly decomposing the reasoning process (Wei et al.,
2022b; Wang et al., 2023c; Zhou et al., 2023b; Yao et al., 2023). Intuitive strategies have also
been introduced to improve the reasoning, including devising plans prior to reasoning (Wang et al.,
2023b; Hao et al., 2023), self-reflecting the generations by LLMs (Zheng Chuanyang, 2023; Qian
et al., 2023; Miao et al., 2023), and voting based on results for better consistency (Wei et al., 2022b;
Suzgun et al., 2022).

Another area of research attempts to construct an agent system of multiple LLM cores and external
helpers. Reflection-based methods allow the LLMs to identify potential issues according to feed-
backs of multiple sources from external environment (Zheng Chuanyang, 2023; Qian et al., 2023;
Wu et al., 2023; Miao et al., 2023). Du et al. (2023) proposed to improve the performance by mul-
tiagent debate. The Graph structure is incorporated into the schema of reasoning for modeling the
reasoning process (He-Yueya et al., 2023; Chen et al., 2023a; McNichols et al., 2023; Cao, 2023;
Zhang et al., 2023), typically requiring an abundance of relevant examples to help the model to un-
derstand the process. Some recent work also augment LLMs with external tools like search engine
and code interpreter (Chen et al., 2023b; Imani et al., 2023; Jie & Lu, 2023; Zhou et al., 2023a).

Compared to these studies, we focus on constructing an systematical agent system, entirely using
LLM cores, decomposing and modeling the complex reasoning processes from both perspectives of
model behaviours and human cognition. With our more comprehensive and systematic framework,
we achieve a better result.

5 CONCLUSION

In this paper, we explore the formulation of complex mathematical problems and propose a novel
agent-based framework PRER to decompose and model the reasoning process. We further provide
and implement two MathAgents, exploring the potential of intergrating LLMs with agent system.
The results on challenging MATH (59.0%) and miniF2F (66.2%) demonstrate the effectiveness.

However, the proposed MathAgents still have constraints in calling expense, and could be harder
to be implemented by weaker LLMs, including GPT-3.5. In our experiments, GPT-3.5 struggles
with planning and comprehending the action, also exhibiting interesting phenomenon that provides
repetitive analysis, but does not execute the actions. Moreover, the current prompts are manually
crafted, heavily reliant on experts. We will tackle these issues in future research.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Jens Allwood, Lars Andersson, and Östen Dahl. Logic in linguistics. Language, 58:492, 1982.

Ning Bian, Xianpei Han, Le Sun, Hongyu Lin, Yaojie Lu, and Ben He. Chatgpt is a knowledgeable
but inexperienced solver: An investigation of commonsense problem in large language models.
ArXiv, 2023.

Ali Borji. A categorical archive of chatgpt failures. Arxiv, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. NeurIPS, 33:1877–1901, 2020.

Lang Cao. Enhancing reasoning capabilities of large language models: A graph-based verification
approach. ArXiv, 2023.

Jiaao Chen, Xiaoman Pan, Dian Yu, Kaiqiang Song, Xiaoyang Wang, Dong Yu, and Jianshu Chen.
Skills-in-context prompting: Unlocking compositionality in large language models. ArXiv, 2023a.

Zhipeng Chen, Kun Zhou, Beichen Zhang, Zheng Gong, Wayne Xin Zhao, and Ji-Rong Wen. Chat-
cot: Tool-augmented chain-of-thought reasoning on chat-based large language models. 2023b.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B. Tenenbaum, and Igor Mordatch. Improving
factuality and reasoning in language models through multiagent debate. ArXiv, 2023.

Yao Fu, Hao-Chun Peng, Ashish Sabharwal, Peter Clark, and Tushar Khot. Complexity-based
prompting for multi-step reasoning. ArXiv, 2022.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. Pal: Program-aided language models. ArXiv, 2022.

Jesse Michael Han, Jason Rute, Yuhuai Wu, Edward Ayers, and Stanislas Polu. Proof artifact co-
training for theorem proving with language models. In ICLR, 2021.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, and Zhiting Hu.
Reasoning with language model is planning with world model. ArXiv, 2023.

