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Abstract

We introduce a new task, Map and Locate, which uni-001
fies the traditionally distinct objectives of open-vocabulary002
segmentation—detecting and segmenting object instances003
based on natural language queries—and 3D reconstruction,004
the process of estimating a scene’s 3D structure from visual005
inputs. Specifically, Map and Locate involves generating006
a point cloud from an unposed video and segmenting ob-007
ject instances based on open-vocabulary queries. This task008
serves as a critical step toward real-world embodied AI ap-009
plications and introduces a practical task that bridges re-010
construction, recognition and reorganization.011

To tackle this task, we introduce a simple yet effective012
baseline, which we denote as SAB3R . Our approach builds013
upon MASt3R, a recent breakthrough in 3D computer vi-014
sion, and incorporates a lightweight distillation strategy.015
This method transfers dense, per-pixel semantic features016
from 2D vision backbones (e.g., CLIP and DINOv2) to en-017
hance MASt3R’s capabilities. Without introducing any aux-018
iliary frozen networks, our model generates per-pixel se-019
mantic features and constructs cohesive point maps in a020
single forward pass.021

Compared to separately deploying MASt3R and CLIP,022
our unified model, SAB3R , achieves superior performance023
on the Map and Locate benchmark. Furthermore, we evalu-024
ate SAB3R on both 2D semantic segmentation and 3D tasks025
to comprehensively validate its effectiveness.026

1. Introduction027

Current 3D open-vocabulary segmentation methods [42,028
51, 68] typically assume access to complete, high-quality029
point clouds—an assumption that rarely holds in real-world030
embodied AI scenarios. One major challenge lies in the031
high cost and complexity of curating large-scale 3D open-032
vocabulary datasets, even with prior efforts such as Scan-033
Refer [9] and ReferIt3D [1], which remain limited in both034
scale and diversity. Additionally, existing methods either035
depend on precise camera poses and sensor calibration for036
accurate point cloud reconstruction, an impractical require-037

(a). Unposed Video (b). Open Vocab Segmentation

(c). 3D Reconstruction (d). Map and Locate

Figure 1. Given an unposed input video (a), we show ground truth
for: (b) open-vocab semantic segmentation (per-pixel labels for
the prompt “a black office chair”), (c) 3D reconstruction (ground-
truth point cloud), and (d) the proposed Map and Locate task
(open-vocab segmentation for the prompt “a black office chair”
and point cloud). The Map and Locate task: (1) encompasses both
2D and 3D tasks, (2) bridges reconstruction and recognition, and
(3) introduces practical questions in robotics and embodied AI.
The Map and Locate generalizes both 2D and 3D tasks, and we
expect this unified approach to present novel challenges and en-
able innovative new methods.

ment in continuously changing environments, or rely on 038
test-time optimization techniques [24, 37], which are com- 039
putationally expensive and unsuitable for real-time applica- 040
tions. Despite these challenges, human perception effort- 041
lessly integrates 2D visual semantics with 3D structural un- 042
derstanding, leveraging depth cues and object motion over 043
a lifetime of interaction [26]. Thus, we aim to explore how 044
a model can simultaneously perform 2D semantic under- 045
standing and 3D reconstruction, bridging the gap between 046
segmentation and spatial reasoning in open-vocab settings. 047

Malik et al. [36] categorize vision tasks into recognition, 048
reconstruction, and reorganization. Recognition involves 049
assigning semantic categories to images, reconstruction fo- 050
cuses on estimating 3D structures, and reorganization deals 051
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A Single Forward Pass of SAB3R
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Input 3D Reconstruction
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Map and Locate ResultsCLIP DINOv2Depth

Figure 2. Our method, SAB3R , a semantic-augmented backbone for 3D reconstruction, enables zero-shot open-vocabulary segmentation
and 3D reconstruction from unposed images in a single forward pass. By jointly performing reconstruction and open-vocabulary semantic
segmentation, SAB3R introduces a novel capability that unifies these tasks within a single framework.

with grouping and segmenting images based on spatial or052
perceptual similarity. Ideally, these tasks should mutually053
benefit one another. Moreover, maintaining separate models054
for different vision tasks is inefficient, incurring high mem-055
ory and runtime costs [48]. This raises a critical question:056
Can 3D open-vocabulary segmentation and 3D reconstruc-057
tion be effectively reconciled?058

Therefore, our work addresses this challenge by draw-059
ing inspiration from human visual perception. As human060
can seamlessly interpret images by combining 2D visual in-061
formation with an intuitive understanding of 3D structure.062
While existing methods take in posed RGB-D sequences063
or pre-scanned environments, we propose using unposed064
video as input—a natural and accessible modality for em-065
bodied agents operating in real-world settings. As illus-066
trated in Figure 1, our Map and Locate task jointly con-067
structs a 3D geometric map and segments objects specified068
through open-vocabulary queries. This approach enables069
simultaneous spatial mapping, semantic understanding, and070
segmentation without requiring pre-processed point clouds.071
To this end, we introduce a simple yet effective baseline072
SAB3R , as shown in Figure 2, which takes unposed images073
as input and predicts a point map, dense CLIP features, and074
dense DINOv2 features in a single forward pass.075

This integration offers three key advantages. First, it076

eliminates the reliance on high-quality, pre-scanned point 077
clouds by taking in unposed video as input. Second, it re- 078
moves the dependence on precise camera poses and sen- 079
sor calibrations, making 3D segmentation and reconstruc- 080
tion feasible in real-world environments without test-time 081
optimization, which is often computationally prohibitive. 082
Third, it unifies recognition, reorganization and reconstruc- 083
tion into a single model, reducing memory and runtime 084
overhead. By bridging the gap between open-vocab seg- 085
mentation and reconstruction, our approach offers a more 086
practical and scalable solution for embodied perception. 087

