
Replacing thinking with tool usage enables reasoning in small language models

Corrado Rainone * 1 Tim Bakker * 1 Roland Memisevic 1

Abstract
Recent advances have established a new machine
learning paradigm based on scaling up compute at
inference time as well as at training time. In that
line of work, a combination of Supervised Fine-
Tuning (SFT) on synthetic demonstrations and
Reinforcement Learning with Verifiable Rewards
(RLVR) is used for training Large Language Mod-
els to expend extra compute during inference in
the form of “thoughts” expressed in natural lan-
guage. In this paper, we propose to instead format
these tokens as a multi-turn interaction trace with
a stateful tool. At each turn, the new state of
the tool is appended to the context of the model,
whose job is to generate the tokens necessary to
control the tool via a custom DSL. We bench-
mark this approach on the problem of repairing
malfunctioning Python code, and show that this
constrained setup allows for faster sampling of
experience and a denser reward signal, allowing
even models of size up to 3B parameters to learn
how to proficiently expend additional compute on
the task.

1. Introduction
It was first observed in Wei et al. (2022) that prompting
capable Language Models (LMs) to “think” step-by-step,
rather than to provide an immediate answer, could lead to
significant performance boosts. Currently, Large Reasoning
Models (LRM) (Fengli et al., 2025), which generate addi-
tional tokens in the form of Chains-of-Thought (CoTs) in
order to improve their performance on a question or task,
have effectively become a new AI paradigm (OpenAI, 2025;
DeepSeek-AI, 2025). Since LRMs aim to improve their
performance on a task by expending additional compute
at inference time, they are part of a class of approaches
referred to as Test-Time Scaling (TTS) or Inference-time
Compute (ItC) methods; this class also includes approaches

*Equal contribution 1Qualcomm AI Research; Qualcomm AI
Research is an initiative of Qualcomm Technologies, Inc.. Corre-
spondence to: Corrado Rainone <crainone@qti.qualcomm.com>.

Workshop on Computer-use Agents @ICML 2025, Vancouver,
Canada. Copyright 2025 by the author(s)

that steer the decoding process via some form of (e.g., tree)
search, with outputs scored by either an engineered reward
function or a verifier model (Beeching et al., 2024; Snell
et al., 2024; OpenAI, 2025; Liu et al., 2025a), an idea that
can ultimately be traced all the way back to the ‘Alpha-’
series of works (Silver et al., 2016; 2017). TTS methods,
including LRMs, are often taken to embody “System-2”
thinking (Ji et al., 2025), the slow and deliberate thinking
processes used by humans to plan and adapt to previously
unseen situations.

LRM training is typically done at least in part on experi-
ence; i.e., based on their own outputs rather than on external
demonstrations (Zelikman et al., 2022; Wang et al., 2024;
Setlur et al., 2025; DeepSeek-AI, 2025; Hu et al., 2025;
Chu et al., 2025). Recently, this has taken the form of on-
policy Reinforcement Learning (RL) on tasks that enable
the handcrafting (as opposed to neural modeling) of a re-
ward function. Such verifiable tasks are mostly sourced
from the domains of math and coding. This paradigm of
Reinforcement Learning with Verifiable Rewards (RLVR)
was compellingly demonstrated by DeepSeek-AI (2025),
who trained a model to reason via on-policy RL on its own
CoTs. Regardless of whether reasoning is learned from
experience or from expert demonstrations (Ye et al., 2025;
Muennighoff et al., 2025) the additional tokens generated
at test time typically take the form of reasoning steps de-
scribed in natural language, which Feng et al. (2025) refer
to as “text-based reasoning”. Although this parameteriza-
tion has the benefit of generality due to the representative
power of natural language, it also comes with pitfalls. Only
large models have so far been “bootstrapped” on their own
CoTs, as was done in (DeepSeek-AI, 2025). For smaller
models, one may attempt to distill the reasoning capabili-
ties of larger models and subsequently attempt on-policy
RL (Dang and Ngo, 2025); one may moreover attempt to
unlock reasoning behavior in small models via simple Su-
pervised Fine-Tuning (SFT) on expert demonstrations (Ye
et al., 2025; Muennighoff et al., 2025). However, such meth-
ods are yet unproven to work for models of fewer than 10B
parameters, or suffer from instabilities that preclude stable
and continuous learning from experience (Dang and Ngo,
2025). The action space in which any LM agent operates is
enormously large, and the reward signal of RLVR, usually
based on task outcome (DeepSeek-AI, 2025; Hu et al., 2025;

1

Dang and Ngo, 2025), is only available once the model has
completed its reasoning and produced an answer. Unless
these challenges are mitigated, successful RLVR inevitably
requires a strong exploration prior, which small LMs strug-
gle to provide.

In this paper, we propose a different parameterization of
“thinking” tokens, which reduces the size of the action space
and allows for a denser reward signal. We benchmark our
proposal on the verifiable task of repairing malfunctioning
Python code, and demonstrate that it enables extending the
RLVR paradigm to models as small as 1B in size using only
Low-Rank adaptation (Hu et al., 2021). In our proposal, we
format “thinking” tokens as the tracing of a series of inter-
actions between the reasoner and an external tool, which we
refer to as a Chain-of-Edits (CoE). We make the following
contributions:

• We propose to parameterize “thinking” tokens as an
interaction trace between a model and a text editor,
wherein Python code can be edited via a custom DSL
and executed against a set of unit tests to obtain feed-
back. We refer to these traces as “Chains-of-Edits”
(CoE).

• In order to teach small language models to use such
CoEs, we propose a pipeline that consists of SFT and
RLVR stages. These training stages use only Low-
Rank adaptation (Hu et al., 2021).

• We apply this pipeline on a trio of SLMs ranging in size
from 1B to 8B and compare it with a baseline method
that aims to induce reasoning behavior in the form of
text-based CoTs. We show that for sizes up to 3B,
the CoE approach most successfully elicits reasoning
behavior, i.e., the model performs better when using
CoE than when few-shot prompted for a direct answer,
while the text-based CoT approach fails to induce such
an improvement.

2. Related work
Training small-size reasoners Building small reason-
ing models (i.e., with fewer than 10B parameters) may be
achieved by distillation from a larger and more capable
teacher model (Mukherjee et al., 2023; Mitra et al., 2023;
DeepSeek-AI, 2025), or by coupling a policy model with a
verifier model that steers the generation process (Beeching
et al., 2024; Xinyu et al., 2025). Training a small reasoner
from scratch may also be feasible but presents, especially
when RL is involved, challenges due to unstable training and
limited context length (Dang and Ngo, 2025). In DeepSeek-
AI (2025), it is explicitly stated that training a large teacher
model with RL and then distilling its reasoning into a small
student is preferable to directly training the student. In this

work, we propose and test a recipe for directly training a
small reasoning model. Our recipe involves a combination
of SFT on synthetic (but not teacher-generated) demonstra-
tions, RLVR, and the affordance of an external tool and ver-
ifier feedback. We observe that this recipe mitigates some
of the difficulties observed with the exclusively “free-form
reasoning” approach of Dang and Ngo (2025). Although we
integrate verifier feedback into the context during inference
, our decoding procedure remains entirely auto-regressive,
in contrast to Beeching et al. (2024); Xinyu et al. (2025).

Code generation and repair Our aim of unlocking ItC
scaling for coding is shared by Piterbarg et al. (2024), who
propose to train LMs to sequentially generate code as a
sequence of error-free diffs, rather than in a single pass;
in our work, we focus on code repair and editing rather
than code generation, and we equip the LMs with an edit-
ing environment and execution feedback. Teaching LMs to
self-refine – with or without code execution feedback – has
been explored in several other works, such as Gupta et al.
(2020); Yang et al. (2023); Chen et al. (2023); Madaan et al.
(2023); Gehring et al. (2024). Gupta et al. (2020) design a
code-generation pipeline in which a LM generates an initial
code draft that it iteratively revises by outputting one edit
operation per token, based on feedback in the form of an ex-
ecution trace; as in the present work, the LM is first trained
on synthetic corruptions of code snippets and is confined to
small-scale revisions. Gehring et al. (2024) use RL to teach
capable LMs to refine their code generations over multiple
turns while benefiting from execution feedback; however,
they limit their framework to three turns and the model is
required to output fully revised code every turn. Solving
coding problems at scale in an “agentic” manner is the focus
of other works as well, such as Jimenez et al. (2023); Yang
et al. (2023); Guo et al. (2024); Yang et al. (2024); Wei et al.
(2025). Although we occasionally refer to our framework
as “agentic”, the task we focus on is not ab-initio agentic in
nature, and our main focus remains on enabling ItC behavior
via an agentic workflow.

