

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 LOWER-LEVEL DUALITY BASED PENALTY METHODS FOR NONSMOOTH BILEVEL HYPERPARAMETER OPTIMIZATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Hyperparameter optimization (HO) is a critical task in machine learning and can be naturally formulated as bilevel optimization (BLO) with nonsmooth lower-level (LL) problems. However, many existing approaches rely on smoothing strategies or sequential subproblem solvers, both of which introduce significant computational overhead. To address these challenges, we develop a penalization framework that exploits strong duality of the LL problem and its dual. Building on this, we design first-order single-loop projection-based algorithms to solve the penalized problems efficiently. Our methods avoid smoothing and off-the-shelf solvers, thereby greatly reducing per-iteration complexity and overall runtime. We provide rigorous convergence guarantees and analyze the stationary conditions of BLO with nonsmooth LL problems under penalty perspective. Through extensive numerical experiments on a variety of benchmark and real-world tasks, we demonstrate the efficiency, scalability and superiority of our method over existing BLO algorithms.

1 INTRODUCTION

Hyperparameter optimization (HO) arises in many diverse fields, including neural architecture search [1; 2; 3], feature learning [4], ensemble models [5], semi-supervised learning [6] and sample-weighting schemes [7; 8; 9; 10]. The hyperparameters control model complexity, stability and convergence and they need to be chosen externally. A poor choice can cripple performance, whereas good ones greatly enhance accuracy, robustness and generalization. **Regularization** is a common way to guide hyperparameter tuning, especially in regression and classification [11]. By incorporating a penalty term into the empirical risk, regularization balances data fitting with model complexity, thereby mitigating overfitting, which can be formulated as

$$\min_{\mathbf{x}} l(\mathbf{x}) + \sum_{i=1}^{M+1} \lambda_i R_i(\mathbf{x}), \quad (1)$$

where $l(\mathbf{x})$ represents loss functions and $\boldsymbol{\lambda} = (\lambda_1, \lambda_2, \dots, \lambda_{M+1})$ encompasses hyperparameters. Meanwhile, $R_i(\mathbf{x})$, $i = 1, 2, \dots, M + 1$ denotes regularizers related to norms, which can be categorized as follows:

$$R_i(\mathbf{x}) = \|\mathbf{x}\|_{(i)}, \quad i = 1, 2, \dots, M, \quad R_{M+1}(\mathbf{x}) = \frac{1}{2} \|\mathbf{x}\|_2^2. \quad (2)$$

For each i , $\|\cdot\|_{(i)}$ represents a specific norm, such as the ℓ_1 , ℓ_2 , ℓ_∞ , $\ell_{1,2}$ norm for vectors, the spectre or nuclear norm for matrices, or other commonly used norms, most of which are nonsmooth.

Based on formulation (1), the training/validation approach optimizes parameters on the training set while evaluating error on the validation set. This can be cast as a bilevel optimization (BLO) framework [3; 12], which has shown strong empirical performance [13; 14; 4; 15]. Formally,

$$\min_{\mathbf{x} \in \mathbb{R}^{d_x}, \boldsymbol{\lambda} \in \mathbb{R}_+^{M+1}} L(\mathbf{x}) \quad \text{s.t. } \mathbf{x} \in \arg \min_{\hat{\mathbf{x}}} \left\{ l(\hat{\mathbf{x}}) + \sum_{i=1}^{M+1} \lambda_i R_i(\hat{\mathbf{x}}) \right\}, \quad (3)$$

where $L, l, R_i : \mathbb{R}^{d_x} \rightarrow \mathbb{R} \cup \{+\infty\}$ are proper, closed functions. In this BLO, the lower-level (LL) variable \mathbf{x} is the parameter to learn, and the upper-level (UL) variable λ is hyperparameter. This form naturally arises in structural risk minimization, which is one of the most common and foundational frameworks in machine learning. The LL base learner determines the optimal hypothesis for a given hyperparameter, while the UL problem selects the hyperparameter–hypothesis pair minimizing the given criteria on the validation set. Representative examples include elastic net [16], sparse group Lasso [17], low-rank matrix completion [18], smoothed support vector machine (SVM) [19; 20], robust regression [21; 22].

Table 1: Examples of bilevel hyperparameter optimization [23; 14; 24] with norm regularizers.

Machine learning algorithm	Upper Criteria	Base Learner
Elastic net	$\frac{1}{2} \sum_{i \in I_{val}} b_i - \mathbf{x}^T \mathbf{a}_i ^2$	$\frac{1}{2} \sum_{i \in I_{tr}} b_i - \mathbf{x}^T \mathbf{a}_i ^2 + \lambda_1 \ \mathbf{x}\ _1 + \frac{\lambda_2}{2} \ \mathbf{x}\ _2^2$
Sparse group Lasso	$\frac{1}{2} \sum_{i \in I_{val}} b_i - \mathbf{x}^T \mathbf{a}_i ^2$	$\frac{1}{2} \sum_{i \in I_{tr}} b_i - \mathbf{x}^T \mathbf{a}_i ^2 + \sum_{m=1}^M \lambda_m \ \mathbf{x}^{(m)}\ _2 + \lambda_{M+1} \ \mathbf{x}\ _1$
Smoothed support vector machine	$\sum_{i \in I_{val}} l_h(b_i, \mathbf{x}^T \mathbf{a}_i)$	$\sum_{i \in I_{tr}} l_h(b_i, \mathbf{x}^T \mathbf{a}_i) + \frac{\lambda}{2} \ \mathbf{x}\ ^2$ (with constraint $\bar{\mathbf{x}} \leq \mathbf{x} \leq \hat{\mathbf{x}}$)
Low-rank matrix completion	$\sum_{(i,j) \in \Omega_{val}} \frac{1}{2} M_{ij} - \mathbf{x}_i \theta - \mathbf{z}_j \beta - \Gamma_{ij} ^2$	$\sum_{(i,j) \in \Omega_{tr}} \frac{1}{2} M_{ij} - \mathbf{x}_i \theta - \mathbf{z}_j \beta - \Gamma_{ij} ^2 + \lambda_0 \ \Gamma\ _* + \sum_{g=1}^G \lambda_g \ \theta^{(g)}\ _2 + \sum_{g=1}^G \lambda_{g+G} \ \beta^{(g)}\ _2$
Robust regression	$\sum_{j \in I_{val}} l_\delta(b_i - \mathbf{x}^T \mathbf{a}_i)$	$\sum_{j \in I_{tr}} l_\delta(b_i - \mathbf{x}^T \mathbf{a}_i) + \lambda_1 \ \mathbf{x}\ _1 + \frac{\lambda_2}{2} \ \mathbf{x}\ _2^2$

l_h denotes the smoothed hinge loss given by $l_h(t) = \frac{1}{2} - t$ if $t \leq 0$, $\frac{1}{2}(1-t)^2$ if $0 \leq t \leq 1$ and 0 else.

l_δ denotes Huber loss given by $l_\delta(t) = \frac{1}{2}t^2$ if $|t| \leq \delta$, $\delta|t| - \frac{1}{2}\delta^2$ if $|t| > \delta$.

1.1 RELATED WORK

Hyperparameter Optimization. A variety of approaches have been developed for HO [25; 14]. Model-free methods such as grid search [26] and random search [27] are simple but limited. More advanced approaches like Bayesian optimization [28; 29] leverage prior observations to guide evaluations, yet often face scalability issues in high-dimensional spaces.

Bilevel Optimization. BLO underpins many machine learning tasks, including meta-learning [30], adversarial learning [31; 32; 33], model selection [34; 35], generative adversarial networks [36; 37], game theory [38]. BLO is challenging to solve in practice due to the inherently nested structure. Many existing methods assume strong convexity of the LL problem, which ensures implicit differentiation based on unique LL solution and simplifies analysis [7; 4; 8; 39; 40; 41; 42; 43]. However, this assumption is often restrictive. When the LL problem is merely convex, multiple optimal solutions may arise, which introduces additional difficulties. To mitigate this, alternative approaches have been developed, including value function-based methods [44; 45; 46; 47; 48], primal–dual frameworks [49] and penalty-based techniques [50; 51; 52; 53].

Beyond convex settings, nonsmooth LL problems present additional difficulties. Further extensions have been proposed, including implicit differentiation based on partial smoothness [54; 15], difference-of-convex (DC) and penalized DC methods [55; 56; 57], gradient-free approaches [58], duality-based cone programming [59]. A separate stream introduces smoothing strategies [60; 61; 62], with Moreau-envelope formulations further enabling efficient single-loop algorithms [63; 64; 65].

1.2 OUR NOVELTY AND CONTRIBUTIONS

In this work, we focus on unified framework and efficient algorithms for nonsmooth regularized BLO (3) that avoids smoothing techniques and off-the-shelf solvers, while retaining a single-loop structure. We highlight our novelty in Table 3 and summarize contributions as follows.

- We propose Lower-level Duality based Penalty Methods (LDPM), along with single-loop Hessian-free algorithms LDP-PGM and LDP-ADMM, in which utilize effective epigraphic projections to handle nonsmooth components and significantly reduce computational cost.
- We provide analysis of stationary conditions for nonsmooth regularized BLO in penalty framework, and establish non-asymptotic convergence guarantees for our methods under mild assumptions

094 • We conduct extensive experiments on both synthetic and real-world tasks, which consistently
 095 demonstrate the efficiency and robustness of our approach compared with existing methods.
 096

097 **2 LOWER-LEVEL DUALITY BASED PENALIZATION FRAMEWORK**

100 In this section, we propose our framework with lower-level duality based penalization method (LDPM). Prior
 101 to this, we observe that the loss functions of base learners in Table 1 share a unified structure of the form
 102 $\varphi(Ax - b)$ where $Ax - b$ abstracts the linear data-sample relationship and φ may in general be nonlinear.
 103 Accordingly, we denote that

104
$$l(\mathbf{x}) = \varphi(A_t \mathbf{x} - \mathbf{b}_t). \quad (4)$$

105 We provide specific forms of φ and corresponding (A_t, \mathbf{b}_t) associated with examples in Table 1 as follows:

106 **Least squares loss:** $\varphi(t) = \frac{1}{2}t^2$, with $A_t \mathbf{x} - \mathbf{b}_t = A_{tr} \mathbf{x} - \mathbf{b}_{tr}$.

108 **Smoothed hinge loss:** $\varphi(t) = l_h(t)$ with $A_t \mathbf{x} - \mathbf{b}_t = (\mathbf{b}_{tr} A_{tr}) \mathbf{x}$. (l_h is defined in Table 1)

110 **Huber loss:** $\varphi(t) = l_\delta(t)$, with $A_t \mathbf{x} - \mathbf{b}_t = A_{tr} \mathbf{x} - \mathbf{b}_{tr}$. (l_δ is defined in Table 1)

111 Building on the structure of φ , we reformulate (3) based on lower-level duality. Embracing the idea initially
 112 proposed by [59], we state the following lemma as a modification and extension of [59, Theorem 2.1].

113 **Lemma 2.1.** *Given the convex lower semi-continuous¹ functions l and R_i , if $\text{ri}(\text{dom } l \cap (\cap_{i=1}^{M+1} \text{dom } R_i)) \neq$
 114 \emptyset^2 , then problem (3) has the following equivalent form:*

116
$$\min_{\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\rho}, \boldsymbol{\xi}} L(\mathbf{x}) \quad \text{s.t.} \quad \begin{cases} l(\mathbf{x}) + \sum_{i=1}^{M+1} \lambda_i R_i(\mathbf{x}) + \varphi^*(\boldsymbol{\xi}) + \sum_{i=1}^{M+1} \lambda_i R_i^*\left(\frac{\boldsymbol{\rho}_i}{\lambda_i}\right) + \boldsymbol{\xi}^\top \mathbf{b}_t \leq 0, \\ A_t \boldsymbol{\xi} + \sum_{i=1}^{M+1} \boldsymbol{\rho}_i = \mathbf{0}. \end{cases} \quad (5)$$

122 where $\boldsymbol{\rho} = (\boldsymbol{\rho}_1, \dots, \boldsymbol{\rho}_{M+1})$. φ^* and R_i^* are the conjugate functions of φ and R_i , respectively.

123 **Remark 2.2.** The equivalence holds both in terms of the set of minimizers and the optimal objective value.
 124 A detailed proof and further explanations for Lemma 2.1 are provided in Appendix B.2.

125 **Remark 2.3.** Slater’s condition is broadly satisfied by all examples in Table 1, ensuring strong duality for
 126 the LL problem in (3) without requiring strong convexity. For instance, the least squares loss is not strongly
 127 convex, yet strong duality still holds under this condition.

128 Our reformulation differs from [59, Theorem 2.1] in that it explicitly exploits inner structures of $l(\mathbf{x})$. We
 129 emphasize that φ^* and R_i^* admit closed-form expressions for all problems in Table 1, making Lemma 2.1
 130 applicable. For clarity, the explicit forms of φ^* are provided in Appendix B.4.

132 In particular, for $i = 1, \dots, M$ with $R_i(\mathbf{x}) = \|\mathbf{x}\|_{(i)}$, the conjugate is the indicator of the dual-norm unit ball
 133 $\{\|\mathbf{y}\|_{*(i)} \leq 1\}$ [66, Example 3.26]³. For $R_{M+1}(\mathbf{x}) = \frac{1}{2}\|\mathbf{x}\|_2^2$, one has $\lambda_{M+1} R_{M+1}^*\left(\frac{\boldsymbol{\rho}_{M+1}}{\lambda_{M+1}}\right) = \frac{\|\boldsymbol{\rho}_{M+1}\|_2^2}{2\lambda_{M+1}}$
 134 [66, Example 3.27]. To refine the constraints in (5), we introduce r_i and s such that $R_i(\mathbf{x}) \leq r_i$ and
 135 $\frac{\|\boldsymbol{\rho}_{M+1}\|_2^2}{2\lambda_{M+1}} \leq s$, yielding the following reformulation.

138 ¹The definitions of lower semi-continuity and conjugate are provided in Definition B.2, B.3.

139 ²This condition is commonly known as Slater’s condition. $\text{ri}(\cdot)$ denotes the relative interior of the set.

140 ³ $\|\cdot\|_{*(i)}$ denoted the dual norm of $\|\cdot\|_{(i)}$

141 **Proposition 2.4.** *Under the assumptions of Lemma 2.1, problem (3) can be further reformulated as*

$$143 \quad \min_{\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\rho}, \mathbf{r}, \boldsymbol{\xi}, s} L(\mathbf{x}) \quad \text{s.t.} \quad \begin{cases} 144 \quad l(\mathbf{x}) + \sum_{i=1}^{M+1} \lambda_i r_i + \varphi^*(\boldsymbol{\xi}) + \boldsymbol{\xi}^T \mathbf{b}_t + s \leq 0, \quad A_t \boldsymbol{\xi} + \sum_{i=1}^{M+1} \boldsymbol{\rho}_i = \mathbf{0}, \\ 145 \quad \|\mathbf{x}\|_{(i)} \leq r_i, \quad \|\boldsymbol{\rho}_i\|_{*(i)} \leq \lambda_i, \quad i = 1, 2, \dots, M, \\ 146 \quad \frac{1}{2} \|\mathbf{x}\|_2^2 \leq r_{M+1}, \quad \|\boldsymbol{\rho}_{M+1}\|_2^2 \leq 2\lambda_{M+1}s. \\ 147 \end{cases} \quad (6)$$

149 For simplicity, we rewrite the left-hand of the first inequality constraint in (6) as:

$$151 \quad p(\mathbf{x}, \boldsymbol{\lambda}, \mathbf{r}, \boldsymbol{\xi}, s) = l(\mathbf{x}) + \sum_{i=1}^{M+1} \lambda_i r_i + \varphi^*(\boldsymbol{\xi}) + \boldsymbol{\xi}^T \mathbf{b}_t + s. \quad (7)$$

153 We then consider the following penalized problem,

$$155 \quad \min_{\mathbf{z} := (\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\rho}, \mathbf{r}, \boldsymbol{\xi}, s)} F_k(\mathbf{z}) \quad \text{s.t.} \quad \begin{cases} 156 \quad \|\mathbf{x}\|_{(i)} \leq r_i, \quad \|\boldsymbol{\rho}_i\|_{*(i)} \leq \lambda_i, \quad i = 1, 2, \dots, M, \\ 157 \quad \frac{1}{2} \|\mathbf{x}\|_2^2 \leq r_{M+1}, \quad \|\boldsymbol{\rho}_{M+1}\|_2^2 \leq 2\lambda_{M+1}s. \end{cases} \quad (8)$$

158 where $F_k(\mathbf{z}) := L(\mathbf{x}) + \beta_k p(\mathbf{x}, \boldsymbol{\lambda}, \mathbf{r}, \boldsymbol{\xi}, s) + \frac{\beta_k}{2} \|A_t \boldsymbol{\xi} + \sum_{i=1}^{M+1} \boldsymbol{\rho}_i\|^2$ with penalty parameter β_k . This penalty
159 approach is standard in BLO [50; 63; 64; 65; 44]. Inspired by [67, Theorem 17.1], the following theorem
160 establishes the connection between the optimal solutions of the penalized problem and reformulation (6).

162 **Theorem 2.5.** *Assume L, l and R_i are lower semi-continuous, with l and R_i convex. Let $\beta_k \rightarrow \infty$ and let
163 \mathbf{z}^{k+1} denote a minimizer of (8) with β_k , then every limit point \mathbf{z}^* of the sequence $\{\mathbf{z}^k\}$ is a solution to (6).*

165 The proof of Theorem 2.5 is provided in Appendix B.3. From the equivalence between (5) and (6), Theorem
166 2.5 also reveals the connection between (5) and (8).

168 3 PROJECTION-BASED FIRST-ORDER ALGORITHMS

170 In this section, we develop our algorithms under the penalization framework LDPM. We begin with the
171 following assumptions to support analysis and algorithm design.

172 **Assumption 3.1.** The UL objective L is bounded below and α_L -smooth with respect to \mathbf{x} .

173 **Assumption 3.2.** The function φ is convex. φ and φ^* are α_p - and α_d -smooth in their domains, respectively.

175 *Remark 3.3.* Assumptions 3.1 and 3.2 are satisfied by common loss functions, including those in Table 1.
176 They are also suitable for the framework in Section 2. We emphasize that UL objective L can be nonconvex.

177 *Remark 3.4.* Assumption 3.2 implies strong convexity of φ and φ^* , which is detailed in Appendix D.5.1.
178 We emphasize that it does not force the LL objective to be strongly convex. In fact, $l(\mathbf{x}) = \varphi(A_t \mathbf{x} - \mathbf{b}_t)$ is
179 convex but not strongly convex when A_t is not of full row rank.

180 To handle the nonsmooth constraints of (8) induced by different norms, we introduce the cone sets

$$182 \quad \mathcal{K}_i := \{(\mathbf{x}, \mathbf{r}) \mid \|\mathbf{x}\|_{(i)} \leq r_i\}, \quad \mathcal{K}_i^d := \{(\boldsymbol{\rho}_i, \lambda_i) \mid \|\boldsymbol{\rho}_i\|_{*(i)} \leq \lambda_i\}, \quad i = 1, 2, \dots, M, \\ 183 \quad \mathcal{K}_{M+1} := \{(\mathbf{x}, \mathbf{r}) \mid \|\mathbf{x}\|_2^2 \leq 2r_{M+1}\}, \quad \mathcal{K}_{M+1}^d := \{(\boldsymbol{\rho}_{M+1}, \lambda_{M+1}, s) \mid \|\boldsymbol{\rho}_{M+1}\|_2^2 \leq 2\lambda_{M+1}s\}. \quad (9)$$

184 Each of these set is projection-friendly, which enables efficient epigraphic projections. The details of the
185 projection operations are provided in Appendix C. Hence, a natural strategy is to manage the constraints
186 of (8) via projections onto \mathcal{K}_i and \mathcal{K}_i^d . We develop algorithms for two settings: (i) single-round global
187 regularization on \mathbf{x} in Section 3.1 and (ii) multiple interacting regularizers in Section 3.2.

188 3.1 SEPARABLE REGULARIZERS
189190 In this subsection, we present the algorithm for (3) when the LL problem involves separate regularizers as a
191 group of component-wise terms. In this case, the LL problem is written as

192
193
$$\mathbf{x} \in \arg \min_{\hat{\mathbf{x}}} \{l(\hat{\mathbf{x}}) + \sum_{i=1}^M \lambda_i \|\hat{\mathbf{x}}^{(i)}\|_{(t)}\}, \text{ with } \mathbf{x} = (\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(M)}), M \geq 1,$$

194

195 where $\mathbf{x}^{(i)}$ represents the i -th subvector of \mathbf{x} and $\|\cdot\|_{(t)}$ represents a prescribed norm applied to each group.
196197 When $M = 1$, it involves a single regularizer $R_1(\mathbf{x})$, corresponding to simpler models such as toy Lasso or
198 logistic regression. If $R_1(\mathbf{x}) = \|\mathbf{x}\|_{(t)}$, the constraints of (8) reduce to:

199
200
$$\|\mathbf{x}\|_{(t)} \leq r_1, \|\boldsymbol{\rho}\|_{*(t)} \leq \lambda_1. \quad (10)$$

201

202 If $R_1(\mathbf{x}) = \frac{1}{2}\|\mathbf{x}\|_2^2$, the constraints of (8) simplify to:

203
204
$$\frac{1}{2}\|\mathbf{x}\|_2^2 \leq r_1, \frac{1}{2}\|\boldsymbol{\rho}\|_2^2 \leq \lambda_1 s. \quad (11)$$

205

206 (10) and (11) are consistent with the structure in (9) and can be compactly expressed as

207
208
$$\mathbf{z} \in \mathcal{K} := \mathcal{K}_1 \times \mathcal{K}_1^d. \quad (12)$$

209

210 When $M > 1$, the LL problem in (3) involves group regularization, with group-wise ℓ_2 -regularization as
211 the most common example such as group Lasso. Although multiple terms appear, this setting essentially
212 corresponds to a single-round regularization over the entire \mathbf{x} , under which the constraints in (8) reduce to:

213
214
$$\|\mathbf{x}^{(i)}\|_{(t)} \leq r_i, \|\boldsymbol{\rho}^{(i)}\|_{(t)} \leq \lambda_i, \text{ with } \boldsymbol{\rho} = (\boldsymbol{\rho}^{(1)}, \dots, \boldsymbol{\rho}^{(M)}), i = 1, \dots, M,$$

215

216 where $\boldsymbol{\rho}^{(i)}$ is the i -th subvector of $\boldsymbol{\rho}$. The above constraints are separable in i and equivalent to:

217
218
$$(\mathbf{x}^{(1)}, r_1, \mathbf{x}^{(2)}, r_2, \dots, \mathbf{x}^M, r_M) \in \mathcal{K}_1 \times \dots \times \mathcal{K}_M, (\boldsymbol{\rho}, \boldsymbol{\lambda}) \in \mathcal{K}_1^d \times \dots \times \mathcal{K}_M^d,$$

219
$$\mathbf{z} \in \mathcal{K} := (\mathcal{K}_1 \times \dots \times \mathcal{K}_M) \times (\mathcal{K}_1^d \times \dots \times \mathcal{K}_M^d). \quad (13)$$

220

221 In summary, the penalized problem (8) can be uniformly expressed as

222
223
$$\min_{\mathbf{z}} \frac{1}{\beta_k} F_k(\mathbf{z}) \quad \text{s.t.} \quad \mathbf{z} \in \mathcal{K},$$

224

225 where \mathcal{K} is defined in (12) or (13) and remains projection-friendly. Accordingly, we adopt projection gradient
226 descent to solve it in this setting, as outlined in Algorithm 1. In each iteration, we update \mathbf{z} as

227
228
$$\mathbf{z}^{k+1} = \text{proj}_{\mathcal{K}}(\mathbf{z}^k - \frac{e_k}{\beta_k} \nabla_{\mathbf{z}} F_k(\mathbf{z}^k)), \quad (14)$$

229

230 where $e_k > 0$ are the step sizes and $\text{proj}_{\mathcal{K}}(\mathbf{x})$ is the projection of \mathbf{x} onto \mathcal{K} .
231232 **Algorithm 1** Lower-level Duality Penalization Projection Gradient Method (LDP-PGM)233 1: Input $\boldsymbol{\lambda}^0 > 0, \boldsymbol{\xi}^0$, step sizes $\{e_k\}$, penalty parameters $\{\beta_k\}$. Initialize $\mathbf{x}^0, \mathbf{r}^0, \boldsymbol{\rho}^0, s^0$.
234 2: **for** $k = 0, 1, 2, \dots$ **do**
235 3: Update \mathbf{z}^{k+1} with (14).
236 4: **end for**237 We remark that Algorithm 1 is a single loop algorithm that does not require solving any subproblem. The
238 initialization is detailed in Appendix D.1. We now turn to the non-asymptotic convergence analysis of

Algorithm 1. From the proof of Lemma 2.1 and the definition of p , it follows that $p(\mathbf{x}, \boldsymbol{\lambda}, \mathbf{r}, \boldsymbol{\xi}, s) \geq 0$ and the feasible set has no interior point [68; 44; 59]. Consequently, the classical KKT conditions for nonsmooth constrained optimization [69] are inapplicable. Instead, we adopt the approximate KKT conditions [70] and introduce the following merit functions,

$$\begin{aligned}\phi_{res}^k(\mathbf{z}) &:= \text{dist}\left(0, \nabla_{\mathbf{z}} F_k(\mathbf{z}) + \mathcal{N}_{\mathcal{K}}(\mathbf{z})\right), \\ \phi_{fea}(\mathbf{z}) &:= \max\{p(\mathbf{x}, \boldsymbol{\lambda}, \mathbf{r}, \boldsymbol{\xi}, s), \|A_t \boldsymbol{\xi} + \boldsymbol{\rho}\|^2\}.\end{aligned}\quad (15)$$

The residual function $\phi_{res}^k(\mathbf{z})$ quantifies the stationarity for (8), because $\phi_{res}^k(\mathbf{z}) = 0$ if and only if \mathbf{z} is a stationary point of (8). Meanwhile, the function $\phi_{fea}(\mathbf{z})$ is interpreted as a feasibility measure for the penalized constraints [71]. Combined with the structure of BLO, $\phi_{fea}(\mathbf{z})$ regulates optimality conditions of LL problem of (3). We clarify corresponding conclusions and explanations in Appendix D.2.

Theorem 3.5. *Under Assumptions 3.1 and 3.2, suppose $\beta_k = \underline{\beta}(1+k)^p$ with $\underline{\beta} > 0$ and $p \in (0, 1/2)$. If the step sizes $\{e_k\}$ in Algorithm 1 satisfy $0 < \underline{e} \leq e_k \leq \min\{\frac{\underline{\beta}}{\alpha_L + \underline{\beta}\|A_t\|_2^2\alpha_p}, 1, \frac{1}{\alpha_d + \|A_t\|_2^2}\}$, the sequence $\{\mathbf{z}^k\}$ generated by Algorithm 1 satisfies*

$$\min_{0 \leq k \leq K} \phi_{res}^k(\mathbf{z}^{k+1}) = \mathcal{O}\left(\frac{(L_c + 1/\underline{e})\underline{\beta}}{K^{\frac{1}{2}-p}}\right),$$

where $L_c := \max\{\frac{1}{\underline{\beta}}\alpha_L + \|A_t\|_2^2\alpha_p, \alpha_d + \|A_t\|_2^2, 1\}$. Furthermore, if the sequence $\{F_k(\mathbf{z}^k)\}$ is bounded, then it holds that

$$0 \leq \min_{0 \leq k \leq K} \phi_{fea}(\mathbf{z}^k) = \mathcal{O}(1/K^p).$$

We remark that the lower bound \underline{e} and the boundedness assumption on $\{F_k(\mathbf{z}^k)\}$ are widely adopted in single-loop Hessian-free BLO algorithms [64; 65; 63]. We provide detailed proofs in Appendix D.3.

Meanwhile, the boundedness assumption on $\{F_k(\mathbf{z}^k)\}$ is standard and necessary in single-loop penalty-based methods for BLO without lower-level strong convexity. Relaxing this assumption in nonconvex, nonsmooth single-loop bilevel settings would require substantially stronger analytical tools derived from structural properties of the problem, such as global error bounds, Kurdyka–Łojasiewicz (KL) inequalities. To the best of our knowledge, establishing such results for nonconvex nonsmooth bilevel penalty methods remains open. In this sense, the boundedness of $\{F_k(\mathbf{z}^k)\}$ should be regarded as a available technical condition, rather than any undesirable behavior of our algorithms.