Joy He-Yueya, Gabriel Poesia, Rose E Wang, and Noah D Goodman. Solving math word problems
by combining language models with symbolic solvers. ArXiv, 2023.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset. In
NeurIPS Datasets and Benchmarks, 2021.

Shima Imani, Liang Du, and Harsh Shrivastava. MathPrompter: Mathematical reasoning using large
language models. In ACL, pp. 37–42, 2023.

Albert Qiaochu Jiang, Wenda Li, Jesse Michael Han, and Yuhuai Wu. Lisa: Language models of
isabelle proofs. In 6th Conference on Artificial Intelligence and Theorem Proving, pp. 378–392,
2021.

Albert Qiaochu Jiang, Wenda Li, Szymon Tworkowski, Konrad Czechowski, Tomasz Odrzygóźdź,
Piotr Miłoś, Yuhuai Wu, and Mateja Jamnik. Thor: Wielding hammers to integrate language
models and automated theorem provers. NeurIPS, 35:8360–8373, 2022a.

Albert Qiaochu Jiang, Sean Welleck, Jin Peng Zhou, Timothee Lacroix, Jiacheng Liu, Wenda Li,
Mateja Jamnik, Guillaume Lample, and Yuhuai Wu. Draft, sketch, and prove: Guiding formal
theorem provers with informal proofs. In ICLR, 2022b.

Zhanming Jie and Wei Lu. Leveraging training data in few-shot prompting for numerical reasoning.
In ACL Findings, 2023.

Guillaume Lample, Timothee Lacroix, Marie-Anne Lachaux, Aurelien Rodriguez, Amaury Hayat,
Thibaut Lavril, Gabriel Ebner, and Xavier Martinet. Hypertree proof search for neural theorem
proving. NeurIPS, 35:26337–26349, 2022.

10

Under review as a conference paper at ICLR 2024

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
reasoning problems with language models. NeurIPS, 35:3843–3857, 2022.

Pan Lu, Liang Qiu, Wenhao Yu, Sean Welleck, and Kai-Wei Chang. A survey of deep learning for
mathematical reasoning. In ACL, pp. 14605–14631, 2023.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jianguang Lou, Chongyang Tao, Xiubo Geng, Qing-
wei Lin, Shifeng Chen, and Dongmei Zhang. Wizardmath: Empowering mathematical reasoning
for large language models via reinforced evol-instruct. ArXiv, 2023.

Hunter McNichols, Wanyong Feng, Jaewook Lee, Alexander Scarlatos, Digory Smith, Simon
Woodhead, and Andrew Lan. Exploring automated distractor and feedback generation for math
multiple-choice questions via in-context learning. ArXiv, 2023.

Ning Miao, Yee Whye Teh, and Tom Rainforth. Selfcheck: Using llms to zero-shot check their own
step-by-step reasoning. ArXiv, 2023.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke
Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning work? In
EMNLP, 2022.

OpenAI. GPT-4 technical report. ArXiv, 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser
Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F. Christiano, Jan
Leike, and Ryan Lowe. Training language models to follow instructions with human feedback.
In NeurIPS, 2022.

Jane Pan, Tianyu Gao, Howard Chen, and Danqi Chen. What in-context learning ”learns” in-context:
Disentangling task recognition and task learning. ArXiv, 2023.

Joon Sung Park, Joseph C. O’Brien, Carrie J. Cai, Meredith Ringel Morris, Percy Liang, and
Michael S. Bernstein. Generative agents: Interactive simulacra of human behavior. ArXiv, 2023.

Stanislas Polu, Jesse Michael Han, Kunhao Zheng, Mantas Baksys, Igor Babuschkin, and Ilya
Sutskever. Formal mathematics statement curriculum learning. In ICLR, 2022.

Cheng Qian, Chi Han, Yi R Fung, Yujia Qin, Zhiyuan Liu, and Heng Ji. Creator: Disentangling
abstract and concrete reasonings of large language models through tool creation. ArXiv, 2023.