Tool-usage for Language Models Teaching LMs how to
properly use tools either via SFT or in-context learning is
the focus of many works, among them Schick et al. (2023);
Hao et al. (2023); Erdogan et al. (2024); Li et al. (2025). A
common theme, which is also present in our work, is to aid
LMs in avoiding common pitfalls, such as hallucinations, by
having them not rely exclusively on their own context and
internal representations. In other works, such as Erdogan
et al. (2024), the task is simply to learn proper use of a suite
of tools. Taking advantage of tools as a way to build ItC
structures is the subject of ref. Yang et al. (2022), which
proposes tool-usage traces as a means to build expert CoTs
via procedure cloning, although in that work the LM is
not allowed to use those tools during inference. A recent

2

Box 1: Example of a state, complete with line markers and execution feedback.
L 1
L 2 def max_sub_array_sum(arr,n,k):
L 3 sum = 0
L 4 max_sum = 0
L 5 for i in range(n):
L 6 sum = sum + arr[i]
L 7 if (i >= k):
L 8 sum = sum - arr[i-k]
L 9 max_sum = max(max_sum, sum)
L 10 return max_sum

You defined the function with the wrong number, or wrong type, of arguments. Here is the stack_trace:
Traceback (most recent call last):

File "/app/run/code_edits/verifiers.py", line 137, in __call__
exec(test, global_names, global_names)

File "<string>", line 1, in <module>

TypeError: max_sub_array_sum() missing 1 required positional argument:
'k';

reference – that is quite close in spirit to ours – is Feng et al.
(2025), which employs a combination of SFT and RL to
train a tool-based reasoner and benchmark it against purely
“text-based” reasoners.

3. The Chain-of-Edits
We now outline the characteristics of our CoE approach.
Like CoTs, CoEs are meant to be extra tokens that a model
generates to solve a problem step-by-step. In contrast to
CoTs, we define these tokens as the tracing of a series of
interactions between an LM agent and a stateful environ-
ment; the agent alternates between observing the state of the
environment and issuing an action, which is then executed
by the environment to locally edit the state, over multiple
turns of interaction. In this process, the agent does not
observe or produce tokens interpretable as free-form reason-
ing. This way the agent only has to generate a few tokens
during inference, speeding up the sampling of experience
during RL and concentrating exploration. It also does not
have to keep track of the environment’s state, yet the full
task still decomposes into a series of local steps, each of
which can be scored by a dense reward function. We believe
that these improvements w.r.t the CoT approach will enable
reasoning-like capabilities in weaker and smaller models.

3.1. The scratchpad and its DSL

The environment that the agent is provided with consists of
a text editor with code execution capabilities; we refer to it
as both an environment and a tool. Like an environment, it

keeps a state that consists of the code snippet that resides
in the editor, as well as the execution feedback that results
from an execution attempt of this snippet. Like a tool, it is
meant to help the agent solve a code repair task, which the
agent does by taking actions that modify the editor’s state.

Verification and execution feedback We define a code
repair task as consisting of the following elements:

• A natural-language description of a coding task.

• A set of unit tests against which a candidate solution
to the task should be checked. The task is considered
solved when all unit tests pass.

• A piece of Python code that fails one or more unit tests.
This could be due to wrong syntax, inconsistent vari-
able names, or more subtle issues such as not satisfying
the task’s precise requirements.

• A ground-truth code snippet that solves the task.

Therefore, a code repair task is by definition verifiable. For
each task, a text editor with verification capabilities is instan-
tiated. The state of the editor is given by its code content,
followed by the execution feedback that results from run-
ning that content against the task’s unit tests. The content is
marked with line numbers, which we observed to be helpful
for the agent. A separator (a sequence of three asterisks,
***) separates the code content from the associated feed-
back. In Box 1, we provide an example of the state of the

3

Table 1. Outline of the DSL commands that the model may use for editing the content of the scratchpad. The model is restricted to using a
single command every interaction turn.

Command Description Example

ADDL #L >>><python>
At the line number indicated by the first argument,

add a new line consisting of <python>
ADDL 4 >>>return None

REPL #L >>><python>
Replace line at the line-number indicated by first argument,

with a line consisting of <python>
REPL 4 >>>return None

REPW >>><python>

>>><python> #L

Replace <python> at second argument
with <python> at the third argument,

at line in the first argument
REPW >>>ronge >>>range 3

DELL #L Delete line at the line-number indicated by the argument. DELL 3

EXIT Terminate trace/episode

text editor (other examples may be found in the Appendix).
We stipulate that when all unit tests pass and the task is
solved, the execution feedback is empty.

The editing DSL The LM agent can modify the content
of the scratchpad by issuing editing commands in a domain-
specific language (DSL) of our design. Each time this hap-
pens, the edited content is executed against the unit tests.
This results in execution feedback that, together with the
updated scratchpad contents, forms the updated state. We
designed the DSL to encourage small-scale, atomic edits
of Python code. Each command consists of an instruction
formatted in uppercase, which can be followed by one or
more arguments. We refer to Table 1 for an outline and
example of each command.

4. Training pipeline
Having defined the components of a CoE, we now outline
how we fine-tune a language model to use CoEs to solve
code repair tasks over multiple turns of interaction. Our
pipeline consists of two stages;

1. Supervised Fine-Tuning (SFT) on a dataset of synthetic
demonstrations of CoE usage;

2. Reinforcement Learning with Verifiable Rewards
(RLVR) on a suite of code repair tasks.

In both of these stages, we only make use of LoRA (Hu
et al., 2021) for gradient updates. In Section 5.1 we outline
how our code repair tasks are constructed.

4.1. Supervised Fine-Tuning on CoE demonstrations

This first step serves to teach the model how to fix a broken
piece of code by interacting with the text editor defined
in Section 3.1, by exposing it to the syntax of the editor’s

DSL. Here, the model may also learn how edits relate to the
previous state of the code and verifier output. We achieve
this by generating a dataset of synthetic CoE traces that
demonstrate full state-action trajectories (in tokens) of code-
repair tasks.

4.1.1. GENERATING COE DEMONSTRATIONS

Generating CoE demonstrations is not trivial. One option is
to train human programmers on DSL usage and ask them
to perform the task of repairing corrupted code snippets
by hand. Such a procedure would require expensive and
time-consuming work by human experts. Instead, we opt
to develop an automated pipeline for generating synthetic
demonstrations. The pipeline consists of three steps:

1. Starting from an initial and correct code snippet for a
given task, randomly generate a corruption that can be
inverted by any of the provided DSL commands (e.g.,
deleting a line) and apply this corruption to the code
snippet.

2. Apply step 1 any desired number of times c, until the
original code snippet is sufficiently corrupted (e.g.,
after c = C steps, for some C).

3. Create a CoE demonstration by reversing this process:
starting from the corrupted code snippet at step c = C,
sequentially reverse the applied corruptions by using
the DSL commands. Since the corruptions are invert-
ible by construction, this recovers the original (correct)
ground-truth code snippet from step c = 0 (before the
first corruption).

The CoE demonstration trace is constructed as a sequence
of states and actions. A prefix prompt specifies the task
that the repaired code snippet should perform and provides
a number of unit tests to pass. The prompt also explains

4

Table 2. The corruption types used in automated generation of
Chain-of-Edits demonstrations. Every corruption type is matched
with a DSL command that can reverse the corruption.

Corruption type DSL command

Delete a line ADDL
Add a line DELL
Replace a line REPL
Add a typo to a word REPW
Replace any character in a line REPL

the DSL commands; see Box 2 of the Appendix for an ex-
ample prompt. The prefix prompt is followed by the first
state, which contains the fully corrupted code snippet sC
(equipped with line markers) and the corresponding execu-
tion feedback; see Box 1 for an example. The rest of the
demonstration consists of a sequence of interleaved DSL
commands (actions) and the resulting scratchpad content
with execution feedback (next states) that recover the origi-
nal snippet s0. The final action is a special EXIT action that
signals the end of the demonstration.

We employ five types of corruptions in our pipeline and
match each with a DSL command that can reverse it; see
Table 2. Some corruptions are potentially reversible by
multiple DSL commands or a sequence of commands. For
example, a corruption that adds a typo to a line of code may
be inverted by replacing the word that contains the typo or
by replacing the entire line with a corrected line. It may also
be inverted by deleting the offending line and separately
adding a corrected line, using two turns of interaction. Here,
we opt to match every corruption type with a single local
DSL command for simplicity.

To generate the synthetic dataset, we take tasks and ground-
truth code snippets from the Mostly Basic Python Problems
(MBPP) dataset (Austin et al., 2021). For each task in the
MBPP dataset, we first sample the total number of corrup-
tions to be applied between 1 and 5 (inclusive) and then
sample that many corruption types uniformly with replace-
ment from those in Table 2. To obtain diverse trajectories,
we repeat this procedure 100 times for each task in the train
split of MBPP, and 10 times each in the validation split.
This leads to a dataset of 35,223 demonstrations for training
(19.7M tokens) and 889 for evaluation after de-duplication.
We take 180 of the evaluation demonstrations for validation
data, and use the remaining 709 as a test set. We fine-tune
our models to imitate these demonstrations with supervised
fine-tuning using LoRA, see Section 5.3 for details.