3.2 NONSEPARABLE REGULARIZERS

In this subsection, we focus on the scenarios that LL problem in (3) involves multiple interacting regularizers, where several regularization terms are applied to the entire vector, such as elastic net or sparse group Lasso. Using the definitions of \mathcal{K}_i and \mathcal{K}_i^d from (9), the constraints of (8) can be written as

$$\begin{aligned}(\mathbf{x}, \mathbf{r}) &\in \mathcal{K}_i, (\boldsymbol{\rho}_i, \lambda_i) \in \mathcal{K}_i^d, i = 1, 2, \dots, M, \\ (\mathbf{x}, \mathbf{r}) &\in \mathcal{K}_{M+1}, (\boldsymbol{\rho}_{M+1}, \lambda_{M+1}, s) \in \mathcal{K}_{M+1}^d,\end{aligned}$$

which can be further expressed as

$$(\mathbf{x}, \mathbf{r}) \in \mathcal{K}_1 \cap \dots \cap \mathcal{K}_{M+1}, (\boldsymbol{\rho}, \boldsymbol{\lambda}, s) \in \mathcal{K}_1^d \times \dots \times \mathcal{K}_{M+1}^d. \quad (16)$$

We denote $\mathcal{K}_*^d := \mathcal{K}_1^d \times \dots \times \mathcal{K}_{M+1}^d$. (16) can be equivalently expressed as

$$\mathbf{z} \in \mathcal{K} := (\mathcal{K}_1 \cap \dots \cap \mathcal{K}_{M+1}) \times \mathcal{K}_1^d \times \dots \times \mathcal{K}_{M+1}^d = (\mathcal{K}_1 \cap \dots \cap \mathcal{K}_{M+1}) \times \mathcal{K}_*^d.$$

282 Since each \mathcal{K}_i^d is projection-friendly, the product set \mathcal{K}_*^d inherits this property. In contrast, the intersection
 283 $\cap_{i=1}^{M+1} \mathcal{K}_i$ defined over the shared variable (\mathbf{x}, \mathbf{r}) may not be projection-friendly. [Although projection onto](#)
 284 [such intersections has been studied \[72; 73\], the required iterations are often complex.](#) To address this, we
 285 reformulate the constraint to avoid direct projection onto the intersection:

$$\mathbf{z} \in \mathcal{K}_i \times \mathcal{K}_*^d, i = 1, 2, \dots, M + 1. \quad (17)$$

288 For each i , since \mathcal{K}_*^d and \mathcal{K}_i are projection-friendly, the product set $\mathcal{K}_i \times \mathcal{K}_*^d$ remains projection-friendly.
 289 Hence, we introduce auxiliary variables \mathbf{u}_i , leading to uniform expression of (8):

$$\min_{\mathbf{z}, \mathbf{u}} \frac{1}{\beta_k} F_k(\mathbf{z}) \quad \text{s.t.} \quad \mathbf{z} = \mathbf{u}_i, \mathbf{u}_i \in \mathcal{K}_i \times \mathcal{K}_*^d, i = 1, \dots, M + 1, \quad (18)$$

292 where $\mathbf{u} = (\mathbf{u}_1, \dots, \mathbf{u}_{M+1})$. We define the indicator function as $g_i(\mathbf{z}) = I_{\mathcal{K}_i \times \mathcal{K}_*^d}(\mathbf{z})$, $i = 1, 2, \dots, M + 1$.
 293 The augmented Lagrangian function of problem (18) is given by:

$$\mathcal{L}_\gamma^k(\mathbf{z}, \mathbf{u}, \boldsymbol{\mu}) = \frac{1}{\beta_k} F_k(\mathbf{z}) + \sum_{i=1}^{M+1} g_i(\mathbf{u}_i) + \sum_{i=1}^{M+1} \langle \boldsymbol{\mu}_i, \mathbf{u}_i - \mathbf{z} \rangle + \frac{\gamma}{2} \sum_{i=1}^{M+1} \|\mathbf{u}_i - \mathbf{z}\|^2, \quad (19)$$

297 where $\boldsymbol{\mu} := (\boldsymbol{\mu}_1, \dots, \boldsymbol{\mu}_{M+1})$ denotes the Lagrangian multiplier associated with constraint $\mathbf{z} = \mathbf{u}_i$. Based
 298 on $\mathcal{L}_\gamma^k(\mathbf{z}, \mathbf{u}, \boldsymbol{\mu})$, we adopt an alternative approach to solve (18) inspired by the core idea of the Alternating
 299 Direction Method of Multipliers (ADMM). [Here, \$\gamma\$ serves as a penalty parameter and is taken to be a](#)
 300 [independent positive constant. This is because ADMM is well known to be robust to the choice of \$\gamma\$, and](#)
 301 [convergence is guaranteed for any fixed \$\gamma > 0\$ \[74; 75\].](#) The method alternately updates the primal variables
 302 \mathbf{z} and \mathbf{u} , followed by a dual ascent step on $\boldsymbol{\mu}$. At iteration k , we perform a gradient update on \mathbf{z} initialized at
 303 \mathbf{z}^k :

$$\mathbf{z}^{k+1} = \mathbf{z}^k - e_k \mathbf{d}_{\mathbf{z}}^k, \quad (20)$$

304 where the update direction $\mathbf{d}_{\mathbf{z}}^k$ corresponds to the gradient of \mathcal{L}_γ^k with respect to \mathbf{z} evaluated at $(\mathbf{z}^k, \mathbf{u}^k, \boldsymbol{\mu}^k)$
 305 and e_k is the step size of k -th iteration. This is equivalent to minimize the proximal subproblem of \mathcal{L}_γ^k :

$$\mathbf{z}^{k+1} = \arg \min_{\mathbf{z}} \{ \mathcal{L}_\gamma^k(\mathbf{z}^k, \mathbf{u}^k, \boldsymbol{\mu}^k) + \langle \nabla_{\mathbf{z}} \mathcal{L}_\gamma^k(\mathbf{z}^k, \mathbf{u}^k, \boldsymbol{\mu}^k), \mathbf{z} - \mathbf{z}^k \rangle + \frac{1}{2e_k} \|\mathbf{z} - \mathbf{z}^k\|^2 \}.$$

309 Next, for the \mathbf{u} -subproblem, we update \mathbf{u}_i by minimizing \mathcal{L}_γ^k with respect to \mathbf{u}_i as

$$\mathbf{u}_i^{k+1} = \arg \min_{\mathbf{u}_i} \{ g_i(\mathbf{u}_i) + \frac{\gamma}{2} \|\mathbf{u}_i - \mathbf{z}^{k+1} + \frac{\boldsymbol{\mu}_i^k}{\gamma} \|^2 \}, \quad (21)$$

313 which is equivalent to performing the direct projection onto $\mathcal{K}_i \times \mathcal{K}_*^d$, yielding:

$$\mathbf{u}_i^{k+1} = \text{proj}_{\mathcal{K}_i \times \mathcal{K}_*^d} \left(\frac{\boldsymbol{\mu}_i^k}{\gamma} - \mathbf{z}^{k+1} \right), i = 1, \dots, M + 1. \quad (22)$$

316 Finally, for the dual multipliers $\boldsymbol{\mu}_i$, we update them as

$$\boldsymbol{\mu}_i^{k+1} = \boldsymbol{\mu}_i^k + \gamma(\mathbf{u}_i^{k+1} - \mathbf{z}^{k+1}), i = 1, \dots, M + 1. \quad (23)$$

318 We summarize these iterations in Algorithm 2 and the initialization is detailed in Appendix D.1.

320 Algorithm 2 differs from standard ADMM in two key aspects: (i) the augmented Lagrangian \mathcal{L}_γ^k varies
 321 with the iterative β_k . (ii) instead of exactly minimizing \mathcal{L}_γ^k in the \mathbf{z} -subproblem, we adopt its first-order
 322 approximation at \mathbf{z}^k . The strategy is commonly employed in gradient-based ADMM [76; 77]. We now
 323 discuss the non-asymptotic convergence property of Algorithm 2. Similar to Theorem 3.5, we define the
 324 following merit functions analogous to (15):

$$\begin{aligned} \phi_{res}^k(\mathbf{z}) &:= \text{dist} \left(0, \nabla F_k(\mathbf{z}) + \mathcal{N}_{\mathcal{K}}(\mathbf{z}) \right), \\ \phi_{fea}(\mathbf{z}) &:= \max \{ p(\mathbf{x}, \boldsymbol{\lambda}, \mathbf{r}, \boldsymbol{\xi}, s), \|A_t \boldsymbol{\xi} + \sum_{i=1}^{M+1} \boldsymbol{\rho}_i\|^2 \}. \end{aligned} \quad (24)$$

328 To establish the convergence results for Algorithm 2, we invoke the following assumption.

Algorithm 2 Lower-level Duality Penalization Alternating Direction Method of Multipliers (LDP-ADMM)

```

329 1: Input  $\lambda^0 > 0$ ,  $\xi^0$ , constant  $\gamma > 0$ . Initialize  $\mathbf{x}^0, \mathbf{r}^0, \rho_i^0, s^0$  and  $\mathbf{u}_i^0 = \mathbf{z}^0$ . Input sequences  $\{e_k\}, \{\beta_k\}$ .
330 2: for  $k = 0, 1, 2, \dots$  do
331 3:   Update  $\mathbf{z}^{k+1}$  with (20).
332 4:   Update  $\mathbf{u}^{k+1}$  with (22).
333 5:   update  $\mu^{k+1}$  with (23).
334 6: end for
335
336
337

```

Assumption 3.6. The sequence of multipliers $\{\mu^k\}$ is bounded.

As discusses in [74; 75], the convergence of ADMM for nonconvex nonsmooth composite optimization is highly challenging without imposing assumptions like Assumption 3.6, which is an open question. Assumption 3.6 is popularly employed in ADMM approaches [78; 79; 80; 81].

Theorem 3.7. Under Assumptions 3.1, 3.2, 3.6, let $\beta_k = \underline{\beta}(1+k)^p$ with $\underline{\beta} > 0$ and $p \in (0, 1/2)$. If step sizes e_k satisfy $0 < \underline{e} \leq e_k \leq 1/M_e$, where M_e is a constant defined as

$$M_e = \max\left\{\frac{1}{\underline{\beta}}\alpha_L + \|A_t\|_2^2\alpha_p, \alpha_d + \|A_t\|_2^2, 1\right\} + (M+1)\gamma,$$

then the sequence $\{\mathbf{z}^k\}$ in Algorithm 2 satisfies $\lim_{k \rightarrow \infty} \phi_{res}^k(\mathbf{z}^{k+1}) = 0$. Moreover, if $\{F_k(\mathbf{z}^k)\}$ is bounded, then $\lim_{k \rightarrow \infty} \phi_{fea}(\mathbf{z}^k) = 0$.

We remark that the lower bound \underline{e} and the boundedness assumption on $\{F_k(\mathbf{z}^k)\}$ are analogous to Theorem 3.5. We provide the detailed explanations and proofs of Theorem 3.7 in Appendix D.4.

4 NUMERICAL EXPERIMENTS

In this section, we assess the numerical performance of our proposed algorithms through experiments on both synthetic and real datasets. Specifically, we compare with several existing hyperparameter optimization algorithms under the BLO framework (3), including search methods, TPE [82], IGJO [14], IFDM [54; 15], VF-iDCA [57], LDMMA [59], MEHA [63], BiC-GAFFA [65], as detailed in Appendix E.1.

We evaluate all tasks listed in Table 1. The comparison is based on validation and test errors obtained from the LL minimizers, together with the overall running time. In addition, we also report the lower-level duality gap and the sparsity of the resulting solutions. These metrics are standard in the assessment of (bilevel) hyperparameter optimization [57; 14]. For each task, we conduct experiments across diverse data settings or datasets with 10 independent repetitions, and report aggregated statistical outcomes. Depending on the regularization structure, we employ either LDP-PGM (Algorithm 1) or LDP-ADMM (Algorithm 2). The specific choice of algorithm for each problem is detailed in the corresponding subsection of Appendix E. In all reported experimental results, both variants are uniformly denoted as LDPM in this section.

4.1 EXPERIMENTS ON SYNTHETIC DATA

We focus on two prototypical tasks built from simple synthetic data: least squares/Huber regression with various Lasso-type regularizers and low-rank matrix completion, as listed in Table 1. The synthetic data consists of observation matrices sampled from specific distributions and response vectors generated with controlled noise. The detailed data generation process is provided in Appendix E.2.

Lasso-type Regression. We consider three regularizers: elastic net [16], group Lasso [83], and sparse group Lasso [17]. These formulations all promote sparsity while balancing model complexity and predictive accu-

376 racy. Table 2 presents the statistical results for the sparse group Lasso problem, including validation error,
 377 test error, and running time. Results for the elastic net and group Lasso problems are reported in Tables 5 and
 378 6, respectively. Detailed experimental settings for each method are provided in the corresponding subsec-
 379 tions of Appendix E.2. Overall, LDPM demonstrates superior performance on synthetic data, consistently
 380 achieving the lowest test errors while requiring the least computational time compared to baseline methods.
 381
 382

383 Table 2: Sparse group Lasso problems on synthetic data, where p represents the number of features.
 384

Settings	$p = 600$			$p = 1200$		
	Time(s)	Val. Err.	Test Err.	Time(s)	Val. Err.	Test Err.
Grid	6.36 \pm 1.88	84.73 \pm 5.29	87.34 \pm 15.91	13.68 \pm 2.49	84.68 \pm 4.31	86.00 \pm 18.43
Random	6.02 \pm 2.01	135.17 \pm 5.95	147.43 \pm 25.54	12.64 \pm 2.84	137.87 \pm 14.21	146.25 \pm 15.52
IGJO	1.58 \pm 0.28	101.93 \pm 4.07	96.36 \pm 13.72	7.35 \pm 1.46	130.56 \pm 14.02	106.70 \pm 4.01
VF-iDCA	0.56 \pm 0.15	56.96 \pm 5.58	76.84 \pm 11.33	8.63 \pm 2.91	86.38 \pm 6.40	87.58 \pm 8.90
LDMMA	0.57 \pm 0.13	82.70 \pm 5.03	72.44 \pm 14.72	4.72 \pm 2.15	83.93 \pm 7.32	84.03 \pm 9.08
MEHA	0.44 \pm 0.04	70.53 \pm 6.34	73.12 \pm 10.98	2.84 \pm 0.22	84.93 \pm 5.74	82.94 \pm 7.91
BiC-GAFFA	0.39 \pm 0.02	67.42 \pm 6.28	71.45 \pm 10.74	2.52 \pm 0.29	82.21 \pm 5.03	79.81 \pm 7.66
LDPM	0.31 \pm 0.03	65.11 \pm 6.62	65.91 \pm 8.12	2.02 \pm 0.11	76.39 \pm 4.68	74.11 \pm 6.35

Settings	$p = 2400$			$p = 4800$		
	Time(s)	Val. Err.	Test Err.	Time(s)	Val. Err.	Test Err.
Grid	24.23 \pm 4.05	95.63 \pm 14.13	84.86 \pm 15.09	47.09 \pm 6.34	128.94 \pm 24.11	115.41 \pm 17.62
Random	22.17 \pm 6.85	120.04 \pm 15.36	146.77 \pm 16.70	46.3 \pm 5.57	99.41 \pm 16.55	122.49 \pm 19.46
IGJO	11.14 \pm 7.44	91.59 \pm 14.97	115.98 \pm 14.94	29.76 \pm 9.44	99.75 \pm 15.14	106.49 \pm 7.48
VF-iDCA	14.31 \pm 1.45	63.21 \pm 5.36	81.92 \pm 10.54	45.12 \pm 3.10	73.66 \pm 10.53	96.09 \pm 9.14
LDMMA	7.50 \pm 0.21	66.23 \pm 7.47	79.09 \pm 13.75	36.14 \pm 3.65	78.61 \pm 12.32	95.81 \pm 9.43
MEHA	6.32 \pm 0.18	74.92 \pm 9.10	77.58 \pm 10.21	5.96 \pm 0.41	87.42 \pm 7.52	93.11 \pm 7.44
BiC-GAFFA	5.11 \pm 0.10	86.83 \pm 13.53	76.38 \pm 8.60	5.03 \pm 0.63	94.34 \pm 8.19	92.05 \pm 7.13
LDPM	4.61 \pm 0.06	84.85 \pm 6.21	72.93 \pm 2.64	4.32 \pm 0.14	83.12 \pm 5.70	88.64 \pm 5.11

401 **Low-rank matrix completion.** For this problem, we conduct the numerical experiments on 60×60 matrices
 402 [57; 14]. The data generation process, detailed statistical results, and corresponding analysis are presented
 403 in Appendix E.2.4.

404 **Robust regression.** For this problem, we consider numerical experiments on regression problems with
 405 Huber loss combined with norm regularizers. The data generation process, detailed statistical results, and
 406 corresponding analysis are presented in Appendix E.2.5.

407 **Sensitivity of parameters.** We conduct sensitivity experiments on LDP-PGM and LDP-ADMM. The re-
 408 sults summarized in Table 9 show that both algorithms exhibit stable convergence across various parameter
 409 settings.

4.2 EXPERIMENTS ON REAL-WORLD DATA

415 To assess robustness of our algorithms, we conduct experiments on larger real-world datasets with more
 416 complex sampling distributions. Specifically, we consider experiments on elastic net, smoothing SVM and
 417 sparse logistic regression, as listed in Table 1. All datasets are drawn from the LIBSVM repository. For each
 418 repetition, we randomly shuffle and split the data into training, validation and test sets.

419 **Elastic Net.** In this part, we conduct experiments on datasets gisette [84] and sensit [85]. We summarize
 420 the comparative experimental results in Table 10 and show the validation and test error curves over time for
 421 each algorithm in Figure 1. Even in these high-dimensional settings, LDPM delivers competitive accuracy
 422 while maintaining fast convergence. Additional experimental details are provided in Appendix E.4.1.

Figure 1: Comparison of the algorithms on Elastic Net problem for real-world datasets.

Smoothed Support Vector Machine. We perform 6-fold cross-validation using medical statistics datasets, including diabetes, sonar, a1a [86]. Details of the datasets and experimental setup are given in Appendix E.4.2. We plots the validation and test errors of each algorithm over time in Figure 2, which clearly shows that LDPM converges more rapidly and achieves lower error levels than the competing methods.

Sparse Logistic Regression. [87; 24] In this part, we conduct experiments on three large-scale document classification datasets, news20.binary, rcv1.binary and real-sim. Dataset characteristics and experimental details are provided in Appendix E.4.3. We plot the validation and test error curves over time in Figure 3 and report the corresponding final validation and test accuracies in Table 12 for comparison. LDPM consistently converges faster and achieves the lowest validation and test errors.

5 CONCLUSION

In this paper, we introduce a penalty framework based on lower-level duality for nonsmooth bilevel hyperparameter optimization (3). Notably, we solve the penalized problem using single-loop first-order algorithms. Theoretically, we establish convergence guarantees for the proposed algorithms. Empirically, through numerical experiments on both synthetic and real-world datasets, our methods exhibit superior performance compared to existing approaches, particularly among the illustrated examples.

ETHICS STATEMENT

This work does not present any apparent ethical concerns. The proposed algorithms are purely theoretical and experimental in nature, and they do not involve human subjects, sensitive personal data, or applications that pose foreseeable risks of harm. Nevertheless, we recognize the importance of ethical considerations in machine learning research and adhere to the ICLR Code of Ethics.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide the following: (1) all theoretical results are accompanied by complete proofs in the appendix; (2) experimental setups, including dataset preprocessing and hyperparameter settings, are described in detail; (3) source code implementing our algorithms will be made available in the supplementary material. These resources should allow others to fully replicate our findings.

REFERENCES

[1] Christopher M Bishop. *Neural networks for pattern recognition*. Oxford university press, 1995.

470 [2] Gonzalo I Diaz, Achille Fokoue-Nkoutche, Giacomo Nannicini, and Horst Samulowitz. An effec-
 471 tive algorithm for hyperparameter optimization of neural networks. *IBM Journal of Research and*
 472 *Development*, 61(4/5):9–1, 2017.

473 [3] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. *arXiv*
 474 *preprint arXiv:1806.09055*, 2018.

475 [4] Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, and Massimiliano Pontil. Bilevel
 476 programming for hyperparameter optimization and meta-learning. In *International conference on*
 477 *machine learning*, pages 1568–1577. PMLR, 2018.

478 [5] Marc Claesen, Frank De Smet, Johan Suykens, and Bart De Moor. Ensemblesvm: A library for
 479 ensemble learning using support vector machines. *arXiv preprint arXiv:1403.0745*, 2014.

480 [6] Lan-Zhe Guo, Zhen-Yu Zhang, Yuan Jiang, Yu-Feng Li, and Zhi-Hua Zhou. Safe deep semi-
 481 supervised learning for unseen-class unlabeled data. In *International conference on machine learning*,
 482 pages 3897–3906. PMLR, 2020.

483 [7] Luca Franceschi, Michele Donini, Paolo Frasconi, and Massimiliano Pontil. Forward and reverse
 484 gradient-based hyperparameter optimization. In *International Conference on Machine Learning*,
 485 pages 1165–1173. PMLR, 2017.

486 [8] Amirreza Shaban, Ching-An Cheng, Nathan Hatch, and Byron Boots. Truncated back-propagation for
 487 bilevel optimization. In *The 22nd International Conference on Artificial Intelligence and Statistics*,
 488 pages 1723–1732. PMLR, 2019.

489 [9] Mengye Ren, Wenyuan Zeng, Bin Yang, and Raquel Urtasun. Learning to reweight examples for
 490 robust deep learning. In *International conference on machine learning*, pages 4334–4343. PMLR,
 491 2018.

492 [10] Jun Shu, Qi Xie, Lixuan Yi, Qian Zhao, Sanping Zhou, Zongben Xu, and Deyu Meng. Meta-weight-
 493 net: Learning an explicit mapping for sample weighting. *Advances in neural information processing*
 494 *systems*, 32, 2019.

495 [11] Matthias Feurer and Frank Hutter. Hyperparameter optimization. *Automated machine learning: Meth-
 496 ods, systems, challenges*, pages 3–33, 2019.

497 [12] Fan Bao, Guoqiang Wu, Chongxuan Li, Jun Zhu, and Bo Zhang. Stability and generalization of
 498 bilevel programming in hyperparameter optimization. *Advances in neural information processing*
 499 *systems*, 34:4529–4541, 2021.

500 [13] Dougal Maclaurin, David Duvenaud, and Ryan Adams. Gradient-based hyperparameter optimization
 501 through reversible learning. In *International conference on machine learning*, pages 2113–2122.
 502 PMLR, 2015.

503 [14] Jean Feng and Noah Simon. Gradient-based regularization parameter selection for problems with
 504 nonsmooth penalty functions. *Journal of Computational and Graphical Statistics*, 27(2):426–435,
 505 2018.

506 [15] Quentin Bertrand, Quentin Klopfenstein, Mathurin Massias, Mathieu Blondel, Samuel Vaite, Alexan-
 507 dre Gramfort, and Joseph Salmon. Implicit differentiation for fast hyperparameter selection in non-
 508 smooth convex learning. *Journal of Machine Learning Research*, 23(149):1–43, 2022.

509 [16] Hui Zou and Trevor Hastie. Regression shrinkage and selection via the elastic net, with applications
 510 to microarrays. *JR Stat Soc Ser B*, 67:301–20, 2003.

511

517 [17] Noah Simon, Jerome Friedman, Trevor Hastie, and Robert Tibshirani. A sparse-group lasso. *Journal*
 518 *of computational and graphical statistics*, 22(2):231–245, 2013.

519

520 [18] Emmanuel Candes and Benjamin Recht. Exact matrix completion via convex optimization. *Communi-*
 521 *cations of the ACM*, 55(6):111–119, 2012.

522

523 [19] Shai Shalev-Shwartz and Tong Zhang. Stochastic dual coordinate ascent methods for regularized loss
 524 minimization. *Journal of Machine Learning Research*, 14(1), 2013.

525

526 [20] JunRu Luo, Hong Qiao, and Bo Zhang. Learning with smooth hinge losses. *Neurocomputing*, 463:
 379–387, 2021.

527

528 [21] John Fox and Sanford Weisberg. Robust regression. *An R and S-Plus companion to applied regres-*
 529 *sion*, 91(6), 2002.

530

531 [22] Dong Huang, Ricardo Cabral, and Fernando De la Torre. Robust regression. *IEEE transactions on*
 532 *pattern analysis and machine intelligence*, 38(2):363–375, 2015.

533

534 [23] Gautam Kunapuli, Kristin P Bennett, Jing Hu, and Jong-Shi Pang. Classification model selection via
 535 bilevel programming. *Optimization Methods & Software*, 23(4):475–489, 2008.

536

537 [24] Kwangmoo Koh, Seung-Jean Kim, and Stephen Boyd. An interior-point method for large-scale l_1 -
 538 regularized logistic regression. *Journal of Machine learning research*, 8(Jul):1519–1555, 2007.

539

540 [25] Frank Hutter, Jörg Lücke, and Lars Schmidt-Thieme. Beyond manual tuning of hyperparameters.
 541 *KI-Künstliche Intelligenz*, 29:329–337, 2015.

542

543 [26] MohammadNoor Injadat, Abdallah Moubayed, Ali Bou Nassif, and Abdallah Shami. Systematic
 544 ensemble model selection approach for educational data mining. *Knowledge-Based Systems*, 200:
 545 105992, 2020.

546

547 [27] James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. *Journal of*
 548 *machine learning research*, 13(2), 2012.

549

550 [28] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-parameter
 551 optimization. *Advances in neural information processing systems*, 24, 2011.

552

553 [29] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine
 554 learning algorithms. *Advances in neural information processing systems*, 25, 2012.

555

556 [30] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
 557 deep networks. In *International conference on machine learning*, pages 1126–1135. PMLR, 2017.

558

559 [31] Michael Brückner and Tobias Scheffer. Stackelberg games for adversarial prediction problems. In
 560 *Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data*
 561 *mining*, pages 547–555, 2011.

562

563 [32] Jiali Wang, He Chen, Rujun Jiang, Xudong Li, and Zihao Li. Fast algorithms for stackelberg predic-
 564 tion game with least squares loss. In *International Conference on Machine Learning*, pages 10708–
 565 10716. PMLR, 2021.

566

567 [33] Jiali Wang, Wen Huang, Rujun Jiang, Xudong Li, and Alex L Wang. Solving stackelberg prediction
 568 game with least squares loss via spherically constrained least squares reformulation. In *International*
 569 *Conference on Machine Learning*, pages 22665–22679. PMLR, 2022.

564 [34] Gautam Kunapuli, K Bennett, Jing Hu, and Jong-Shi Pang. Bilevel model selection for support vector
 565 machines. In *CRM proceedings and lecture notes*, volume 45, pages 129–158, 2008.

566

567 [35] Tommaso Giovannelli, Griffin Dean Kent, and Luis Nunes Vicente. Inexact bilevel stochastic gradient
 568 methods for constrained and unconstrained lower-level problems. *arXiv preprint arXiv:2110.00604*,
 569 2021.

570 [36] Gauthier Gidel, Hugo Berard, Gaëtan Vignoud, Pascal Vincent, and Simon Lacoste-Julien. A vari-
 571 ational inequality perspective on generative adversarial networks. *arXiv preprint arXiv:1802.10551*,
 572 2018.

573

574 [37] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
 575 Aaron Courville, and Yoshua Bengio. Generative adversarial networks. *Communications of the ACM*,
 576 63(11):139–144, 2020.

577 [38] Tao Li and Suresh P Sethi. A review of dynamic stackelberg game models. *Discrete & Continuous*
 578 *Dynamical Systems-B*, 22(1):125, 2017.

579

580 [39] Fabian Pedregosa. Hyperparameter optimization with approximate gradient. In *International confer-
 581 ence on machine learning*, pages 737–746. PMLR, 2016.

582 [40] Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and Sergey Levine. Meta-learning with implicit
 583 gradients. *Advances in neural information processing systems*, 32, 2019.

584

585 [41] Riccardo Grazzi, Luca Franceschi, Massimiliano Pontil, and Saverio Salzo. On the iteration complex-
 586 ity of hypergradient computation. In *International Conference on Machine Learning*, pages 3748–
 587 3758. PMLR, 2020.

588

589 [42] Kaiyi Ji, Mingrui Liu, Yingbin Liang, and Lei Ying. Will bilevel optimizers benefit from loops.
 590 *Advances in Neural Information Processing Systems*, 35:3011–3023, 2022.

591

592 [43] Saeed Ghadimi and Mengdi Wang. Approximation methods for bilevel programming. *arXiv preprint
 593 arXiv:1802.02246*, 2018.

594

595 [44] Risheng Liu, Xuan Liu, Xiaoming Yuan, Shangzhi Zeng, and Jin Zhang. A value-function-based
 596 interior-point method for non-convex bi-level optimization. In *International conference on machine
 597 learning*, pages 6882–6892. PMLR, 2021.