Noah Shinn, Federico Cassano, Beck Labash, Ashwin Gopinath, Karthik Narasimhan, and Shunyu
Yao. Reflexion: Language agents with verbal reinforcement learning. 2023.

Mirac Suzgun, Luke Melas-Kyriazi, and Dan Jurafsky. Follow the wisdom of the crowd: Effective
text generation via minimum bayes risk decoding. ArXiv, 2022.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V. Le, Ed Chi, Denny Zhou, and Jason Wei. Challenging big-bench
tasks and whether chain-of-thought can solve them. In ACL Findings, pp. 13003–13051, 2023.

Ross Taylor, Marcin Kardas, Guillem Cucurull, Thomas Scialom, Anthony Hartshorn, Elvis Saravia,
Andrew Poulton, Viktor Kerkez, and Robert Stojnic. Galactica: A large language model for
science. ArXiv, 2022.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. ArXiv, 2023.

Ben Wang and Aran Komatsuzaki. GPT-J-6B: A 6 Billion Parameter Autoregressive Language
Model, 2021.

11

Under review as a conference paper at ICLR 2024

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models.
ArXiv, 2023a.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim.
Plan-and-solve prompting: Improving zero-shot chain-of-thought reasoning by large language
models. In ACL, pp. 2609–2634, 2023b.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V. Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In ICLR, 2023c.

Albert Webson and Ellie Pavlick. Do prompt-based models really understand the meaning of their
prompts? In NAACL-HLT, pp. 2300–2344, 2022.

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. In ICLR,
2021.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto, Oriol
Vinyals, Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large language models.
Trans. Mach. Learn. Res., 2022, 2022a.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In NeurIPS, 2022b.

Yiran Wu, Feiran Jia, Shaokun Zhang, Qingyun Wu, Hangyu Li, Erkang Zhu, Yue Wang, Yin Tat
Lee, Richard Peng, and Chi Wang. An empirical study on challenging math problem solving with
gpt-4. ArXiv, 2023.

Yuhuai Wu, Albert Qiaochu Jiang, Wenda Li, Markus Rabe, Charles Staats, Mateja Jamnik, and
Christian Szegedy. Autoformalization with large language models. NeurIPS, 35:32353–32368,
2022.

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang, Jun-
zhe Wang, Senjie Jin, Enyu Zhou, Rui Zheng, Xiaoran Fan, Xiao Wang, Limao Xiong, Qin Liu,
Yuhao Zhou, Weiran Wang, Changhao Jiang, Yicheng Zou, Xiangyang Liu, Zhangyue Yin, Shi-
han Dou, Rongxiang Weng, Wensen Cheng, Qi Zhang, Wenjuan Qin, Yongyan Zheng, Xipeng
Qiu, Xuanjing Huan, and Tao Gui. The rise and potential of large language model based agents:
A survey. 2023.

Kaiyu Yang, Aidan M Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad Godil,
Ryan Prenger, and Anima Anandkumar. Leandojo: Theorem proving with retrieval-augmented
language models. ArXiv, 2023.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W. Cohen, Ruslan Salakhutdinov,
and Christopher D. Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering. In EMNLP, 2018.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Arxiv,
2023.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao Huang, Huan Sun, Yu Su, and Wenhu Chen.
Mammoth: Building math generalist models through hybrid instruction tuning. ArXiv, 2023.

Yifan Zhang, Jingqin Yang, Yang Yuan, and Andrew Chi-Chih Yao. Cumulative reasoning with
large language models. ArXiv, 2023.

Wayne Xin Zhao, Kun Zhou, Zheng Gong, Beichen Zhang, Yuanhang Zhou, Jing Sha, Zhigang
Chen, Shijin Wang, Cong Liu, and Ji-Rong Wen. Jiuzhang: A chinese pre-trained language
model for mathematical problem understanding. In SIGKDD, pp. 4571–4581, 2022.

12

Under review as a conference paper at ICLR 2024

Xueliang Zhao, Wenda Li, and Lingpeng Kong. Decomposing the enigma: Subgoal-based demon-
stration learning for formal theorem proving. ArXiv, 2023.