4.2. Reinforcement Learning with Verifiable Rewards
on the code repair benchmark

After training the model to use the text editor, we employ
RLVR on the final code repair task, using a standard on-
policy RL procedure. The code repair task consists of repair-
ing incorrect solutions to problems from the MBPP training
set. However, rather than being generated as a sequence
of simple corruptions, these incorrect solutions are directly
generated by a LM. This results in a much harder task, where
initial ‘solutions’ are often much further from correct than
those in the CoE demonstrations. We outline how this code
repair benchmark is constructed in Section 5.1.

The model is prompted to use the CoE procedure to repair
these initial solutions. As in the previous SFT stage, the
prompt describes the task and the usage of the DSL com-
mands. This prompt is followed by the initial state, which
contains the broken code snippet (equipped with line mark-
ers) and its corresponding execution feedback, as outlined in
Section 3.1. At every interaction turn, the model is prompted
with the CoE so far (i.e., all previous states and actions) and
outputs an action in the form of an editing command. This
action is executed in the scratchpad and rewarded using
an engineered reward function. We store the resulting ex-
perience in a buffer and train with LoRA on an adapted
version of the Group Relative Policy Optimization (GRPO)
objective (Shao et al., 2024). Our method adapts the reward
normalization in GRPO to use per-turn statistics, rather than
the full trajectory statistics for all turns. This is similar to
employing a variance-reducing return baseline estimated
from parallel rollouts of the RL policy, a strategy that has
been successfully applied in the RL literature (Kool et al.,
2019; 2020; Bakker et al., 2020). We refer to Appendix C.3
for more details.

Reward design: Our reward function is the sum of a task
reward term and format reward term. We ran experiments us-
ing three different task rewards, described in Appendix C.3.
In the end, the best-performing reward function simply re-
wards the model with a value of 1.0 if and only if the task
is solved in the current turn and was not solved in the pre-
vious turn. The format reward term applies a penalty of
−0.5 when the model outputs an action that does not use the
correct DSL syntax. Additionally, the model is penalized
−0.5 when it does not output an EXIT action after the code
snippet has been repaired (passes all unit tests).

5. Experiments
5.1. The code repair benchmark

Our target code repair benchmark again consists of problems
based on the MBPP dataset. We largely follow the procedure

5

outlined in Ni et al. (2024)1. For each MBPP problem, we 3-
shot prompt Llama-3.1-8B (base model) to generate 100
solutions. Of these, we keep up to 20 that fail to solve the
task, while taking care that there are no repeats of the same
proposed ‘solution’. Each of these, once associated with
the original task description and ground-truth code snippet,
defines a code repair task. We generate both a training
and an evaluation split; in order to increase the size of our
training split, and again following Ni et al. (2024), we re-
split the MBPP dataset and pool together its training split
and half of its test split to make our training split; for our
evaluation split, we use the tasks from the evaluation split
of MBPP. In the end, we generate 9760 code repair tasks for
the train split and 1497 for the evaluation split. The tasks in
the train split are used for training during the RLVR stage.
We take 180 evaluation split problems as a validation dataset
for model selection, and the remaining 1317 problems are
used as the test split for final evaluation.

We refer to Appendix B.2 for more details on this dataset.
Therein we also report two metrics: the average edit distance
of the snippets of code to be repaired from their respective
ground truth, and the 3-shot repair performance of all base
(before training) models we consider on both the repair
benchmark and synthetic corruptions we outlined in Sec-
tion 4.1.1. Both metrics show that the tasks in our repair
benchmark are significantly more difficult than those in the
CoE demonstrations dataset, making it an appropriate test
for our pipeline. Additionally, the ability to repair incor-
rectly LLM-generated initial code snippets is increasingly
relevant, as LLMs are increasingly employed as coding
agents, see e.g. Gehring et al. (2024).

5.2. The natural language reasoning baseline

Our CoEs are intended as a constrained agentic counterpart
of CoTs, meant to enable SLMs to solve code repair tasks
step by step without the verbosity of CoTs. We therefore
compare our own training pipeline with one that is intended
to enable SLMs to employ CoTs on these same tasks. In
order to do this, we separately SFT the pre-trained models
that we use in our pipeline on the s1K dataset (Muennighoff
et al., 2025)2, which consists of reasoning problems paired
with high-quality CoTs. In order to facilitate transfer from
these problems to code repair, we design a prompt template
that we employ both during fine-tuning on s1K and during
evaluation. We refer to Appendix D for details on s1K
fine-tuning and the prompt template.

1It was our intention to directly use the MBPP-R benchmark
contributed in this reference. However, we could not find a Github
or dataset release for it, nor could we obtain it from the authors. We
therefore decided to use their method to generate a new benchmark.

2https://huggingface.co/datasets/
simplescaling/s1K

5.3. Training and evaluation setups

Training (both SFT and RLVR) is done using LoRA (Hu
et al., 2021) and the AdamW optimizer (Loshchilov and Hut-
ter, 2019) on a family of Llama models of three sizes (1B,
3B, 8B). We employ rank 16 adapters on all linear layers ex-
cept the encoding and decoding layers of Llama-3.2-1B,
Llama-3.2-3B, and Llama-3.1-8B-Instruct. In order
to facilitate training, we 4bit quantize the 8B model. During
SFT on CoE demonstrations, we train on a standard next-
token prediction objective on the full trace. Thus, the model
is trained to predict not just the actions, but also the states,
to directly learn about the DSL logic. During RLVR, we
instead train only on the model-generated tokens (actions),
using GRPO with a group size of 4, where every group
consists of trajectories starting from the same initial prompt.
When sampling experience, we use a temperature of 0.7.
We perform one epoch of gradient updates on that experi-
ence before discarding it, leading to functionally on-policy
updates. We batch transitions such that training fits on GPU
memory, and employ gradient accumulation to artificially
increase batch size during both SFT and RLVR. All our
experiments were performed on single GPU, with the 1B
model fully trainable using only 16GB of GPU memory;
see Appendix C for more details.

We report pass@1 and pass@4 rates for our CoE approach,
the s1K baseline, and direct answer (i.e., no ItC) on the base
models. We use greedy decoding to compute pass@1, and
sample at a temperature of 0.2 to compute pass@4. During
evaluation, models trained to output CoEs are coupled with
the text editor, whose state is appended to the model’s con-
text after each editing command. In this way, the model is
not required to predict the next state and observes accurate
execution feedback at each step. The model is required to
solve the task (fix the code snippet and EXIT) within 10
turns. Conversely, models trained to output CoTs are not
coupled with the text editor and must end their answer with
a correct snippet of Python code between pre-set delimiters;
in order to succeed, they must do so while generating at
most 2048 tokens.

Model selection: During SFT on CoE demonstrations
(step 1 of our pipeline), we evaluate checkpoints every 250
training steps on 180 tasks from the CoE validation dataset.
For every model size (1B, 3B, 8B), we select the check-
point that solves the most of these tasks as a starting point
for RLVR training. During RLVR training (step 2 of our
pipeline), we evaluate our models on an evaluation dataset
of 180 code repair tasks every 10 training iterations, saving
every checkpoint that performs on-par with or better than
all previous checkpoints. For runs that perform well on the
evaluation dataset, we select at most two checkpoints to
evaluate on the test set of 1317 tasks and report the score of
the best performing checkpoint. For the natural reasoning

6

https://huggingface.co/datasets/simplescaling/s1K
https://huggingface.co/datasets/simplescaling/s1K

Table 3. Main results comparing our RLVR pipeline with natural reasoning trained on s1k, for three different model sizes. Our
Llama-3.1-8B-Instruct model is 4bit quantized. Best performing method per model and metric is highlighted in bold.

Ours (CoE) SFT on s1k (CoT) Direct answer (3-shot)

Model pass@1 pass@4 pass@1 pass@4 pass@1 pass@4

Llama-3.2-1B 7.82% 11.0% 0.15% 0.53% 1.3% 3.1%
Llama-3.2-3B 13.8% 19.0% 1.44% 5.24% 6.9% 12.0%

Llama-3.1-8B-Instruct 21.7% 32.7% 23.3% 46.2% 33.4% 42.9%

baseline, we evaluate on the test set after 1 and 5 epochs
of training, and report the best performing checkpoint of
the two; note that the s1K paper Muennighoff et al. (2025)
prescribes training for 5 epochs. Notably, the 1-epoch check-
point performs best for the 8B model, while the 5-epoch
checkpoint performs best for the 1B model. The difference
is negligible for the 3B model.

5.4. Results

We report our main results, comparing our RLVR pipeline
with natural language reasoning trained on the s1k dataset
and direct answer, in Table 3.