In summary, our contributions are: 088

• Map and Locate Benchmark: We introduce a novel 089
benchmark for multi-view 3D semantic segmentation that 090
jointly addresses the tasks of reconstruction, reorganiza- 091
tion, and recognition. The benchmark is accompanied by 092
a large-scale dataset, clearly defined evaluation protocols, 093
and standardized metrics. 094

• SAB3R : We propose a unified framework that concur- 095
rently performs open-vocabulary segmentation and 3D re- 096
construction from unposed images via an efficient distil- 097
lation strategy. We present it as a baseline due to its per- 098
formance and computational efficiency. 099
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2. Related Work100

2.1. 3D Reconstruction101

The landscape of 3D reconstruction has evolved from tra-102
ditional geometric methods like SfM [2, 52] and SLAM [6,103
38] to learning-based approaches that leverage data-driven104
priors [59, 63]. DUSt3R [64] pioneered a paradigm shift by105
predicting dense point maps from image pairs in a shared106
coordinate frame, removing the need for explicit pose su-107
pervision. However, its reliance on stereo inputs lim-108
its its applicability to multi-view settings. More recently,109
MASt3R [29] extended this idea by learning viewpoint-110
invariant representations for dense point prediction across111
multiple images, significantly improving robustness in un-112
posed scenarios. While these advances enable reconstruct-113
ing 3D geometry from unconstrained image sequences, they114
primarily focus on geometric consistency and do not incor-115
porate high-level semantics.116

Our work builds upon MASt3R and extends it to the117
novel Map and Locate task, which bridges 3D recon-118
struction with open-vocabulary segmentation. Unlike prior119
methods that treat reconstruction and recognition as sepa-120
rate problems, we introduce a unified approach that simulta-121
neously maps the environment and segments objects based122
on free-form queries. This perspective transforms 3D per-123
ception into a richer and more interactive task, opening new124
avenues for embodied AI and scene understanding beyond125
purely geometric reconstruction.126

2.2. Leveraging 2D for 3D Vision127

Most 3D visual-language models operate directly on 3D128
point clouds without leveraging 2D pre-trained features.129
SAT-2D [69] was one of the first 3D visual grounding mod-130
els to incorporate 2D visual features, aligning 2D and 3D131
representations during training and achieving significant132
improvements over versions without 2D features. More re-133
cent approaches, such as 3DLLM [21] in 3D Question An-134
swering, use multi-view 2D features with LLMs to decode135
answers, but have yet to fully address 3D visual ground-136
ing tasks. Similarly, PQ3D [81] integrates various visual137
backbones, including a 2D feature backbone from Open-138
Scene [42].139

EFM3D [56] lifts 2D image features into 3D feature vol-140
umes, but focuses on 3D object detection and surface re-141
construction. ODIN [23] proposes an interleaved 2D-3D142
backbone with pre-trained 2D weights, but is limited to ob-143
ject detection. Fit3D [73], which lifts 2D semantic fea-144
tures into 3D Gaussian representations, injects 3D aware-145
ness when training 2D foundation models—a complemen-146
tary approach to ours.147

2.3. 3D Open-Vocabulary Segmentation 148

Our work is closely related to recent efforts in distilling 149
2D semantic features into 3D representations for open- 150
vocabulary segmentation. These approaches often utilize 151
neural rendering techniques, such as NeRF [37] and Gaus- 152
sian Splatting [24], to aggregate multi-view information. 153
For instance, Semantic NeRF [78] and Panoptic Lifting [54] 154
embed 2D semantics into 3D volumes, enabling dense scene 155
understanding. 156

More recent works, such as LeRF [25], Distilled Feature 157
Fields [53], NeRF-SOS [15], and Neural Feature Fusion 158
Fields [60], further distill features from strong 2D models 159
like LSeg [30] and DINO [7] into view-consistent 3D rep- 160
resentations. Featured 3DGS [80] extends this paradigm to 161
the Gaussian Splatting framework, enabling efficient distil- 162
lation of 2D pre-trained models into 3D point-based repre- 163
sentations. 164

While prior methods have demonstrated strong perfor- 165
mance in 3D open-vocabulary segmentation, they typically 166
depend on posed multi-view images and scene-specific opti- 167
mization, which constrains their applicability in real-world 168
settings. In contrast, our approach eliminates the need for 169
pose supervision by directly distilling 2D features into point 170
maps, enabling broader generalization across diverse and 171
unstructured environments. 172

Similarly, LSM [16] jointly estimates geometry, appear- 173
ance, and semantics in a single feed-forward pass and is 174
capable of synthesizing diverse label maps. However, it 175
employs a frozen language segmentation backbone and re- 176
stricts input to only two images due to its reliance on point 177
transformer [65]. 178

3. A Novel Task: Map and Locate 179

Task Setting In this novel task, termed Map and Locate, 180
the model receives multiview inputs and a set of semantic 181
labels to reconstruct a 3D scene and localize target objects 182
based on text prompts. This task extends beyond indepen- 183
dent depth estimation for each image, requiring the model 184
to infer relative camera poses across views and classify the 185
semantic category of each predicted 3D point. 186