598

599 [45] Risheng Liu, Xuan Liu, Shangzhi Zeng, Jin Zhang, and Yixuan Zhang. Value-function-based se-
 600 quential minimization for bi-level optimization. *IEEE Transactions on Pattern Analysis and Machine
 601 Intelligence*, 2023.

602

603 [46] Junyi Li, Bin Gu, and Heng Huang. Improved bilevel model: Fast and optimal algorithm with theo-
 604 retical guarantee. *arXiv preprint arXiv:2009.00690*, 2020.

605

606 [47] Lesi Chen, Jing Xu, and Jingzhao Zhang. Bilevel optimization without lower-level strong convexity
 607 from the hyper-objective perspective. *arXiv preprint arXiv:2301.00712*, 2023.

608

609 [48] Jeongyeol Kwon, Dohyun Kwon, Stephen Wright, and Robert D Nowak. A fully first-order method
 610 for stochastic bilevel optimization. In *International Conference on Machine Learning*, pages 18083–
 18113. PMLR, 2023.

611

612 [49] Daouda Sow, Kaiyi Ji, Ziwei Guan, and Yingbin Liang. A primal-dual approach to bilevel optimiza-
 613 tion with multiple inner minima. *arXiv preprint arXiv:2203.01123*, 2022.

611 [50] Han Shen and Tianyi Chen. On penalty-based bilevel gradient descent method. In *International*
 612 *Conference on Machine Learning*, pages 30992–31015. PMLR, 2023.

613

614 [51] Bo Liu, Mao Ye, Stephen Wright, Peter Stone, and Qiang Liu. Bome! bilevel optimization made easy:
 615 A simple first-order approach. *Advances in neural information processing systems*, 35:17248–17262,
 616 2022.

617

618 [52] Zhaosong Lu and Sanyou Mei. First-order penalty methods for bilevel optimization. *SIAM Journal*
 619 *on Optimization*, 34(2):1937–1969, 2024.

620

621 [53] Jeongyeol Kwon, Dohyun Kwon, Stephen Wright, and Robert Nowak. On penalty meth-
 622 ods for nonconvex bilevel optimization and first-order stochastic approximation. *arXiv preprint*
 623 *arXiv:2309.01753*, 2023.

624

625 [54] Quentin Bertrand, Quentin Klopfenstein, Mathieu Blondel, Samuel Vaiter, Alexandre Gramfort, and
 626 Joseph Salmon. Implicit differentiation of lasso-type models for hyperparameter optimization. In
 627 *International Conference on Machine Learning*, pages 810–821. PMLR, 2020.

628

629 [55] Jane J Ye, Xiaoming Yuan, Shangzhi Zeng, and Jin Zhang. Difference of convex algorithms for bilevel
 630 programs with applications in hyperparameter selection. *arXiv preprint arXiv:2102.09006*, 2021.

631

632 [56] Jane J Ye, Xiaoming Yuan, Shangzhi Zeng, and Jin Zhang. Difference of convex algorithms for
 633 bilevel programs with applications in hyperparameter selection. *Mathematical Programming*, 198(2):
 634 1583–1616, 2023.

635

636 [57] Lucy L Gao, Jane Ye, Haian Yin, Shangzhi Zeng, and Jin Zhang. Value function based difference-
 637 of-convex algorithm for bilevel hyperparameter selection problems. In *International Conference on*
 638 *Machine Learning*, pages 7164–7182. PMLR, 2022.

639

640 [58] Lesi Chen, Yaohua Ma, and Jingzhao Zhang. Near-optimal fully first-order algorithms for finding
 641 stationary points in bilevel optimization. *arXiv preprint arXiv:2306.14853*, 2023.

642

643 [59] He Chen, Haochen Xu, Rujun Jiang, and Anthony Man-Cho So. Lower-level duality based refor-
 644 mulation and majorization minimization algorithm for hyperparameter optimization. *arXiv preprint*
 645 *arXiv:2403.00314*, 2024.

646

647 [60] Jan Harold Alcantara and Akiko Takeda. Theoretical smoothing frameworks for general nonsmooth
 648 bilevel problems. *arXiv preprint arXiv:2401.17852*, 2024.

649

650 [61] Jan Harold Alcantara, Chieu Thanh Nguyen, Takayuki Okuno, Akiko Takeda, and Jein-Shan Chen.
 651 Unified smoothing approach for best hyperparameter selection problem using a bilevel optimization
 652 strategy. *Mathematical Programming*, pages 1–40, 2024.

653

654 [62] Takayuki Okuno, Akiko Takeda, Akihiro Kawana, and Motokazu Watanabe. On lp-hyperparameter
 655 learning via bilevel nonsmooth optimization. *Journal of Machine Learning Research*, 22(245):1–47,
 656 2021.

657

658 [63] Risheng Liu, Zhu Liu, Wei Yao, Shangzhi Zeng, and Jin Zhang. Moreau envelope for non-
 659 convex bi-level optimization: A single-loop and hessian-free solution strategy. *arXiv preprint*
 660 *arXiv:2405.09927*, 2024.

661

662 [64] Wei Yao, Chengming Yu, Shangzhi Zeng, and Jin Zhang. Constrained bi-level optimization: Proximal
 663 lagrangian value function approach and hessian-free algorithm. *arXiv preprint arXiv:2401.16164*,
 664 2024.

658 [65] Wei Yao, Haian Yin, Shangzhi Zeng, and Jin Zhang. Overcoming lower-level constraints in bilevel
659 optimization: A novel approach with regularized gap functions. *arXiv preprint arXiv:2406.01992*,
660 2024.

661 [66] Stephen P Boyd and Lieven Vandenberghe. *Convex optimization*. Cambridge university press, 2004.

662 [67] Jorge Nocedal and Stephen J Wright. *Numerical optimization*. Springer, 1999.

663 [68] Jane J Ye and DL Zhu. Optimality conditions for bilevel programming problems. *Optimization*, 33
664 (1):9–27, 1995.

665 [69] R Tyrrell Rockafellar and Roger J-B Wets. *Variational analysis*, volume 317. Springer Science &
666 Business Media, 2009.

667 [70] Roberto Andreani, José Mario Martínez, and Benar Fux Svaiter. A new sequential optimality condition
668 for constrained optimization and algorithmic consequences. *SIAM Journal on Optimization*, 20
669 (6):3533–3554, 2010.

670 [71] Ashkan Mohammadi. Penalty methods to compute stationary solutions in constrained optimization
671 problems. *arXiv preprint arXiv:2206.04020*, 2022.

672 [72] Aleksandr Y Aravkin, James V Burke, Dmitry Drusvyatskiy, Michael P Friedlander, and Scott Roy.
673 Level-set methods for convex optimization. *Mathematical Programming*, 174:359–390, 2019.

674 [73] Meijiao Liu and Yong-Jin Liu. Fast algorithm for singly linearly constrained quadratic programs with
675 box-like constraints. *Computational Optimization and Applications*, 66:309–326, 2017.

676 [74] Yu Wang, Wotao Yin, and Jinshan Zeng. Global convergence of admm in nonconvex nonsmooth
677 optimization. *Journal of Scientific Computing*, 78:29–63, 2019.

678 [75] Huan Li, Zhouchen Lin, Canyi Lu, Shuicheng Han, and Jiashi Feng. *Alternating Direction Method
679 of Multipliers for Machine Learning*. Springer Singapore, 2022. ISBN 978-981-16-9840-8. doi:
680 10.1007/978-981-16-9840-8.

681 [76] Vahid Abolghasemi, Saideh Ferdowsi, and Saeid Sanei. A gradient-based alternating minimization
682 approach for optimization of the measurement matrix in compressive sensing. *Signal Processing*, 92
683 (4):999–1009, 2012.

684 [77] Nicholas Boyd, Geoffrey Schiebinger, and Benjamin Recht. The alternating descent conditional gra-
685 dient method for sparse inverse problems. *SIAM Journal on Optimization*, 27(2):616–639, 2017.

686 [78] Yangyang Xu, Wotao Yin, Zaiwen Wen, and Yin Zhang. An alternating direction algorithm for matrix
687 completion with nonnegative factors. *Frontiers of Mathematics in China*, 7:365–384, 2012.

688 [79] Xiaodi Bai, Jie Sun, and Xiaojin Zheng. An augmented lagrangian decomposition method for chance-
689 constrained optimization problems. *INFORMS Journal on Computing*, 33(3):1056–1069, 2021.

690 [80] Yuan Shen, Zaiwen Wen, and Yin Zhang. Augmented lagrangian alternating direction method for
691 matrix separation based on low-rank factorization. *Optimization Methods and Software*, 29(2):239–
692 263, 2014.

693 [81] Xiangyu Cui, Rujun Jiang, Yun Shi, Rufeng Xiao, and Yifan Yan. Decision making under cumulative
694 prospect theory: An alternating direction method of multipliers. *INFORMS Journal on Computing*,
695 2024.

705 [82] James Bergstra, Daniel Yamins, and David Cox. Making a science of model search: Hyperparameter
 706 optimization in hundreds of dimensions for vision architectures. In *International conference on*
 707 *machine learning*, pages 115–123. PMLR, 2013.

708 [83] Ming Yuan and Yi Lin. Model selection and estimation in regression with grouped variables. *Journal*
 709 *of the Royal Statistical Society Series B: Statistical Methodology*, 68(1):49–67, 2006.

710 [84] Isabelle Guyon, Steve Gunn, Asa Ben-Hur, and Gideon Dror. Result analysis of the nips 2003 feature
 711 selection challenge. *Advances in neural information processing systems*, 17, 2004.

712 [85] Marco F Duarte and Yu Hen Hu. Vehicle classification in distributed sensor networks. *Journal of*
 713 *Parallel and Distributed Computing*, 64(7):826–838, 2004.

714 [86] Arthur Asuncion and David Newman. Uci machine learning repository, 2007.

715 [87] Todd G Nick and Kathleen M Campbell. Logistic regression. *Topics in biostatistics*, pages 273–301,
 716 2007.

717 [88] Han Shen, Zhuoran Yang, and Tianyi Chen. Principled penalty-based methods for bilevel reinforce-
 718 ment learning and rlhf. *arXiv preprint arXiv:2402.06886*, 2024.

719 [89] Bradly Stadie, Lunjun Zhang, and Jimmy Ba. Learning intrinsic rewards as a bi-level optimization
 720 problem. In *Conference on Uncertainty in Artificial Intelligence*, pages 111–120. PMLR, 2020.

721 [90] Zhuoran Yang, Yongxin Chen, Mingyi Hong, and Zhaoran Wang. Provably global convergence of
 722 actor-critic: A case for linear quadratic regulator with ergodic cost. *Advances in neural information*
 723 *processing systems*, 32, 2019.

724 [91] Yue Frank Wu, Weitong Zhang, Pan Xu, and Quanquan Gu. A finite-time analysis of two time-scale
 725 actor-critic methods. *Advances in Neural Information Processing Systems*, 33:17617–17628, 2020.

726 [92] Risheng Liu, Yaohua Liu, Shangzhi Zeng, and Jin Zhang. Towards gradient-based bilevel optimiza-
 727 tion with non-convex followers and beyond. *Advances in Neural Information Processing Systems*, 34:
 728 8662–8675, 2021.

729 [93] Antreas Antoniou, Harrison Edwards, and Amos Storkey. How to train your maml. In *International*
 730 *conference on learning representations*, 2018.

731 [94] Jonathan Lorraine, Paul Vicol, and David Duvenaud. Optimizing millions of hyperparameters by
 732 implicit differentiation. In *International conference on artificial intelligence and statistics*, pages
 733 1540–1552. PMLR, 2020.

734 [95] Junjie Yang, Kaiyi Ji, and Yingbin Liang. Provably faster algorithms for bilevel optimization. *Ad-*
 735 *vances in Neural Information Processing Systems*, 34:13670–13682, 2021.

736 [96] Haikuo Yang, Luo Luo, Chris Junchi Li, Michael Jordan, and Maryam Fazel. Accelerating inexact
 737 hypergradient descent for bilevel optimization. In *OPT 2023: Optimization for Machine Learning*,
 738 2023.

739 [97] Junyi Li, Bin Gu, and Heng Huang. A fully single loop algorithm for bilevel optimization without
 740 hessian inverse. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 36, pages
 741 7426–7434, 2022.

742 [98] Lucy L Gao, Jane J Ye, Haian Yin, Shangzhi Zeng, and Jin Zhang. Moreau envelope based
 743 difference-of-weakly-convex reformulation and algorithm for bilevel programs. *arXiv preprint*
 744 *arXiv:2306.16761*, 2023.

745

752 [99] Quan Xiao, Songtao Lu, and Tianyi Chen. An alternating optimization method for bilevel problems
753 under the polyak-łojasiewicz condition. *Advances in Neural Information Processing Systems*, 36:
754 63847–63873, 2023.

755 [100] Songtao Lu. Slm: A smoothed first-order lagrangian method for structured constrained nonconvex
756 optimization. *Advances in Neural Information Processing Systems*, 36:80414–80454, 2023.

757 [101] Amir Beck. *First-order methods in optimization*. SIAM, 2017.

758 [102] Po-Wei Wang, Matt Wytock, and Zico Kolter. Epigraph projections for fast general convex program-
759 ming. In *International Conference on Machine Learning*, pages 2868–2877. PMLR, 2016.

760 [103] Jiajin Li, Caihua Chen, and Anthony Man-Cho So. Fast epigraphical projection-based incremen-
761 tal algorithms for wasserstein distributionally robust support vector machine. *Advances in Neural
762 Information Processing Systems*, 33:4029–4039, 2020.

763 [104] R Tyrrell Rockafellar. *Convex analysis*, volume 18. Princeton university press, 1970.

764 [105] Chong Li and Kung Fu Ng. On constraint qualification for an infinite system of convex inequalities
765 in a banach space. *SIAM Journal on Optimization*, 15(2):488–512, 2005.

766 [106] Chong Li, Kung Fu Ng, and Ting Kei Pong. Constraint qualifications for convex inequality systems
767 with applications in constrained optimization. *SIAM Journal on Optimization*, 19(1):163–187, 2008.

768 [107] Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vector machines. *ACM transac-
769 tions on intelligent systems and technology (TIST)*, 2(3):1–27, 2011.

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799 THE USE OF LARGE LANGUAGE MODELS (LLMs)
800801 No large language models (LLMs) were used in the development of the research ideas, theoretical results,
802 experiments, or writing of this paper. All contents are solely the work of the authors.
803804 805 A EXPANDED INTRODUCTION
806807 BLO underpins many machine learning tasks, including meta-learning [30], adversarial learning [31; 32; 33],
808 reinforcement learning [88; 89; 90; 91], model selection [34; 35], generative adversarial networks [36; 37],
809 and game theory [38]. Early approaches mainly used gradient-based methods, broadly categorized into
810 Iterative Differentiation (ITD), which unrolls the LL problem and computes hypergradients via backpropa-
811 gation [7; 4; 41; 92; 93; 8], and Approximate Implicit Differentiation (AID), which derives gradients from
812 LL optimality conditions [39; 40; 94; 95; 96].813 Recent advances explore fully first-order methods that avoid Hessian or implicit gradients [58; 97; 47].
814 To handle multiple LL minima, [44] proposed a value-function reformulation, inspiring penalty-based al-
815 gorithms [45; 50; 52; 48; 53; 51]. Another promising direction employs the Moreau envelope to smooth
816 the bilevel structure, enabling single-loop, Hessian-free algorithms converging to well-defined KKT points
817 [98; 64; 65].818 For BLO with nonsmooth LL problems, [54] introduces an implicit differentiation framework via block
819 coordinate descent, later extended to general nonsmooth settings [15]. Alternative approaches include
820 difference-of-convex (DC) and penalized DC methods [55; 56; 57], which rely on the LL value function,
821 and smoothing strategies [60; 61; 62]. More recent work explores gradient-free algorithms with inexact sub-
822 problems [58], duality-based cone programming that bypasses the value function [59], and Moreau-envelope
823 methods extended to nonsmooth cases, yielding efficient single-loop algorithms [63]. Compared with ex-

824 825 Table 3: Comparison between our algorithm and other single-loop Hessian-free methods

826

Method	LL Objective	UL Objective	Nonsmooth	Single-loop	Hessian-free	Non-asymptotic
BOME[51]	L-Smooth Gradient-Bounded	L-Smooth PL Condition	Inapplicable	✗	✓	✓
GALET[99]	L-Smooth Gradient-Bounded	L-Smooth PL Condition	Inapplicable	✗	✗	✓
V-PBGD[50]	L-Smooth Gradient-Bounded	L-Smooth PL Condition	Inapplicable	✗	✓	✓
VF-iDCA[57]	Convex	Convex Nonsmooth	Off-the-shelf Solvers	✓	✓	✗
LDMMA[59]	Convex	Convex Nonsmooth	Off-the-shelf Solvers	✓	✓	✗
SLM[100]	L-Smooth	L-Smooth PL Condition	Inapplicable	✗	✓	✓
MEHA[63]	L-Smooth	Nonsmooth	Smoothing (Moreau)	✓	✓	✓
BiC-GAFFA[65]	L-Smooth	L-Smooth Constrained	Smoothing (Moreau)	✓	✓	✓
LV-HBA[64]	L-Smooth	L-Smooth Constrained	Smoothing (Moreau)	✓	✓	✓
LDPM(Ours)	L-Smooth	Convex Nonsmooth	Projection	✓	✓	✓

843
844 isting methods under the same oracles, our approach demonstrates distinctive advantages. Our framework
845 LDPM does not rely on smoothing schemes. We directly address the nonsmooth components via efficient

846 projection operations. Therefore, each iteration in our method requires only gradient evaluations and projections.
 847 By contrast, BiC-GAFFA depends on smoothing-based reformulation that converts LL problem into a
 848 constrained lower-level problem, which also introduces additional computational burden. Similarly, MEHA
 849 adopts the Moreau envelope to achieve smooth approximations. Meanwhile, LDMMA and VF-iDCA also
 850 differ significantly from our proposed LDPM. We primarily combine gradient descent and projection al-
 851 gorithms, whereas LDMMA and VF-iDCA directly use an off-the-shelf solver to address the subproblem.
 852 Furthermore, an important aspect of the LDMMA algorithm is the value function and an additional parame-
 853 ter ϵ , which yields an approximation of the original BLO, while LDPM directly solves the original BLO.

854 B PROOFS AND EXPLANATIONS FOR SECTION 2

855 In this subsection, we provide the proofs of the results concerning the penalty framework in Section 2. The
 856 definitions of convex and lower semi-continuous functions in Lemma 2.1 are given as follows.

857 **Definition B.1. (Convex Function):** Let $C \subseteq \mathbb{R}^n$ be a convex set. A function $f : C \rightarrow \mathbb{R}$ is called **convex**
 858 if for all $\mathbf{x}, \mathbf{y} \in C$ and for all $\theta \in [0, 1]$, the following inequality holds:

$$859 \quad f(\theta\mathbf{x} + (1 - \theta)\mathbf{y}) \leq \theta f(\mathbf{x}) + (1 - \theta)f(\mathbf{y}).$$

860 **Definition B.2. (Lower semi-continuous Function):** A function $f : \mathbb{R}^n \rightarrow \mathbb{R} \cup \{+\infty\}$ is said to be **lower**
 861 **semi-continuous** at a point $\mathbf{x}_0 \in \mathbb{R}^n$ if

$$862 \quad \liminf_{\mathbf{x} \rightarrow \mathbf{x}_0} f(\mathbf{x}) \geq f(\mathbf{x}_0).$$

863 Equivalently, for all $\alpha \in \mathbb{R}$, the sublevel set $\{\mathbf{x} \in \mathbb{R}^n \mid f(\mathbf{x}) \leq \alpha\}$ is a closed set. If f is lower semi-
 864 continuous at every point in its domain, we say that f is a lower semi-continuous function.

865 These two properties are essential in our framework: convexity ensures the validity of lower-level duality,
 866 while the lower semi-continuity guarantees the existence of a minimizer in the LL problem.

867 **Definition B.3. (Conjugate function):** Given a function $f : \mathbb{R}^n \rightarrow \mathbb{R} \cup \{+\infty\}$, the conjugate function f^*
 868 is defined as

$$869 \quad f^*(\mathbf{y}) = \sup_{\mathbf{x} \in \mathbb{R}^n} \{\mathbf{y}^T \mathbf{x} - f(\mathbf{x})\}, \quad \mathbf{y} \in \mathbb{R}^n.$$

870 **Definition B.4. (Domain):** Let $f : \mathbb{R}^n \rightarrow \mathbb{R} \cup \{+\infty\}$. The domain of f , also called the effective domain,
 871 is the set of points where f takes finite values:

$$872 \quad \text{dom}(f) := \{\mathbf{x} \in \mathbb{R} \mid f(\mathbf{x}) < +\infty\}.$$

873 B.1 PROOF OF LEMMA 2.1

874 The following proof follows [59].

875 *Proof.* We prove the conclusion based on the formulation (3). First we introduce augmented variables \mathbf{z} and
 876 $\mathbf{z}_i, i = 1, 2, \dots, M + 1$ and deduce the equivalent form of LL problem of (3),

$$877 \quad \min_{\mathbf{x}, \mathbf{z}_i} \varphi(\mathbf{z}) + \sum_{i=1}^{M+1} \lambda_i R_i(\mathbf{z}_i) \quad \text{s.t. } \mathbf{z} = A_t \mathbf{x} - \mathbf{b}_t, \quad \mathbf{x} = \mathbf{z}_i, \quad i = 1, 2, \dots, M + 1 \quad (25)$$

878 Since l, R_i are convex and the constraints are affine, strong duality holds under Slater’s condition. If
 879 $\text{ri}(\text{dom } l \cap (\bigcap_{i=1}^{M+1} \text{dom } R_i)) \neq \emptyset$, then (25) is equivalent to its Lagrangian dual problem:

$$880 \quad \max_{\boldsymbol{\xi}, \boldsymbol{\rho}} \min_{\mathbf{x}, \mathbf{z}, \mathbf{z}_i} \varphi(\mathbf{z}) + \sum_{i=1}^{M+1} \lambda_i R_i(\mathbf{z}_i) - \boldsymbol{\xi}^T (A_t \mathbf{x} - \mathbf{b}_t - \mathbf{z}) + \sum_{i=1}^{M+1} \boldsymbol{\rho}_i^T (\mathbf{x} - \mathbf{z}_i),$$

893 where ξ is Lagrangian multiplier of constraint $A_t \mathbf{x} - \mathbf{b}_t = \mathbf{z}$, while ρ_i are those associated with constraints
 894 $\mathbf{x} = \mathbf{z}_i$. By adding the negative signs, we obtain
 895

$$896 \max_{\xi, \rho} - \max_{\mathbf{x}, \mathbf{z}, \mathbf{z}_i} -\varphi(\mathbf{z}) - \sum_{i=1}^{M+1} \lambda_i R_i(\mathbf{z}_i) + \xi^T (A_t \mathbf{x} - \mathbf{b}_t - \mathbf{z}) - \sum_{i=1}^{M+1} \rho_i^T (\mathbf{x} - \mathbf{z}_i).$$

899 The above problem can be further simplified as,
 900

$$901 \max_{\xi, \rho} -\varphi^*(\xi) - \sum_{i=1}^{M+1} \lambda_i R_i^*(\frac{\rho_i}{\lambda_i}) - \xi^T \mathbf{b}_t. \\ 902 \text{s.t. } A_t \xi + \sum_{i=1}^{M+1} \rho_i = \mathbf{0}. \quad (26)$$

903 Meanwhile, leveraging the value function of the lower-level problem, the constraint of (3) is equivalent to
 904

$$905 l(\mathbf{x}) + \sum_{i=1}^{M+1} \lambda_i R_i(\mathbf{x}) \leq \min_{\mathbf{x}} \{l(\mathbf{x}) + \sum_{i=1}^{M+1} \lambda_i R_i(\mathbf{x})\}. \quad (27)$$

906 From the equivalence of (25) and (26), (27) is further equivalent to
 907

$$908 l(\mathbf{x}) + \sum_{i=1}^{M+1} \lambda_i R_i(\mathbf{x}) \leq \max_{\xi, \rho} \{-\varphi^*(\xi) - \sum_{i=1}^{M+1} \lambda_i R_i^*(\frac{\rho_i}{\lambda_i}) - \xi^T \mathbf{b}_t \mid A_t \xi + \sum_{i=1}^{M+1} \rho_i = \mathbf{0}\}. \quad (28)$$

909 Because the inequality in (28) holds if and only if there exists a feasible pair (ξ, ρ) satisfying (28), dropping
 910 the max operator, we obtain that the constraint in (3) is equivalent to
 911

$$912 l(\mathbf{x}) + \sum_{i=1}^{M+1} \lambda_i R_i(\mathbf{x}) + \varphi^*(\xi) + \sum_{i=1}^{M+1} \lambda_i R_i^*(\frac{\rho_i}{\lambda_i}) + \xi^T \mathbf{b}_t \leq 0, \\ 913 A_t \xi + \sum_{i=1}^{M+1} \rho_i = \mathbf{0}.$$

914 We complete the proof. □
 915

916 B.2 EXPLANATIONS FOR LEMMA 2.1

917 (a) Explanations for equivalence:

918 In Lemma 2.1, the phrase equivalent form denotes equivalence both in the set of minimizers and in the
 919 optimal objective value. We explain the reasons as follows.
 920

921 Under Slater's condition, strong duality holds between the LL problem in (3) and its Fenchel dual, guaranteeing
 922 that their optimal values coincide. Our notion of equivalence derives precisely from this fact. Concretely,
 923 in the proof of Lemma 2.1, we clarify that the LL problem in (3) is equivalent to the relation
 924

$$925 l(\mathbf{x}) + \sum_{i=1}^{M+1} \lambda_i R_i(\mathbf{x}) \leq \min_{\mathbf{x}} \{l(\mathbf{x}) + \sum_{i=1}^{M+1} \lambda_i R_i(\mathbf{x})\}.$$

926 The above inequality appears in (27). We reformulate it by replacing the right part with its Fenchel dual in
 927 (27)-(28). Therefore, the constraint enforces recovery of the LL solution and its dual multipliers introduced
 928 for (25).
 929

940 As a result, if $(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\rho}, \boldsymbol{\xi})$ is the minimizer of (5), then \mathbf{x} is the minimizer of (3). Moreover, since the
 941 objective $L(\mathbf{x})$ remains unchanged, the optimal value is also preserved.
 942

943 **(b) Explanations for specific forms of the LL problems:**

944 We stress that our work is firmly centered on bilevel hyperparameter optimization, where regularization in
 945 the form of a sum of norms naturally arises in real applications. This is not an artificial construct but a
 946 practical necessity.
 947

948 We emphasize that our reformulation strategy extends beyond sums of norms. Whenever the lower-level
 949 problem takes the form
 950

$$\mathbf{y} \in \arg \min_{\mathbf{y}} \{g(\mathbf{x}, \mathbf{y}) + \sum_i g_i(\mathbf{x}, \mathbf{y})\}, \quad i \geq 1.$$

951 it can be reformulated via lower-level duality [59, Lemma 2.1], making both the reformulation (6) and
 952 penalty framework are both applicable.
 953

954 **B.3 PROOF OF THEOREM 2.5**

955 *Proof.* We adopt the convention $A(\mathbf{z}) = \frac{1}{2} \|A_t \boldsymbol{\xi} + \sum_{i=1}^{M+1} \boldsymbol{\rho}_i\|^2$. It is straightforward that $A(\mathbf{z}) \geq 0$. Let $\bar{\mathbf{z}}$ be
 956 any limit point of the sequence $\{\mathbf{z}^k\}$ and $\{\mathbf{z}^{k_j}\} \subset \{\mathbf{z}^k\}$ be the subsequence such that $\mathbf{z}^{k_j} \rightarrow \bar{\mathbf{z}}$.
 957

958 Assume that \mathbf{z}^* is a solution of the reformulation (6). Then it holds that $L(\mathbf{z}^*) \leq L(\mathbf{x})$ for all
 959 $\mathbf{z} = (\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\rho}, \mathbf{r}, \boldsymbol{\xi}, s)$ feasible to (6). Note that the constraints in (6) subsume those in (8), so any point
 960 \mathbf{z} feasible to (6) is also feasible to (8).
 961

962 Since \mathbf{z}^{k+1} is the minimizer of the problem (8) with β_k , it follows that
 963

$$L(\mathbf{z}^{k+1}) + \beta_k(p(\mathbf{z}^{k+1}) + A(\mathbf{z}^{k+1})) \stackrel{(a)}{\leq} L(\mathbf{z}^*) + \beta_k(p(\mathbf{z}^*) + A(\mathbf{z}^*)) \stackrel{(b)}{\leq} L(\mathbf{z}^*). \quad (29)$$

964 Here, (a) follows from the feasibility of \mathbf{z}^{k+1} and \mathbf{z}^* for the penalized problem (8) and the optimality of
 965 \mathbf{z}^{k+1} . Since \mathbf{z}^* is feasible to (6), we have $p(\mathbf{z}^*) \leq 0$ and $A(\mathbf{z}^*) = 0$, and thus (b) holds. Rearranging (29),
 966 we deduce that
 967

$$p(\mathbf{z}^{k+1}) + A(\mathbf{z}^{k+1}) \leq \frac{1}{\beta_k} (L(\mathbf{z}^*) - L(\mathbf{z}^{k+1})). \quad (30)$$

968 **Proof for $L(\mathbf{z}^*) \leq L(\bar{\mathbf{z}})$:**
 969

- 970 • Since the functions p is lower semi-continuous and A is continuous in \mathbf{z} , letting $k = k_j$ and taking
 971 $k_j \rightarrow \infty$, we obtain that
 972

$$p(\bar{\mathbf{z}}) + A(\bar{\mathbf{z}}) \leq \lim_{k_j \rightarrow \infty} p(\mathbf{z}^{k_j}) + A(\mathbf{z}^{k_j}).$$

- 973 • From $\beta_k \rightarrow \infty$ as $k \rightarrow \infty$, we have
 974

$$\frac{1}{\beta_k} (L(\mathbf{z}^*) - L(\mathbf{z}^{k+1})) \rightarrow 0, \text{ as } k \rightarrow \infty.$$

975 Combining these facts, (30) gives that
 976

$$p(\bar{\mathbf{z}}) + A(\bar{\mathbf{z}}) \stackrel{(c)}{\leq} \lim_{k_j \rightarrow \infty} p(\mathbf{z}^{k_j}) + A(\mathbf{z}^{k_j}) \leq \lim_{k_j \rightarrow \infty} \frac{1}{\beta_{k_j}} (L(\mathbf{z}^*) - L(\mathbf{z}^{k_j})) = 0,$$

987 where (c) is derived from Definition B.2. Therefore, we obtain that $p(\bar{\mathbf{z}}) + A(\bar{\mathbf{z}}) \leq 0$. Since the assumptions of Theorem 2.5 are consistent with those of Lemma 2.1, we obtain the following relation from the formulation of p and (27)

$$991 \quad p(\mathbf{z}) = l(\mathbf{x}) + \sum_{i=1}^{M+1} \lambda_i R_i(\mathbf{x}) - \min_{\mathbf{x}} \{l(\mathbf{x}) + \sum_{i=1}^{M+1} \lambda_i R_i(\mathbf{x})\},$$

994 which directly implies that $p(\mathbf{z}) \geq 0$ for all \mathbf{z} . Combined with $A(\mathbf{z}) \geq 0$ for all \mathbf{z} , we further deduce that

$$995 \quad p(\bar{\mathbf{z}}) = 0, \quad A(\bar{\mathbf{z}}) = 0. \quad (31)$$

997 Therefore, $\bar{\mathbf{z}}$ is feasible for (6). Since \mathbf{z}^* is optimal for (6), it holds that $L(\mathbf{x}^*) \leq L(\bar{\mathbf{x}})$.