We observe large improvements using our CoE pipeline for
the 1B and 3B models over the direct-answer baseline, on
both the pass@1 and pass@4 metrics. The performance
gap is especially notable for the smallest (1B) model. This
suggests that our CoE method indeed allows these small
language models to improve their code repair capabilities by
utilizing the turn-based structure and execution feedback of
our environment; interaction with this environment provides
a way for small models to use additional tokens to improve
their code repair performance beyond what is possible
with immediate answering. We provide an instructive
example code repair trace for the 1B model in Box 5 of
the Appendix, with a brief discussion in Appendix B.2.
Furthermore, fine-tuning on s1K fails to instill improved
code repair capabilities in these models based on “natural
language thinking”, instead leading to reduced performance
on both metrics for the 1B and 3B models. Inspecting
the model output for these s1K-trained models shows
that they regularly get stuck repeating common patterns:
output degenerates into printing consecutive line numbers,
repeating reasoning sentences such as ‘The condition

for a triangle to be scalene is that none

of the three sides are equal.’ or paragraphs, or
outputting simulated execution feedback. Additionally,
the small models often fail to use thinking and solution
delimiters correctly.

For the larger 8B model, these observations reverse. Per-
formance on the 3-shot baseline shoots up, and CoE train-
ing here seems to hamper the model’s repair performance,
which suggests that the model cannot utilize information

it has learned during pre-training as effectively in a turn-
by-turn setting as it can in a direct-answer setting. The
s1K-trained model also performs much better here, and
manual inspection of model output often shows coherent
reasoning about specific failures of the initial code snippet.
In one instance, the model encounters an MBPP task to sum
the factors of a given integer, together with an initial code
snippet that correctly performs this task but does not pass
the unit tests. It then reasons backwards from the unit tests
to determine that the actual task is to find prime factors, and
handily solves the task. While the s1K baseline does not
outperform the direct answer baseline on the pass@1 metric,
it does do so on pass@4, which further suggests that s1K
LoRA fine-tuning adds useful diversity to generated outputs,
even for models of this size (8B).

6. Conclusions and limitations
In this paper, we have proposed an alternative way of param-
eterizing “thinking” tokens as a tool-usage trace, rather than
as natural language reasoning. We show that this change
allows us to extend the RLVR paradigm to models of size up
to 3B, adapted exclusively via LoRA (Hu et al., 2021). The
resulting agents are capable of using inference-time tokens
in the form of environment interactions to improve their
performance on a code-repair task; we moreover show that
the same results cannot be obtained by attempting to elicit
“text-based” reasoning in the form of natural-language CoTs.
For the 8B model tested, this result reverses, suggesting that
natural language reasoning via supervised fine-tuning on
s1K may be feasible at this size.

Limitations: We have focused on a code-repair task of
our own making rather than more established reasoning
benchmarks, and while we considered a range of (small)
model sizes, we have confined our efforts to models of the
Llama family. Adapting our CoE approach to more es-
tablished reasoning or function-calling benchmarks, or to
fixing snippets of code sourced from richer coding bench-
marks than MBPP such as CodeContests (Li et al., 2022), is
a worthwhile direction for future research. Additionally, sys-
tematically benchmarking our CoE pipeline across a broad
set of LMs of various sizes would make valuable follow-up

7

work.

References
J. Austin, A. Odena, M. Nye, M. Bosma, H. Michalewski, D. Do-

han, E. Jiang, C. Cai, M. Terry, Q. Le, et al. Program synthesis
with large language models. arXiv preprint arXiv:2108.07732,
2021.

T. Bakker, H. van Hoof, and M. Welling. Experimental design for
MRI by greedy policy search. In Advances in Neural Informa-
tion Processing Systems 33, Dec 2020.

E. Beeching, L. Tunstall, and S. Rush. Scaling test-time
compute with open models, 2024. URL https:
//huggingface.co/spaces/HuggingFaceH4/
blogpost-scaling-test-time-compute.

X. Chen, M. Lin, N. Schärli, and D. Zhou. Teaching large language
models to self-debug. arXiv [cs.CL], Apr. 2023.

T. Chu, Y. Zhai, J. Yang, S. Tong, S. Xie, D. Schuurmans, Q. V.
Le, S. Levine, and Y. Ma. SFT memorizes, RL generalizes: A
comparative study of foundation model post-training. arXiv
[cs.AI], Jan. 2025.

Q.-A. Dang and C. Ngo. Reinforcement learning for reasoning
in small LLMs: What works and what doesn’t. arXiv [cs.LG],
Mar. 2025.

DeepSeek-AI. DeepSeek-R1: Incentivizing reasoning capability
in LLMs via reinforcement learning. arXiv [cs.CL], Jan. 2025.

L. E. Erdogan, N. Lee, S. Jha, S. Kim, R. Tabrizi, S. Moon,
C. Hooper, G. Anumanchipalli, K. Keutzer, and A. Gholami.
TinyAgent: Function calling at the edge. arXiv [cs.CL], Sept.
2024.

J. Feng, S. Huang, X. Qu, G. Zhang, Y. Qin, B. Zhong, C. Jiang,
J. Chi, and W. Zhong. ReTool: Reinforcement learning for
strategic tool use in LLMs. arXiv [cs.CL], Apr. 2025.

X. Fengli, H. Qianyue, Z. Zefang, W. Jingwei, Z. Yunke, W. Jingyi,
L. Xiaochong, G. Jiahui, O. Tianjian, M. Fanjin, S. Chenyang,
Y. Yuwei, Y. Qinglong, S. Yiwen, R. Sijian, H. Xinyuan, L. Yu,
F. Jie, G. Chen, and L. Yong. Towards large reasoning models:
A survey on scaling LLM reasoning capabilities. arXiv [cs.AI],
Jan. 2025.

J. Gehring, K. Zheng, J. Copet, V. Mella, T. Cohen, and G. Syn-
naeve. RLEF: Grounding code LLMs in execution feedback
with reinforcement learning. arXiv [cs.CL], Oct. 2024.

J. Guo, Z. Li, X. Liu, K. Ma, T. Zheng, Z. Yu, D. Pan, L. I. Yizhi,
R. Liu, Y. Wang, S. Guo, X. Qu, X. Yue, G. Zhang, W. Chen,
and J. Fu. CodeEditorBench: Evaluating code editing capability
of large language models. arXiv [cs.SE], Apr. 2024.

K. Gupta, P. E. Christensen, X. Chen, and D. Song. Synthesize,
execute and debug: Learning to repair for neural program syn-
thesis. arXiv [cs.LG], July 2020.

S. Hao, T. Liu, Z. Wang, and Z. Hu. ToolkenGPT: Augmenting
frozen language models with massive tools via tool embeddings.
Adv. Neural Inf. Process. Syst., abs/2305.11554, May 2023.

E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang,
and W. Chen. LoRA: Low-rank adaptation of large language
models. arXiv [cs.CL], June 2021.

J. Hu, Y. Zhang, Q. Han, D. Jiang, X. Zhang, and H.-Y. Shum.
Open-reasoner-zero: An open source approach to scaling up
reinforcement learning on the base model. arXiv [cs.LG], Mar.
2025.

Y. Ji, J. Li, H. Ye, K. Wu, J. Xu, L. Mo, and M. Zhang. Test-time
computing: From system-1 thinking to system-2 thinking. arXiv
[cs.AI], Jan. 2025.

C. E. Jimenez, J. Yang, A. Wettig, S. Yao, K. Pei, Ofir Press, and
K. Narasimhan. SWE-bench: Can language models resolve
real-world GitHub issues? arXiv [cs.CL], Oct. 2023.

D. Kalajdzievski. A Rank Stabilization Scaling Factor for Fine-
Tuning with LoRA, 2023. URL https://arxiv.org/
abs/2312.03732.

W. Kool, H. van Hoof, and M. Welling. Buy 4 REINFORCE
Samples, Get a Baseline for Free!, 2019. URL https://
openreview.net/forum?id=r1lgTGL5DE.

W. Kool, H. van Hoof, and M. Welling. Estimating gradients
for discrete random variables by sampling without replace-
ment. In International Conference on Learning Representa-
tions, 2020. URL https://openreview.net/forum?
id=rklEj2EFvB.

C. Li, M. Xue, Z. Zhang, J. Yang, B. Zhang, X. Wang, B. Yu,
B. Hui, J. Lin, and D. Liu. START: Self-taught reasoner with
tools. arXiv [cs.CL], Mar. 2025.

Y. Li, D. Choi, J. Chung, N. Kushman, J. Schrittwieser, R. Leblond,
T. Eccles, J. Keeling, F. Gimeno, A. Dal Lago, T. Hubert,
P. Choy, C. de Masson d’Autume, I. Babuschkin, X. Chen,
P.-S. Huang, J. Welbl, S. Gowal, A. Cherepanov, J. Molloy,
D. Mankowitz, E. Sutherland Robson, P. Kohli, N. de Freitas,
K. Kavukcuoglu, and O. Vinyals. Competition-level code gener-
ation with alphacode. arXiv preprint arXiv:2203.07814, 2022.