The task is defined as follows: given n input images 187
(n ≥ 2) and a set of grounding queries L = {0, . . . , L−1}, 188
the goal is to map each pixel i to a pair (Xi, li) ∈ R3 × L, 189
where Xi = (xi, yi, zi) represents the 3D coordinates of 190
the point corresponding to pixel i, and li denotes its seman- 191
tic class. For an image I of resolution W × H , this estab- 192
lishes a one-to-one mapping between pixels and 3D scene 193
points with semantic labels, i.e., Ii,j ↔ (Xi,j , li,j), for all 194
(i, j) ∈ {1, . . . ,W} × {1, . . . ,H}. We assume each cam- 195
era ray intersects only a single 3D point, excluding cases 196
like translucent surfaces. Ambiguous or out-of-class pixels 197
are assigned a void label in the annotations. 198
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For implementation, we adopt MaskCLIP [12] enhanced199
with FeatUp [18], combined with the MASt3R [29] pipeline200
as our baseline method. MaskCLIP and MASt3R act as201
teacher models for SAB3R , guiding the distillation process202
to achieve both 3D reconstruction and open-vocabulary se-203
mantic segmentation.204

Data Curation Our data is sourced from ScanNet [10],205
a large-scale indoor scene dataset that provides RGB-D se-206
quences, camera poses, and semantic and instance-level an-207
notations. From the validation split, we curate a subset of208
24 diverse scenes, selected based on their unique object209
layouts and camera trajectories. For each scene, we cre-210
ate image groups containing 2, 3, or 4 views, ensuring that211
each image overlaps with at least one other in the group.212
This overlap guarantees shared visual context, enabling ro-213
bust evaluation of 3D reconstruction and localization tasks.214
To balance evaluation time and dataset diversity, we limit215
our selection to 24 scenes, which already requires approxi-216
mately 10 hours for the evaluation to complete.217

For semantic classification, we map ground-truth anno-218
tations to the widely used NYU40 class taxonomy [39].219
The curated dataset includes a wide range of objects with220
both semantic and instance-level annotations. Each image221
group is paired with its corresponding RGB images, depth222
maps, camera poses (intrinsics and extrinsics), and seman-223
tic and instance labels. Detailed data statistics, example im-224
age groups, and the full data curation process, including se-225
lection criteria and preprocessing steps, are provided in the226
supplementary materials.227

Evaluation Metrics For the Map and Locate task, we228
evaluate model performance using several key metrics, and229
in all metrics, higher values consistently indicate better per-230
formance. Additionally, before evaluating these metrics,231
models are required to compute pair (X, l) for every pixel in232
each image, using only the image inputs without any ground233
truth data, such as intrinsic or extrinsic matrices, then use234
one ground truth image’s depth and pose for scaling and235
alignment to the ground truth coordinates.236

mIoU (mean intersection over union) quantifies the over-237
lap between predicted and ground truth points, calculated238
as the ratio of correctly predicted points to the union of239
predicted and ground truth points. This metric provides an240
overall measure of segmentation accuracy. In our task, we241
compute the mIoU by finding the nearest predicted point242
for each ground truth point and using its label to evaluate243
against the ground truth labels.244

Acc (accuracy) is defined as the proportion of correctly245
predicted points relative to the total ground truth points, in-246
dicating the model’s effectiveness in assigning correct se-247
mantic classes to 3D points. In our setting, similar to mIoU,248
we calculate Acc using the same approach.249

mComp (Mean Completeness) measures how compre- 250
hensively the predicted points cover the ground truth point 251
cloud. After aligning the predicted points with the ground 252
truth pose, we compute the average distance from each pre- 253
dicted point to its nearest neighbor in the ground truth, of- 254
fering a general sense of the reconstruction’s completeness. 255
For our task, we filter points based on each test label in 256
both the ground truth and the predictions, then calculate the 257
mComp metric accordingly. 258

mdComp (Median Completeness) is similar to mean 259
completeness but calculates the median of nearest-neighbor 260
distances instead. This approach reduces the impact of out- 261
liers, providing a more stable indication of coverage consis- 262
tency across samples. 263

4. Method 264

In this section, we present SAB3R , a simple baseline 265
method that distills dense 2D semantic features from foun- 266
dation models into a 3D reconstruction framework. Build- 267
ing on a base 3D reconstruction model, we transfer knowl- 268
edge from 2D foundation features—enhanced via Fea- 269
tUp [18]—to integrate semantic understanding into the 3D 270
domain. Our objective is to unify 2D and 3D representa- 271
tions within a shared backbone, enabling joint 3D recon- 272
struction and open-vocabulary semantic segmentation. 273

To facilitate understanding, this section is organized as 274
follows: Sec. 4.1 reviews the core 3D reconstruction back- 275
bone, Sec. 4.2 details the distillation process of 2D semantic 276
features, and Sec. 4.3 outlines how additional features can 277
be incorporated to further enrich the model’s capabilities. 278

4.1. Foundational Components 279

DUSt3R [64] is a recent method that addresses a range of 280
3D tasks using unposed images as input, including camera 281
calibration, depth estimation, pixel correspondence, cam- 282
era pose estimation, and dense 3D reconstruction. It uses 283
a transformer-based network to generate local 3D recon- 284
structions from two input images, producing dense 3D point 285
clouds X1,1 and X2,1, referred to as pointmaps. 286

A pointmap Xa,b ∈ RH×W×3 represents a 2D-to-3D 287
mapping from each pixel i = (u, v) in image Ia to its 288
corresponding 3D point Xa,b

u,v ∈ R3 in the coordinate sys- 289

tem of camera Cb. By jointly regressing two pointmaps, 290
X1,1 and X2,1, expressed in the coordinate system of cam- 291
era C1, DUSt3R simultaneously performs calibration and 292
3D reconstruction. For multiple images, a global alignment 293
step merges all pointmaps into a unified coordinate system. 294

Images are encoded in a Siamese manner using a 295
ViT [13], producing representations H1 and H2: 296