998 **Proof for $L(\bar{\mathbf{x}}) \leq L(\mathbf{x}^*)$:**

1000 From the non-negativity of $p(\mathbf{z})$ and $A(\mathbf{z})$ for all \mathbf{z} , inequality (29) yields

$$1001 \quad L(\mathbf{x}^{k+1}) \leq L(\mathbf{x}^{k+1}) + \beta_k(p(\mathbf{z}^{k+1}) + A(\mathbf{z}^{k+1})) \leq L(\mathbf{x}^*),$$

1003 which implies that $L(\mathbf{z}^{k+1}) \leq L(\mathbf{x}^*)$. Since L is lower semicontinuous, letting $k = k_j$ and taking the limit as $j \rightarrow \infty$ in the inequality above, we obtain

$$1005 \quad L(\bar{\mathbf{z}}) \stackrel{(d)}{\leq} \lim_{k_j \rightarrow \infty} L(\mathbf{x}^{k_j}) \leq L(\mathbf{x}^*),$$

1008 where (d) is also derived from Definition B.2. Therefore, we have $L(\bar{\mathbf{x}}) \leq L(\mathbf{x}^*)$.

1009 In summary, we deduce that $L(\bar{\mathbf{x}}) = L(\mathbf{x}^*)$ and $\bar{\mathbf{z}}$ is an optimal solution of (6). This completes the proof. \square

1011 B.4 CONJUGATE FUNCTIONS FOR PROBLEMS LISTED IN TABLE 1

1013 we calculate the closed-form expression of the conjugate functions of φ in problems as follows:

1014 For **least squares loss**, $\varphi^*(v) = \frac{1}{2}v^2$.

1016 For **smoothed hinge loss**, $\varphi^*(v) = \frac{1}{2}v^2 + v$ if $-1 < v < 0$ and $\varphi^*(v) = \infty$ otherwise.

1018 For **Huber loss**, $\varphi^*(v) = \frac{1}{2}v^2$ if $|v| \leq \delta$ and $\varphi^*(v) = \delta|v| - \frac{1}{2}\delta^2$ if $|v| > \delta$.

1019 C EPIGRAPHICAL PROJECTIONS

1022 In this section, we discuss the projection onto the cones in Algorithms 1 and 2. According to different cases detailed in Section 3.1 and 3.2, we discuss the projections when involving different norm regularizers. We summarize the computation cost of these projections in Appendix C.3.

1026 C.1 PROJECTIONS INVOLVING VECTOR NORMS

1028 When R_i represents different norm terms, the explicit forms of \mathcal{K}_i and \mathcal{K}_i^d defined in (9) are expressed as follows.

- 1030 • $R_i(x) = \|\mathbf{x}\|_1$: $\mathcal{K}_i = \{(\mathbf{x}, r_i) \mid \|\mathbf{x}\|_1 \leq r_i\}$, $\mathcal{K}_i^d = \{(\boldsymbol{\rho}_i, \lambda_i) \mid \|\boldsymbol{\rho}_i\|_\infty \leq \lambda_i\}$.
- 1031 • $R_i(x) = \|\mathbf{x}\|_2$: $\mathcal{K}_i = \{(\mathbf{x}, r_i) \mid \|\mathbf{x}\|_2 \leq r_i\}$, $\mathcal{K}_i^d = \{(\boldsymbol{\rho}_i, \lambda_i) \mid \|\boldsymbol{\rho}_i\|_2 \leq \lambda_i\}$.
- 1032 • $R_i(x) = \|\mathbf{x}\|_\infty$: $\mathcal{K}_i = \{(\mathbf{x}, r_i) \mid \|\mathbf{x}\|_\infty \leq r_i\}$, $\mathcal{K}_i^d = \{(\boldsymbol{\rho}_i, \lambda_i) \mid \|\boldsymbol{\rho}_i\|_1 \leq \lambda_i\}$.

1034 • $R_i(\mathbf{x}) = \frac{1}{2}\|\mathbf{x}\|_2^2$: $\mathcal{K}_i = \{(\mathbf{x}, r_i) \mid \|\mathbf{x}\|_2^2 \leq 2r_i\}$, $\mathcal{K}_i^d = \{(\boldsymbol{\rho}_i, \lambda_i, s) \mid \|\boldsymbol{\rho}_i\|_2^2 \leq 2\lambda_i s\}$.

1035

1036 **(1) Projection onto the epigraph of ℓ_2 norm:**

1037 **Proposition C.1.** [101, Example 6.37] Let $L_2^n = \{(\mathbf{x}, t) \mid \|\mathbf{x}\|_2 \leq t\}$, for any $(\mathbf{x}, t) \in \mathbb{R}^{d_x} \times \mathbb{R}$, we have

$$\text{proj}_{L_2^n}((\mathbf{x}, t)) = \begin{cases} \left(\frac{\|\mathbf{x}\|_2+t}{2\|\mathbf{x}\|_2}\mathbf{x}, \frac{\|\mathbf{x}\|_2+t}{2}\right), & \|\mathbf{x}\|_2 \geq |t|, \\ (\mathbf{0}, 0), & t < \|\mathbf{x}\|_2 < -t, \\ (\mathbf{x}, t), & \|\mathbf{x}\|_2 \leq t. \end{cases}$$

1043 We next turn to the epigraphical projection for other norms. To this end, we recall a general result on
1044 projections onto epigraphs of convex functions.
1045

1046 **Theorem C.2.** [101, Theorem 6.36] Let $C = \text{epi}(g) = \{(\mathbf{x}, t) \mid g(\mathbf{x}) \leq t\}$ where g is convex. Then for any
1047 $(\mathbf{x}, t) \in \mathbb{R}^{d_x} \times \mathbb{R}$, it holds that

$$\text{proj}_C((\mathbf{x}, t)) = \begin{cases} (\mathbf{x}, t), & g(\mathbf{x}) \leq t, \\ (\text{prox}_{\lambda^* g}(\mathbf{x}), t + \gamma^*), & g(\mathbf{x}) > t, \end{cases}$$

1051 where γ^* is any positive root of the function

$$\psi(\gamma) = g(\text{prox}_{\gamma g}(\mathbf{x}) - \gamma - t).$$

1054 In addition, ψ is nonincreasing.

1055 **(2) Projection onto the epigraph of ℓ_1 norm:**

1057 **Proposition C.3.** [101, Example 6.38] Let $L_1^n = \{(\mathbf{x}, t) \mid \|\mathbf{x}\|_1 \leq t\}$, for any $(\mathbf{x}, t) \in \mathbb{R}^{d_x} \times \mathbb{R}$, we have

$$\text{proj}_{L_1^n}((\mathbf{x}, t)) = \begin{cases} (\mathbf{x}, t), & \|\mathbf{x}\|_1 \leq t, \\ (\mathcal{T}_{\gamma^*}(\mathbf{x}), t + \gamma^*), & \|\mathbf{x}\|_1 > t, \end{cases}$$

1061 where $\mathcal{T}_\gamma = \text{prox}_{\gamma \|\cdot\|_1}$ denotes the proximal of ℓ_1 -norm, defined as

$$\mathcal{T}_\gamma(y) = [|y| - \gamma]_+ \text{sgn}(y) = \begin{cases} y - \gamma, & y \geq \gamma \\ 0, & |y| < \gamma, \\ y + \gamma, & y \leq -\gamma. \end{cases}$$

1067 Here, λ^* is any positive root of the nonincreasing function $\psi(\gamma) = \|\mathcal{T}_\gamma(\mathbf{x})\|_1 - \gamma - s$. In practice, the ℓ_1
1068 norm epigraphical projection can be computed in linear time using the quick-select algorithm proposed by
1069 [102].

1070 **(3) Projection onto the epigraph of ℓ_∞ norm:**

1072 It can be computed directly via the Moreau decomposition. Let $L_\infty^n = \{(\mathbf{x}, t) \mid \|\mathbf{x}\|_\infty \leq t\}$, then the
1073 projection is given by

$$\text{proj}_{L_\infty^n}(\mathbf{x}, t) = (\mathbf{x}, t) - \text{proj}_{L_1^n}(\mathbf{x}, t).$$

1075 **(4) Projection onto the epigraph of squared ℓ_2 norm:**

1077 According to Theorem C.2, for any $(\mathbf{x}, t) \in \mathbb{R}^{d_x} \times \mathbb{R}$, we have

$$\text{proj}_{\mathcal{K}_{M+1}}(\mathbf{x}, t) = \begin{cases} (\mathbf{x}, t), & \|\mathbf{x}\|_2^2 \leq 2t, \\ \left(\frac{\mathbf{x}}{1+\gamma^*}, t + \gamma^*\right), & \|\mathbf{x}\|_2^2 > 2t, \end{cases}$$

1081 where γ^* is any positive root of the nonincreasing function $\psi(\gamma) = (\frac{1}{2}\gamma + t)(1 + 2\gamma^2) - \|x\|_2^2$. Similar
 1082 to ℓ_1 -norm epigraphic projection, it can also be effectively solved in linear time with quick-select algorithm
 1083 proposed by [102].

1084 **(5) Projection onto rotated second-order cones:**

1086 For the rotated second-order cone $\mathcal{K}_{M+1}^d = \{(\rho_i, \lambda_i, s) \mid \|\rho_i\|_2^2 \leq 2\lambda_i s\}$ where $\rho \in \mathbb{R}^{d_x}$, an equivalent
 1087 representation is given by $\{(\rho_i, \lambda_i, s) \mid \|(\rho_i, \lambda_i, s)\|_2 \leq \lambda_i + s\}$. We introduce auxiliary variables $\mathbf{w} =$
 1088 $(\rho_i, \lambda_i, s) \in \mathbb{R}^{d_x+2}$ and $t = \lambda_i + s \in \mathbb{R}$. In this way, the projection onto \mathcal{K}_{M+1}^d for given $(\bar{\rho}_i, \bar{\lambda}_i, \bar{s})$ is
 1089 equivalent to the following optimization problem with $(\bar{\mathbf{w}}, \bar{t})$:

$$\min_{\mathbf{w}, t} \frac{1}{2}\|\mathbf{w} - \bar{\mathbf{w}}\|^2 + \frac{1}{2}(t - \bar{t})^2 \text{ s.t. } \|\mathbf{w}\|_2 \leq t, \mathbf{w}^T \mathbf{c}_0 = t,$$

1093 where $\mathbf{c}_0 = (0, \dots, 0, 1, 1) \in \mathbb{R}^{d_x+2}$. The problem can be solved directly using the analytic solution provided
 1094 in [103, Proposition 6.4].

1095 **(6) Projections for block-wise regularization:**

1096 When the regularization involves a group component-wise regularizers, i.e., $R_i(\mathbf{x}) = \|\mathbf{x}^{(i)}\|_{(t)}$, we observe
 1097 that projection onto the set \mathcal{K}_i and \mathcal{K}_i^d corresponds to the ℓ_1 , ℓ_2 or ℓ_∞ -norm. The same projection applies
 1098 to the vector $\rho = (\rho^{(1)}, \dots, \rho^{(M)})$. Specifically, we project each group independently and then assemble the
 1099 full vector.

1101 **C.2 PROJECTIONS INVOLVING MATRIX NORMS**

1103 Now we study the projection onto the epigraphs of nuclear norm $\|\cdot\|_*$ and spectral norm $\|\cdot\|_{op}$. Since our
 1104 reformulation relies on conjugate functions and the conjugate of a norm is its dual norm, we need to take
 1105 both into consideration.

1106 For a matrix $X \in \mathbb{R}^{m \times n}$, the nuclear norm is defined as $\|X\|_* = \sum_{i=1}^{\min\{m,n\}} \sigma_i(X)$ and the spectral norm is
 1107 defined as $\|X\|_{op} = \max_i \sigma_i(X)$, where $\sigma_i(X)$ is singular values for X . In this case, the explicit of \mathcal{K}_i and
 1108 \mathcal{K}_i^d is given by

$$\bullet \quad R_i(X) = \|X\|_*: \mathcal{K}_i = \{(X, r_i) \mid \|X\|_* \leq r_i\}, \mathcal{K}_i^d = \{(\rho_i, \lambda_i) \mid \|\rho_i\|_{op} \leq \lambda_i\}.$$

1113 **(1) Projection onto the epigraph of nuclear norm:**

1115 Given a matrix $A \in \mathbb{R}^{m \times n}$ and a scalar t , the projection onto the epigraph of the nuclear norm $\{X \in$
 1116 $\mathbb{R}^{m \times n}, \tau \geq 0 \mid \|X\|_* \leq \tau\}$ involves solving the following optimization problem

$$\min_{X, \tau \geq 0} \frac{1}{2}\|X - A\|_F^2 + \frac{1}{2}\|t - \tau\|^2 \text{ s.t. } \|X\|_* \leq \tau,$$

1120 where $\|\cdot\|_F$ denotes Frobenius norm of a matrix.

1121

- If $\|A\|_* \leq t$, the point (A, t) already lies in the epigraph and the projection is simply $(X, \tau) =$
 1122 (A, t) .
- If $\|A\|_* > t$, we first compute the singular value decomposition of A as $A = U\Sigma V$, where $\Sigma =$
 1123 $\text{diag}\{\sigma_1, \sigma_2, \dots, \sigma_r\}$ is the single value matrix of A and $U \in \mathbb{R}^{m \times r}$, $V \in \mathbb{R}^{n \times r}$. According to
 1124 [1, Theorem 6.36], the projected matrix is obtained by soft-thresholding the singular values:
 1125 $\bar{\sigma}_i = \max(\sigma_i - \gamma^*, 0)$, $i = 1, 2, \dots, r$.

1128 where γ^* is determined by the equation $\sum_{i=1}^r \max(\sigma_i - \gamma, 0) = t + \gamma$. This equation is typically
 1129 solved efficiently via a bisection search. Subsequently, we obtain the solution $\tau^* = t + \gamma^*$ and
 1130 reconstruct the projected matrix as $X^* = U\bar{\Sigma}V^T$ where $\bar{\Sigma} = \text{diag}\{\bar{\sigma}_1, \bar{\sigma}_2, \dots, \bar{\sigma}_r\}$. The projected
 1131 pair (X^*, τ^*) is the closest point to (A, t) in the epigraph of the nuclear norm.
 1132

1133 **(2) Projection onto the epigraph of spectral norm:**

1135 Given a matrix $A \in \mathbb{R}^{m \times n}$ and a scalar t , now we consider projection onto the epigraph of the nuclear norm
 1136 $\{X \in \mathbb{R}^{m \times n}, \tau \geq 0 \mid \|X\|_{op} \leq \tau\}$
 1137

- 1138 • If $\|A\|_{op} \leq t$, the point (A, t) already lies in the epigraph and the projection is simply $(X, \tau) =$
 1139 (A, t) .
- 1140 • If $\|A\|_{op} > t$, we first compute the singular value decomposition of A as $A = U\Sigma V$, where
 1141 $\Sigma = \text{diag}\{\sigma_1, \sigma_2, \dots, \sigma_r\}$ is the singular value matrix of A and $U \in \mathbb{R}^{m \times r}$, $V \in \mathbb{R}^{n \times r}$.
 1142 Since the epigraph of the spectral norm is defined by the constraint $\|X\|_{op} = \max_i \sigma_i(X) \leq \tau$, we
 1143 need to adjust the singular values so that the largest does not exceed the new scalar τ^* as
 1144

$$1145 \tilde{\sigma}_i = \min\{\sigma_i, \tau^*\} \quad \text{for } i = 1, 2, \dots, r.$$

1146 To determine τ^* , we solve the one-dimensional optimization problem

$$1147 \min_{\tau \geq 0} \frac{1}{2} \sum_{i: \sigma_i > \tau} (\sigma_i - \tau)^2 + \frac{1}{2}(\tau - t)^2.$$

1148 In practice, the optimal τ^* can be efficiently computed using a bisection search. Subsequently, we
 1149 reconstruct the projected matrix as $X^* = U\tilde{\Sigma}V^T$ where $\tilde{\Sigma} = \text{diag}\{\tilde{\sigma}_1, \tilde{\sigma}_2, \dots, \tilde{\sigma}_r\}$.
 1150

1151 The projected pair (X^*, τ^*) is the closest point to (A, t) in the epigraph of the spectral norm.
 1152

1153 From the above discussions, it is evident that the projections can be computed efficiently.
 1154

1155 **C.3 COMPUTATION COST**

1156 In this subsection, we denote the dimension of vector input as $\mathbf{x} \in \mathbb{R}^{d_x} = \mathbb{R}^n$ and matrix input as $X \in$
 1157 $\mathbb{R}^{d_x} = \mathbb{R}^{m \times n}$.
 1158

1159 The projections onto the ℓ_2 norm cones and rotated second-order cones have closed-form solutions, whose
 1160 cost is $\tilde{\mathcal{O}}(n)$. For the other norms, which do not admit explicit epigraphic projection formulas, the projection
 1161 can be computed by finding the root of a nonincreasing scalar function $\psi(\gamma)$. These procedures leverage
 1162 efficient quick-select routines to ensure fast computation. In summary, we deduce that
 1163

- 1164 • For epigraphic projection for vector inputs, the overall runtime is $\tilde{\mathcal{O}}(n)$, where the tilde hides
 1165 logarithmic factors.
- 1166 • For epigraphic projection for matrix inputs, the dominant cost arises from computing the SVD,
 1167 which takes $\tilde{\mathcal{O}}(mn \min\{m, n\})$, followed by a root-finding step of complexity $\tilde{\mathcal{O}}(r)$ with $r =$
 1168 $\text{rank}(X)$. Moreover, for nuclear-norm or spectral-norm projections, only the nonzero singular
 1169 components are needed, so an economy-size SVD is not only sufficient but standard and computa-
 1170 tionally preferable [102].
- 1171 • For epigraphic projection of group norms, the total cost is $\mathcal{O}(n)$.
 1172

1175 Table 4: Computation cost of epigraphical projections for vector $\mathbf{x} \in \mathbb{R}^n$ or matrix $X \in \mathbb{R}^{m \times n}$ with
 1176 $r = \text{rank}(X)$.

Projection Type	Complexity
ℓ_2 norm	$\mathcal{O}(n)$
ℓ_1 norm	$\mathcal{O}(n)$ (quick-select)
ℓ_∞ norm	$\mathcal{O}(n)$ (quick-select)
Squared ℓ_2 norm	$\mathcal{O}(n)$
Nuclear norm	$\mathcal{O}(mnr)$
Spectral norm	$\mathcal{O}(mnr)$
Rotated SOC	$\mathcal{O}(n)$

1187 More detailed results are provided in the following table. Since each projection uses the same low-
 1188 dimensional routine, the overall computation remains efficient.

1190 Based on Table 4, we present a comparison of the per-iteration computational costs of our method and other
 1191 single-loop Hessian-free methods for BLO with nonsmooth LL problems. When the LL variable is $x \in \mathbb{R}^n$
 1192 with inputs $A \in \mathbb{R}^{d \times n}$ and $b \in \mathbb{R}^d$ or a matrix $x \in \mathbb{R}^{m \times n}$ with rank of r , the corresponding computational
 1193 costs are summarized in the table below.

1194 Table NEW1: per-iteration computation cost. Here, GD stands for gradient descent.

Methods	Vector Variable		Matrix variable	
	Cost(Nonsmooth Terms)	Cost(GD)	Cost(Nonsmooth Terms)	Cost(GD)
VF-iDCA[57]	off-the-shelf solvers		off-the-shelf solvers	
LDMMA[59]	off-the-shelf solvers		off-the-shelf solvers	
MEHA[63]	$\mathcal{O}(dn)$	$\mathcal{O}(d^2n)$	$\mathcal{O}(mn \min\{m, n\})$	$\mathcal{O}(mn \min\{m, n\})$
LV-HBA[64]	$\mathcal{O}(dn)$	$\mathcal{O}(d^2n)$	$\mathcal{O}(mn \min\{m, n\})$	$\mathcal{O}(mn \min\{m, n\})$
BiC-GAFFA[65]	$\mathcal{O}(dn)$	$\mathcal{O}(d^2n)$	$\mathcal{O}(mn \min\{m, n\})$	$\mathcal{O}(mn \min\{m, n\})$
LDPM(Ours)	$\mathcal{O}(n)$	$\mathcal{O}(dn)$	$\mathcal{O}(mnr)$	$\mathcal{O}(mn \min\{m, n\})$

1204
 1205 Because LDPM handles nonsmooth regularizers via explicit epigraphical projection, its gradient computa-
 1206 tion involves only one first-order update of the penalty objective. In contrast, Moreau-envelope-based and
 1207 gap-function-based methods compute the proximal operators of the nonsmooth terms penalty terms, which
 1208 requires Jacobian operations or full SVDs. Therefore, LDPM achieves the lowest computational cost among
 1209 existing single-loop Hessian-free methods for BLO with a nonsmooth LL problem.

1211 D PROOFS AND EXPLANATIONS FOR SECTION 3

1214 In this section, we provide additional explanations and the proofs for the convergence results of our proposed
 1215 algorithms in Section 3.

1217 D.1 INITIALIZATION OF ALGORITHMS 1 AND 2

1219 We initialize the starting point by following the algorithms for BLO proposed in [57; 59; 64]. For Algorithm
 1220 1, given the input λ^0, ξ^0 , we initialize \mathbf{x}^0 by solving the LL problem of (3). The remaining initial variables
 1221 are set as $r_i^0 = R_i(\mathbf{x})$, $\rho^0 = -\nabla l(\mathbf{x}^0)$ and $s^0 = \|\rho^0\|^2/2\lambda_1^0$. For Algorithm 2, given the input λ^0, ξ^0 , we

1222 also initialize \mathbf{x}^0 with solving the LL problem of (3). The other initial variables are set as $r_i^0 = R_i(\mathbf{x}^0)$,
 1223 $\boldsymbol{\rho}_i^0 = -\frac{1}{M+1}A_t\boldsymbol{\xi}^0$ and $s^0 = \|\boldsymbol{\rho}_{M+1}^0\|^2/2\lambda_{M+1}^0$.
 1224

1225 This initialization strategy ensures a feasible starting point for the corresponding reformulation of original
 1226 BLO, thereby facilitating convergence and enhancing the overall efficiency of the optimization process.
 1227

1228 D.2 EXPLANATIONS FOR MERIT FUNCTIONS

1230 To initiate the proof of the convergence results, we establish the rationale for selecting ϕ_{res}^k and ϕ_{fea} as the
 1231 merit measures. Note that ϕ_{res}^k and ϕ_{fea} in Section 3.1 and 3.2 are both defined based on the penalized
 1232 formulation (8) within a unified framework as follows:
 1233

$$1234 \quad \phi_{res}^k(\mathbf{z}) := \text{dist} \left(0, \nabla_{\mathbf{z}} F_k(\mathbf{z}) + \mathcal{N}_{\mathcal{K}}(\mathbf{z}) \right), \quad (32)$$

$$1237 \quad \phi_{fea}(\mathbf{z}) := \max \{ p(\mathbf{x}, \boldsymbol{\lambda}, \mathbf{r}, \boldsymbol{\xi}, s), \|A_t\boldsymbol{\xi} + \sum_{i=1}^{M+1} \boldsymbol{\rho}_i\| \}, \quad (33)$$

1240 where $\mathcal{K} = (\mathcal{K}_1 \cap \dots \cap \mathcal{K}_{M+1}) \times \mathcal{K}_1^d \times \dots \mathcal{K}_{M+1}^d$. For the case of single-round global regularization
 1241 discussed in Section 3.1, the set \mathcal{K} reduces to $\mathcal{K} = \mathcal{K}_1 \times \mathcal{K}_1^d$ and $(\boldsymbol{\rho}_1, \dots, \boldsymbol{\rho}_{M+1})$ is replaced by a single $\boldsymbol{\rho}$.
 1242

1243 From Lemma 2.1, we know that (5) is a direct reformulation of (3). For convenience, we simplify the left
 1244 hand of the first constraint as:
 1245

$$1246 \quad F(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\rho}, \boldsymbol{\xi}) = l(\mathbf{x}) + \sum_{i=1}^{M+1} \lambda_i R_i(\mathbf{x}) + \varphi^*(\boldsymbol{\xi}) + \sum_{i=1}^{M+1} \lambda_i R_i^* \left(\frac{\boldsymbol{\rho}_i}{\lambda_i} \right) + \boldsymbol{\xi}^T \mathbf{b}_t.$$

1249 Similar to (8), we construct the penalized formulation for (5) as follows,
 1250

$$1251 \quad \min_{\mathbf{z}} L(\mathbf{x}) + \beta_k F(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\rho}, \boldsymbol{\xi}) + \frac{\beta_k}{2} \|A_t\boldsymbol{\xi} + \sum_{i=1}^{M+1} \boldsymbol{\rho}_i\|^2, \quad (34)$$

1254 where β_k serves as the penalty parameter.
 1255

1256 **Proposition D.1.** *If $\phi_{fea}(\mathbf{z}) = 0$, then $(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\rho}, \boldsymbol{\xi})$ is a feasible point to (5). Moreover, if $\phi_{fea}(\mathbf{z}) = 0$ and
 1257 $\phi_{res}(\mathbf{z}) = 0$ both hold, then $(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\rho}, \boldsymbol{\xi})$ is a stationary point of (34).*

1260 **Proof. (a) When $\phi_{fea} = 0$ holds:**

1261 From the non-negativity of the function p and $\|\cdot\|^2$, if $\phi_{fea}(\mathbf{z}) = 0$, it holds that $p(\mathbf{x}, \boldsymbol{\lambda}, \mathbf{r}, \boldsymbol{\xi}, s) = 0$ and
 1262 $A_t\boldsymbol{\xi} + \sum_{i=1}^{M+1} \boldsymbol{\rho}_i = \mathbf{0}$
 1263

1264 According to the constraints of (8), we know that
 1265

$$1266 \quad R_i(\mathbf{x}) \leq r_i, \quad i = 1, \dots, M+1,$$

$$1267 \quad R_i^* \left(\frac{\boldsymbol{\rho}_i}{\lambda_i} \right) = 0, \quad i = 1, \dots, M.$$

1269 Additionally, we restore $\lambda_{M+1}R_{M+1}^*(\frac{\rho_{M+1}}{\lambda_{M+1}})$ with the inequality $\frac{\|\rho_{M+1}\|_2^2}{2\lambda_{M+1}} \leq s$. Consequently, we observe
 1270 that
 1271

$$\begin{aligned}
 1272 \quad F(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\rho}, \boldsymbol{\xi}) &= l(\mathbf{x}) + \sum_{i=1}^{M+1} \lambda_i R_i(\mathbf{x}) + \varphi^*(\boldsymbol{\xi}) + \sum_{i=1}^{M+1} \lambda_i R_i^*(\frac{\boldsymbol{\rho}_i}{\lambda_i}) + \boldsymbol{\xi}^T \mathbf{b}_t \\
 1273 &= l(\mathbf{x}) + \sum_{i=1}^{M+1} \lambda_i R_i(\mathbf{x}) + \varphi^*(\boldsymbol{\xi}) + \lambda_{M+1}R_{M+1}^*(\frac{\boldsymbol{\rho}_{M+1}}{\lambda_{M+1}}) + \boldsymbol{\xi}^T \mathbf{b}_t \\
 1274 &\leq l(\mathbf{x}) + \sum_{i=1}^{M+1} \lambda_i r_i + \varphi^*(\boldsymbol{\xi}) + \boldsymbol{\xi}^T \mathbf{b}_t + s \\
 1275 &= p(\mathbf{x}, \boldsymbol{\lambda}, \mathbf{r}, \boldsymbol{\xi}, s) = 0,
 \end{aligned}$$

1282 which implies that $(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\rho}, \boldsymbol{\xi})$ is feasible to (5).