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. Minif2f: a cross-system benchmark for
formal olympiad-level mathematics. ArXiv, abs/2109.00110, 2021.

Xie Enze Li Zhenguo Li Yu Zheng Chuanyang, Liu Zhengying. Progressive-hint prompting im-
proves reasoning in large language models. ArXiv, 2023.

Aojun Zhou, Ke Wang, Zimu Lu, Weikang Shi, Sichun Luo, Zipeng Qin, Shaoqing Lu, Anya Jia,
Linqi Song, Mingjie Zhan, et al. Solving challenging math word problems using gpt-4 code
interpreter with code-based self-verification. ArXiv, 2023a.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schu-
urmans, Claire Cui, Olivier Bousquet, Quoc V. Le, and Ed H. Chi. Least-to-most prompting
enables complex reasoning in large language models. In ICLR, 2023b.

13

Under review as a conference paper at ICLR 2024

A APPENDIX: EVOLUTION OF MATHAGENT

LLM-based Agent

Agent Environment

Desire

Belief

Intention Action

Response

Intention
Construction

Interaction

Belief
Updating

Execution

Objective

Long-term
Memory

Short-term
Memory

Proposal
Planning

Environment
Description Tool

Response Result

Tool List
Tool Using

Tool Execution
Reflection

Instantiation

MathAgent (!!)

Extension Target (!)

Conditions
(#)

Knowledge
($)

Proposal
Planning

Short-term
Memory

Logical Reasoner

Theorem
Proof

Logic
Result

Reasoning

Reflection
Execution

Environment

Tool

Response

(a) BDI Agent Model

(b) General LLM-based Agent
Tool

Using

Figure A1: (a) shows the BDI agent model. (b) is a general, practical LLM-based agent framework.
(c) illustrates MathAgent.
LLM-based agent originates from agent-based model (ABM) following a theoretical agent model,
Belief-Desire-Intention model (BDI). BDI defines an agent as “based on the belief about the state of
the world and the desire for an ideal state, an intention to achieve the ideal state is formed, which
generates the action that interacts with the external environment, accepts the response given by the
environment, and further updates the belief”. Based on the definition, Figure A1(a) shows a graphi-
cal illustration of BDI. Recent LLM-based agents can be counted as instantiations of BDI. Figure A1
shows a general, practical LLM-based agent framework, which defines a specific interaction method
with the environment - Tool Using.

The most significant difference between MathAgent and a general LLM-based agent is that Math-
Agent does not require an explicit environment to interact with but needs to complete reasoning
within the agent, which is shown in Figure A1. Although MathAgent can also enhance the calcula-
tion abilities of the reasoner by calling tools, these external modules are not included in the agent.
Therefore, we focus on the systematic exploration of MathAgent, and the use of external tools is no
longer within the research scope.

B APPENDIX: PROMPTS IN TWO MATHAGENTS

We show all prompts in two MathAgents. As for MathAgent-M, we define Plan, Integrate, Summa-
rize, and three kinds of actions, whose prompts are given in Table A1. Plan is a fundamental func-
tion to determine the present action with a JSON format. Integrate and Summarize are two auxiliary
function to help the completion of the inference. Three actions, including INFER, ASSOCIATE, and
OBSERVE, have been introduced in Section 3.2. All these actions are selected automatically with
the help of Planner.

Table A1: Prompts in MathAgent-M

Function Prompt
Plan Choose an action that could be helpful for solving the problem. The

outputs should be in the JSON format of ”{’Action’: X, ’task’: E}”, where
E is the objective or guidance of the action.

Infer Infer new rationales within the given context using deduction methods
such as equation transformation, calculation, induction, and more. The
outputs should be in the JSON format of ”{’inferences’: Is}”, where Is
should be in one sentence.

14

Under review as a conference paper at ICLR 2024

Table A1(continued): Prompts in MathAgent-M

Function Prompt
Associate Seek associations within the given context to uncover valuable external

knowledge. This knowledge may encompass theorems, lemmas, clever
tricks, or any other insights not yet present in the context. The outputs
should be in the JSON format of ”{’associations’: As}, where As should
be in one sentence.”