H1 = Encoder(I1), H2 = Encoder(I2). 297

Two intertwined decoders process these representations, ex- 298
changing information via cross-attention to capture spatial 299
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Figure 3. Methods Architecture. We distill dense features from CLIP and DINO into the MASt3R framework, enriching it with 2D
semantic understanding. Each encoder-decoder pair operates on multi-view images, sharing weights and exchanging information to ensure
consistent feature extraction across views. The model simultaneously generates depth, dense DINOv2, and dense CLIP features, which are
then used for multi-view 3D reconstruction and semantic segmentation. This architecture enables SAB3R to seamlessly integrate 2D and
3D representations, achieving both geometric and semantic comprehension in a unified model.

relationships and global 3D geometry. The enhanced repre-300
sentations are denoted H ′1 and H ′2:301

H ′1, H ′2 = Decoder(H1, H2).302

Finally, prediction heads regress the pointmaps and confi-303
dence maps:304

X1,1, C1 = Head13D([H1, H ′1]), (1)305

X2,1, C2 = Head23D([H2, H ′2]). (2)306

4.2. Distilling 2D Semantic Features307

To integrate 2D semantic information into the model while308
retaining its 3D capabilities, we design a multitask frame-309
work that prevents catastrophic forgetting. This framework310
enables the model to simultaneously learn both 2D and 3D311
features. We adopt the MASt3R [29] architecture, which312
consists of a ViT-Large encoder, a ViT-Base decoder, and313
DPT heads. To distill dense 2D features, we introduce new314
heads to regress features from DINO [41] and CLIP [43].315

Following DUSt3R [64] and MASt3R [28], the new316
heads leverage either a DPT architecture or a simpler MLP317
structure. The DPT design is particularly effective for dense318
prediction tasks like depth estimation and semantic fea-319
ture extraction. In addition to the depth and descriptor320
heads (Head1,2

3D and Head1,2
desc), we introduce two new heads,321

Head1,22D feature, for distilling 2D features: 322

S1 = Head12D feature([H
1, H ′1]), (3) 323

S2 = Head22D feature([H
2, H ′2]). (4) 324

Here, H1 and H2 are embeddings from the encoder, and 325
H ′1, H ′2 are enhanced representations from the decoder. 326
The concatenation [H,H ′] combines multi-scale features 327
from each view. 328

To preserve depth estimation capabilities, we retain the 329
regression loss Lconf from DUSt3R and the matching loss 330
Lmatch from MASt3R. Additionally, we introduce a regres- 331
sion loss for the 2D features, guiding the model to learn 332
semantic information: 333

L2D =
∥∥∥Sv − Ŝv

∥∥∥ , v ∈ {1, 2}, (5) 334

where Ŝv is the target 2D feature extracted from foundation 335
models for the corresponding view v. Dense pixel features 336
from FeatUp [18] are used as supervision. 337

The total loss combines all components, weighted by 338
hyper-parameters β and γ: 339

Ltotal = Lconf + βLmatch + γL2D. (6) 340

4.3. Incorporating Additional Features 341

Our distillation pipeline is designed to flexibly incorporate 342
multiple 2D features into the 3D foundation model, enhanc- 343
ing its capabilities. For each additional feature, we add a 344
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dedicated head and regression loss, resulting in an updated345
training objective:346

Ltotal = Lconf + βLmatch + γ1L2D1
+ γ2L2D2

. (7)347

Here, L2D1 and L2D2 are regression losses for individual348
2D features, with γ1 and γ2 controlling their contributions.349
MaskCLIP and DINOv2 features are integrated into the 3D350
backbone through this framework, with dedicated heads for351
each feature.352

5. Experiments353

In this section, we showcase the effectiveness of our simple354
baseline SAB3R for distilling 2D foundation models into a355
3D reconstruction model. The section is organized into five356
parts. In Sec.5.1, we provide details of our implementation357
for SAB3R . Sec.5.2 analyzes how SAB3R retains 3D per-358
formance compared to the teacher models. In Sec.5.3, we359
demonstrate our method’s zero-shot semantic segmentation360
performance, achieving results comparable to the teacher361
models. Finally, in Sec.5.4, we presents results and analysis362
for the novel task, Map and Locate.363

5.1. Implementation Details364

We fine-tune our model based on pre-trained MASt3R [29]365
with datasets from DUSt3R [64] and MASt3R [29], in-366
cluding Habitat [58], ScanNet++ [71], ARKitScenes [3],367
Co3Dv2 [46], and BlenderMVS [70]. Data preprocessing368
adheres to the guidelines of each dataset. To avoid the369
impracticality of storing dense 2D VFM features locally,370
which would require over 60 TB of storage, we leverage371
FeatUp to dynamically generate these features during train-372
ing. Additional details on the datasets and preprocessing373
steps are provided in the supplementary materials.374

Training We adopt MASt3R [29] as the base 3D foun-375
dation model. During training, we unfreeze the encoder to376
improve its ability to extract semantically meaningful 2D377
features while preserving depth estimation accuracy. For378
distillation using only MaskCLIP features, we set the loss379
weights to β = 0.75 and γ = 20. When distilling both380
MaskCLIP and DINOv2 features, we modify the weights381
to β = 0.75, γ1 = 20, and γ2 = 4. Based on our empir-382
ical observations, these hyperparameters are highly sensi-383
tive—small deviations can result in modality collapse.384

5.2. Zero-Shot 3D Tasks385

Monocular Depth Estimation We benchmark SAB3R on386
both an indoor dataset, NYUv2 [39], and an outdoor dataset,387
KITTI [19], comparing its performance to state-of-the-art388
methods in Tab. 1. For monocular depth evaluation, we use389
two commonly applied metrics following DUSt3R [64] and390
recent studies [4, 55].391