R. Liu, J. Gao, J. Zhao, K. Zhang, X. Li, B. Qi, W. Ouyang,
and B. Zhou. Can 1B LLM surpass 405B LLM? rethinking
compute-optimal test-time scaling. arXiv [cs.CL], Feb. 2025a.

Z. Liu, C. Chen, W. Li, P. Qi, T. Pang, C. Du, W. S. Lee, and M. Lin.
Understanding R1-Zero-Like Training: A Critical Perspective,
2025b. URL https://arxiv.org/abs/2503.20783.

Llama Team. The Llama 3 Herd of Models, 2024. URL https:
//arxiv.org/abs/2407.21783.

I. Loshchilov and F. Hutter. Decoupled weight decay regular-
ization. In International Conference on Learning Representa-
tions, 2019. URL https://openreview.net/forum?
id=Bkg6RiCqY7.

A. Madaan, N. Tandon, P. Gupta, S. Hallinan, L. Gao, S. Wiegreffe,
U. Alon, N. Dziri, S. Prabhumoye, Y. Yang, S. Gupta, B. P.
Majumder, K. Hermann, S. Welleck, A. Yazdanbakhsh, and
P. Clark. Self-refine: Iterative refinement with self-feedback.
arXiv [cs.CL], Mar. 2023.

8

https://huggingface.co/spaces/HuggingFaceH4/blogpost-scaling-test-time-compute
https://huggingface.co/spaces/HuggingFaceH4/blogpost-scaling-test-time-compute
https://huggingface.co/spaces/HuggingFaceH4/blogpost-scaling-test-time-compute
https://arxiv.org/abs/2312.03732
https://arxiv.org/abs/2312.03732
https://openreview.net/forum?id=r1lgTGL5DE
https://openreview.net/forum?id=r1lgTGL5DE
https://openreview.net/forum?id=rklEj2EFvB
https://openreview.net/forum?id=rklEj2EFvB
https://arxiv.org/abs/2503.20783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7

A. Mitra, L. Del Corro, S. Mahajan, A. Codas, C. Simoes,
S. Agarwal, X. Chen, A. Razdaibiedina, E. Jones, K. Aggarwal,
H. Palangi, G. Zheng, C. Rosset, H. Khanpour, and A. Awadal-
lah. Orca 2: Teaching small language models how to reason.
arXiv [cs.AI], Nov. 2023.

N. Muennighoff, Z. Yang, W. Shi, X. L. Li, L. Fei-Fei, H. Ha-
jishirzi, L. Zettlemoyer, P. Liang, E. Candès, and T. Hashimoto.
s1: Simple test-time scaling. arXiv [cs.CL], Jan. 2025.

S. Mukherjee, A. Mitra, G. Jawahar, S. Agarwal, H. Palangi, and
A. Awadallah. Orca: Progressive learning from complex expla-
nation traces of GPT-4. arXiv [cs.CL], June 2023.

A. Ni, M. Allamanis, A. Cohan, Y. Deng, K. Shi, C. Sutton, and
P. Yin. NExT: Teaching large language models to reason about
code execution. arXiv [cs.LG], Apr. 2024.

OpenAI. Learning to reason with LLMs. https://openai.
com/index/learning-to-reason-with-llms/,
2025. Accessed: 2025-5-14.

U. Piterbarg, L. Pinto, and R. Fergus. Training language models
on synthetic edit sequences improves code synthesis. arXiv
[cs.LG], Oct. 2024.

T. Schick, J. Dwivedi-Yu, R. Dessì, R. Raileanu, M. Lomeli,
L. Zettlemoyer, N. Cancedda, and T. Scialom. Toolformer:
Language models can teach themselves to use tools. Adv. Neu-
ral Inf. Process. Syst., abs/2302.04761, Feb. 2023.

A. Setlur, N. Rajaraman, S. Levine, and A. Kumar. Scaling test-
time compute without verification or RL is suboptimal. arXiv
[cs.LG], Feb. 2025.

Z. Shao, P. Wang, Q. Zhu, R. Xu, J. Song, M. Zhang, Y. K. Li,
Y. Wu, and D. Guo. DeepSeekMath: Pushing the limits of math-
ematical reasoning in open language models. arXiv [cs.CL],
Feb. 2024.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner,
I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel,
and D. Hassabis. Mastering the game of go with deep neural
networks and tree search. Nature, 529(7587):484–489, Jan.
2016.

D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai,
A. Guez, M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, T. Lilli-
crap, K. Simonyan, and D. Hassabis. Mastering chess and shogi
by self-play with a general reinforcement learning algorithm.
arXiv [cs.AI], Dec. 2017.

C. Snell, J. Lee, K. Xu, and A. Kumar. Scaling LLM test-time
compute optimally can be more effective than scaling model
parameters. arXiv [cs.LG], Aug. 2024.

T. Wang, S. Li, and W. Lu. Self-training with direct preference op-
timization improves chain-of-thought reasoning. arXiv [cs.CL],
July 2024.

J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia,
E. Chi, Q. Le, and D. Zhou. Chain-of-thought prompting elicits
reasoning in large language models. arXiv [cs.CL], Jan. 2022.

Y. Wei, O. Duchenne, J. Copet, Q. Carbonneaux, L. Zhang,
D. Fried, G. Synnaeve, R. Singh, and S. I. Wang. SWE-RL:
Advancing LLM reasoning via reinforcement learning on open
software evolution. arXiv [cs.SE], Feb. 2025.

T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi,
P. Cistac, T. Rault, R. Louf, M. Funtowicz, J. Davison,
S. Shleifer, P. von Platen, C. Ma, Y. Jernite, J. Plu, C. Xu,
T. Le Scao, S. Gugger, M. Drame, Q. Lhoest, and A. Rush.
Transformers: State-of-the-art natural language processing. In
Q. Liu and D. Schlangen, editors, Proceedings of the 2020
Conference on Empirical Methods in Natural Language Pro-
cessing: System Demonstrations, Online, Oct. 2020. Associa-
tion for Computational Linguistics. doi: 10.18653/v1/2020.
emnlp-demos.6. URL https://aclanthology.org/
2020.emnlp-demos.6/.

G. Xinyu, L. L. Zhang, L. Yifei, S. Ning, S. Youran, Z. Yi, Y. Fan,
and Y. Mao. RStar-math: Small LLMs can master math rea-
soning with self-evolved deep thinking. arXiv [cs.CL], Jan.
2025.

J. Yang, A. Prabhakar, K. Narasimhan, and S. Yao. InterCode:
Standardizing and benchmarking interactive coding with execu-
tion feedback. arXiv [cs.CL], June 2023.

J. Yang, C. E. Jimenez, A. Wettig, K. Lieret, S. Yao,
K. Narasimhan, and Ofir Press. SWE-agent: Agent-computer in-
terfaces enable automated software engineering. arXiv [cs.SE],
May 2024.

M. Yang, D. Schuurmans, P. Abbeel, and O. Nachum. Chain
of thought imitation with procedure cloning. Adv. Neural Inf.
Process. Syst., abs/2205.10816, May 2022.

Y. Ye, Z. Huang, Y. Xiao, E. Chern, S. Xia, and P. Liu. LIMO:
Less is more for reasoning. arXiv [cs.CL], Feb. 2025.

E. Zelikman, Y. Wu, J. Mu, and N. D. Goodman. STaR: Bootstrap-
ping reasoning with reasoning. arXiv [cs.LG], Mar. 2022.

9

https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://aclanthology.org/2020.emnlp-demos.6/
https://aclanthology.org/2020.emnlp-demos.6/

A. Impact statement
Recent developments in large-scale machine learning have made a definitive impact on society. Although such developments
promise much positive impact in the form of new helpful technologies – such as AI assistants, improvements in medical care,
or mitigations to climate change, to name a few – powerful technologies are inherently dual-use, and the scientific community
should take care to address these. Whether the risks are enabling bad actors to do AI-assisted damage, harmful societal
consequences due to large-scale misinformation or job losses, power concentration into the hands of a few institutions
or persons with sole access to the best AI systems, or human obsolescence due to game-theoretic forces in an AI-driven
economy or takover scenario, we must engage with the potential negative consequences of our research field. Most of the
risks mentioned here seem driven by the capabilities and proliferation of the most powerful ‘frontier’ models. Thus, we do
not believe our current work meaningfully increases the risks associated with AI technologies, with perhaps the exception of
risks associated with capabilities proliferation. We hope that our insights into improving reasoning in small language models
may help democratize access to AI capabilities, and that this effect offsets the potential risk of proliferation to bad actors.

B. Data
B.1. Details on CoE demonstrations

We employ specific string delimiters required by the scratchpad and verifier when constructing the CoE demonstrations:
states and actions are separated by the delimiter ;\n, which we term the ‘end of output’ suffix, or eoos. The code snippet
and execution feedback (that make up the state) are separated by ***, see Boxes 1 and 3 for some examples. These
delimiters serve to increase (human) readability of the demonstrations and allow for controlling model generation during the
later reinforcement learning stages, by using them as stop strings.