Observe Analyze and discuss existing conditions, including generalization,
negation, and reflective summarization. The outputs should be in the
JSON format of ”{’Observations’: Obs}”.

Summarize Integrate intermediate steps into new premises and eliminate unnecessary
or redundant references or rationales. The outputs should be in the JSON
format of ”{’new premises’: NPs}”.

StopCheck Summarize all generations into a final solution. The output should be in
the JSON format of ”{’status’: ST, ’solution’: Sol}”. ST is either ”solved”
or ”failed” and Sol is the summarized solution or the error analysis,
specifically.

MathAgent-H contains Plan, Check, Summarize, and three kinds of actions, whose prompts are
given in Table A2. Plan is a fundamental function to determine the present action with a JSON
format. Check and Summarize are two functions of Reflector. Logical actions (INFER, CALCU-
LATE, DISPROVE, CLASSIFY, and INDUCE) is used to perform compound logical reasoning, while
mathematical actions (ASSOCIATE, CONSTRUCT) is specific to mathematical problems. Auxiliary
actions (ANALYZE, RETHINK, and INTEGRATE) help the system to complete the inference. All
actions have been introduced in Section 3.3. In the plan function, {action: Action Description} is
predefined, which is shown in Table A3, whose definitions are consistent with the result in Section
2.1.

Table A2: Prompts in MathAgent-H

Function Prompt
Plan You are an AI planner specialized in choosing an action and designing the

task/guidance. Please read the given context and choose an action that
could be helpful for solving the problem. Then a special AI agent who is
only capable of one action will be called to finish it by completing the task
or following the guidance. {Question Description} Please choose one
action based on following instructions: {action: Action Description}

Infer You are an AI mathematician specialized in promoting the exploration and
advance the reasoning/proving. Please read the given context and promote
the proof. {Question Description} Remember, the only action you are
capable of is defined as: {Action Description}

Calculate You are an AI mathematician specialized in using calculation or formula
derivation for promoting the exploration and advancing the
reasoning/proving Please read the given context and promote the proof.
{Question Description} Remember, the only action you are capable of is
defined as: {Action Description}

Disprove You are an AI planner specialized in solving mathematical problems by
contradiction. Please read the given context and devise a contradiction
scheme. {Question Description} Please design a contradiction scheme in
the JSON list format of ”{’Conditions’: C, ’Goal’: G}”. C is all
conditions assumed in proof by contradiction (including the necessary
original conditions), and G is the target that is intended to be disproved in
the proof by contradiction.

15

Under review as a conference paper at ICLR 2024

Table A2(continued): Prompts in MathAgent-H

Function Prompt
Classify You are an AI planner specialized in devising a classification discussion

scheme to solve math problems. Please read the given context and devise a
classification discussion scheme. Question Description Please divide the
problem into some subproblems in the JSON list format of
”[{’Conditions’: ST, ’Goal’: SG}, and so forth.]”. ST is the new
conditions of one subproblem and SG is the target of it.

Induce You are an AI planner specialized in devising a scheme with mathematical
induction method to solve math problems. Please read the given context
and devise an induction scheme. Question Description Please divide the
problem into two subproblems in the JSON list format of ”[{’Type’: ”base
step”, ’Conditions’: C1, ’Goal’: G1}, {’Type’: ”induction step”,
’Conditions’: C2, ’Goal’: G2}]”. C1 and C2 are the new conditions of the
base step and the induction step, respectively. G1 and G2 are the targets of
the two steps.