1283 **(b) When $\phi_{res}^k(\mathbf{z}) = 0$ and $\phi_{fea}(\mathbf{z}) = 0$ both hold:**

1285 In this part, we use Moreau-Rockafellar theorem [104, Theorem 23.8] to calculate the sum rule of subdif-
 1286 ferentials. If f_1 and f_2 are convex and lower continuous at x and f_2 is differentiable at $x \in \text{int}(\text{dom}(f_1)) \cap$
 1287 $\text{int}(\text{dom}(f_2))$, then it holds that

$$1288 \quad \partial(f_1 + f_2)(x) \subset \partial f_1(x) + \partial f_2(x).$$

1290 We analyze $\phi_{res}^k(\mathbf{z}) = 0$ for each component of \mathbf{z} .

1292 • For \mathbf{x} and \mathbf{r} , we have

$$1293 \quad -(\nabla L(\mathbf{x}) + \beta_k \nabla l(\mathbf{x}), \beta_k \boldsymbol{\lambda}) \in \mathcal{N}_{\mathcal{K}_1 \cap \dots \cap \mathcal{K}_{M+1}}(\mathbf{x}, \mathbf{r}), \quad (35)$$

1295 where $\mathcal{K}_i = \{(\mathbf{x}, \mathbf{r}) \mid R_i(\mathbf{x}) \leq r_i\}$. Let ∂R_i denote the limiting subdifferential of the function R_i
 1296 [69]. According to the definition of the normal cone of inequality constraints [105; 106] and the
 1297 definition of \mathcal{K}_i in (9), we know that

$$\begin{aligned}
 1298 \quad \mathcal{N}_{\mathcal{K}_1 \cap \dots \cap \mathcal{K}_{M+1}}(\mathbf{x}, \mathbf{r}) &= \text{cone}\{(\partial R_i(\mathbf{x}), -1), i = 1, \dots, M+1\} \\
 1299 &= \{ \sum_{i=1}^{M+1} t_i (\partial R_i(\mathbf{x}), -1) \mid t_i \geq 0 \},
 \end{aligned}$$

1302 where cone denotes the conic hull of a set. Combining with (35), we obtain

$$1304 \quad 0 \in \nabla L(\mathbf{x}) + \beta_k \nabla l(\mathbf{x}) + \beta_k \sum_{i=1}^{M+1} \lambda_i \partial R_i(\mathbf{x}). \quad (36)$$

1307 • For $\boldsymbol{\xi}$, we have

$$1309 \quad \nabla \varphi^*(\boldsymbol{\xi}) + \mathbf{b}_t + A_t^T (A_t \boldsymbol{\xi} + \sum_{i=1}^{M+1} \boldsymbol{\rho}_i) = 0. \quad (37)$$

1312 • For $(\boldsymbol{\rho}_i, \lambda_i)$, $i = 1, \dots, M$, we have

$$1313 \quad -(A_t \boldsymbol{\xi} + \sum_{i=1}^{M+1} \boldsymbol{\rho}_i, r_i) \in \mathcal{N}_{\mathcal{K}_i^d}(\boldsymbol{\rho}_i, \lambda_i), i = 1, \dots, M,$$

1316 where $\mathcal{K}_i^d = \{(\boldsymbol{\rho}_i, \lambda_i) \mid \|\boldsymbol{\rho}_i\|_{*(i)} \leq \lambda_i\}$. From (28) and the definition of p , we know that
 1317 $F(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\rho}, \boldsymbol{\xi}) \geq 0$ for all $(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\rho}, \boldsymbol{\xi})$. If $\phi_{fea}(\mathbf{z}) = 0$, the following chain of inequalities holds:
 1318

$$1319 \quad 0 \leq F(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\rho}, \boldsymbol{\xi}) \leq p(\mathbf{x}, \boldsymbol{\lambda}, \mathbf{r}, \boldsymbol{\xi}, s) \leq 0,$$

1320 which naturally reduces to equalities. Consequently, we have $F(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\rho}, \boldsymbol{\xi}) = p(\mathbf{x}, \boldsymbol{\lambda}, \mathbf{r}, \boldsymbol{\xi}, s)$,
 1321 implying that $R_i(\mathbf{x}) = r_i, i = 1, \dots, M$. Therefore, we obtain that

$$1322 \quad -(A_t \boldsymbol{\xi} + \sum_{i=1}^{M+1} \boldsymbol{\rho}_i, R_i(\mathbf{x})) \in \mathcal{N}_{\mathcal{K}_i^d}(\boldsymbol{\rho}_i, \lambda_i), i = 1, \dots, M,$$

1326 Meanwhile, we note that for $i = 1, \dots, M$, R_i^* is the indicator function of the set $\{\|\mathbf{y}\|_{*(i)} \leq 1\}$. Combining with the fact that the normal cone is equivalent to the subdifferential of indicator
 1327 function, for the variables $\boldsymbol{\rho}_i$ and λ_i , the above formulation implies that
 1328

$$1329 \quad -(A_t \boldsymbol{\xi} + \sum_{i=1}^{M+1} \boldsymbol{\rho}_i) \in \partial_{\boldsymbol{\rho}_i} I_{\{\|\boldsymbol{\rho}\|_{*(i)} \leq \lambda_i\}} = \partial_{\boldsymbol{\rho}_i} I_{\{\|\boldsymbol{\rho}\|_{*(i)} / \lambda_i \leq 1\}} \stackrel{(*)}{=} \partial_{\boldsymbol{\rho}_i} \left[\lambda_i R_i^* \left(\frac{\boldsymbol{\rho}_i}{\lambda_i} \right) \right]. \quad (38)$$

$$1332 \quad -R_i(\mathbf{x}) \in \partial_{\lambda_i} I_{\{\|\boldsymbol{\rho}\|_{*(i)} \leq \lambda_i\}} \stackrel{(a)}{=} \partial_{\lambda_i} I_{\{\|\boldsymbol{\rho}\|_{*(i)} \leq \lambda_i\}} + I_{\{\|\boldsymbol{\rho}\|_{*(i)} \leq \lambda_i\}} \\ 1333 \quad = \partial_{\lambda_i} I_{\{\|\boldsymbol{\rho}\|_{*(i)} \leq \lambda_i\}} + R_i^* \left(\frac{\boldsymbol{\rho}_i}{\lambda_i} \right) \stackrel{(*)}{=} \partial_{\lambda_i} \left[\lambda_i R_i^* \left(\frac{\boldsymbol{\rho}_i}{\lambda_i} \right) \right], \quad (39)$$

1336 where (a) follows the fact $\|\boldsymbol{\rho}\|_{*(i)} \leq \lambda_i$ and (*) holds from the direct calculation of the subdifferential.
 1337

- 1338 • For $(\boldsymbol{\rho}_{M+1}, \lambda_{M+1}, s)$, we have

$$1340 \quad -(A_t \boldsymbol{\xi} + \sum_{i=1}^{M+1} \boldsymbol{\rho}_i, r_{M+1}, 1) \in \mathcal{N}_{\mathcal{K}_{M+1}^d}(\boldsymbol{\rho}_{M+1}, \lambda_{M+1}, s),$$

1342 where $\mathcal{K}_{M+1}^d = \{(\boldsymbol{\rho}_{M+1}, \lambda_{M+1}, s) \mid \|\boldsymbol{\rho}_{M+1}\|_2^2 \leq 2\lambda_{M+1}s\}$. Similar to the deduction for $(\boldsymbol{\rho}_i, \lambda_i)$
 1343 in (38) and (39), we can obtain

$$1345 \quad -(A_t \boldsymbol{\xi} + \sum_{i=1}^{M+1} \boldsymbol{\rho}_i) \in \partial_{\boldsymbol{\rho}_{M+1}} \left[\lambda_{M+1} R_{M+1}^* \left(\frac{\boldsymbol{\rho}_{M+1}}{\lambda_{M+1}} \right) \right], \\ 1346 \quad -R_{M+1}(\mathbf{x}) \in \partial_{\lambda_{M+1}} \left[\lambda_{M+1} R_{M+1}^* \left(\frac{\boldsymbol{\rho}_{M+1}}{\lambda_{M+1}} \right) \right]. \quad (40)$$

1349 In summary, we find that the equations (36), (37), (38), (39) and (40) coincide with the stationary
 1350 conditions of (34). Therefore, we conclude that $(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\xi}, \boldsymbol{\rho})$ is a stationary point of (34).
 1351 □

1353 From deduction (27) and (28), we conclude that $\phi_{fea}(\mathbf{z}) = 0$ implies

$$1355 \quad l(\mathbf{x}) + \sum_{i=1}^{M+1} \lambda_i R_i(\mathbf{x}) = \min_{\mathbf{x}} \{l(\mathbf{x}) + \sum_{i=1}^{M+1} \lambda_i R_i(\mathbf{x})\}.$$

1358 Following the reasoning in Theorem 2.5, we conclude that as $\beta_k \rightarrow \infty$, any limit point of the sequence of
 1359 optimal solutions to (34) with β_k is an optimal solution of (5). According to (36), we further obtain that
 1360

$$1361 \quad \text{dist}(0, \nabla l(\mathbf{x}) + \sum_{i=1}^{M+1} \lambda_i \partial R_i(\mathbf{x})) \leq \frac{1}{\beta_k} \|\nabla L(\mathbf{x})\| \rightarrow 0,$$

1363 as $\beta_k \rightarrow \infty$. These results demonstrate that ϕ_{res}^k and ϕ_{fea} can effectively character the optimality condition
 1364 of the LL problem in (3). In summary, the selection of ϕ_{res}^k and ϕ_{fea} is reasonable.
 1365

1366 We provide the proofs for non-asymptotic convergence of Algorithm 1 and 2 in the subsequent sections.
 1367

1368 **D.3 PROOF OF THEOREM 3.5**

1369 We first recall the update for the variables of \mathbf{z} in Algorithm 1 as follows. We calculate the update directions
 1370 of \mathbf{z} as $\mathbf{d}_\mathbf{z}^k = (\mathbf{d}_\mathbf{x}^k, \mathbf{d}_\lambda^k, \mathbf{d}_\rho^k, \mathbf{d}_\mathbf{r}^k, \mathbf{d}_\xi^k, \mathbf{d}_s^k)$, where
 1371

$$\begin{aligned} \mathbf{d}_\mathbf{x}^k &= \frac{1}{\beta_k} \nabla L(\mathbf{x}^k) + \nabla l(\mathbf{x}^k), \\ \mathbf{d}_\xi^k &= \nabla \varphi^*(\xi^k) + \mathbf{b}_t + A_t^T (A_t \xi^k + \rho^k), \\ \mathbf{d}_\lambda^k &= \mathbf{r}^k, \quad \mathbf{d}_\rho^k = \lambda^k, \quad d_s^k = 1, \\ \mathbf{d}_\rho^k &= A_t \xi^{k+1} + \rho^k. \end{aligned} \quad (41)$$

1372 With these directions, the gradient descent step is performed as
 1373

$$\bar{\mathbf{z}}^{k+1} = \mathbf{z}^k - e_k \mathbf{d}_\mathbf{z}^k.$$

1374 For $\bar{\mathbf{z}}^{k+1} = (\bar{\mathbf{x}}^{k+1}, \bar{\lambda}^{k+1}, \bar{\rho}^{k+1}, \bar{\mathbf{r}}^{k+1}, \bar{\xi}^{k+1}, \bar{s}^{k+1})$, we subsequently apply the projection
 1375

$$\mathbf{z}^{k+1} = \text{proj}_{\mathcal{K}}(\bar{\mathbf{z}}^{k+1}). \quad (42)$$

1376 Note that the variable ξ is not involved in the projection step and thus it is evolved directly as $\xi^{k+1} = \bar{\xi}^{k+1}$.
 1377

1378 Next, we discuss the sufficient decrease property for Algorithm 1.
 1379

1380 **Lemma D.2.** Suppose Assumptions 3.1, 3.2 hold. For $k \in \mathbb{N}$, let $\{\mathbf{z}^k\}$ be generated from Algorithm 1.
 1381 Under Assumptions 3.1, we let $\underline{L} := \inf_{\mathbf{x}} L(\mathbf{x}) > -\infty$. Define $V_k = \frac{1}{\beta_k} (F_k(\mathbf{z}^k) - \underline{L})$, then the following
 1382 inequality holds:
 1383

$$\begin{aligned} V_{k+1} - V_k &\leq \left(\frac{\alpha_L + \beta_k \|A_t\|_2^2 \alpha_p}{2\beta_k} - \frac{1}{e_k} \right) \|\mathbf{x}^{k+1} - \mathbf{x}^k\|^2 + \left(\frac{1}{2} - \frac{1}{e_k} \right) \|\rho^{k+1} - \rho^k\|^2 \\ &\quad - \frac{1}{e_k} \|s^{k+1} - s^k\|^2 + \left(\frac{1}{2} - \frac{1}{e_k} \right) (\|\lambda^{k+1} - \lambda^k\|^2 + \|\mathbf{r}^{k+1} - \mathbf{r}^k\|^2) \\ &\quad + \left(\frac{\alpha_d + \|A_t\|_2^2}{2} - \frac{1}{e_k} \right) \|\xi^{k+1} - \xi^k\|^2. \end{aligned} \quad (43)$$

1384 Given Assumption 3.2 that φ is α_p -smooth, we know that l is $\|A_t\|_2^2 \alpha_p$ -smooth. By applying the
 1385 sufficient decrease lemma [101, Lemma 5.7], we obtain that
 1386

$$\begin{aligned} \frac{1}{\beta_k} L(\mathbf{x}^{k+1}) + l(\mathbf{x}^{k+1}) &\leq \frac{1}{\beta_k} L(\mathbf{x}^k) + l(\mathbf{x}^k) + \left\langle \frac{1}{\beta_k} \nabla L(\mathbf{x}^k) + \nabla l(\mathbf{x}^k), \mathbf{x}^{k+1} - \mathbf{x}^k \right\rangle \\ &\quad + \frac{1}{2} \left(\frac{1}{\beta_k} \alpha_L + \|A_t\|_2^2 \alpha_p \right) \|\mathbf{x}^{k+1} - \mathbf{x}^k\|^2. \end{aligned}$$

1387 Based on the convexity of the cones and the second projection theorem [101, Theorem 6.41], we have
 1388

$$\langle (\bar{\mathbf{x}}^{k+1}, \bar{\mathbf{r}}^{k+1}) - (\mathbf{x}^{k+1}, \mathbf{r}^{k+1}), (\mathbf{x}^k, \mathbf{r}^k) - (\mathbf{x}^{k+1}, \mathbf{r}^{k+1}) \rangle \leq 0.$$

1389 We combine the above inequalities and the same derivation for \mathbf{r} , it holds that
 1390

$$\begin{aligned} &\frac{1}{\beta_k} L(\mathbf{x}^{k+1}) + l(\mathbf{x}^{k+1}) + \langle \lambda^{k+1}, \mathbf{r}^{k+1} - \mathbf{r}^k \rangle \\ &\leq \frac{1}{\beta_k} L(\mathbf{x}^k) + l(\mathbf{x}^k) + \left(\frac{\alpha_L + \beta_k \|A_t\|_2^2 \alpha_p}{2\beta_k} - \frac{1}{e_k} \right) \|\mathbf{x}^{k+1} - \mathbf{x}^k\|^2 + \left(\frac{1}{2} - \frac{1}{e_k} \right) \|\mathbf{r}^{k+1} - \mathbf{r}^k\|^2. \end{aligned}$$

1410 Subtracting $\frac{1}{\beta_k} \underline{L}$ from both sides of the inequality, we obtain
 1411

$$1412 \quad \frac{1}{\beta_k} (L(\mathbf{x}^{k+1}) - \underline{L}) + l(\mathbf{x}^{k+1}) + \langle \boldsymbol{\lambda}^{k+1}, \mathbf{r}^{k+1} - \mathbf{r}^k \rangle \\ 1413 \quad \leq \frac{1}{\beta_k} (L(\mathbf{x}^k) - \underline{L}) + l(\mathbf{x}^k) + \left(\frac{\alpha_L + \beta_k \|A_t\|_2^2 \alpha_p}{2\beta_k} - \frac{1}{e_k} \right) \|\mathbf{x}^{k+1} - \mathbf{x}^k\|^2 + \left(\frac{1}{2} - \frac{1}{e_k} \right) \|\mathbf{r}^{k+1} - \mathbf{r}^k\|^2.$$

1415 Given $\beta_k = \beta(1+k)^p$, we have $\frac{1}{\beta_{k+1}} \leq \frac{1}{\beta_k}$. From Assumption 3.1, let $L(\mathbf{x}^K) - \underline{L} \geq 0$ holds for all k , so
 1416 we have $\frac{1}{\beta_{k+1}} (L(\mathbf{x}^{k+1}) - \underline{L}) \leq \frac{1}{\beta_k} (L(\mathbf{x}^{k+1}) - \underline{L})$. Then we can derive that
 1417

$$1418 \quad \frac{1}{\beta_{k+1}} (L(\mathbf{x}^{k+1}) - \underline{L}) + l(\mathbf{x}^{k+1}) + \langle \boldsymbol{\lambda}^{k+1}, \mathbf{r}^{k+1} - \mathbf{r}^k \rangle \\ 1419 \quad \leq \frac{1}{\beta_k} (L(\mathbf{x}^k) - \underline{L}) + l(\mathbf{x}^k) + \left(\frac{\alpha_L + \beta_k \|A_t\|_2^2 \alpha_p}{2\beta_k} - \frac{1}{e_k} \right) \|\mathbf{x}^{k+1} - \mathbf{x}^k\|^2 + \left(\frac{1}{2} - \frac{1}{e_k} \right) \|\mathbf{r}^{k+1} - \mathbf{r}^k\|^2. \\ 1420 \quad (44)$$

1422 The same derivation process applies to $\boldsymbol{\rho}, \boldsymbol{\lambda}_i, r_i$, leading to the following results:
 1423

$$1424 \quad \|\boldsymbol{A}_t \boldsymbol{\xi}^{k+1} + \boldsymbol{\rho}^{k+1}\|^2 + \langle \boldsymbol{\lambda}^{k+1} - \boldsymbol{\lambda}^k, \mathbf{r}^k \rangle \\ 1425 \quad \leq \|\boldsymbol{A}_t \boldsymbol{\xi}^{k+1} + \boldsymbol{\rho}^k\|^2 + \left(\frac{1}{2} - \frac{1}{e_k} \right) \|\boldsymbol{\rho}^{k+1} - \boldsymbol{\rho}^k\|^2 + \left(\frac{1}{2} - \frac{1}{e_k} \right) \|\boldsymbol{\lambda}^{k+1} - \boldsymbol{\lambda}^k\|^2. \\ 1426 \quad (45)$$

1427 For the variable s , we deduce that $\bar{s}^{k+1} = s^k - e_k$ and $\langle \bar{s}^{k+1} - s^{k+1}, s^k - s^{k+1} \rangle \leq 0$, which implies that
 1428

$$1429 \quad s^{k+1} - s^k \leq -\frac{1}{e_k} \|s^{k+1} - s^k\|^2. \\ 1430 \quad (46)$$

1431 Next, we define $H_k(\boldsymbol{\xi}) = \varphi^*(\boldsymbol{\xi}) + \boldsymbol{\xi}^T \mathbf{b}_t + \frac{1}{2} \|\boldsymbol{A}_t \boldsymbol{\xi} + \boldsymbol{\rho}^k\|^2$, noting that H_k is $(\alpha_d + \|A_t\|_2^2)$ -smooth. Then
 1432 the update of $\boldsymbol{\xi}$ in Algorithm 1 can be expressed as
 1433

$$\boldsymbol{\xi}^{k+1} = \bar{\boldsymbol{\xi}}^{k+1} = \boldsymbol{\xi}^k - e_k \nabla H_k(\boldsymbol{\xi}^k).$$

1435 Applying the sufficient decrease lemma [101, Lemma 5.7], we obtain
 1436

$$1437 \quad H_k(\boldsymbol{\xi}^{k+1}) \leq H_k(\boldsymbol{\xi}^k) + \langle \nabla H_k(\boldsymbol{\xi}^k), \boldsymbol{\xi}^{k+1} - \boldsymbol{\xi}^k \rangle + \frac{\alpha_d + \|A_t\|_2^2}{2} \|\boldsymbol{\xi}^{k+1} - \boldsymbol{\xi}^k\|^2,$$

1439 which simplifies to
 1440

$$1441 \quad H_k(\boldsymbol{\xi}^{k+1}) \leq H_k(\boldsymbol{\xi}^k) + \left(\frac{\alpha_d + \|A_t\|_2^2}{2} - \frac{1}{e_k} \right) \|\boldsymbol{\xi}^{k+1} - \boldsymbol{\xi}^k\|^2. \\ 1442 \quad (47)$$

1443 Summing up the estimates (44)–(47), we arrive at the inequality (43). □
 1444

1445 Now we provide the proof for Theorem 3.5.
 1446

1447 *Proof.* We compress (43) from $k = 0$ to $K - 1$ and obtain that
 1448

$$1449 \quad \sum_{k=1}^{K-1} \left[\left(\frac{1}{e_k} - \frac{\alpha_L + \beta_k \|A_t\|_2^2 \alpha_p}{2\beta_k} \right) \|\mathbf{x}^{k+1} - \mathbf{x}^k\|^2 + \left(\frac{1}{e_k} - \frac{\alpha_d + \|A_t\|_2^2}{2} \right) \|\boldsymbol{\xi}^{k+1} - \boldsymbol{\xi}^k\|^2 \right. \\ 1450 \quad \left. + \left(\frac{1}{e_k} - \frac{1}{2} \right) (\|\boldsymbol{\rho}^{k+1} - \boldsymbol{\rho}^k\|^2 + \|\boldsymbol{\lambda}^{k+1} - \boldsymbol{\lambda}^k\|^2 + \|\mathbf{r}^{k+1} - \mathbf{r}^k\|^2) \right] \leq V_0 - V_K. \\ 1451 \quad (48)$$

1453 From the definition of V_k , we deduce that
 1454

$$1455 \quad V_k = \frac{1}{\beta_k} (F_k(\mathbf{z}^k) - \underline{L}) = \frac{1}{\beta_k} (L(\mathbf{x}^k) - \underline{L}) + p(\mathbf{x}^k, \boldsymbol{\lambda}^k, \mathbf{r}^k, \boldsymbol{\xi}^k, s^k) + \|\boldsymbol{A}_t \boldsymbol{\xi}^k + \sum_{i=1}^{M+1} \boldsymbol{\rho}_i^k\|^2.$$

1457 From the non-negativity of $L(\mathbf{x}^k) - \underline{L}$ and p^4 , we know that $V_K \geq 0$ and $V_0 - V_K \leq V_0$. Subsequently,
 1458 according to the update rule of variables $(\mathbf{x}, \boldsymbol{\xi})$ in Algorithm 1, we have that
 1459

$$1460 \quad 0 \in e_k \left(\frac{1}{\beta_k} \nabla L(\mathbf{x}^k) + \nabla l(\mathbf{x}^k) \right) + (\mathbf{x}^{k+1} - \mathbf{x}^k) + \mathcal{N}_K(\mathbf{x}^{k+1}), \\ 1461 \quad e_k (A_t^T (A_t \boldsymbol{\xi}^k + \boldsymbol{\rho}^k) + \mathbf{b}_t + \nabla \varphi^*(\boldsymbol{\xi}^k)) + (\boldsymbol{\xi}^{k+1} - \boldsymbol{\xi}^k) = 0.$$

1462 Therefore, it holds that
 1463

$$1464 \quad \nabla L(\mathbf{x}^k) + \beta_k \nabla l(\mathbf{x}^k) + \frac{\beta_k}{e_k} (\mathbf{x}^{k+1} - \mathbf{x}^k) \in \mathcal{N}_K(\mathbf{x}^{k+1}), \\ 1465 \quad \nabla_{\boldsymbol{\xi}} F_k(\mathbf{z}^k) + \frac{\beta_k}{e_k} (\boldsymbol{\xi}^{k+1} - \boldsymbol{\xi}^k) = 0. \quad (49)$$

1466 Furthermore, we have similar conclusions for $\boldsymbol{\lambda}, \mathbf{r}, \boldsymbol{\rho}, s$ as follows,
 1467

$$1468 \quad 0 \in (\nabla_{\boldsymbol{\lambda}}, \nabla_{\mathbf{r}}, \nabla_{\boldsymbol{\rho}}, \nabla_s) F_k(\mathbf{z}^k) + \frac{\beta_k}{e_k} (\boldsymbol{\lambda}^{k+1} - \boldsymbol{\lambda}^k, \mathbf{r}^{k+1} - \mathbf{r}^k, \boldsymbol{\rho}^{k+1} - \boldsymbol{\rho}^k, s^{k+1} - s^k) \\ 1469 \quad + \mathcal{N}_K(\boldsymbol{\lambda}^{k+1}, \mathbf{r}^{k+1}, \boldsymbol{\rho}^{k+1}, s^{k+1}). \quad (50)$$

1470 Now we define
 1471

$$1472 \quad M_{\mathbf{z}}^k := \nabla_{\mathbf{z}} F_k(\mathbf{z}^{k+1}) - \beta_k \mathbf{d}_{\mathbf{z}}^k - \frac{1}{e_k} (\mathbf{z}^{k+1} - \mathbf{z}^k) \stackrel{(*)}{=} \nabla_{\mathbf{z}} F_k(\mathbf{z}^{k+1}) - \nabla_{\mathbf{z}} F_k(\mathbf{z}^k) - \frac{\beta_k}{e_k} (\mathbf{z}^{k+1} - \mathbf{z}^k),$$

1474 where $(*)$ holds from $\mathbf{d}_{\mathbf{z}}^k = \frac{1}{\beta_k} \nabla_{\mathbf{z}} F_k(\mathbf{z}^k)$. Using the directions specified in (41) and the relationship given
 1475 in (49) and (50), we obtain

$$1476 \quad M_{\mathbf{z}}^k \in \nabla F_k(\mathbf{z}^{k+1}) + \mathcal{N}_K(\mathbf{z}^{k+1}), \quad (51)$$

1477 Based on the definition of the residual function ϕ_{res}^k in (15) and the relationship (51), we know that
 1478

$$1479 \quad \|M_{\mathbf{z}}^k\| \geq \text{dist} \left(0, \nabla_{\mathbf{z}} F_k(\mathbf{z}^{k+1}) + \mathcal{N}_K(\mathbf{z}^{k+1}) \right) = \phi_{res}^k(\mathbf{z}^{k+1}) \quad (52)$$