10

Box 2: Example of a CoE demonstration prefix prompt for the count_Divisors task.
You are an expert Python programmer whose goal is to fix all mistakes in a code snippet. You may interact with the
code snippet only by applying the provided DSL commands. Valid DSL command templates are:
`### DELL <line_number>` to delete the line at the specified line number.
`### ADDL <line_number> >>><line_content>` to add a line at the specified line number with the
specified content.
`### REPL <line_number> >>><line_content>` to replace the line at the specified line number with the
specified content.
`### REPW <line_number> >>><string_to_replace> >>><string_to_insert>` to replace all
specified strings in the line at the line number with the new string.
Here is your task: Write a python function to check whether the count of divisors is even or odd.
Your code should pass these tests:

assert count_Divisors(10) == "Even"
assert count_Divisors(100) == "Odd"
assert count_Divisors(125) == "Even"

Below is an initial malfunctioning code snippet to fix:

L 1 import math
L 2 def count_Divisors(n) :
L 3 count = 0
L 4 for i in range(1, (int)(math.sqrt(n)) + 2) :
L 5 if (n % i == 0) :
L 6 if(n // i == i) :
L 7 count = c=unt + 1
L 8 else :
L 9 count = count + 2
L 10 if (count % 2 == 0) :
L 11 def remove_nrgs(num_list):
L 12 else :
L 13 return ("Odd")
L 14 def profit_amount(actual_cost,sale_amount):

The syntax of the proposed solution was not correct. Here is the stack trace:
File "<string>", line 11

def remove_nrgs(num_list):

IndentationError: expected an indented block after ’if’ statement on line 10;

11

Box 3: Example of a state, complete with line markers and execution feedback.
L 1
L 2 def split_Arr(Arr,n,k):
L 3 x = k
L 4 y = n-k
L 5 Arr = Arr[:y]
L 6 Arr = Arr[::-1]
L 7 Arr = Arr + Arr[:x]
L 8 return Arr

Test number 1 was not successful!
The code of the failed test was:

assert split_Arr([12,10,5,6,52,36],6,2) == [5,6,52,36,12,10]

Test number 2 was not successful!
The code of the failed test was:

assert split_Arr([1,2,3,4],4,1) == [2,3,4,1]

Test number 3 was not successful!
The code of the failed test was:

assert split_Arr([0,1,2,3,4,5,6,7],8,3) == [3,4,5,6,7,0,1,2];

Limitations: Note that the demonstrations we generate are not guaranteed to show the shortest possible sequence of edits
from a corrupted to corrected code snippet. The sequence may, for instance, contain a subsequence that adds and then
deletes the same line, since the randomly generated sequence of corruptions may have first added that line and subsequently
deleted it. This is not a major issue, since the primary purpose of these synthetic demonstrations is to prepare the models
for training with RLVR. A final limitation is that the REPW command, which replaces every instance of a word in a line
with a different word, does not strictly reverse the typo-corruption with which it is matched. For example, the line for
i in range(10): may be typo-corrupted into for in in range(10):. The command REPW #L >>>in >>>i then
recovers the line for i i range(10):, which is not the original line and yields a syntax error. This happens sufficiently
rarely in our automated pipeline that we may simply skip the sequences for which this happens.

Corruption details: When adding or replacing a line (ADDL and REPL), we randomly sample a line of code from a
different ground truth code snippet in the current dataset split (training or validation) to insert into the current snippet.
Typos (recovered by the REPW command) are generated by first randomly (uniform) selecting a word – defined as any unit
surrounded by whitespace – in a specified line. Then, that word is replaced by a string that is selected uniformly at random
from the set of strings that have Levenshtein-Damerau distance of 1 to the selected word.

12

B.2. The code repair benchmark
Box 4: Example code repair evaluation prompt for the check_isosceles task.

You are an expert Python programmer whose goal is to fix all mistakes in a code snippet. You may interact with the
code snippet only by applying the provided DSL commands. Valid DSL command templates are:
`### DELL <line_number>` to delete the line at the specified line number.
`### ADDL <line_number> >>><line_content>` to add a line at the specified line number with the
specified content.
`### REPL <line_number> >>><line_content>` to replace the line at the specified line number with the
specified content.
`### REPW <line_number> >>><string_to_replace> >>><string_to_insert>` to replace all
specified strings in the line at the line number with the new string.
Here is your task: Write a function to print check if the triangle is scalene or not.
Your code should pass these tests:

assert check_isosceles(6,8,12)==True
assert check_isosceles(6,6,12)==False
assert check_isosceles(6,15,20)==True

Below is an initial malfunctioning code snippet to fix:

L 1
L 2 def check_isosceles(a, b, c):
L 3 if a == b or b == c or c == a:
L 4 return True
L 5 else:
L 6 return False

Test number 1 was not successful!
The code of the failed test was:

assert check_isosceles(6,8,12)==True

Test number 2 was not successful!
The code of the failed test was:

assert check_isosceles(6,6,12)==False

Test number 3 was not successful!
The code of the failed test was:

assert check_isosceles(6,15,20)==True;

As outlined in the main text, we generated the dataset by sampling candidate solutions of MBPP tasks from Llama3.1-8B.
For each task, 100 solutions were sampled, with a sampling temperature of 0.8 to ensure sufficient diversity. From this 100,
we filter out perfect duplicates and then accept at most 20, in order to avoid biasing the dataset towards difficult coding tasks.
Therefore, for each MBPP task, we generate 20 or fewer code repair tasks. Box 4 shows an example of a resulting code
repair task, which is formatted the same way as the CoE demonstrations.

Table 4. Comparison of edit distance with ground truth MBPP solution for our two datasets. The repair dataset has much larger average
edit distance as well as much more variation in edit distance over tasks in the dataset.

Dataset Edit distance (mean) Edit distance (stddev)

CoE demonstrations 39.93 27.87
Repair dataset 135.6 132.6

13

These code snippets usually fail their task’s unit tests, rather than failing due to more obvious errors in syntax or variable
naming. We report a breakdown of the type of failures they undergo.

• Unit test failures: 81.2%

• Syntax errors: 2.6%

• Name Errors: 5.6%

• Wrong number or type of arguments: 4.8%

• Other errors: 5.4%

These code repair problems are more difficult to solve than the tasks that appear in our CoE dataset, whose failures usually
consist of syntax errors, incorrect variable names, and wrong package imports. As additional evidence that these code repair
problems are much harder to solve than those in the CoE demonstrations, we report two more quantitative metrics. First, in
Table 4 we report the edit distance of the initial incorrect solutions in the test split of both datasets with their associated
ground-truth code snippet in the MBPP dataset. This solution is one of the solutions to the task; a larger edit distance implies
a more corrupted initial solution, which implies that the task is more difficult. Second, in Table 5 we report 3-shot ‘direct
answer’ results for the pre-trained Llama models on the test split of both datasets. The repair dataset results are those of the
main Table 3. 3-Shot performance for initial code snippets from the CoE demonstrations dataset is much higher, indicating
that these are far easier to repair for the pre-trained models.

Table 5. Comparison of 3-shot evaluation performance of the three pre-trained models on our two datasets. The models have higher 3-shot
performance for repairing initial code snippets from the CoE demonstrations dataset, indicating that these are easier to solve.

CoE demonstrations (3-shot) Repair dataset (3-shot)

Model pass@1 (%) pass@4 (%) pass@1 (%) pass@4 (%)

Llama-3.2-1B 20.7 26.2 0.15 0.53
Llama-3.2-3B 47.3 53.7 1.44 5.24

Llama-3.1-8B-Instruct 72.8 78.6 23.3 46.2

Finally, we provide an example successful code repair trace generated by the trained 1B model in Box 5. Note that, although
the final code snippet passes all unit tests and thus is considered correct, it technically does not fully align with the MBPP
task; it fails to replace commas or dots with a colon in any input string, but the unit tests fail to cover for this scenario.