Associate You are an AI mathematician specialized in Seeking (external) applicable
theorems and formulas to aid or start an exploration. Please read the given
context and promote the proof. {Question Description} Remember, the
only action you are capable of is defined as: {Action Description}

Construct You are an AI mathematician specialized in constructing auxiliary
conditions/variables to aid or start an exploration. Please read the given
context and promote the proof. {Question Description} Remember, the
only action you are capable of is defined as: {Action Description}

Analyze You are an AI mathematician specialized in providing an
analysis/discussion for further decision-making. Please read the given
context and promote the proof. {Question Description} Remember, the
only action you are capable of is defined as: {Action Description}

Rethink You are an AI mathematician specialized in thinking outside the box or
finding useful patterns for further decision-making. Please read the given
context and promote the proof. {Question Description} Remember, the
only action you are capable of is defined as: {Action Description}

Integrate You are an AI mathematician who is good at summarizing the proof
{Question Description} You need summarize the proof. Pay attention: the
summary should be shorter and clearer in three sentences or less, and you
don’t need to judge the correctness of the proof.

Check You are an AI mathematician who is good at checking proofs and
summarizing them. Please read the given context and make your
judgement. {Question Description} You need to check whether the proof
processing is right. If you believe the proof is wrong, please output in the
JSON format: ”{”Correctness”: ”wrong”, ”Summary”: R}”. R is the
reason why you think the proof is wrong, and should be shorter and clearer
in three sentences or less. Otherwise, if you think it’s right, please output
in the JSON format: ”{”Correctness”: ”right”}”

Summarize You are an AI mathematician who is good at summarizing the proof
Question Description You need to check whether the final target is solved.
Please output in the JSON format: You need to check whether the final
target is solved. Please output in the JSON format:
”{”Solved”:S1,”Summary”:S2}”. S1 is yes/no whether the final target is
solved, S2 is your summary of this proof. Pay attention: S2 should be
shorter and clearer in three sentences or less, and you don’t need to judge
the correctness of the proof.

16

Under review as a conference paper at ICLR 2024

Table A2(continued): Prompts in MathAgent-H

Function Prompt
StopCheck You are an AI mathematician who is good at summarizing the proof

{Question Description} You need to check whether the final target is
solved. Please output in the JSON format: You need to check whether the
final target is solved. Please output in the JSON format:
”{”Solved”:S1,”Summary”:S2}”. S1 is yes/no whether the final target is
solved, S2 is your summary of this proof. Pay attention: S2 should be
shorter and clearer in three sentences or less, and you don’t need to judge
the correctness of the proof.

Table A3: Action Description in MathAgent-H.
Action Description
disprove ’disprove’ involves negation or counterproof.
calculate ’calculate’ focus on calculation or formula derivation.
induce ’induce’ is using mathematical induction.
classify ’classify’ is using classification discussion with finite cases.
infer ’infer’ is general text-based reasoning when other actions are not applicable.
analyze ’analyze’ guides the exploration via discussion or analysis.
rethink ’rethink’ means think outside the box.
associate ’associate’ seeks applicable theorems and formulas.
construct ’construct’ designs auxiliary conditions or variables.

C APPENDIX: ALGORITHMS OF MATHAGENT SYSTEMS

We also provide the execution algorithms of the two systems. MathAgent-M is a model-aligned
system whose almost all actions can be selected by Planner automatically. Algorithm 1 shows the
execution process of MathAgent-M.

Algorithm 1: MathAgent-M Algorithm.
Input: Problem (X0, y0) ∈ D, Simulation Function with LLM fLLM , Prompts P = {plan :

Ppl, stopcheck : Psc, summarize : Psm, infer : Pinf , associate : Pass, observe : Pobs}
Output: Proof/Result r

1 Initialize Memory: m0 =NULL;
2 Initialize Stop Index: idx = False;
3 Count: n = 0;
4 while idx == False do
5 Select Action: an,m = fLLM (Xn, yn,mn, Ppl),

an ∈ {infer, associate, observe, summarize, stopcheck};
6 Update Memory: mn ← m;
7 if an ∈ {infer, associate, observe, summarize} then
8 Execute Action: Xn+1 = fLLM (Xn, PA), A ∈ {inf, ass, obs, sm};
9 else

10 idx,Xn+1 = fLLM (Xn, Psc);
11 end
12 if idx ==True then
13 r = Xn+1

14 end
15 Count: n← n+ 1;
16 end
17 return r;

Based on Algorithm 1, MathAgent-M adopts a planning function to select actions in Reasoner and
Reflector automatically. Afterward, the action is taken with a Line topology. These two steps are
executed alternately until the inference is completed or terminated.