1480 Subsequently, we estimate the value $\|M_{\mathbf{z}}^k\|$ with respect to \mathbf{z} . By using Assumptions 3.1 and 3.2, we find
 1481 that $\|\nabla_{\mathbf{z}} F_k(\mathbf{z}^{k+1}) - \nabla_{\mathbf{z}} F_k(\mathbf{z}^k)\| \leq \beta_k L_k \|\mathbf{z}^{k+1} - \mathbf{z}^k\|$ where $L_k = \max\{\frac{1}{\beta_k} \alpha_L + \|A_t\|_2^2 \alpha_p, \alpha_d + \|A_t\|_2^2, 1\}$.
 1482 Then we have

$$1483 \quad \|M_{\mathbf{z}}^k\| \leq \beta_k L_k \|\mathbf{z}^{k+1} - \mathbf{z}^k\| + \frac{\beta_k}{e_k} \|\mathbf{z}^{k+1} - \mathbf{z}^k\|. \quad (53)$$

1485 By combining (52) and the inequality (53), we deduce that
 1486

$$1487 \quad \phi_{res}^k(\mathbf{z}^{k+1}) \leq \beta_k L_k \|\mathbf{z}^{k+1} - \mathbf{z}^k\| + \frac{\beta_k}{e_k} \|\mathbf{z}^{k+1} - \mathbf{z}^k\|,$$

1489 which further implies that
 1490

$$1491 \quad \frac{1}{\beta_k^2} \phi_{res}^k(\mathbf{z}^{k+1})^2 \leq (L_k + \frac{1}{e_k})^2 \|\mathbf{z}^{k+1} - \mathbf{z}^k\|^2. \quad (54)$$

1493 From $\beta_k = \underline{\beta}(1+k)^p$, we observe $\frac{1}{\beta_k} \leq \frac{1}{\underline{\beta}}$ and
 1494

$$1495 \quad L_k \leq \max\{\frac{1}{\underline{\beta}} \alpha_L + \|A_t\|_2^2 \alpha_p, \alpha_d + \|A_t\|_2^2, 1\} := L_c.$$

1497 Here, we define the constant in the right hand of the above inequality as L_c and each entry of L_c is positive.
 1498 Therefore, we observe from the admissible range of e_k that

$$1499 \quad \frac{1}{L_c} = \min\left\{ \frac{\beta}{\alpha_l + \underline{\beta} \|A_t\|_2^2 \alpha_p}, 1, \frac{1}{\alpha_d + \|A_t\|_2^2} \right\} \geq e_k \geq \underline{e} > 0,$$

1502 ⁴The non-negativity $p(\mathbf{z}) \geq 0$ for all \mathbf{z} is from the formulation of p and (27), which is mentioned in the proof of
 1503 Theorem 2.5 in Appendix B.3

1504 which implies that $L_k \leq L_c \leq \frac{1}{e_k}$. Therefore, (54) can be written as
 1505

$$1506 \frac{1}{\beta_k^2} \phi_{res}^k(\mathbf{z}^{k+1})^2 \leq (L_k + \frac{1}{e_k})(L_k + \frac{1}{e_k}) \|\mathbf{z}^{k+1} - \mathbf{z}^k\| \leq (L_k + \frac{1}{e_k}) \frac{1}{2e_k} \|\mathbf{z}^{k+1} - \mathbf{z}^k\|^2.$$

1507
 1508

1509 Meanwhile, the condition $e \leq e_k$ simply means that $\frac{1}{e_k} \leq \frac{1}{e}$. In summary, the above inequality can be
 1510 calculated as
 1511

$$1512 \frac{1}{\beta_k^2} \phi_{res}^k(\mathbf{z}^{k+1})^2 \leq (L_c + \frac{1}{e}) \frac{1}{2e} \|\mathbf{z}^{k+1} - \mathbf{z}^k\|^2. \quad (55)$$

1513

1514 From (48), we deduce that

$$1515 \sum_{k=0}^{\infty} \frac{1}{2e_k} \|\mathbf{z}^{k+1} - \mathbf{z}^k\|^2 \\ 1516 \stackrel{(a)}{\leq} \sum_{k=0}^{\infty} \left[\left(\frac{1}{e_k} - \frac{\alpha_L + \beta_k \|A_t\|_2^2 \alpha_p}{2\beta_k} \right) \|\mathbf{x}^{k+1} - \mathbf{x}^k\|^2 + \left(\frac{1}{e_k} - \frac{\alpha_d + \|A_t\|_2^2}{2} \right) \|\boldsymbol{\xi}^{k+1} - \boldsymbol{\xi}^k\|^2 \right. \\ 1517 \left. + \left(\frac{1}{e_k} - \frac{1}{2} \right) (\|\boldsymbol{\rho}^{k+1} - \boldsymbol{\rho}^k\|^2 + \|\boldsymbol{\lambda}^{k+1} - \boldsymbol{\lambda}^k\|^2 + \|\mathbf{r}^{k+1} - \mathbf{r}^k\|^2) \right] \\ 1518 \leq V_0. \quad (56)$$

1519
 1520
 1521

1522 Here, (a) is directly calculated from the admissible range for e_k . By compressing (55) from $k = 0$ to ∞ and
 1523 combining with the inequality (56), we obtain that
 1524

$$1525 \sum_{k=0}^{\infty} \frac{1}{\beta_k^2} \phi_{res}^k(\mathbf{z}^{k+1})^2 \leq (L_c + \frac{1}{e}) V_0.$$

1526
 1527

1528 Given $\beta_k = \underline{\beta}(1+k)^p$ and $0 < p < \frac{1}{2}$, we conclude that
 1529

$$1530 \min_{0 \leq k \leq K} \phi_{res}^k(\mathbf{z}^{k+1}) = \mathcal{O}(\frac{1}{K^{1/2-p}}).$$

1531
 1532

1533 From the definition of ϕ_{fea} in (15), we know that

$$1534 0 \leq \beta_k \phi_{fea}(\mathbf{z}^k) \leq 2(F_k(\mathbf{z}^k) - L(\mathbf{z}^k)).$$

1535

1536 If the sequence $\{F_k(\mathbf{z}^k)\}$ is bounded, we know that there exists M_F such that $F_k(\mathbf{z}^k) \leq M_F$ for each k .
 1537 Then we have
 1538

$$0 \leq \beta_k \phi_{fea}(\mathbf{z}^k) \leq 2M_F - L,$$

1539 which implies that $\phi_{fea}(\mathbf{z}^k) = \mathcal{O}(\frac{1}{K^p})$.
 1540 \square

1541 D.4 PROOF OF THEOREM 3.7

1542 We first recall the updates of $(\mathbf{z}, \mathbf{u}, \boldsymbol{\mu})$ in Algorithm 2. The detailed procedure is:
 1543

- 1544 • Update \mathbf{z} with (20): $(\mathbf{z}^k, \mathbf{u}^k, \boldsymbol{\mu}^k) \rightarrow (\mathbf{z}^{k+1}, \mathbf{u}^k, \boldsymbol{\mu}^k)$.
- 1545 • Update \mathbf{u} with (23): $(\mathbf{z}^{k+1}, \mathbf{u}^k, \boldsymbol{\mu}^k) \rightarrow (\mathbf{z}^{k+1}, \mathbf{u}^{k+1}, \boldsymbol{\mu}^k)$.
- 1546 • Update $\boldsymbol{\mu}$ with (22): $(\mathbf{z}^{k+1}, \mathbf{u}^{k+1}, \boldsymbol{\mu}^k) \rightarrow (\mathbf{z}^{k+1}, \mathbf{u}^{k+1}, \boldsymbol{\mu}^{k+1})$.

1547
 1548
 1549

1550 Now we provide the proof for Theorem 3.7 as follows.

1551 *Proof.* From the update rule for \mathbf{u} in (22), we have

$$1553 \quad \mathcal{L}_\gamma^k(\mathbf{z}^{k+1}, \mathbf{u}^{k+1}, \boldsymbol{\mu}^k) \leq \mathcal{L}_\gamma^k(\mathbf{z}^{k+1}, \mathbf{u}^k, \boldsymbol{\mu}^k). \quad (57)$$

1554 Additionally, the update rule for $\boldsymbol{\mu}$ in (23) implies

$$1556 \quad \mathcal{L}_\gamma^k(\mathbf{z}^{k+1}, \mathbf{u}^{k+1}, \boldsymbol{\mu}^{k+1}) - \mathcal{L}_\gamma^k(\mathbf{z}^{k+1}, \mathbf{u}^{k+1}, \boldsymbol{\mu}^k) = -\frac{1}{\gamma} \|\boldsymbol{\mu}^{k+1} - \boldsymbol{\mu}^k\|^2. \quad (58)$$

1558 According to Assumptions 3.1 and 3.2, we know that $\mathcal{L}_\gamma^k(\mathbf{z}, \mathbf{u}, \boldsymbol{\mu})$ is M_k -smooth with respect to \mathbf{z} , where
1559 $M_k = \max\{\frac{1}{\beta_k} \alpha_L + \|A_t\|_2^2 \alpha_p, \alpha_d + \|A_t\|_2^2, 1\} + (M+1)\gamma$. According to [101, Lemma 5.7], we have
1560

$$1561 \quad \mathcal{L}_\gamma^k(\mathbf{z}^{k+1}, \mathbf{u}^k, \boldsymbol{\mu}^k) \leq \mathcal{L}_\gamma^k(\mathbf{z}^k, \mathbf{u}^k, \boldsymbol{\mu}^k) + \langle \nabla_{\mathbf{z}} \mathcal{L}_\gamma^k(\mathbf{z}^k, \mathbf{u}^k, \boldsymbol{\mu}^k), \mathbf{z}^{k+1} - \mathbf{z}^k \rangle + \frac{M_k}{2} \|\mathbf{z}^{k+1} - \mathbf{z}^k\|^2.$$

1564 Given the update rule $\mathbf{z}^{k+1} = \mathbf{z}^k - e_k \nabla_{\mathbf{z}} \mathcal{L}_\gamma^k(\mathbf{z}^k, \mathbf{u}^k, \boldsymbol{\mu}^k)$, the inequality becomes

$$1565 \quad \mathcal{L}_\gamma^k(\mathbf{z}^{k+1}, \mathbf{u}^k, \boldsymbol{\mu}^k) \leq \mathcal{L}_\gamma^k(\mathbf{z}^k, \mathbf{u}^k, \boldsymbol{\mu}^k) + \left(\frac{M_k}{2} - \frac{1}{e_k} \right) \|\mathbf{z}^{k+1} - \mathbf{z}^k\|^2. \quad (59)$$

1568 Combining (57), (58) and (59) and dividing both sides by β_k , we conclude

$$1569 \quad \mathcal{L}_\gamma^k(\mathbf{z}^{k+1}, \mathbf{u}^{k+1}, \boldsymbol{\mu}^{k+1}) \leq \mathcal{L}_\gamma^k(\mathbf{z}^k, \mathbf{u}^k, \boldsymbol{\mu}^k) + \left(\frac{M_k}{2} - \frac{1}{e_k} \right) \|\mathbf{z}^{k+1} - \mathbf{z}^k\|^2 - \frac{1}{\gamma} \|\boldsymbol{\mu}^{k+1} - \boldsymbol{\mu}^k\|^2. \quad (60)$$

1572 Subtracting $\frac{1}{\beta_k} \underline{L}$ from both sides of the inequality, we obtain

$$1574 \quad \mathcal{L}_\gamma^k(\mathbf{z}^{k+1}, \mathbf{u}^{k+1}, \boldsymbol{\mu}^{k+1}) - \frac{1}{\beta_k} \underline{L} \leq \mathcal{L}_\gamma^k(\mathbf{z}^k, \mathbf{u}^k, \boldsymbol{\mu}^k) - \frac{1}{\beta_k} \underline{L} + \left(\frac{M_k}{2} - \frac{1}{e_k} \right) \|\mathbf{z}^{k+1} - \mathbf{z}^k\|^2 - \frac{1}{\gamma} \|\boldsymbol{\mu}^{k+1} - \boldsymbol{\mu}^k\|^2.$$

1576 According to $\beta_k = \underline{\beta}(1+k)^p$, we obtain that $\frac{1}{\beta_{k+1}} \leq \frac{1}{\beta_k}$. From Assumption 3.1, let $\underline{L} := \inf L(\mathbf{x}) > -\infty$,
1577 then we have $\frac{1}{\beta_{k+1}} (L(\mathbf{x}^{k+1}) - \underline{L}) \leq \frac{1}{\beta_k} (L(\mathbf{x}^{k+1}) - \underline{L})$. By the definition of F_k , it is equivalent to
1578

$$1580 \quad \frac{1}{\beta_{k+1}} (F_k(\mathbf{z}^{k+1}) - \underline{L}) \leq \frac{1}{\beta_k} (F_k(\mathbf{z}^{k+1}) - \underline{L})$$

1582 From the definition of \mathcal{L}_γ^k , we obtain

$$1584 \quad \begin{aligned} & \mathcal{L}_\gamma^{k+1}(\mathbf{z}^{k+1}, \mathbf{u}^{k+1}, \boldsymbol{\mu}^{k+1}) - \frac{1}{\beta_{k+1}} \underline{L} \\ 1585 &= \frac{1}{\beta_{k+1}} (F_k(\mathbf{z}^{k+1}) - \underline{L}) + \sum_{i=1}^{M+1} g_i(\mathbf{u}_i^{k+1}) + \sum_{i=1}^{M+1} \langle \boldsymbol{\mu}_i^{k+1}, \mathbf{u}_i^{k+1} - \mathbf{z}^{k+1} \rangle + \frac{\gamma}{2} \sum_{i=1}^{M+1} \|\mathbf{u}_i^{k+1} - \mathbf{z}^{k+1}\|^2 \\ 1586 &\leq \frac{1}{\beta_k} (F_k(\mathbf{z}^{k+1}) - \underline{L}) + \sum_{i=1}^{M+1} g_i(\mathbf{u}_i^{k+1}) + \sum_{i=1}^{M+1} \langle \boldsymbol{\mu}_i^{k+1}, \mathbf{u}_i^{k+1} - \mathbf{z}^{k+1} \rangle + \frac{\gamma}{2} \sum_{i=1}^{M+1} \|\mathbf{u}_i^{k+1} - \mathbf{z}^{k+1}\|^2 \\ 1588 &= \mathcal{L}_\gamma^k(\mathbf{z}^{k+1}, \mathbf{u}^{k+1}, \boldsymbol{\mu}^{k+1}) - \frac{1}{\beta_k} \underline{L} \end{aligned}$$

1594 Now we define $U_k = \mathcal{L}_\gamma^k(\mathbf{z}^k, \mathbf{u}^k, \boldsymbol{\mu}^k) - \frac{1}{\beta_k} \underline{L}$. Combining the above fact, (60) implies that
1595

$$1596 \quad U_{k+1} - U_k \leq \left(\frac{M_k}{2} - \frac{1}{e_k} \right) \|\mathbf{z}^{k+1} - \mathbf{z}^k\|^2 - \frac{1}{\gamma} \|\boldsymbol{\mu}^{k+1} - \boldsymbol{\mu}^k\|^2 \quad (61)$$

1598 Meanwhile, we observe that
 1599

$$\begin{aligned} M_e &= \max\left\{\frac{1}{\underline{\beta}}\alpha_L + \|A_t\|_2^2\alpha_p, \alpha_d + \|A_t\|_2^2, 1\right\} + (M+1)\gamma \\ &\geq \max\left\{\frac{1}{\beta_k}\alpha_L + \|A_t\|_2^2\alpha_p, \alpha_d + \|A_t\|_2^2, 1\right\} + (M+1)\gamma = M_k. \end{aligned}$$

1600 This gives that $0 < \underline{e} \leq e_k \leq \frac{1}{M_e} \leq \frac{1}{M_k}$. Then we can deduce from (61) that
 1601

$$U_{k+1} - U_k \leq -\frac{1}{2e_k}\|\mathbf{z}^{k+1} - \mathbf{z}^k\|^2 - \frac{1}{\gamma}\|\boldsymbol{\mu}^{k+1} - \boldsymbol{\mu}^k\|^2. \quad (62)$$

1602 From the expression for \mathcal{L}_γ^k , we can deduce the following,
 1603

$$\begin{aligned} \mathcal{L}_\gamma^k(\mathbf{z}, \mathbf{u}, \boldsymbol{\mu}) &= \frac{1}{\beta_k}F_k(\mathbf{z}) + \sum_{i=1}^{M+1}g_i(\mathbf{u}_i) + \sum_{i=1}^{M+1}\langle \boldsymbol{\mu}_i, \mathbf{u}_i - \mathbf{z} \rangle + \frac{\gamma}{2}\sum_{i=1}^{M+1}\|\mathbf{u}_i - \mathbf{z}\|^2 \\ &= \frac{1}{\beta_k}F_k(\mathbf{z}) + \sum_{i=1}^{M+1}g_i(\mathbf{u}_i) + \frac{\gamma}{2}\sum_{i=1}^{M+1}\|\mathbf{u}_i - \mathbf{z} + \frac{\boldsymbol{\mu}_i}{\gamma}\|^2 - \sum_{i=1}^{M+1}\frac{\|\boldsymbol{\mu}_i\|^2}{2\gamma}. \end{aligned}$$

1604 According to Assumption 3.6, we know that there exists some M_μ such that $\|\boldsymbol{\mu}^k\|^2 \leq M_\mu$ for all $k \in \mathbb{N}$.
 1605 Additionally, $L(\mathbf{z}^k) - \underline{L}$ and p are non-negative. This implies that
 1606

$$U_k \geq -\sum_{i=1}^{M+1}\frac{\|\boldsymbol{\mu}_i^k\|^2}{2\gamma} \geq -\frac{(M+1)M_\mu}{2\gamma} \triangleq \mathcal{L}_b, \forall k \in \mathbb{N}, \quad (63)$$

1607 indicating that U_k is lower bounded. By telescoping the inequality (62) for $k = 0$ to ∞ , we get
 1608

$$\sum_{k=0}^{\infty}\frac{1}{2e_k}\|\mathbf{z}^{k+1} - \mathbf{z}^k\|^2 + \frac{1}{\gamma}\sum_{k=0}^{\infty}\|\boldsymbol{\mu}^{k+1} - \boldsymbol{\mu}^k\|^2 \leq U_0 - \mathcal{L}_b. \quad (64)$$

1609 The sufficient decrease property (61) ensures that the $U_0 - \mathcal{L}_b \geq U_0 - U_k \geq 0$ for any $k \in \mathbb{N}$. In addition,
 1610 the step size satisfies $0 < \underline{e} < e_k \leq 1/M_e$, which ensures the boundedness of $\frac{1}{e_k}$, i.e.,
 1611

$$0 < M_e \leq \frac{1}{e_k} \leq \frac{1}{\underline{e}}.$$

1612 Together with the positivity of e_k and γ , it follows from (64) that
 1613

$$\lim_{k \rightarrow \infty}\frac{1}{e_k}\|\mathbf{z}^{k+1} - \mathbf{z}^k\|^2 = 0, \quad \lim_{k \rightarrow \infty}\|\boldsymbol{\mu}^{k+1} - \boldsymbol{\mu}^k\| = 0. \quad (65)$$

1614 Consequently, (65) implies that
 1615

$$\lim_{k \rightarrow \infty}\|\mathbf{z}^{k+1} - \mathbf{z}^k\| = 0 \quad (66)$$

1616 From the update of $\boldsymbol{\mu}_i$, we further derive that
 1617

$$\lim_{k \rightarrow \infty}\|\mathbf{u}_i^k - \mathbf{z}^k\| = 0. \quad (67)$$

1618 Meanwhile, from the form (21) for updating \mathbf{u}_i , we derive
 1619

$$\begin{aligned} \mathbf{0} &\in \partial g_i(\mathbf{u}_i^{k+1}) + \gamma(\mathbf{u}_i^{k+1} - \mathbf{z}^{k+1} + \frac{\boldsymbol{\mu}_i^k}{\gamma}) \\ &\stackrel{(a)}{=} \mathcal{N}_{\mathcal{K}_i \times \mathcal{K}_*^d}(\mathbf{u}_i^{k+1}) + \gamma(\mathbf{u}_i^{k+1} - \mathbf{z}^{k+1}) + \boldsymbol{\mu}_i^k \\ &\stackrel{(b)}{=} \mathcal{N}_{\mathcal{K}_i \times \mathcal{K}_*^d}(\mathbf{u}_i^{k+1}) + \boldsymbol{\mu}_i^{k+1}, \quad i = 1, \dots, M+1, \end{aligned} \quad (68)$$

1645 where (a) utilizes the fact that the normal cone is equivalent to the subdifferential of indicator functions and
 1646 (b) follows from the update of μ_i^{k+1} . In (68), we use Moreau-Rockafellar theorem [104, Theorem 23.8] to
 1647 calculate the sum rule of subdifferentials. (68) implies that

$$1649 \quad -\mu_i^{k+1} \in \mathcal{N}_{\mathcal{K}_i \times \mathcal{K}_*^d}(\mathbf{u}_i^{k+1}).$$

1650 Combining the outer semi-continuity of the normal cone and (67), we can obtain that

$$1651 \quad \lim_{k \rightarrow \infty} \text{dist}(-\mu_i^k, \mathcal{N}_{\mathcal{K}_i \times \mathcal{K}_*^d}(\mathbf{z}^k)) = 0. \quad (69)$$

1653 Furthermore, according to the definition $\mathcal{K} = (\mathcal{K}_1 \cap \dots \cap \mathcal{K}_{M+1}) \times \mathcal{K}_*^d$, we know that $\mathcal{K} = (\mathcal{K}_1 \times \mathcal{K}_*^d) \cap$
 1654 $\dots \cap (\mathcal{K}_{M+1} \times \mathcal{K}_*^d)$. It implies that

$$1656 \quad \mathcal{N}_{\mathcal{K}} = \mathcal{N}_{\mathcal{K}_1 \times \mathcal{K}_*^d} + \dots + \mathcal{N}_{\mathcal{K}_{M+1} \times \mathcal{K}_*^d}.$$

1657 From (69), we know

$$1658 \quad \lim_{k \rightarrow \infty} \text{dist}\left(-\sum_{i=1}^{M+1} \mu_i^k, \mathcal{N}_{\mathcal{K}}(\mathbf{z}^k)\right) = 0. \quad (70)$$

1661 From the update of \mathbf{z} , we have

$$1662 \quad \mathbf{z}^{k+1} = \mathbf{z}^k - e_k \nabla_{\mathbf{z}} \mathcal{L}_{\gamma}^k(\mathbf{z}^k, \mathbf{u}^k, \mu^k).$$

1663 Combining with the definition of F_k in (8), the above equality can be further expressed as

$$1664 \quad \mathbf{0} = -\frac{1}{e_k}(\mathbf{z}^{k+1} - \mathbf{z}^k) + \frac{1}{\beta_k} \nabla_{\mathbf{z}} F_k(\mathbf{z}^k) - \sum_{i=1}^{M+1} \mu_i^k - \gamma \sum_{i=1}^{M+1} (\mathbf{u}_i^k - \mathbf{z}^k) \\ 1665 \quad = -\frac{1}{e_k}(\mathbf{z}^{k+1} - \mathbf{z}^k) + \frac{1}{\beta_k} \nabla_{\mathbf{z}} F_k(\mathbf{z}^k) - \sum_{i=1}^{M+1} \mu_i^{k+1} + \sum_{i=1}^{M+1} (\mu_i^{k+1} - \mu_i^k) - \gamma \sum_{i=1}^{M+1} (\mathbf{u}_i^k - \mathbf{z}^k). \quad (71)$$

1668 Now we define

$$1670 \quad M_{\mathbf{z}}^k = \nabla_{\mathbf{z}} F_k(\mathbf{z}^{k+1}) - \beta_k \sum_{i=1}^{M+1} \mu_i^{k+1}.$$

1673 From (70), we know that

$$1674 \quad \lim_{k \rightarrow \infty} \text{dist}(M_{\mathbf{z}}^k, \nabla_{\mathbf{z}} F_k(\mathbf{z}^{k+1}) + \mathcal{N}_{\mathcal{K}}(\mathbf{z}^{k+1})) = 0.$$

1676 Therefore, we evaluate $\|M_{\mathbf{z}}^k\|$ as follows. According to (71), we know that

$$1677 \quad M_{\mathbf{z}}^k = \frac{\beta_k}{e_k}(\mathbf{z}^{k+1} - \mathbf{z}^k) + (\nabla_{\mathbf{z}} F_k(\mathbf{z}^{k+1}) - \nabla_{\mathbf{z}} F_k(\mathbf{z}^k)) + \sum_{i=1}^{M+1} \beta_k (\mu_i^k - \mu_i^{k+1}) + \gamma \beta_k \sum_{i=1}^{M+1} (\mathbf{u}_i^k - \mathbf{z}^k).$$

1680 With the notation M_k , $F_k(\mathbf{z})$ is $(\beta_k M_k)$ -smooth with respect to \mathbf{z} . Then we have

$$1682 \quad \|M_{\mathbf{z}}^k\| \leq \frac{\beta_k}{e_k} \|\mathbf{z}^{k+1} - \mathbf{z}^k\| + \beta_k M_k \|\mathbf{z}^{k+1} - \mathbf{z}^k\| + \beta_k \|\mu^{k+1} - \mu^k\| + \gamma \beta_k \sum_{i=1}^{M+1} \|\mathbf{u}_i^k - \mathbf{z}^k\| \\ 1683 \quad \stackrel{(a)}{\leq} \frac{2\beta_k}{e_k} \|\mathbf{z}^{k+1} - \mathbf{z}^k\| + \beta_k \|\mu^{k+1} - \mu^k\| + \gamma \beta_k \sum_{i=1}^{M+1} \|\mathbf{u}_i^k - \mathbf{z}^k\|,$$

1686 where (a) use the fact that $e_k \leq \frac{1}{M_k}$. Combining the definition of ϕ_{res}^k in (24), we obtain

$$1688 \quad \phi_{res}^k(\mathbf{z}^{k+1}) \leq \|M_{\mathbf{z}}^k\| + \text{dist}(M_{\mathbf{z}}^k, \nabla_{\mathbf{z}} F_k(\mathbf{z}^{k+1}) + \mathcal{N}_{\mathcal{K}}(\mathbf{z}^{k+1})) \\ 1689 \quad \leq \frac{2\beta_k}{e_k} \|\mathbf{z}^{k+1} - \mathbf{z}^k\| + \beta_k \|\mu^{k+1} - \mu^k\| + \gamma \beta_k \sum_{i=1}^{M+1} \|\mathbf{u}_i^k - \mathbf{z}^k\| \\ 1690 \quad + \text{dist}(M_{\mathbf{z}}^k, \nabla_{\mathbf{z}} F_k(\mathbf{z}^{k+1}) + \mathcal{N}_{\mathcal{K}}(\mathbf{z}^{k+1})).$$

(64) and (66) imply that $\|\mathbf{z}^{k+1} - \mathbf{z}^k\| \leq \mathcal{O}(1/\sqrt{k})$, $\|\boldsymbol{\mu}^{k+1} - \boldsymbol{\mu}^k\| \leq \mathcal{O}(1/\sqrt{k})$ and $\|\mathbf{u}_i^k - \mathbf{z}^k\| \leq \mathcal{O}(1/\sqrt{k})$. Combining with the fact that $0 < M_e \leq \frac{1}{e_k} \leq \frac{1}{e}$ and $0 < p < 1/2$, we take the limit as $k \rightarrow \infty$ in the above inequality and obtain that

$$\lim_{k \rightarrow \infty} \phi_{res}^k(\mathbf{z}^k) = 0.$$

If the sequence $\{F_k(\mathbf{z}^k)\}$ is bounded, there exists a constant M_F such that $F_k(\mathbf{z}^k) \leq M_F$ for all k . From the formulation ϕ_{fea} in (24), we observe that

$$0 \leq \beta_k \phi_{fea}(\mathbf{z}^k) \leq 2(F_k(\mathbf{z}^k) - L(\mathbf{z}^k)) \leq 2M_F - \underline{L}.$$

With the non-negativity of ϕ_{fea} , we take the limit $k \rightarrow \infty$ in the above inequality and obtain that

$$\lim_{k \rightarrow \infty} \phi_{fea}(\mathbf{z}^k) = 0.$$

□

D.5 EXPLANATIONS FOR ASSUMPTIONS IN SECTION 3

We show that our assumptions are reasonable, broadly applicable to machine learning scenarios, and aligned with standard conditions widely adopted in ADMM-based methods.