Methods Train NYUD-v2 (Indoor) KITTI (Outdoor)
Rel↓ δ1.25 ↑ Rel↓ δ1.25 ↑

DPT-BEiT[45] D 5.40 96.54 9.45 89.27
NeWCRFs[72] D 6.22 95.58 5.43 91.54
Monodepth2 [20] SS 16.19 74.50 11.42 86.90
SC-SfM-Learners [5] SS 13.79 79.57 11.83 86.61
SC-DepthV3 [57] SS 12.34 84.80 11.79 86.39
MonoViT [77] SS - - 9.92 90.01
RobustMIX [40] T 11.77 90.45 18.25 76.95
SlowTv [55] T 11.59 87.23 (6.84) (56.17)
DUSt3R 224-NoCroCo T 14.51 81.06 20.10 71.21
DUSt3R 224 T 10.28 88.92 16.97 77.89
DUSt3R 512 T 6.51 94.09 12.02 83.43
MASt3R T 8.17 92.59 8.28 93.27
SAB3R (C) T 7.80 92.67 11.63 86.74
SAB3R (CD) T 7.67 92.82 12.53 83.51

Table 1. Monocular depth estimation on NYU-v2 and KITTI
datasets. D = Supervised, SS = Self-supervised, T = Trans-
fer (zero-shot). (Parentheses) refers to training on the same set.
SAB3R (C) represents our model distilled with CLIP features,
while SAB3R (CD) builds upon this by integrating both CLIP and
DINO features during distillation. This notation is used consis-
tently throughout the paper.

Methods RRA@15↑ RTA@15↑ mAA(30)↑
Colmap+SG [11, 49] 36.1 27.3 25.3
PixSfM [33] 33.7 32.9 30.1
RelPose [75] 57.1 - -
PosReg [62] 53.2 49.1 45.0
PoseDiff [62] 80.5 79.8 66.5
RelPose++ [32] (85.5) - -
RayDiff [76] (93.3) - -
DUSt3R-GA [64] 96.2 86.8 76.7
DUSt3R [64] 94.3 88.4 77.2
MASt3R 94.2 88.6 81.1
SAB3R (C) 92.6 87.3 79.7
SAB3R (CD) 92.9 87.8 80.3

Table 2. Multi-view pose regression on the CO3Dv2 [46]
dataset using 10 random frames. Results in parentheses denote
methods evaluated on 8 views, as they do not report results for the
10-view setup. We distinguish multi-view and pairwise methods
for clarity.

As shown in Tab. 1, SAB3R demonstrates strong adapt- 392
ability to both indoor and outdoor environments. Distill- 393
ing dense features from MaskCLIP or DINOv2 into the 394
MASt3R backbone does not degrade the model’s perfor- 395
mance or induce catastrophic forgetting for indoor setting. 396
Therefore, SAB3R is still capable of making accurate depth 397
prediction. Interestingly, SAB3R trained with MaskCLIP, 398
or with both MaskCLIP and DINOv2, outperforms the base 399
model MASt3R on the NYUv2 indoor dataset [39]. How- 400
ever, our approach performs less effectively in outdoor sce- 401
narios, likely due to the indoor-focused nature of our train- 402
ing data. 403
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Model Params FLOPs Sparse View = 2 Sparse View = 3 Sparse View = 4

mIoU Acc. mComp. mdComp. mIoU Acc. mComp. mdComp. mIoU Acc. mComp. mdComp.

Baseline 838M 248G 4.57 18.10 0.64 0.67 6.03 21.26 0.68 0.71 5.12 19.31 0.68 0.70
LSM [16] 1B > 592G 21.40 42.34 0.72 0.80 - - - - - - - -
SAB3R (C) 729M 218G 17.26 41.11 0.73 0.75 22.83 53.19 0.78 0.81 19.92 48.07 0.77 0.80
SAB3R (CD) 729M 218G 17.50 42.72 0.73 0.76 22.94 52.86 0.77 0.80 20.31 46.26 0.75 0.78

Table 3. Performance comparison across different sparse view configurations (2, 3, and 4 views) using mIoU, Accuracy, Mean Complete-
ness, and Median Completeness. Params and FLOPs refer to the number of parameters and computational cost per frame.
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Figure 4. mIoU Analysis on Frequently Occurring Objects Across Three Methods (Sparse View = 3). This plot compares mIoU values
for frequently appearing objects, illustrating performance differences between our methods and the pipeline approaches and providing
insights into the superior results achieved by our methods.

Relative Camera Pose Next, we evaluate for the task404
of relative pose estimation on the CO3Dv2 [46] dataset.405
CO3Dv2 contains 6 million frames extracted from approxi-406
mately 37k videos, covering 51 MS-COCO categories.407

We compare our method’s Relative Camera Pose results408
with popular approaches like RelPose [75], RelPose++ [32],409
PoseReg and PoseDiff [62], RayDiff [76], DUSt3R [64] and410
MASt3R [29] in Tab. 2. Our experiments show that our411
method performs comparably to the original MASt3R [29],412
indicating that catastrophic forgetting is not an issue. These413
results reinforce that SAB3R retains strong relative cam-414
era pose capabilities and can reliably estimate camera poses415
from unposed images. However, in both 3D tasks, incor-416
porating DINO features does not improve the model’s 3D417
reasoning capabilities.418

5.3. Zero-Shot Open Vocabulary Tasks419

Zero-Shot Transfer to Semantic Segmentation We420
evaluate the semantic features learned by SAB3R through421
zero-shot semantic segmentation on two standard bench-422
marks: Pascal VOC [14] and ADE20K [79]. As shown423
in Table 4, we follow the evaluation protocol of SAM-424
CLIP [61], with the key distinction that SAB3R pro-425
duces dense, pixel-level predictions. Notably, SAB3R out-426
performs SAM-CLIP on the more challenging ADE20K427
dataset, which includes 150 semantic categories. While it428
does not surpass SAM-CLIP on Pascal VOC, it achieves429
competitive results and exceeds the performance of the430
teacher model, FeatUp-upsampled MaskCLIP [12]. We431