14

Box 5: Example (short) code repair trace generated by the trained 1B model.
You are an expert Python programmer whose goal is to fix all mistakes in a code snippet. You may interact with the
code snippet only by applying the provided DSL commands. Valid DSL command templates are:
`### DELL <line_number>` to delete the line at the specified line number.
`### ADDL <line_number> >>><line_content>` to add a line at the specified line number with the
specified content.
`### REPL <line_number> >>><line_content>` to replace the line at the specified line number with the
specified content.
`### REPW <line_number> >>><string_to_replace> >>><string_to_insert>` to replace all
specified strings in the line at the line number with the new string.
Here is your task: Write a function to replace all occurrences of spaces, commas, or dots with a colon in the given
string by using regex.
Your code should pass these tests:

assert fill_spaces('Boult Curve Wireless Neckband') ==
'Boult:Curve:Wireless:Neckband'

assert fill_spaces('Stereo Sound Sweatproof') ==
'Stereo:Sound:Sweatproof'

assert fill_spaces('Probass Curve Audio') == 'Probass:Curve:Audio'

Below is an initial malfunctioning code snippet to fix:

L 1
L 2 import re
L 3 def fill_spaces(s):
L 4 s = re.sub(r'([,\.])', r':', s)
L 5 return s

Test number 1 was not successful!
The code of the failed test was:

assert fill_spaces('Boult Curve Wireless Neckband') ==
'Boult:Curve:Wireless:Neckband'

Test number 2 was not successful!
The code of the failed test was:

assert fill_spaces('Stereo Sound Sweatproof') ==
'Stereo:Sound:Sweatproof'

Test number 3 was not successful!
The code of the failed test was:

assert fill_spaces('Probass Curve Audio') == 'Probass:Curve:Audio';

REPL 4 >>> s = s.replace (" ", ":");

L 1
L 2 import re
L 3 def fill_spaces(s):
L 4 s = s.replace (" ", ":")
L 5 return s

;
EXIT;

15

Table 6. Hyperparameters used for multi-turn supervised fine-tuning.

Model quantization

Llama-3.2-1B No
Llama-3.2-3B No
Llama-3.1-8B-Instruct Yes

Quantization parameters

Library used BitsAndBytes

Quantization type 4bit
4bit quantization type nf4

4bit compute type float16

4bit storage type float16

Double quantization Yes

LoRA parameters

Rank 16
Alpha / Effective alpha (after rank stabilization) 64 / 16
Dropout 0.1
Target modules All linear layers (except encoding and decoding)
Adapter weights type float32

Tokenizers

Padding side Left
Truncation side Left

C. Training setup
C.1. General design choices

In this section, we discuss some design choices that apply to all experiments. We use the HuggingFace Transformers library
(Wolf et al., 2020) to load Llama-3.2-1B, Llama-3.2-3B and Llama-3.1-8B-Instruct (Llama Team, 2024). We 4bit
quantize the 8B model, due to GPU memory constraints. All training is done using rank-stabilized LoRA (Kalajdzievski,
2023) adapters of rank 16.

For the non-quantized models, we train separate adapters at each stage in our pipeline, always merging adapters of previous
training stages before staring the next round of training (however, we keep these adapters saved separately, for flexibility and
to save storage space). For the quantized model, naively merging adapters is known to lead to performance drops, as the
32-bit weights in the LoRA adapters are reduced to 4-bit weights without an adaptation stage. Instead, we opt not to merge
the adapters of the quantized 8B model in our pipeline; as a result, we continuously train the same adapter in all stages of
our pipeline.

We refer to Table 6 for a detailed breakdown of model settings.

C.2. Supervised Fine-Tuning on CoE demonstrations

We train using rank 16 LoRA with the standard next-token prediction objective on all tokens in the CoE demonstration.
Training proceeded remarkably stably as a function of hyperparameters. We experimented with learning rates in {10−5, 5 ·
10−5, 10−4} and training batch sizes in {2, 4, 8, 16}, but found no clear performance differences on average. We refer to
Table 7 for a detailed breakdown of the hyperparameters used in our final ‘production’ runs.

C.3. Reinforcement Learning with Verifiable Rewards

In this section we give more details on our reinforcement learning setup.

16

Table 7. Hyperparameters used for multi-turn supervised fine-tuning.

General

Number of training prompts total 35223
Number of evaluation prompts total 889
Number of evaluation prompts used during training 180
Number of evaluation prompts used during testing 709
Maximum context length during training (tokens) 2048
Maximum number of environment turns (training and evaluation) 10
Batch size 2
Gradient accumulation steps 2
GPU memory required 16GB

Optimizer: AdamW

Learning rate 5 · 10−5

Betas (0.9, 0.999)
Weight decay 0.0

GRPO objective: We train using a variant of the GRPO objective (Shao et al., 2024), adapted for multi-turn scenarios.
GRPO was first introduced for single-turn settings, where a model is tasked with answering a question directly, after some
number of reasoning tokens. In this setting, there is no natural notion of a ‘turn’ or a ‘timestep’. Thus, it is sensible to
normalize the (outcome or process) reward by using the statistics of all rewards observed throughout whole trajectories in
the group and computing the return as the sum of these normalized rewards (Shao et al. (2024), Section 4.1.2 and 4.1.3). In
our multi-turn setting, we may instead perform the group normalization of the return per turn. This is similar to using a
return baseline estimated from parallel rollouts of the RL policy, which has been a successful strategy in the RL literature
(Kool et al., 2019; Bakker et al., 2020). This baseline uses local (per turn) information rather than global (whole trajectory)
information, which may improve its variance-reducing properties (Kool et al., 2020). Thus, we opt to first compute the
return Rt for turn t ∈ [1, T] of a trajectory as the sum-of-rewards from that turn onward (discount factor γ = 1). Then, we
normalize these returns using per-turn statistics of the group. In early development, we found that this change led to slightly
improved stability during RL training.

In particular, we employ the following GRPO objective to train our policy πθ:

JGRPO(πθ) = Eq∼pQ,{oi}G
i=1∼πθold

(.|q)

G∑
i=1

T∑
t=1

{
min

[
πθ(oi,t|q,oi,<t)

πθold(oi,t|q,oi,<t)
Âi,t, clip

(
πθ(oi,t|q,oi,<t)

πθold(oi,t|q,oi,<t)
, 1− ϵ, 1 + ϵ

)
Âi,t

]
(1)

− βDKL [πθ||πref]

}
,

for groups of size G on query q ∼ pQ, where the advantage is given by

Âi,t =
R(oi,t|q,oi,<t)− µ̂t(q)

σ̂t(q)
, (2)

with R(oi,t|q,oi,<t) the return for observation oi,t given query q and previous observation oi,<t, and

µ̂t(q) =
1

Gt

∑
i∈Gt

R(oi,t|q,oi,<t) , σ̂t(q) =
1

Gt − 1

∑
i∈Gt

[R(oi,t|q,oi,<t)− µ̂t(q)]
2
, (3)

where Gt contains the indices of only those trajectories in the group that have not terminated at turn t. In this way, the

17

normalization only uses return values observed for the group at the current turn. If Gt contains only one trajectory (because
all others have terminated), we omit the normalization step for that turn and simply use Âi,t = R(oi,t|q,oi,<t). Note that
Equation (1) employs one of the changes suggested in the Dr.GRPO algorithm of Liu et al. (2025b): it does not divide the
GRPO loss by the response token length |oi|.

Each iteration, we take 4 queries from the training set and sample 4 (the GRPO group size) trajectories per query using πθold ,
scratchpad, and verifier. We store these trajectories in a buffer together with the log-probabilities of the associated actions
under both the current policy πθold and the reference model πref. We then perform one epoch of mini-batched updates over
this experience. Each mini-batch consists of effectively 6 turns of experience (using gradient accumulation to fit this batch
in GPU memory). For each batch, we perform a single averaged update with the AdamW optimizer (Loshchilov and Hutter,
2019) to maximize Equation 1.

Task reward function: Here, we describe the task reward functions with which we experimented in more detail.

• OnlyWhenSolved: the reward is 1.0 if and only if the task is solved in the current turn and was not solved in the
previous turn.

• UnitTestFraction: the reward is the change in the fraction of unit tests solved between the current turn and the last
turn. This fraction is always between 0.0 and 1.0, so the reward is in [−1.0, 1.0].

• UnitTestFraction + EditDistanceBonus: the reward is that of UnitTestFraction plus a bonus/penalty if the
current code snippet looks more/less like the ground truth snippet than in the previous turn. This is measured as the
change in fractional edit distance, using the editdistance Python package. This reward can fluctuate strongly for
short code snippets, so we multiply this term by a small constant 0.1 and clip the full reward in the range [−10, 10].

The best performing RL runs all used the OnlyWhenSolved reward function. The combination of UnitTestFraction +
EditDistanceBonus ranked second overall, while only using UnitTestFraction performed worst of the three.

Hyperparameters: During development, we experimented with various task reward functions, format reward penalties in
[−2.0, 0.0], KL divergence weight values in [0.0, 0.1], GRPO group sizes in {2, 4, 8}, learning rates in [10−7, 10−5], experi-
ence sampling temperatures in [0.2, 1.4], experience batch size in {4, 8, 16, 32} and training batch sizes in {2, 4, 6, 8, 16}.
We refer to Table 8 for a detailed breakdown of the final hyperparameters used for our ‘production’ RL training runs.

D. Finetuning on s1K
D.1. Prompt template

When we finetune the model on the s1k dataset, we re-map the dataset using the prompt template in box 6, where
<question>, <thinking trajectories> and <attempt> are the respective fields in the s1k dataset3.