D.5.1 EXPLANATIONS FOR ASSUMPTION 3.2

We emphasize that Assumption 3.2 is more general than the strong convexity of LL objective, and in fact does not force the LL objective to be strongly convex. This is consistent with explicit clarification in Remark 2.3. For example, the function $l(\mathbf{x}) = \varphi(A_t \mathbf{x} + \mathbf{b}_t)$ is convex but not strongly convex when A_t is not of full row rank.

We illustrate with the examples in Table 1 that Assumption 3.2 is satisfied in all cases. Specifically, referring to the explicit forms of φ and its conjugate φ^* , we verify the local smoothness and local strong convexity as follows.

Least Squares Loss: $\alpha_p = 1$ and $\alpha_d = 1$. φ and φ^* are $1/2$ -strongly convex in their domains.

Smoothed SVM: $\alpha_p = \frac{1}{2}$ and $\alpha_d = 1$. φ is $\frac{1}{2}$ -strongly convex only on the interval $[0, 1]$. φ^* is $\frac{1}{2}$ -strongly convex in its domain.

Huber loss: $\alpha_p = 1$ and $\alpha_d = 1$. φ and φ^* are $\frac{1}{2}$ -strongly convex only on the interval $[-\delta, \delta]$.

E EXPERIMENTS

All experiments are implemented using Python 3.9 on a computer equipped with an Apple M2 chip (8-core architecture: 4 performance cores and 4 efficiency cores), running the macOS operating system with 8 GB memory. The competing methods are implemented using the code provided by [57; 59; 64].

E.1 INTRODUCTION FOR COMPETITORS

We now introduce the competing methods evaluated in our experiments:

- **Grid Search:** We perform a 10×10 uniformly-spaced grid search over the hyperparameter space.
- **Random Search:** We uniformly sample 100 configurations for each hyperparameter direction.

- **Implicit Differentiation:** This category includes IGJO [14] and IFDM [54; 15], both of which rely on implicit differentiation techniques.
- **TPE:** We adopt the Tree-structured Parzen Estimator approach [82], a widely used Bayesian optimization method.
- **VF-iDCA:** [57] formulates the lower-level problem as a value function and approximately solves the bilevel problem via DC programming.
- **LDMMA:** Based on lower-level duality, [59] reformulates the original problem (3) into a more tractable form.
- **BiC-GAFFA:** [65] solves the bilevel optimization problem using a gap function-based framework.
- **MEHA:** [63] solves the bilevel optimization problem using Moreau envelope-based framework.

We apply IFDM only to the elastic net and logistic regression problems, as its available implementation supports only these two among our tested tasks. LDMMA is used exclusively for Lasso-type regression and the smoothed support vector machine, as its reformulation is not compatible with logistic regression. Furthermore, [57] does not provide experimental results for logistic regression, and therefore we do not include it in the comparison for that task.

E.2 EXPERIMENTAL ON SYNTHETIC DATA

For experiments on synthetic data, we consider hyperparameter optimization for elastic net, group Lasso, and sparse group Lasso. These models are equipped with a least squares loss and different regularization terms. We outline the specific mathematical form of (3) for each problem below.

Elastic net [16] is a linear combination of the Lasso and ridge penalties. Its formulation in (3) is given by:

$$\begin{aligned} \min_{\mathbf{x}} \quad & \frac{1}{2} \|A_{val}\mathbf{x} - \mathbf{b}_{val}\|^2 \\ \text{s.t.} \quad & \mathbf{x} \in \arg \min_{\hat{\mathbf{x}}} \frac{1}{2} \|A_{tr}\hat{\mathbf{x}} - \mathbf{b}_{tr}\|^2 + \lambda_1 \|\hat{\mathbf{x}}\|_1 + \frac{\lambda_2}{2} \|\hat{\mathbf{x}}\|_2^2, \end{aligned} \quad (72)$$

Group Lasso [83] is an extension of the Lasso with penalty to predefined groups of coefficients. This problem is captured in (3) as:

$$\begin{aligned} \min_{\mathbf{x}} \quad & \frac{1}{2} \|A_{val}\mathbf{x} - \mathbf{b}_{val}\|^2 \\ \text{s.t.} \quad & \mathbf{x} \in \arg \min_{\hat{\mathbf{x}}} \frac{1}{2} \|A_{tr}\hat{\mathbf{x}} - \mathbf{b}_{tr}\|^2 + \sum_{i=1}^M \lambda_i \|\hat{\mathbf{x}}^{(i)}\|_2, \end{aligned} \quad (73)$$

where $\mathbf{x}^{(i)}$ is a sub-vector of \mathbf{x} and $\mathbf{x} = (\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(M)})$.

Sparse group Lasso [17] combines the group Lasso and Lasso penalties, which are designed to encourage sparsity and grouping of predictors [14]. Its formulation in (3) is represented as:

$$\begin{aligned} \min_{\mathbf{x}} \quad & \frac{1}{2} \|A_{val}\mathbf{x} - \mathbf{b}_{val}\|^2 \\ \text{s.t.} \quad & \mathbf{x} \in \arg \min_{\hat{\mathbf{x}}} \frac{1}{2} \|A_{tr}\hat{\mathbf{x}} - \mathbf{b}_{tr}\|^2 + \lambda_{M+1} \|\hat{\mathbf{x}}\|_1 + \sum_{i=1}^M \lambda_i \|\hat{\mathbf{x}}^{(i)}\|_2, \end{aligned} \quad (74)$$

where $\mathbf{x}^{(i)}$ is a sub-vector of \mathbf{x} and $\mathbf{x} = (\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(M)})$.

Based on the different cases discussed in Section 3.1 and Section 3.2, we naturally employ LDP-PGM (Algorithm 1) to solve (73), and LDP-ADMM (Algorithm 2) to address (72) and (74). To evaluate the performance of each method, we calculate validation and test error with obtained LL minimizers in each experiment. We provide detailed experimental settings and report the results for elastic net and group lasso below.

1786 E.2.1 ELASTIC NET
17871788 **Data Generation:**
1789

1790 The synthetic data is generated following the methodology described by [14], as outlined below. Feature
1791 vectors $\mathbf{a}_i \in \mathbb{R}^p$ are sampled from a multivariate normal distribution with a mean of 0 and covariance
1792 structure $\text{cor}(a_{ij}, a_{ik}) = 0.5^{|j-k|}$. The response vector \mathbf{b} is computed as $b_i = \beta^\top \mathbf{a}_i + \sigma \epsilon_i$, where $\beta_i \in \mathbb{R}^p$
1793 is generated such that each element takes a value of either 0 or 1, with exactly 15 nonzero elements. The
1794 noise ϵ is sampled from a standard normal distribution, and the value of σ is determined to ensure that the
1795 signal-to-noise ratio satisfies $\text{SNR} \triangleq \|A\beta\|/\|\mathbf{b} - A\beta\| = 2$.
1796

1797 **Experimental Settings:**
1798

1799 Since [64] does not provide experiments or code for the elastic net problem, we compare only with search-
1800 based methods, IGJO, IFDM, VF-iDCA and LDMMA in this experiment. We implement the algorithms
1801 we compared with the same settings according to the description in [57; 59]. For LDP-ADMM, we set
1802 $\beta_k = (1+k)^{0.3}$, $e_k = 0.1$, $\gamma = 10$ and initial $\lambda_1^0 = 0.1$, $\lambda_2^0 = 0.05$. For elastic net problem, the stopping
1803 criterion is set as $\|\mathbf{z}^{k+1} - \mathbf{z}^k\|/\|\mathbf{z}^{k+1}\| \leq 0.1$.
1804

1805 **Results and Discussions:**
1806

1807 We conduct repeated experiments with 10 randomly generated synthetic data, and calculate the mean and
1808 variance. The numerical results on elastic net are reported in Table 5. Overall, LDPM (LDP-ADMM)
1809 achieves the lowest test error while maintaining a significantly reduced time cost, especially for large-scale
1810 datasets. In contrast, the search methods incur a high computational cost and exhibit poor performance on
1811 the test dataset. The gradient-based method IGJO demonstrates slightly better accuracy and efficiency but
1812 converges very slowly.
1813

1814 As discussed in [57; 59], both VF-iDCA and LDMMA achieve consistently low validation errors across
1815 various experiments, indicating strong learning performance on training and validation sets. However, they
1816 tend to suffer from overfitting, as reflected in increasing test errors over iterations and poor generalization
1817 to unseen data. This phenomenon occurs across experiments with several machine learning models. We
1818 observe that the running time performance of IFDM is highly competitive and significantly fast in large
1819 scale. This is because the IFDM algorithm leverages the sparsity of the Jacobian of the hyper-objective in
1820 bilevel optimization, which is also stated in [15].
1821

1822 Table 5: Elastic net problems on synthetic data, where $|I_{tr}|$, $|I_{val}|$, $|I_{te}|$ and p represent the number of
1823 training observations, validation observations, predictors and features, respectively.
1824

Settings	Methods	Time(s)	Val. Err.	Test Err.	Settings	Time(s)	Val. Err.	Test Err.
Grid		5.76 \pm 0.33	7.05 \pm 2.02	6.98 \pm 1.14		11.72 \pm 1.32	6.05 \pm 1.47	6.49 \pm 0.82
Random		5.74 \pm 0.26	7.01 \pm 2.01	7.01 \pm 1.11		12.85 \pm 2.11	6.04 \pm 1.45	6.49 \pm 0.83
$ I_{tr} = 100$	IGJO	1.54 \pm 0.84	4.99 \pm 1.69	5.42 \pm 1.21	$ I_{tr} = 100$	3.37 \pm 1.85	5.22 \pm 1.50	5.72 \pm 0.91
$ I_{val} = 20$	IFDM	1.20 \pm 0.50	4.19 \pm 0.91	4.81 \pm 1.39	$ I_{val} = 100$	1.44 \pm 2.85	4.89 \pm 0.12	4.98 \pm 0.17
$ I_{te} = 250$	VF-iDCA	3.16 \pm 0.63	2.72 \pm 1.57	5.18 \pm 1.40	$ I_{te} = 250$	6.08 \pm 2.24	3.13 \pm 0.78	5.39 \pm 0.92
$p = 250$	LDMMA	1.64 \pm 0.07	0.00 \pm 0.00	6.97 \pm 0.79	$p = 450$	3.95 \pm 0.22	0.00 \pm 0.00	6.56 \pm 0.70
	BiC-GAFFA	0.92 \pm 0.05	2.48 \pm 0.62	5.86 \pm 0.65		1.45 \pm 0.14	3.92 \pm 0.48	5.01 \pm 0.58
	LDPM	0.60 \pm 0.02	2.56 \pm 0.80	4.92 \pm 0.51		1.02 \pm 0.03	3.42 \pm 0.39	4.23 \pm 0.37
Grid		6.09 \pm 0.60	6.39 \pm 1.09	6.27 \pm 1.02		32.99 \pm 3.81	7.81 \pm 1.53	8.82 \pm 0.92
Random		6.44 \pm 1.28	4.39 \pm 1.10	6.27 \pm 1.05		33.82 \pm 2.66	6.44 \pm 1.53	8.67 \pm 0.94
$ I_{tr} = 100$	IGJO	3.86 \pm 2.09	4.41 \pm 0.98	4.31 \pm 0.95	$ I_{tr} = 100$	31.30 \pm 6.41	7.78 \pm 1.19	8.61 \pm 0.82
$ I_{val} = 100$	IFDM	1.17 \pm 0.38	4.54 \pm 1.06	4.38 \pm 1.06	$ I_{val} = 100$	3.94 \pm 2.28	7.57 \pm 0.79	8.10 \pm 1.45
$ I_{te} = 250$	VF-iDCA	4.74 \pm 1.77	2.35 \pm 1.56	4.47 \pm 1.11	$ I_{te} = 100$	23.21 \pm 4.96	0.00 \pm 0.00	4.61 \pm 0.77
$p = 250$	LDMMA	0.98 \pm 0.09	0.00 \pm 0.00	5.61 \pm 0.77	$p = 2500$	16.26 \pm 1.44	0.00 \pm 0.00	5.67 \pm 1.21
	BiC-GAFFA	0.85 \pm 0.07	4.12 \pm 0.41	4.62 \pm 0.55		6.12 \pm 0.35	2.48 \pm 0.32	4.98 \pm 0.72
	LDPM	0.73 \pm 0.08	3.41 \pm 0.48	3.51 \pm 0.40		4.83 \pm 0.08	1.65 \pm 0.14	4.37 \pm 0.65

In our experiments, we report the numerical results of VF-iDCA and LDMMA based on the final iteration output when the algorithm terminates. In contrast, [57; 59] reports the best results observed across all iterations. As a result, the test errors reported for VF-iDCA and LDMMA in Table 5 appear slightly worse in our study. Additionally, our test error is slightly worse than that reported in [59] only under the first data setting in Table 5. [59] implements LDMMA with employing off-the-shelf solver MOSEK in MATLAB to solve the subproblems. Therefore, LDMMA yields highly favorable results for small-scale problems, while its efficiency deteriorates significantly as the data size increases, making it less effective for large-scale problem instances.

Table NEW2: Total iterations, lower-level duality gap, and sparsity comparison for elastic net on synthetic data.

Methods	Total Iterations	Lower-level Duality Gap	Sparsity(%)
Setting: $ I_{tr} = 100, I_{val} = 20, I_{te} = 250, p = 250$			
Grid Search	/	/	15
Random Search	/	/	15
IGJO	240 ± 31	1.902×10^{-6}	17.1 ± 1.8
IFDM	195 ± 25	1.103×10^{-6}	16.3 ± 1.5
VF-iDCA	132 ± 16	3.568×10^{-5}	33.5 ± 4.9
LDMMA	118 ± 14	4.215×10^{-7}	40.8 ± 6.4
BiC-GAFFA	101 ± 11	2.184×10^{-7}	18.9 ± 2.0
LDPM (Ours)	85 ± 10	7.213×10^{-8}	15.7 ± 1.2
Setting: $ I_{tr} = 100, I_{val} = 100, I_{te} = 250, p = 450$			
Grid Search	—	—	15
Random Search	—	—	15
IGJO	390 ± 48	2.843×10^{-6}	18.0 ± 2.4
IFDM	315 ± 38	1.482×10^{-6}	17.2 ± 1.9
VF-iDCA	175 ± 21	4.972×10^{-5}	36.8 ± 6.2
LDMMA	152 ± 17	6.318×10^{-7}	43.5 ± 7.6
BiC-GAFFA	128 ± 15	3.412×10^{-7}	20.5 ± 2.2
LDPM (Ours)	102 ± 12	8.905×10^{-8}	16.0 ± 1.4

The lower-level duality gaps in Table NEW2 show a clear separation among methods. VF-iDCA and LDMMA depend on convex solvers, whose fixed tolerances lead to noticeably larger gaps. BiC-GAFFA reduces the gap via an explicit gap function, but its accuracy remains below that of our method.

In contrast, LDPM achieves by far the smallest duality gap, confirming the effectiveness of our penalty-based first-order scheme and supporting the strong-duality-based reformulation in Lemma 2.1. In terms of sparsity, LDPM also produces solutions closest to the true sparsity pattern, while VF-iDCA and LDMMA tend to generate overly dense solutions, indicating overfitting. These results collectively demonstrate superior stability and generalization of LDPM.

E.2.2 SPARSE GROUP LASSO

Data Generation:

We generate the synthetic data with the method in [14], including 100 training, validation and test samples, respectively. The feature vector $\mathbf{a}_i \in \mathbb{R}^p$ is drawn from a standard normal distribution. The response vector

1880 **b** is computed as $b_i = \beta^\top \mathbf{a}_i + \sigma \epsilon_i$, where $\beta = [\beta^{(1)}, \beta^{(2)}, \beta^{(3)}]$, $\beta^{(i)} = (1, 2, 3, 4, 5, 0, \dots, 0)$, for
 1881 $i = 1, 2, 3$. The noise vector ϵ follows a standard normal distribution, and σ is set such that the signal-to-
 1882 noise ratio (SNR) is 2. For different dimensions in Table 2, we set the group size to 30 for $p = 600$ and
 1883 $p = 1200$, and to 300 for $p = 2400$ and $p = 4800$. Notably, compared to [57; 59], our feature vector
 1884 dimensions are larger, while the number of samples is evidently smaller.

1885 **Experimental Settings:**

1886 We compare our method with search methods, IGJO, VF-iDCA, LDMMA and BiC-GAFFA in this ex-
 1887 periment. For the compared method BiC-GAFFA, we follow the recommended procedure outlined in
 1888 [64]. For the other comparison methods, we adopt the exact settings from [57; 59]. For LDP-ADMM,
 1889 we set $\beta_k = (1 + k)^{0.3}$, $\gamma = 10$ and the step size $e_k = 0.001$. The hyperparameters are initialized as
 1890 $\lambda_i^0 = 0.1, i = 1, 2, \dots, M$ and $\lambda_{M+1}^0 = 0.05$. For sparse group Lasso problem, the stopping criterion is set
 1891 as $\|\mathbf{z}^{k+1} - \mathbf{z}^k\|/\|\mathbf{z}^{k+1}\| \leq 0.2$.

1892 **Results and Discussions:**

1893 From Table 2, we observe that LDPM (LDP-ADMM) achieves lowest test error and outperforms other
 1894 algorithms in terms of time cost. As the scale of data increases, LDPM (LDP-ADMM) consistently finds
 1895 the best hyperparameters and model solutions. In comparison, search methods become extremely unstable
 1896 when facing dozens of hyperparameters. IGJO converges slowly and requires huge amount of computation.
 1897 Similar to the experiments on the elastic net problem, LDMMA and VF-iDCA still exhibit a certain degree
 1898 of overfitting. Both LDPM and BiC-GAFFA belong to the class of single-loop Hessian-free algorithms.
 1899 Since LDPM (LDP-ADMM) employs projection to handle nonsmooth constraints, it achieves slightly better
 1900 performance and efficiency compared to BiC-GAFFA.

1901 **E.2.3 GROUP LASSO**

1902 Compared to the sparse group Lasso problem, this experiment removes the ℓ_1 -norm regularization term,
 1903 leading to a reduction in the complexity of the LL problem. However, this omission also results in weaker
 1904 control over the sparsity of \mathbf{x} , potentially affecting the structure and interpretability of the solution. While
 1905 the lower computational complexity may improve efficiency, the trade-off is a less strictly enforced sparsity
 1906 constraint, which could affect the ability to capture key features in high-dimensional settings.

1907 **Experimental Settings:**

1908 The synthetic data is generated following the same procedure as described in Appendix E.2.2. For this
 1909 experiment, we adopt the same settings for other compared algorithms as those used in the experiment for
 1910 the sparse group Lasso problem in Appendix E.2.2. We conduct LDP-PGM with $\beta_k = (1 + k)^{0.3}$, $e_k = 0.01$
 1911 and initial $\lambda_i^0 = (0.1, 0.1, \dots, 0.1), i = 1, 2, \dots, M$.

1912 **Results and Discussions:**

1913 We conduct experiments with different data scales and report numerical results over 10 repetitions in Table
 1914 6. The overall comparison results in Table 6 are similar to those in Table 2. In this case, LDPM (LDP-PGM)
 1915 only requires projected gradient descent, leading to a significant improvement in efficiency.

1916 To better evaluate scalability under the most challenging conditions, we report the total iterations and lower-
 1917 level duality gaps on the largest-scale setting ($p = 4800$) for both Group Lasso and Sparse Group Lasso.
 1918 Since these two tasks share similar bilevel structures, summarizing their lower-level optimality in a single
 1919 table provides a clear comparison of efficiency across methods. As shown in Table NEW3, LDPM achieves
 1920 the fewest iterations and the smallest duality gap, demonstrating superior convergence behavior in large-
 1921 scale nonsmooth bilevel optimization.

Table 6: Group Lasso problems on the synthetic data, where p represents the number of features.

Settings	$p = 600$			$p = 1200$		
	Time(s)	Val. Err.	Test Err.	Time(s)	Val. Err.	Test Err.
Grid	5.72 ± 1.69	93.20 ± 5.82	96.07 ± 17.50	12.31 ± 2.24	93.15 ± 4.74	94.60 ± 20.27
Random	5.42 ± 1.81	148.69 ± 6.55	162.17 ± 28.09	11.38 ± 2.56	151.66 ± 15.63	160.88 ± 17.07
IGJO	1.42 ± 0.25	112.12 ± 4.48	105.99 ± 15.09	6.62 ± 1.31	143.62 ± 15.42	117.37 ± 4.41
VF-IDCA	0.50 ± 0.14	62.66 ± 6.14	84.52 ± 12.46	7.77 ± 2.62	95.02 ± 7.04	96.34 ± 9.79
LDMMA	0.51 ± 0.12	90.97 ± 5.53	79.68 ± 16.19	4.25 ± 1.94	92.32 ± 8.05	92.43 ± 9.99
MEHA	0.41 ± 0.03	78.82 ± 6.91	78.04 ± 11.52	3.11 ± 0.26	91.44 ± 6.01	89.36 ± 8.20
BiC-GAFFA	0.35 ± 0.02	74.16 ± 6.91	78.60 ± 11.81	2.27 ± 0.26	90.43 ± 5.53	87.79 ± 8.43
LDPM	0.29 ± 0.03	70.44 ± 6.85	70.92 ± 9.71	1.81 ± 0.12	88.92 ± 6.41	82.76 ± 6.51
Settings	$p = 2400$			$p = 4800$		
	Time(s)	Val. Err.	Test Err.	Time(s)	Val. Err.	Test Err.
Grid	21.81 ± 3.65	105.19 ± 15.54	93.35 ± 16.60	42.38 ± 5.71	141.83 ± 26.52	126.95 ± 19.38
Random	19.95 ± 6.17	132.04 ± 16.90	161.45 ± 18.37	41.67 ± 5.01	109.35 ± 18.21	134.74 ± 21.41
IGJO	10.03 ± 6.69	100.75 ± 16.47	127.58 ± 16.43	26.78 ± 8.50	109.73 ± 16.66	117.14 ± 8.23
VF-IDCA	12.88 ± 1.31	69.53 ± 5.90	90.11 ± 11.59	40.61 ± 2.79	81.03 ± 11.58	105.70 ± 10.05
LDMMA	6.75 ± 0.19	72.85 ± 8.22	87.00 ± 15.13	32.53 ± 3.29	86.47 ± 13.55	105.39 ± 10.37
MEHA	5.32 ± 0.16	88.55 ± 11.72	84.93 ± 10.38	4.89 ± 0.49	99.92 ± 8.88	102.77 ± 7.70
BiC-GAFFA	4.60 ± 0.09	95.51 ± 14.88	84.02 ± 9.46	4.53 ± 0.57	103.77 ± 9.01	101.26 ± 7.84
LDPM	4.22 ± 0.06	92.94 ± 6.92	78.41 ± 2.98	3.98 ± 0.13	91.28 ± 6.27	94.42 ± 6.01

Table NEW3: Total iterations and lower-level duality gap on the largest-scale setting ($p = 4800$) for both Group Lasso and Sparse Group Lasso.

Methods	Group Lasso ($p = 4800$)		Sparse Group Lasso ($p = 4800$)	
	Total Iterations	Lower-level Duality Gap	Total Iterations	Lower-level Duality Gap
IGJO	520 ± 60	1.46×10^{-5}	545 ± 58	1.52×10^{-5}
VF-IDCA	365 ± 45	6.92×10^{-5}	382 ± 41	7.15×10^{-5}
LDMMA	305 ± 33	4.21×10^{-7}	318 ± 35	4.56×10^{-7}
MEHA	255 ± 23	3.08×10^{-6}	268 ± 24	3.31×10^{-6}
BiC-GAFFA	220 ± 20	1.92×10^{-7}	233 ± 19	2.04×10^{-7}
LDPM (Ours)	172 ± 16	6.11×10^{-8}	185 ± 18	5.94×10^{-8}

E.2.4 LOW-RANK MATRIX COMPLETION

We consider low-rank matrix completion problem on synthetic data. The formulation in (3) of the low-rank matrix completion is given as:

$$\begin{aligned}
 & \min_{\boldsymbol{\theta}, \boldsymbol{\beta}, \Gamma} \sum_{(i,j) \in \Omega_{val}} |M_{ij} - \mathbf{x}_i \boldsymbol{\theta} - \mathbf{z}_j \boldsymbol{\beta} - \Gamma_{ij}|^2 \\
 & \text{s.t. } (\boldsymbol{\theta}, \boldsymbol{\beta}, \Gamma) \in \arg \min_{\boldsymbol{\theta}, \boldsymbol{\beta}, \Gamma} \left\{ \sum_{(i,j) \in \Omega_{tr}} |M_{ij} - \mathbf{x}_i \boldsymbol{\theta} - \mathbf{z}_j \boldsymbol{\beta} - \Gamma_{ij}|^2 \right. \\
 & \quad \left. + \lambda_0 \|\Gamma\|_* + \sum_{g=1}^G \lambda_g \|\boldsymbol{\theta}^{(g)}\|_2 + \sum_{g=1}^G \lambda_{g+G} \|\boldsymbol{\beta}^{(g)}\|_2 \right\}
 \end{aligned} \tag{75}$$

Data Generation:

The data generation procedure follows the approach in [14; 57]. Specifically, two entries per row and column are selected as the training set Ω_{tr} , and one entry per row and column is selected as the validation set Ω_{val} . The remaining entries form the test set Ω_{test} . The row and column features are each grouped into 12 groups, with 3 covariates per group, resulting in $p = 36$ and $G = 12$.

The true coefficients are set as $\boldsymbol{\alpha}^{(g)} = g\mathbf{1}_3$ for $g = 1, \dots, 4$ and $\boldsymbol{\beta}^{(g)} = g\mathbf{1}_3$ for $g = 1, 2$, with all other group coefficients set to zero. The low-rank effect matrix Γ is generated as a rank-one matrix $\Gamma = \mathbf{u}\mathbf{v}^\top$, where \mathbf{u} and \mathbf{v} are sampled from the standard normal distribution.

1974 The row features X and column features Z are also sampled from a standard normal distribution and then
 1975 scaled so that the Frobenius norm of $X\alpha\mathbf{1}^\top + (Z\beta\mathbf{1}^\top)^\top$ matches that of Γ . Finally, the matrix observations
 1976 are generated as

$$1977 \quad M_{ij} = \mathbf{x}_i^\top \alpha + \mathbf{z}_j^\top \beta + \Gamma_{ij} + \sigma \epsilon_{ij},$$

1978 where ϵ_{ij} is standard Gaussian noise, and the noise level σ is chosen such that the signal-to-noise ratio (SNR)
 1979 equals 2.

1980 Experimental Settings:

1982 In this experiment, since multiple regularizers are involved, we employ LDP-ADMM. we compare LDP-
 1983 ADMM with grid serach, random search, TPE, IGJO, VF-iDCA. For grid search, we explore two hyper-
 1984 parameters μ_1 and μ_2 with the regularization parameters defined as $\lambda_0 = 10^{\mu_1}$ and $\lambda_g = 10^{\mu_2}$ for each
 1985 $g = 1, \dots, 2G$. A 10×10 grid uniformly spaced over the range $[-3.5, -1] \times [-3.5, -1]$ is employed,
 1986 consistent with the approach of [14]. For both the random search and TPE methods, the optimization
 1987 is conducted over transformed variables $u_g = \log_{10}(\lambda_m)$ for $m = 0, 1, 2, \dots, 2G$, where each u_g is
 1988 drawn from a uniform distribution on the interval $[-3.5, -1]$. For IGJO, the initial values for the regu-
 1989 larization vector λ are set to $[0.005, 0.005, \dots, 0.005]$. For VF-iDCA, the initial guess for the auxiliary
 1990 parameter \mathbf{r} is chosen as $[1, 0.1, 0.1, \dots, 0.1]$. The algorithm is terminated when the stopping criterion
 1991 $(\|\mathbf{z}^{k+1} - \mathbf{z}^k\|)/\|\mathbf{z}^k\| \leq 0.1$ is satisfied. For LDP-ADMM, we set $\beta_k = (1 + k)^{0.3}$, $\gamma = 10$, step size
 1992 $e_k = 0.025$ and initial $\lambda_i = 0.05$, $i = 0, 1, 2, \dots, 2G$.

1993 Results and Discussions:

1994 Throughout all experiments, feature grouping is performed sequentially as follows, every three consecutive
 1995 features are assigned to the same group, starting from the first feature onward.

1996 We present the statistical results in repeated experiments in Table 7. VF-iDCA and LDPM (LDP-ADMM)
 1997 incur longer runtimes than search methods because they perform more intensive iterative updates. VF-
 1998 iDCA leverages inexact DC-programming steps to more faithfully enforce the low-rank and group-sparsity
 1999 penalties. This additional computational effort yields tighter approximation of the underlying low-rank
 2000 factors, resulting in substantially lower validation and test errors. LDPM (LDP-ADMM) repeatedly perform
 2001 costly matrix projections as discussed in Appendix C.2 to enforce the rank constraints accurately. These
 2002 intensive projection steps allow them to recover the underlying low-rank structure more precisely, which
 2003 translates into substantially lower validation and test errors.