Model Arch VOC↑ ADE20k↑
GroupViT [66] ViT-S 52.3 -
ViewCo [47] ViT-S 52.4 -
ViL-Seg [34] ViT-B 37.3 -
OVS [67] ViT-B 53.8 -
CLIPpy [44] ViT-B 52.2 13.5
TCL [8] ViT-B 51.2 14.9
SegCLIP [35] ViT-B 52.6 8.7
SAM-CLIP [61] ViT-B 60.6 17.1
FeatUp (MaskCLIP) - 51.2 14.3
SAB3R (C) ViT-B 55.4 18.3
SAB3R (CD) ViT-B 56.4 19.0

Table 4. Zero-shot Semantic Segmentation Comparison. Per-
formance comparison of zero-shot semantic segmentation with re-
cent state-of-the-art methods. Note: Results for SAB3R are based
solely on the CLIP-head output.

attribute these gains primarily to improved segmenta- 432
tion of large, structurally coherent objects (e.g., curtain, 433
floor, desk). This observation aligns with findings from 434
LeRF [25], which suggest that models with 3D reasoning 435
capabilities tend to yield stronger semantic segmentation 436
performance. Additional qualitative results, including PCA 437
visualizations of the learned 2D feature space, are included 438
in the supplementary material. 439
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(a)

(b)

Figure 5. Qualitative Example of Map and Locate. This fig-
ure illustrates an example from our benchmark. In (a), the ground
truth annotation for the scene is highlighted in red, with the dresser
segmented from the rest of the scene on the left. In (b), the pre-
dictions from SAB3R are highlighted in green, and the predicted
dresser is similarly segmented on the right. These segmented re-
sults are subsequently used to compute evaluation metrics.

5.4. A Novel Task - Map and Locate440

We use MASt3R [29] and FeatUp [18] as teacher models441
and adopt them as our primary baselines. Additionally, we442
report the performance of LSM [16] on this new task for443
comparison. We present the results in Table 3. Our method,444
SAB3R , consistently outperforms the baseline across all445
sparse view settings (views = 2, 3, 4) and evaluation metrics,446
demonstrating strong performance on the Map and Locate447
task. Notably, SAB3R achieves a 3× speedup in inference448
compared to the baseline, as it operates in an end-to-end449
manner, whereas the baseline relies on a two-stage pipeline450
involving separate models for reconstruction and segmen-451
tation. In terms of semantic quality, measured by mIoU452
and accuracy, SAB3R surpasses the baseline by a substan-453
tial margin, highlighting its effectiveness in jointly perform-454
ing 3D reconstruction and open-vocabulary segmentation455
without pose supervision. For completion metrics, which456
assess the geometric fidelity of reconstructed semantic ob-457
jects, SAB3R also consistently outperforms the baseline un-458
der all sparse view configurations. Interestingly, we observe459
no clear correlation between the number of input views and460
overall performance. We hypothesize that additional views461
improve results when they focus on overlapping regions or462
specific objects, enabling the model to better infer struc-463
ture and semantics. However, performance may degrade464
when added views are sparsely distributed across unrelated465
parts of the scene, leading to reduced overlap and more frag-466
mented supervision during reconstruction.467

In Fig. 4, our model demonstrates significant improve-468

ments over the baseline in large furniture categories such as 469
sofas, dressers, tables, and chairs. It also successfully rec- 470
ognizes items like bookshelves and televisions, which the 471
baseline fails to detect. Across most categories, our model 472
achieves substantially higher scores, showcasing its strong 473
semantic understanding and superior 3D reconstruction ca- 474
pabilities. Furthermore, it exhibits the ability to identify 475
smaller objects and less common items, underscoring its 476
versatility and robustness. In Fig. 5, we showcase an ex- 477
ample of mapping and locating a dresser across two im- 478
ages. In part (b) of the qualitative example, the predicted 479
segmentation demonstrates remarkable accuracy compared 480
to the ground truth shown in part (a), highlighting the effec- 481
tiveness of our model SAB3R . 482

LSM [16] demonstrates strong performance when op- 483
erating on two input views, benefiting from its ability to 484
jointly estimate geometry, semantics, and appearance in a 485
single feed-forward pass. However, extending LSM to more 486
than two views is non-trivial, as its point transformer archi- 487
tecture and Gaussian fusion strategy are designed specifi- 488
cally for dual-view inputs. Moreover, while LSM employs 489
a powerful frozen segmentation backbone that contributes 490
to its accuracy, this comes at the cost of significantly higher 491
computational complexity—both in terms of FLOPs and pa- 492
rameter count—compared to our more lightweight and effi- 493
cient baseline model SAB3R . 494

6. Conclusion 495

Our experiments validate the central insight of this work: 496
3D open-vocabulary segmentation and 3D reconstruction 497
can be effectively unified through the proposed Map and 498
Locate task. Unlike existing approaches that rely on pre- 499
scanned point clouds or posed RGB-D sequences, our for- 500
mulation accepts unposed video as input—offering a more 501
realistic and scalable setting for embodied agents. 502

The Map and Locate benchmark demonstrates how spa- 503
tial mapping and semantic understanding can be performed 504
simultaneously, requiring models to reason over both 3D 505
structure and 2D semantics. We present SAB3R , a sim- 506
ple yet effective baseline that distills 2D foundation mod- 507
els into a unified model capable of predicting 3D point 508
maps along with dense CLIP and DINOv2 features in a sin- 509
gle forward pass. Despite its simplicity, SAB3R performs 510
competitively across both reconstruction and segmentation 511
metrics, while remaining significantly more efficient than 512
multi-stage baselines. 513