17

Under review as a conference paper at ICLR 2024

MathAgent-H is a human-aligned system whose actions are defined to align with humankind. For
example, INDUCE executes mathematical induction by dividing the problem into two sub-tasks:
initial condition verification and induction, which obey demonstrated logic. Algorithm 2 shows the
execution process of MathAgent-H.

In Algorithm 2, MathAgent-H also adopts a planning function to select actions in Reasoner automat-
ically. Afterward, the action is performed by Reasoner with diverse topologies in Executor. Finally,
Reflector checks the inference proof for each step. These three steps are executed alternately until
the inference is completed or terminated. Note that not all actions are selected by Planner automati-
cally. Instead, several specific actions, such as INTEGRATE, need to be performed at a fixed location,
which is in line with human knowledge.

Algorithm 2: MathAgent-H Algorithm.
Input: Problem (X0, y0) ∈ D, Simulation Function with LLM fLLM , Prompts

P = {preprocess : Ppp, plan : Ppl, summarize : Psm, check : Pck, stopcheck : Psc, infer :
Pinf , calculate : Pcal, disprove : Pdis, classify : Pcls, induce : Pind, associate :
Pass, construct : Pcon, analyze : Palz, rethink : Prtk, integrate : Pint}

Output: Proof/Result r

1 Split Problem: X0, y0 = fLLM ((X0, y0), Ppp)
2 Initialize Memory: m0 =NULL;
3 Initialize Stop Index: idx = False;
4 Count: n = 0;
5 while idx == False do
6 Select Action: an,m = fLLM (Xn, yn,mn, Ppl),

an ∈ {infer, calculate, disprove, classify, induce, associate, construct, analyze, rethink};
7 Update Memory: mn ← m;
8 if an == disprove then
9 Prove by Contradiction: X ′

n, y
′
n,m = fLLM (Xn, yn,mn, Pdis);

10 Update Memory: mn ← m;
11 else
12 if an ∈ {Classify, Induce} then
13 Classify: {(Xi

n, y
i
n)|i = 1, 2, · · · , k} = fLLM (Xn, yn,mn, PA), A ∈ {cls, ind};

14 Update Memory: mn ← m;
15 for i = 1 to k do
16 Recursive Calculation: (X ′i

n , y
′i
n) = Self(Xi

n, y
i
n);

17 end
18 Integrate: X ′

n, y
′
n,m = fLLM ({(X ′i

n , y
′i
n)|i = 1, 2, · · · , k}, yn,mn, Pint);

19 Update Memory: mn ← m;
20 else
21 Execute Other Action:

X ′
n,m = Xn ∪ fLLM (Xn,mn, PA), y

′
n = yn, A ∈ {inf, cal, ass, con, alz, rtk};

22 Update Memory: mn ← m;
23 end
24 end
25 Check: idxc,m = fLLM (X ′

n, y
′
n, Xn, yn,mn, Pck);

26 if idxc == True then
27 Xn+1, yn+1 = fLLM (X ′

n, y
′
n, Psm);

28 else
29 Xn+1, yn+1 = Xn, yn;
30 end
31 Update Memory: mn+1 ← m;
32 Stop Check: idx = fLLM (Xn+1, yn+1, Psc);
33 if idx == True then
34 r = fLLM (Xn+1, yn+1, Psm);
35 end
36 Count: n← n+ 1;
37 end
38 return r;

18

	Introduction
	Modeling Complex Mathematical Reasoning via MathAgents
	Formulation of Mathematical Reasoning
	Planner-Reasoner-Executor-Reflector
	Model-aligned MathAgent and Human-aligned MathAgent

	Experiments
	Main Result
	Ablation Studies
	Analytical Results
	Case Study and Error Analysis

	Related Works
	Elicit the Mathematical Abilities of Large Language Models
	Modeling Reasoning Process via LLM-based Agents

	Conclusion
	Appendix: Evolution of MathAgent
	Appendix: Prompts in Two MathAgents
	Appendix: Algorithms of MathAgent Systems