2004 Table 7: Low-rank matrix completion problems on synthetic data

2006 Methods	2007 Time(s)	2008 Val. Acc.	2009 Test Acc.
2008 Grid	21.02 \pm 0.95	0.71 \pm 0.21	0.76 \pm 0.20
2009 Random	33.12 \pm 2.10	0.72 \pm 0.22	0.79 \pm 0.19
2010 TPE	36.80 \pm 9.45	0.69 \pm 0.20	0.75 \pm 0.18
2011 IGJO	1205.0 \pm 312.5	0.67 \pm 0.20	0.71 \pm 0.17
2011 VF-iDCA	55.20 \pm 12.05	0.65 \pm 0.18	0.69 \pm 0.15
2012 LDPM	62.10 \pm 15.31	0.58 \pm 0.14	0.66 \pm 0.13

2013 E.2.5 ROBUST REGRESSION

2014 Experimental Settings:

2015 Robust Regression is captured in (3) as:

$$2018 \quad \min_{\mathbf{x}} \quad l_\delta(A_{val}\mathbf{x} - \mathbf{b}_{val}) \\ 2019 \quad \text{s.t.} \quad \mathbf{x} \in \arg \min_{\hat{\mathbf{x}}} \quad l_\delta(A_{tr}\hat{\mathbf{x}} - \mathbf{b}_{tr}) + \lambda_1 \|\hat{\mathbf{x}}\|_1 + \frac{\lambda_2}{2} \|\hat{\mathbf{x}}\|_2^2, \quad (76)$$

2021 where l_δ is defined in Table 1 and we select $\delta = 1.345$. The synthetic data are generated following the same
 2022 methodology as in the elastic net experiments, detailed in Appendix E.2.1. In this setting, the regression
 2023 loss is replaced by the Huber loss to enhance robustness against outliers and we also employ LDP-ADMM
 2024 due to the presence of multiple regularizers. Since [64] does not provide experiments or code for the robust
 2025 regression problem, we compare only with search-based methods, IGJO, IFDM, VF-iDCA and LDMMA in
 2026 this experiment. All algorithms are implemented under the same settings as those described in Appendix
 2027 E.2.1. For LDP-ADMM, we set $\beta_k = (1 + k)^{0.3}$, $e_k = 0.1$, $\gamma = 10$ and initial $\lambda_1^0 = 0.1$, $\lambda_2^0 = 0.05$. For the
 2028 robust regression problem, the stopping criterion is set as $\|\mathbf{z}^{k+1} - \mathbf{z}^k\|/\|\mathbf{z}^{k+1}\| \leq 0.1$.

2029 Results and Discussions:

2030 We conduct repeated experiments with 10 randomly generated synthetic data, and calculate the mean and
 2031 variance. The numerical results on robust regression are reported in Table 8. Overall, LDPM (LDP-ADMM)
 2032 achieves the lowest test error while maintaining a significantly reduced time cost, especially for large-scale
 2033 datasets. In contrast, the search methods incur a high computational cost and exhibit poor performance on
 2034 the test dataset. The gradient-based method IGJO demonstrates slightly better accuracy and efficiency but
 2035 converges very slowly.

2036
 2037 Table 8: Robust regression problems with Huber loss on synthetic data, where $|I_{tr}|$, $|I_{val}|$, $|I_{te}|$ and p
 2038 represent the number of training observations, validation observations, predictors and features, respectively.
 2039

2040 Settings	2041 Methods	2042 Time(s)	2043 Val. Err.	2044 Test Err.	2045	2046 Settings	2047 Time(s)	2048 Val. Err.	2049 Test Err.
2041 Grid	2042	2043 6.22 ± 0.55	2044 6.28 ± 1.05	2045 6.12 ± 1.00	2046	2047 33.21 ± 3.74	2048 7.62 ± 1.42	2049 8.59 ± 0.88	
2041 Random	2042	2043 6.37 ± 1.12	2044 4.25 ± 1.06	2045 6.19 ± 1.01	2046	2047 34.07 ± 2.59	2048 6.32 ± 1.46	2049 8.48 ± 0.92	
2041 IGJO	2042	2043 3.74 ± 1.98	2044 4.35 ± 0.94	2045 4.25 ± 0.91	2046	2047 30.82 ± 6.18	2048 7.59 ± 1.09	2049 8.45 ± 0.79	
2041 $ I_{tr} = 100$	2042	2043 IFDM	2044 1.21 ± 0.35	2045 4.40 ± 1.01	2046 4.26 ± 1.02	2047 $ I_{tr} = 100$	2048 3.88 ± 2.15	2049 7.45 ± 0.73	2040 8.02 ± 1.32
2041 $ I_{val} = 100$	2042	2043 VF-iDCA	2044 4.63 ± 1.62	2045 2.28 ± 1.42	2046 4.39 ± 1.05	2047 $ I_{val} = 100$	2048 22.98 ± 4.75	2049 2.15 ± 0.88	2040 4.50 ± 0.73
2041 $ I_{te} = 250$	2042	2043 LDMMA	2044 0.95 ± 0.08	2045 2.34 ± 1.01	2046 5.52 ± 0.74	2047 $ I_{te} = 100$	2048 15.89 ± 1.39	2049 2.41 ± 0.92	2040 5.61 ± 1.12
2041 $p = 250$	2042	2043 MEHA	2044 0.82 ± 0.06	2045 1.87 ± 0.55	2046 4.08 ± 0.66	2047 $p = 2500$	2048 8.12 ± 0.52	2049 1.98 ± 0.40	2040 4.92 ± 0.58
2041 BIC-GAFFA	2042	2043 LDPM	2044 0.75 ± 0.05	2045 1.65 ± 0.48	2046 3.76 ± 0.54	2047	2048 6.25 ± 0.47	2049 1.80 ± 0.36	2040 4.63 ± 0.50
2041 LDPM	2042	2043	2044 0.60 ± 0.07	2045 1.29 ± 0.42	2046 3.02 ± 0.38	2047	2048 4.65 ± 0.09	2049 1.58 ± 0.13	2040 3.78 ± 0.60

2047 E.3 SENSITIVITY OF PARAMETERS

2048 In this part, we conduct experiments to analyze the sensitivity of our methods to different parameter combinations. We evaluate both LDP-PGM (Algorithm 1) and LDP-ADMM (Algorithm 2). To investigate the
 2049 parameter sensitivity of LDP-PGM, we carry out supplementary experiments on the group Lasso problem
 2050 with a problem dimension of 1200. In each trial, we vary one parameter while keeping the others fixed. The
 2051 corresponding convergence times and projected gradient descent (PGD) iteration counts are summarized in
 2052 Table 9a. A similar analysis is also performed for LDP-ADMM on the sparse group Lasso instance, also
 2053 with a dimension of 1200. The convergence performance, including time and steps, is likewise reported in
 2054 Table 9b.

2055 In LDP-ADMM, larger γ enforces the constraint more aggressively, so the primal residual in \mathbf{z} -subproblem
 2056 drops quickly. Smaller γ makes \mathbf{z} -update more flexible, but the residual decays more slowly, so it ends up
 2057 needing more iterations and longer overall runtime. As presented in Table 9, the algorithm consistently
 2058 achieves convergence and exhibits strong robustness across a broad spectrum of parameter configurations,
 2059 highlighting its stability and reliability under varying conditions.

2060 E.4 EXPERIMENTAL ON REAL-WORLD DATASETS

2061 This section of the experiments aims to demonstrate the numerical performance of our method on real-world
 2062 datasets.

Strategy	e_k	β	p	Steps	Time(s)
Original	0.01	1	0.3	29	2.04
	0.005	1	0.3	42	3.75
e_k	0.05	1	0.3	18	1.67
	0.08	1	0.3	14	1.42
	0.01	2	0.3	40	3.60
β	0.01	10	0.3	44	3.89
	0.01	40	0.3	38	3.95
	0.01	1	0.05	95	11.72
p	0.01	10	0.15	56	4.85
	0.01	40	0.5	31	2.93

(a) Parameter Sensitivity for LDP-PGM

Strategy	e_k	β	p	γ	Steps	Time(s)
Original	0.01	1	0.3	10	36	2.30
	0.005	1	0.3	10	49	4.97
e_k	0.05	1	0.3	10	21	1.89
	0.08	1	0.3	10	17	1.54
	0.01	2	0.3	10	48	4.16
β	0.01	10	0.3	10	56	4.35
	0.01	40	0.3	10	52	5.15
	0.01	1	0.05	10	129	16.57
p	0.01	10	0.15	10	58	6.12
	0.01	40	0.5	10	72	8.83
	0.01	1	0.3	5	62	5.12
γ	0.01	1	0.3	20	39	2.48

(b) Parameter Sensitivity for LDP-ADMM

Table 9: Parameter Sensitivity Analysis for LDP-PGM and LDP-ADMM

E.4.1 ELASTIC NET

Data Introduction:

We consider elastic net problem on high dimensional datasets gisette and sensit. The mathematical formulation follows (72). The datasets have a large number of features, which are suitable for evaluating the performance of regularization techniques like the elastic net. Following the approach in [57], we partition the datasets as follows: 50 and 25 examples are extracted as the training set, respectively; 50 and 25 examples are used as the validation set, respectively; and the remaining data was reserved for testing.

Experimental Settings:

For the same reasons as in Appendix E.2.1, we also compare LDP-ADMM with search method, IGJO, IFDM, VF-iDCA and LDMMA in this experiment. We conduct compared algorithms with the same settings as [57; 59]. For LDP-ADMM, we adopt the same settings as those used in Appendix E.2.1. The stopping criterion in this experiment is also set as $\|\mathbf{z}^{k+1} - \mathbf{z}^k\|/\|\mathbf{z}^{k+1}\| \leq 0.1$.

Results and Discussions:

We report the experimental results in Figure 1 and summarize them in Table 10 as auxiliary experimental results. These demonstrate that LDPM (LDP-ADMM) consistently achieves competitive performance while maintaining fast computational speeds on real-world datasets for elastic net problems.

Table 10: Elastic net problem on datasets gisette and sensit, where $|I_{tr}|$, $|I_{val}|$, $|I_{te}|$ and p represent the number of training samples, validation samples, test samples and features, respectively.

Dataset	Methods	Time(s)	Val. Err.	Test Err.			Dataset	Time(s)	Val. Err.	Test Err.
gisette	Grid	37.21 \pm 4.80	0.24 \pm 0.02	0.24 \pm 0.02			sensit	1.62 \pm 0.19	1.41 \pm 0.75	1.33 \pm 0.47
	Random	56.67 \pm 9.55	0.22 \pm 0.05	0.26 \pm 0.02				1.46 \pm 0.12	1.52 \pm 0.58	1.48 \pm 0.43
	IGJO	18.24 \pm 3.17	0.24 \pm 0.02	0.23 \pm 0.03				0.57 \pm 0.14	0.52 \pm 0.18	0.61 \pm 0.14
	IFDM	35.40 \pm 0.74	0.22 \pm 0.02	0.23 \pm 0.03				6.35 \pm 0.04	0.37 \pm 0.10	0.41 \pm 0.23
	VF-iDCA	10.75 \pm 2.72	0.01 \pm 0.00	0.22 \pm 0.01				0.47 \pm 0.06	0.27 \pm 0.03	0.52 \pm 0.06
	LDMMA	9.45 \pm 2.98	0.01 \pm 0.00	0.21 \pm 0.01				0.41 \pm 0.05	0.25 \pm 0.04	0.50 \pm 0.04
	LDPM	4.85 \pm 0.23	0.09 \pm 0.05	0.14 \pm 0.03				0.28 \pm 0.02	0.08 \pm 0.01	0.34 \pm 0.05

As described in [57; 59], the implementation of VF-iDCA and LDMMA relies heavily on optimization solvers. In particular, the subproblems of LDMMA are entirely dependent on the commercial solver MOSEK, while the subproblems of VF-iDCA also rely on the CVXPY package, utilizing ECOS or CSC as solvers. For large-scale datasets, frequent solver calls can become a major computational bottleneck, limiting the scalability of these methods in high-dimensional or complex problem settings. Furthermore, the conic programming reformulation proposed in [59] introduces second-order cone constraints, making LDMMA inherently a second-order algorithm. Consequently, its efficiency deteriorates significantly when applied to large-scale problems.

In this experiment, we omit the validation/test error-vs-time curves in Figure 1 for both the grid/random search methods and IFDM because their numerical instability leads to highly erratic traces. As discussed in [14; 54], implicit differentiation methods can suffer from numerical instability when applied to problems with sparse regularization like elastic net. In such cases, the inner optimization problems often have poor conditioning, causing oscillatory behavior during convergence.

Similar to the experiments on synthetic data, We report the total iterations, lower-level duality gaps, and sparsity levels for all methods on the real elastic net datasets in Table NEW4. Across both datasets, LDPM achieves the smallest duality gaps and the fewest iterations, while also producing solutions whose sparsity is closest to the ground truth, reflecting both superior convergence efficiency and better generalization performance.

Table NEW4: Total iterations, lower-level duality gap, and sparsity comparison for elastic net on real datasets (gisette and sensit).

Methods	gisette			sensit		
	Total Iter.	LL Gap	Sparsity(%)	Total Iter.	LL Gap	Sparsity(%)
Grid Search	/	/	10.0	/	/	7.0
Random Search	/	/	10.0	/	/	7.0
IGIO	520 \pm 60	1.6×10^{-5}	11.8 ± 1.9	430 \pm 51	1.8×10^{-5}	8.4 ± 1.3
IFDM	415 \pm 48	9.4×10^{-4}	11.2 ± 1.6	365 \pm 45	1.1×10^{-4}	7.9 ± 1.2
VF-iDCA	285 \pm 32	3.8×10^{-6}	26.3 ± 4.0	240 \pm 30	4.1×10^{-6}	19.8 ± 3.7
LDMMA	242 \pm 27	5.7×10^{-7}	28.1 ± 4.9	210 \pm 25	6.5×10^{-7}	22.0 ± 4.1
LDPM (Ours)	132 \pm 14	7.5×10^{-8}	10.7 ± 1.3	118 \pm 12	8.9×10^{-8}	7.6 ± 1.0

E.4.2 SMOOTHED SUPPORT VECTOR MACHINE

The smoothed support vector machine incorporates smoothed hinge loss function and squared ℓ_2 -norm regularization. The formulation in (3) of the smoothed support vector machine is given as:

$$\begin{aligned} \min_{\mathbf{x}, \lambda} \quad & \sum_{i \in I_{val}} l_h(-b_i \mathbf{a}_i^T \mathbf{x}) \\ \text{s.t.} \quad & \mathbf{x} \in \arg \min_{\hat{\mathbf{x}}} \sum_{i \in I_{tr}} l_h(b_i \mathbf{a}_i^T \hat{\mathbf{x}}) + \frac{\lambda}{2} \|\hat{\mathbf{x}}\|_2^2, \end{aligned} \quad (77)$$

where l_h denotes the smoothed hinge loss function detailed in Table 1. Since there is only one regularization term in (77), we conduct LDP-PGM due to the single regularizer.

Data Introduction:

We use the LIBSVM toolbox [107]⁵ to load the datasets and extract the corresponding observation matrix and label vector for each dataset. Each dataset is divided into two separate parts: a cross-validation training set Ω consisting of $3\lfloor N/6 \rfloor$ samples, and a test set Ω_{test} containing the remaining samples. Within this division, the training set is further partitioned into multiple equal parts, and we iteratively use one part as

⁵<https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/>

2162 the validation set while utilizing the remaining parts as the training set to solve the SVM problem. For the
 2163 experiments, we conducted 6-fold cross-validation on the training and validation sets across all three datasets
 2164 to optimize the hyperparameters.

2165 **Experimental Settings:**

2166 During the process of solving the smoothed support vector machine problem with K -fold cross-validation,
 2167 the loss function on the validation set is defined as follows:

$$2171 \quad \Theta_{val}(\mathbf{x}^1, \mathbf{x}^2, \dots, \mathbf{x}^K, \mathbf{c}) := \frac{1}{K} \sum_{k=1}^K \frac{1}{|\Omega_{val}^k|} \sum_{j \in \Omega_{val}^k} l_h(b_j \mathbf{a}_j^T \mathbf{x}^k), \quad (78)$$

2175
 2176 Following the approach used for support vector machine [23], we reformulate the primal problem into the
 2177 following bilevel optimization model for the smoothed support vector machine:
 2178

$$2181 \quad \min_{\mathbf{x}, c} \quad \Theta_{val}(\mathbf{x}^1, \mathbf{x}^2, \dots, \mathbf{x}^K, \mathbf{c}) \\ 2182 \quad \text{s.t.} \quad \lambda > 0, \bar{\mathbf{x}}_{lb} \leq \mathbf{x} \leq \bar{\mathbf{x}}_{ub} \\ 2183 \quad \mathbf{x}^k \in \arg \min_{-\bar{\mathbf{x}} \leq \mathbf{x} \leq \bar{\mathbf{x}}} \left\{ \sum_{j \in \Omega_{tr}^k} l_h(b_j \mathbf{a}_j^T \mathbf{x}) + \frac{\lambda}{2} \|\mathbf{x}\|_2^2 \right\}, k = 1, 2, \dots, K, \quad (79)$$

2188 where $\mathbf{x}^1, \mathbf{x}^2, \dots, \mathbf{x}^K$ are K parallel copies of c and \mathbf{x} . $\bar{\mathbf{x}}_{ub}$ and $\bar{\mathbf{x}}_{lb}$ are the upper and lower bounds of $\bar{\mathbf{x}}$.
 2189 Similarly, we define the loss function on the training set in a manner analogous to (78):
 2190

$$2193 \quad \Theta_{tr}(\mathbf{x}^1, \mathbf{x}^2, \dots, \mathbf{x}^K, \mathbf{c}) := \frac{1}{K} \sum_{k=1}^K \frac{1}{|\Omega_{tr}^k|} \sum_{j \in \Omega_{tr}^k} l_h(b_j \mathbf{a}_j^T \mathbf{x}^k). \quad (80)$$

2198 We also implement other competitive methods following the effective practice in [57; 59]. For LDP-PGM,
 2199 the penalty parameter is configured as $\beta_k = (1+k)^{0.3}$ and the step size in each iteration is fixed at $e_k = 0.1$.
 2200 For the hyperparameter, we set initial value as $\lambda^0 = 0.1$ for LDP-PGM.
 2201

2202 **Results and Discussions:**

2203 We plot the convergence curves of each algorithm for validation and test error in Figure 2. From Figure 3,
 2204 we observe that LDPM (LDP-PGM) consistently achieves the lowest validation and test errors across all
 2205 datasets (diabetes, sonar, a1a). In particular, its convergence curves drop rapidly at the early stage and
 2206 remain stable afterwards, while the competing methods converge more slowly or plateau at higher error
 2207 levels. This demonstrates that LDPM not only converges faster but also generalizes better, highlighting its
 2208 superiority in both efficiency and accuracy.

Figure 2: Comparison of the algorithms for SSVM problem on real-world datasets.

E.4.3 SPARSE LOGISTIC REGRESSION

The sparse logistic regression [24] is equipped with logistic loss function and ℓ_1 -norm regularization. Its formulation in (3) is

$$\begin{aligned} \min_{\mathbf{x}, \lambda} \quad & \sum_{i \in I_{val}} \log(1 + e^{-b_i \mathbf{a}_i^T \mathbf{x}}) \\ \text{s.t.} \quad & \mathbf{x} \in \arg \min_{\hat{\mathbf{x}}} \sum_{i \in I_{tr}} \log(1 + e^{-b_i \mathbf{a}_i^T \hat{\mathbf{x}}}) + \lambda \|\hat{\mathbf{x}}\|_1. \end{aligned} \quad (81)$$

According to the definition of φ , we observe that the logistic loss can be abstracted with $\varphi(t) = \log(1 + e^{-t})$ and $A_t \mathbf{x} - \mathbf{b}_t = ((\mathbf{b}_{tr} A_{tr}) \mathbf{x})$. Correspondingly, the conjugate is calculated as $\varphi^*(v) = -v \log(v) - (1 - v) \log(1 - v)$ if $0 < v < 1$ and $\varphi^*(v) = \infty$ otherwise.

Data Introduction:

Following the experimental setup in [15], we conduct our evaluations on large-scale real-world datasets. Specifically, we use the same datasets as [15], namely news20, rcv1, real-sim and webspam, all of which can be downloaded from LIBSVM website. Table 11 provides a brief introduction to the basic characteristics of these three datasets.

Table 11: Dataset Overview

Datasets	Samples	Features	Sparsity	Ratio
news20.binary	19,996	1,355,191	0.034%	0.5236
rcv1.binary	20,242	47,236	0.155%	0.46948
real-sim	72,309	20,958	0.245%	0.33113
webspam	350,000	16,609,143	0.024%	0.6657

Experimental Settings:

Due to the single regularizer, we also apply LDP-PGM in this experiment. This experiment is initially conducted in [15]. Since VF-iDCA and LDMMA are not suitable for solving large-scale problems, and the reformulation of LDMMA is not applicable to the logistic loss function, we do not compare these algorithms in this experiment. We compare our method with search methods, IFDM, and BiC-GAFFA. Random search uniformly samples 50 hyperparameter values in the interval $[\lambda_{\max} - 4 \log(10), \lambda_{\max}]$. The algorithm settings for IFDM follow the configurations in [15] for each real dataset without modification. For BiC-GAFFA, we

use $\gamma_1 = 10, \gamma_2 = 0.01, \eta_k = 0.01, r = 5, \alpha_k = 0.01, \rho = 0.3$, with a maximum iteration limit of 1000. For LDP-PGM, we set $\beta_k = (1 + k)^{0.3}, e_k = 0.05$ and initial $\lambda^0 = 0.5$. In addition, we consider Assumption 3.2, $\varphi(t)$ is $\frac{1}{4}$ -smooth and satisfies it. In contrast, φ^* is only gradient Lipschitz on any compact set of $(0, 1)$. Therefore, in our implementation, we enforce a simple numerical safeguard by truncating the dual variable ξ onto $\min(\max(\xi_i, \epsilon), 1 - \epsilon)$ with $\epsilon = 10^{-6}$. This ensures that all iterates remain within a compact domain, thereby guaranteeing that Assumption 3.2 is satisfied in our experiments. Moreover, in practice we observe that the iterates never approach the boundary 0 or 1, so the safeguard is never activated but provides theoretical soundness.

Results and Discussions:

In this experiment, we implement the code provided in [15]. Each experiment is repeated 10 times to compute the average and variance of runtime, validation error, validation accuracy, test error, and test accuracy. The convergence curves of each algorithm with respect to validation and test error are illustrated in Figure 3. Additionally, we calculate the corresponding accuracy and report them in Table 12.

Overall, we observe from Figure 3 and Table 12 that LDPM (LDP-PGM) achieves the lowest time cost and test error in the experiment on sparse logistic regression. The comprehensive experimental results provide strong evidence of the efficiency and practicality of our algorithm in addressing bilevel hyperparameter optimization. These results highlight its effectiveness in real-world applications, demonstrating its ability to achieve superior performance while maintaining computational efficiency.

Table 12: Accuracy of sparse logistic regression problem on real-world datasets.

Dataset	Methods	Time(s)	Val. Acc.	Test Acc.
news20.binary	Random	654.63 \pm 33.26	81.49 \pm 1.10	80.89 \pm 1.24
	IFDM	41.16 \pm 6.81	86.87 \pm 1.14	84.07 \pm 1.09
	MEHA	35.42 \pm 4.92	89.85 \pm 1.08	89.41 \pm 0.92
	BIC-GAFFA	32.64 \pm 4.48	90.98 \pm 1.03	90.17 \pm 0.81
	LDPM	30.85 \pm 3.29	59.05 \pm 1.15	92.94 \pm 0.73
rcv1.binary	Random	214.46 \pm 67.15	96.51 \pm 1.19	94.24 \pm 2.39
	IFDM	21.08 \pm 5.47	97.95 \pm 0.26	96.12 \pm 1.29
	MEHA	17.82 \pm 1.26	98.41 \pm 0.22	96.21 \pm 1.11
	BIC-GAFFA	15.92 \pm 0.94	98.72 \pm 0.25	96.50 \pm 1.21
	LDPM	14.13 \pm 1.43	98.70 \pm 0.33	97.92 \pm 1.29
real-sim	Random	624.45 \pm 38.03	68.30 \pm 1.10	67.65 \pm 1.23
	IFDM	25.86 \pm 1.57	91.23 \pm 2.18	91.10 \pm 1.31
	MEHA	20.93 \pm 0.88	92.75 \pm 1.64	91.46 \pm 1.88
	BIC-GAFFA	18.08 \pm 0.71	93.28 \pm 1.48	91.68 \pm 2.42
	LDPM	17.93 \pm 0.68	95.10 \pm 1.13	94.19 \pm 1.57
webspam	Random	712.34 \pm 41.28	92.15 \pm 0.74	91.68 \pm 0.82
	IFDM	38.92 \pm 2.17	96.84 \pm 0.38	96.57 \pm 0.41
	MEHA	28.53 \pm 1.12	97.23 \pm 0.35	96.88 \pm 0.33
	BIC-GAFFA	26.47 \pm 1.03	97.52 \pm 0.31	97.28 \pm 0.29
	LDPM	22.63 \pm 0.88	97.93 \pm 0.27	97.64 \pm 0.25

We further report the total iterations, lower-level duality gap, and sparsity for all methods on the real sparse logistic regression tasks in Table NEWS5. These metrics provide a more direct evaluation of how accurately and efficiently each algorithm solves the underlying bilevel optimization problem. Across all datasets, LDPM achieves the smallest LL duality gaps and the fewest iterations, indicating a more precise enforcement of the lower-level optimality. Moreover, LDPM consistently yields the sparsest solutions, demonstrating superior structural recovery and generalization compared with existing bilevel algorithms.

2303 F FURTHER DISCUSSIONS

2305 LDPM effectively solves bilevel optimization problems of the form (3), as demonstrated by strong empirical
 2306 results. However, the core of LDPM relies on a projected gradient descent, which currently cannot handle
 2307 nonsmooth loss functions without dedicated solvers, such as the hinge loss in SVMs. In contrast, [57; 59]
 2308 circumvent this issue by leveraging existing solvers to deal with such nonsmooth components.

2316 **Figure NEW1:** Comparison of the algorithms for sparse logistic regression on webspam datasets.

2311 Figure 3: Comparison of the algorithms for sparse logistic regression on real-world datasets.

2312 **Table NEW5:** Total iterations, LL duality gap, and sparsity comparison for sparse logistic regression.

news20.binary			
Methods	Total Iter.	LL Duality Gap	Sparsity(%)
Random	/	/	4.1 ± 0.3
IFDM	280 ± 35	3.203×10^{-6}	6.4 ± 0.5
MEHA	185 ± 22	2.137×10^{-7}	7.3 ± 0.6
BiC-GAFFA	162 ± 19	1.487×10^{-7}	7.0 ± 0.4
LDPM	120 ± 14	4.531×10^{-8}	5.8 ± 0.3

real-sim			
Methods	Total Iter.	LL Duality Gap	Sparsity(%)
Random	/	/	11.8 ± 0.8
IFDM	190 ± 21	3.067×10^{-6}	6.2 ± 0.5
MEHA	150 ± 15	1.927×10^{-7}	6.7 ± 0.4
BiC-GAFFA	132 ± 14	1.403×10^{-7}	6.5 ± 0.4
LDPM	102 ± 11	3.184×10^{-8}	4.4 ± 0.3

rcv1.binary			
Methods	Total Iter.	LL Duality Gap	Sparsity(%)
Random	/	/	10.3 ± 0.7
IFDM	210 ± 30	2.814×10^{-6}	5.8 ± 0.4
MEHA	165 ± 18	1.824×10^{-7}	6.1 ± 0.5
BiC-GAFFA	148 ± 16	1.271×10^{-7}	5.9 ± 0.4
LDPM	110 ± 12	3.873×10^{-8}	4.6 ± 0.3

webspam			
Methods	Total Iter.	LL Duality Gap	Sparsity(%)
Random	/	/	14.5 ± 1.0
IFDM	260 ± 28	4.512×10^{-6}	10.2 ± 0.7
MEHA	180 ± 20	2.732×10^{-7}	8.8 ± 0.6
BiC-GAFFA	163 ± 17	1.932×10^{-7}	8.5 ± 0.5
LDPM	115 ± 13	5.287×10^{-8}	8.1 ± 0.4