Overall, our findings demonstrate the feasibility of uni- 514
fying recognition, reconstruction, and reorganization within 515
a single model, offering a more efficient and scalable ap- 516
proach to 3D scene understanding. We hope the Map and 517
Locate task serves as a testbed for advancing real-world em- 518
bodied perception research. 519
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SAB3R: Semantic-Augmented Backbone in 3D Reconstruction

Supplementary Material

In Sec. A, we provide additional details about the exper-867
iments conducted in this work, including a discussion of the868
software used in SAB3R and a detailed breakdown of each869
experiment. Comprehensive analysis and visualizations of870
our novel task, Map and Locate, are provided in Sec. B,871
including both successful and failure cases from our exper-872
iments. Sec. C presents supplementary visualizations of the873
features generated by CLIP [43] and DINOv2 [41]. Finally,874
we discuss the limitations of our approach in Sec. D.875

A. More Experiment Details876

A.1. Teacher Models and Frameworks877

CLIP & MaskCLIP Vision and language models are878
trained to generate aligned feature embeddings using a con-879
trastive objective. The original CLIP family of models was880
proposed by Radford et al. [43] and included a wide va-881
riety of architectures in a private dataset of 400M image-882
text pairs called WIT. More recently, Ilharco et al. [22]883
trained several CLIP models using several architectures884
trained on publicly available datasets. In SAB3R , we used885
MaskCLIP [12], which enhances CLIP pretraining by in-886
troducing masked self-distillation. This transfers knowl-887
edge from full-image representations to masked-image pre-888
dictions. This approach complements the vision-language889
contrastive objective by focusing on local patch representa-890
tions while aligning features with indirect supervision from891
language. Additionally, MaskCLIP incorporates local se-892
mantic supervision into the text branch, further improving893
pretraining performance. We follow suggestions from Fea-894
tUp [18] that MaskCLIP [12] has better local semantic fea-895
ture compare with CLIP [43].896

MASt3R MASt3R [29] was trained on an extensive897
multi-view dataset comprising 5.3 million real-world im-898
age pairs and 1.8 million synthetic pairs. The real-world899
data includes diverse scenarios from ARKitScenes [3],900
MegaDepth [31], 3DStreetView [74], and IndoorVL [27].901
The synthetic data was generated using the Habitat simula-902
tor [50], covering indoor, outdoor, and landmark environ-903
ments.904

Our model is finetuned on top of MASt3R, leveraging905
Habitat-Sim [50], ScanNet++[71], and Co3Dv2[46], ARK-906
itScenes [3] and BlenderMVS [70].907

FeatUp FeatUp [17] is a framework designed to enhance908
spatial resolution in deep features for tasks like segmenta-909
tion and depth prediction. It addresses the loss of spatial910

detail caused by pooling in traditional networks using two 911
approaches: guided upsampling with high-resolution sig- 912
nals in a single pass and reconstructing features at arbitrary 913
resolutions with an implicit model. Both methods use a 914
multi-view consistency loss inspired by NeRFs to maintain 915
feature semantics. 916

FeatUp integrates seamlessly into existing pipelines, 917
boosting resolution and performance without re-training. 918
Experiments demonstrate its superiority over other meth- 919
ods in tasks such as segmentation, depth prediction, and 920
class activation map generation. In SAB3R , we find the 921
MaskCLIP variant of FeatUp model can also perform zero- 922
shot semantic segmentation and we use it as our teacher 923
model for distillation. 924

Table 5. Checkpoint Details. Information about the pre-trained
checkpoints used in this work, including source and license.

Checkpoint Source Link License
FeatUp MaskCLIP MaskCLIP MIT
MASt3R MASt3R CC BY-NC-SA 4.0

We list the checkpoints used in SAB3R in Tab. 5, detail- 925
ing the FeatUp MaskCLIP variant and MASt3R, along with 926
their source links and license information. 927

A.2. Experiments Details 928

Monocular Depth In the main text, we benchmark 929
SAB3R on the outdoor dataset KITTI [19] and the indoor 930
dataset NYUv2 [39]. Here, we provide a detailed discus- 931
sion of the evaluation metrics. Following DUSt3R, we use 932
two commonly adopted metrics in monocular depth estima- 933
tion: 934

• Absolute Relative Error (AbsRel): This measures the rel- 935
ative error between the ground truth depth y and the pre- 936
dicted depth ŷ, defined as: 937

AbsRel =
|y − ŷ|

y
. 938

• Prediction Threshold (δ1.25): This evaluates the fraction 939
of predictions within a given threshold and is defined as: 940

δ1.25 =
max

(
ŷ
y ,

y
ŷ

)
< 1.25

Total Predictions
. 941

These metrics allow for comprehensive evaluation of 942
depth prediction accuracy and robustness across different 943
datasets. 944

1

https://marhamilresearch4.blob.core.windows.net/feature-upsampling-public/pretrained/no_norm/maskclip_jbu_stack_cocostuff.ckpt
https://download.europe.naverlabs.com/ComputerVision/MASt3R/MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric.pth
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Figure 6. Camera Distributions. Camera translation differences
and rotation differences at different group levels.