3https://huggingface.co/datasets/simplescaling/s1K

18

https://huggingface.co/datasets/simplescaling/s1K

Table 8. Hyperparameters used for RL fine-tuning.

General

Number of training prompts total 4500
Number of evaluation prompts total 180
Number of test prompts total 1317
Number of training prompts seen during training 4000
Maximum context length during training (tokens) 2048
Maximum number of environment turns (training and evaluation) 10
Maximum number of generated tokens per turn (training and evaluation) 250
GPU memory used for training (1B model) 16GB
GPU memory used for training (3B and 8B models) 64GB

Optimizer: AdamW

Learning rate 2 · 10−6

Betas (0.9, 0.999)
Weight decay 0.0

GRPO

Trajectories sampled per iteration 16
Sampling batch size 8
Group size 4
Training batch size (transitions) (1B model) 2
Training batch size (transitions) (3B and 8B models) 1
Gradient accumulation steps (1B model) 3
Gradient accumulation steps (3B and 8B models) 6
Discount factor γ 1.0
Clip value ϵ 0.2
KL divergence weight β 0.01
Updates on each experience sample 1
Experience sampling temperature 0.7
Temperature for computing GRPO log probabilities 1.0
Group normalization of returns Per turn
Subtract group mean return Yes
Divide returns by group standard deviation (opposed to (Liu et al., 2025b)) Yes
Average or sum log probabilities within a turn (following (Liu et al., 2025b)) Sum

Reward

Task reward OnlyWhenSolved

Format reward penalty -0.5

19

Box 6: The prompt template we use during SFT on the s1K dataset.
You are an expert and conscientious reasoner whose goal is to provide detailed answers to questions. You will now be
provided with one such question; reason step-by-step about it, and format your reasoning as:
[BEGIN THINKING]
<reasoning in natural language>
[END THINKING]
When you are done thinking, output the answer to the question, formatted as:
[BEGIN SOLUTION]
<answer in natural language>
[END SOLUTION]
The question to be answered is:
<question>
[BEGIN THINKING]
<thinking trajectories>
[END THINKING]
[BEGIN SOLUTION]
<attempt>
[END SOLUTION]

During evaluation on code repair we use the same template, to facilitate transfer between the tasks in s1K and our code
repair benchmark. Using the repair task shown in box 4 as an example, we report in box 7 how a model fine-tuned on s1K
would be prompted to solve it.

20

Box 7: Example code repair evaluation prompt for the check_isosceles task.
You are an expert Python programmer whose goal is to fix all mistakes in a code snippet. What will follow is an outline
of what the code snippet is supposed to do, given as a natural-language description followed by a list of 3 unit tests it is
supposed to pass. Then you will be given the broken code snippet, along with the Python stack trace it generates when
the unit tests are run.
Here is your task: Write a function to print check if the triangle is scalene or not.
Your code should pass these tests:

assert check_isosceles(6,8,12)==True
assert check_isosceles(6,6,12)==False
assert check_isosceles(6,15,20)==True

You will be provided with a malfunctioning snippet of code in python, followed by the resulting python stack trace.
Reason step-by-step about it, the unit tests, the task, and the stack trace. Format your reasoning as:
[BEGIN THINKING]
<reasoning in natural language>
[END THINKING]
When you are done thinking, output the repaired code snippet, formatted as:
[BEGIN SOLUTION]
<executable python code>
[END SOLUTION]
The code snippet to be fixed is:

L 1
L 2 def check_isosceles(a, b, c):
L 3 if a == b or b == c or c == a:
L 4 return True
L 5 else:
L 6 return False

Test number 1 was not successful!
The code of the failed test was:

assert check_isosceles(6,8,12)==True

Test number 2 was not successful!
The code of the failed test was:

assert check_isosceles(6,6,12)==False

Test number 3 was not successful!
The code of the failed test was:

assert check_isosceles(6,15,20)==True;

[BEGIN THINKING]

D.2. Training and evaluation setup

We fine-tune our models on s1K using a standard next-token prediction objective on training sequences formatted as
demonstrated in box 6. Due to the length of some of the sequences (the longest is longer than 9000 tokens), we fix a
batch size of one and use 4 steps of gradient accumulation to simulate a batch size of 4. We fine-tune for 5 epochs,
following Muennighoff et al. (2025). We report in table 9 all the hyperparameters used. When evaluating the finetuned
models, we prompt them as shown in box 7, and simply grab and verify (i.e. run agains the unit tests) whatever the model
generated between [BEGIN SOLUTION] and [END SOLUTION] delimiters.

21

Table 9. Hyperparameters used for supervised fine-tuning on s1K.

General

Number of training prompts total 1000
Number of evaluation prompts total 0
Batch size 1
Gradient accumulation steps 4
GPU memory required 16GB

Optimizer: AdamW

Learning rate 5 · 10−5

Betas (0.9, 0.999)
Weight decay 0.0

E. 3-shot evaluation of base models on code repair
Our 3-shot prompt for evaluation of base (i.e. not yet fine-tuned) models on code repair is too long to fit in a single page.
Because of this, we report in box 8 a 1-shot version of it, again using the code repair task in box 4 as an example. When we
evaluate base models, we propt them with the 3-shot prompt and then simply grab and verify (i.e. run agains the unit tests)
whatever the model generated between [BEGIN SOLUTION] and [END SOLUTION] delimiters.

22

Box 8: Example 1-shot evaluation prompt for the check_isosceles task.
You are an expert Python programmer, and here is your task: Write a function to find the minimum cost path to reach (m, n) from (0, 0) for the given cost matrix cost[][] and a position (m, n) in
cost[][].
Your code should pass these tests:

assert min_cost([[1, 2, 3], [4, 8, 2], [1, 5, 3]], 2, 2) == 8
assert min_cost([[2, 3, 4], [5, 9, 3], [2, 6, 4]], 2, 2) == 12
assert min_cost([[3, 4, 5], [6, 10, 4], [3, 7, 5]], 2, 2) == 16

Below is an initial malfunctioning code snippet to fix:

L 1 def min_cost(cost, m, n):
L 2 if m == 0 and n == 0:
L 3 return 0
L 4 if m == 0:
L 5 return cost[m][n]
L 6 if n == 0:
L 7 return cost[m][n]
L 8 return min(cost[m][n],

min_cost(cost, m - 1, n),
min_cost(cost, m, n - 1))

Test number 1 was not successful!
The code of the failed test was:

assert min_cost([[1, 2, 3], [4, 8, 2], [1, 5, 3]], 2, 2) == 8

Test number 2 was not successful!
The code of the failed test was:

assert min_cost([[2, 3, 4], [5, 9, 3], [2, 6, 4]], 2, 2) == 12

Test number 3 was not successful!
The code of the failed test was:

assert min_cost([[3, 4, 5], [6, 10, 4], [3, 7, 5]], 2, 2) == 16

The final correct Python function is:
[BEGIN SOLUTION]

def min_cost(cost, m, n):
tc = [[0 for x in range(C)] for x in range(R)]
tc[0][0] = cost[0][0]
for i in range(1, m+1):

tc[i][0] = tc[i-1][0] + cost[i][0]
for j in range(1, n+1):

tc[0][j] = tc[0][j-1] + cost[0][j]
for i in range(1, m+1):

for j in range(1, n+1):
tc[i][j] = min(tc[i-1][j-1],

tc[i-1][j],
tc[i][j-1]) + cost[i][j]

return tc[m][n]

[END SOLUTION]
You are an expert Python programmer, and here is your task: Write a function to print check if the triangle is scalene or not.
Your code should pass these tests:

assert check_isosceles(6,8,12)==True
assert check_isosceles(6,6,12)==False
assert check_isosceles(6,15,20)==True

Below is an initial malfunctioning code snippet to fix:

L 1
L 2 def check_isosceles(a, b, c):
L 3 if a == b or b == c or c == a:
L 4 return True
L 5 else:
L 6 return False

Test number 1 was not successful!
The code of the failed test was:

assert check_isosceles(6,8,12)==True

Test number 2 was not successful!
The code of the failed test was:

assert check_isosceles(6,6,12)==False

Test number 3 was not successful!
The code of the failed test was:

assert check_isosceles(6,15,20)==True;

23

	Introduction
	Related work
	The Chain-of-Edits
	The scratchpad and its DSL

	Training pipeline
	Supervised Fine-Tuning on CoE demonstrations
	Generating CoE demonstrations

	Reinforcement Learning with Verifiable Rewards on the code repair benchmark

	Experiments
	The code repair benchmark
	The natural language reasoning baseline
	Training and evaluation setups
	Results

	Conclusions and limitations
	Impact statement
	Data
	Details on CoE demonstrations
	The code repair benchmark

	Training setup
	General design choices
	Supervised Fine-Tuning on CoE demonstrations
	Reinforcement Learning with Verifiable Rewards

	Finetuning on s1K
	Prompt template
	Training and evaluation setup

	3-shot evaluation of base models on code repair