Relative Camera Pose We evaluate SAB3R on the task of945
relative pose estimation using the CO3Dv2 dataset [46]. To946
assess the relative pose error for each image pair, we report947
the Relative Rotation Accuracy (RRA) and Relative Trans-948
lation Accuracy (RTA). For evaluation, we select a thresh-949
old τ = 15◦ and report RRA@15 and RTA@15, represent-950
ing the percentage of image pairs where the errors in rota-951
tion and translation are below the threshold τ .952

The rotation error erot and translation error etrans for each953
image pair are computed as:954

erot = arccos

(
trace(R⊤R̂)− 1

2

)
,955

956

etrans = arccos

(
t⊤t̂

∥t∥∥t̂∥

)
,957

where R and R̂ are the ground truth and predicted rotation958
matrices, and t and t̂ are the ground truth and predicted959
translation vectors.960

We also report the mean Average Accuracy (mAA@30),961
defined as the area under the accuracy curve of the angular962
differences for min(RRA@30,RTA@30). The mAA@30963
is calculated as:964

mAA@30 =
1

30

∫ 30

0

min(RRA@θ,RTA@θ) dθ,965

where θ represents the threshold angle in degrees.966

Zero-Shot Semantic Segmentation For zero-shot se-967
mantic segmentation, we largely follow the approach out-968
lined by Ranasinghe et al.[44], utilizing 80 prompt tem-969
plates introduced by Radford et al .[43, 61]. Class names are970
embedded into these prompts, and text embeddings are gen-971
erated using the text encoder. We then compute the cosine972
similarity between each text embedding and the correspond-973
ing pixel feature—extracted directly from the CLIP head.974

The class with the highest cosine similarity is assigned as 975
the predicted class for each pixel. 976

The class predictions are subsequently resized to match 977
the original image dimensions, and the mean Intersection 978
over Union (mIoU) is computed for evaluation. Unlike prior 979
methods, our approach eliminates the concept of patches. 980
Instead, because the CLIP head directly generates per-pixel 981
features, we can seamlessly perform top-1 matching be- 982
tween semantic classes and pixel features, bypassing the 983
need for patch-based processing. 984

B. Additional Map and Locate Details 985

B.1. Dataset Summary 986

We evaluate our Map and Locate framework using the Scan- 987
Net dataset [10], a large-scale indoor scene dataset that pro- 988
vides RGB-D sequences, camera poses, semantic and in- 989
stance annotations. Specifically, we select 24 scenes from 990
the validation split, each containing diverse object layouts 991
and camera trajectories. Across these 10 scenes, there are a 992
total of 942 objects with semantic and instance-level ground 993
truth annotations. 994

For evaluation, we construct 2 sets of image groups for 995
each scene, where each group comprises 2, 3, or 4 images. 996
The image selection ensures: 997

• Object visibility: Objects in each group are visible across 998
multiple images to ensure reliable localization and map- 999
ping. 1000

• Viewpoint diversity: Selected images capture varying 1001
camera viewpoints to test robustness to occlusion and per- 1002
spective changes. 1003

In total, this results in 144 image groups (2 sets per scene 1004
× 24 scenes × 3 group sizes). Each group is paired with its 1005
corresponding rgb images, depth maps, camera poses (in- 1006
trinsics and extrinsic) , and semantic and instance labels, 1007
providing a comprehensive benchmark for evaluating both 1008
mapping accuracy and object localization performance. 1009

B.2. Dataset Visualizations 1010

We present a dataset statistics visualization in Fig. 6, show- 1011
ing camera translation differences and rotation differences. 1012
Translation differences are computed as the Euclidean dis- 1013
tance between translation vectors, dtranslation = ∥t1 − t2∥2, 1014
and rotation differences are calculated as the geodesic dis- 1015
tance on SO(3), drotation = ∥r∆∥2, where r∆ is the axis- 1016
angle representation of the relative rotation R∆ = R−1

1 R2. 1017
These metrics highlight the variability in camera poses 1018
across the dataset. We observe that as the number of views 1019
increases, both camera translation differences and rotation 1020
differences grow. Despite this, our results demonstrate con- 1021
sistent performance across all group levels, highlighting the 1022
robustness of our algorithm. 1023
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(a) (b)

(c) (d)

Figure 7. Qualitative Examples of Map and Locate with SAB3R . Panels (a), (b), and (c) illustrate successful examples of 3D scene
reconstruction and accurate object segmentation. In each sub-group, the top row shows the ground truth, with the target objects highlighted
in red, accompanied by visualizations of segmented objects for each ground truth target. The bottom row presents the predicted results,
where the segmented objects are shown in green, with the extracted objects displayed on the right for clarity. Panel (d) provides an example
of a failure case.

B.3. More Qualitative Examples1024

Fig. 7 presents additional qualitative examples demonstrat-1025
ing the performance of Map and Locate with SAB3R .1026

C. Additional visualization1027

Fig. 8 presents additional visualizations of 3D features from1028
DINO [41] and CLIP [43]. The visualizations highlight dis-1029
tinct features for different objects. Predicted RGB is pro-1030
vided as a reference.1031

D. Limitations1032

Our study is constrained by limited computational re-1033
sources, which restricted us from training the model for1034
more epochs, potentially resulting in under-trained check-1035
points. Additionally, predicting dense features significantly1036
increases vRAM requirements, further limiting our abil-1037
ity to optimize the model fully. Due to these resource1038
constraints, we were unable to use the entire pre-training1039
dataset for fine-tuning, which may have prevented the1040
model from achieving its best possible performance. Our1041
novel task, Map and Locate, relies on the ScanNet dataset,1042

which, despite its comprehensiveness, is primarily biased 1043
toward indoor environments. Extending this work to more 1044
diverse datasets, including outdoor or dynamic scenes, rep- 1045
resents an interesting direction for future works. 1046
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RGB DINO CLIP

Figure 8. 3D Feature Visualizations. Additional visualizations of 3D features are presented for DINO and CLIP, alongside the original
RGB 3D point map for reference.
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