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ABSTRACT

Hyperparameter optimization (HO) is a critical task in machine learning and can be nat-
urally formulated as bilevel optimization (BLO) with nonsmooth lower-level (LL) prob-
lems. However, many existing approaches rely on smoothing strategies or sequential sub-
problem solvers, both of which introduce significant computational overhead. To address
these challenges, we develop a penalization framework that exploits strong duality of the
LL problem and its dual. Building on this, we design first-order single-loop projection-
based algorithms to solve the penalized problems efficiently. Our methods avoid smooth-
ing and off-the-shelf solvers, thereby greatly reducing per-iteration complexity and overall
runtime. We provide rigorous convergence guarantees and analyze the stationary condi-
tions of BLO with nonsmooth LL problems under penalty perspective. Through extensive
numerical experiments on a variety of benchmark and real-world tasks, we demonstrate
the efficiency, scalability and superiority of our method over existing BLO algorithms.

1 INTRODUCTION

Hyperparameter optimization (HO) arises in many diverse fields, including neural architecture search [[15 [2;
3[], feature learning [4], ensemble models [5]], semi-supervised learning [6] and sample-weighting schemes
[[75 185 19; [10]. The hyperparameters control model complexity, stability and convergence and they need to
be chosen externally. A poor choice can cripple performance, whereas good ones greatly enhance accuracy,
robustness and generalization. Regularization is a common way to guide hyperparameter tuning, especially
in regression and classification [[11]. By incorporating a penalty term into the empirical risk, regularization
balances data fitting with model complexity, thereby mitigating overfitting, which can be formulated as
M+1

min I(x) + ) AiRi(x), M
=1

where [(x) represents loss functions and A = (A1, A2, ..., Aas41) encompasses hyperparameters. Mean-
while, R;(x),i = 1,2, ..., M + 1 denotes regularizers related to norms, which can be categorized as follows:

. 1
RZ(X> = ||X||(Z)7 i=1,2, "'aMa R]\/[-‘rl(x) = §||X||§ 2

For each i, || - H(i) represents a specific norm, such as the 41, {3, {, 1 2 norm for vectors, the spectre or
nuclear norm for matrices, or other commonly used norms, most of which are nonsmooth.

Based on formulation (TJ), the training/validation approach optimizes parameters on the training set while
evaluating error on the validation set. This can be cast as a bilevel optimization (BLO) framework [3; [12],
which has shown strong empirical performance [13;[1454;[15]. Formally,

M+1
L(x) s.t.x € argmin {l(f{) + Z )\Z—Ri(fc)} , 3)
i=1

min
x€Rdz ,AE]RIJ:IJA X
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where L, I, R; : R% — R U {400} are proper, closed functions. In this BLO, the lower-level (LL) variable
x is the parameter to learn, and the upper-level (UL) variable A is hyperparameter. This form naturally
arises in structural risk minimization, which is one of the most common and foundational frameworks in
machine learning. The LL base learner determines the optimal hypothesis for a given hyperparameter, while
the UL problem selects the hyperparameter—hypothesis pair minimizing the given criteria on the validation
set. Representative examples include elastic net [[L6], sparse group Lasso [[17], low-rank matrix completion
[[L8], smoothed support vector machine (SVM) [19; [20]], robust regression [21522].

Table 1: Examples of bilevel hyperparameter optimization [23; 14} |24] with norm regularizers.

Machine learning algorithm Upper Criteria Base Learner

Elastic net i Picryu bi— xTa,|? £ er,, b — xa|? + A [|x|| + 22[|x]I3

Sparse group Lasso 3 Yier,, Ibi —x"ail? 3% er,, b= xail® + 30 Al fl2 + Aarea 1]

Smoothed support vector machine Dicrom In(bix"a;) Yien, In(bx"a;) + 3 1x||* (with constraint —x < x < %.)

Low-rank matrix completion Y tiiyea,n 51Mis —%i0 — 2,8 — Iy Y iiyean, 31Mij —xi0 — 2,8 — Tij >+ NI + E?:l Ag[|0%9]|2 + Z;’:l Ao+ 89|
Robust regression ety bo(bi — x"a;) 2jer,, ls(bi - x"ai) + Mllxlls + 313

1, denotes the smoothed hinge loss given by I (t) = 3 —tift <0, 2(1 —#)*if 0 < ¢ < 1 and O else.
15 denotes Huber loss given by ls(t) = 1 if |t| < 6, 8]t| — 367 if [t] > 6.

1.1 RELATED WORK

Hyperparameter Optimization. A variety of approaches have been developed for HO [25;|14]. Model-free
methods such as grid search [26] and random search [27]] are simple but limited. More advanced approaches
like Bayesian optimization [28;29] leverage prior observations to guide evaluations, yet often face scalability
issues in high-dimensional spaces.

Bilevel Optimization. BLO underpins many machine learning tasks, including meta-learning [30]], adver-
sarial learning [315 325 |33]], model selection [34;|35], generative adversarial networks [36}|37]], game theory
[38]]. BLO is challenging to solve in practice due to the inherently nested structure. Many existing meth-
ods assume strong convexity of the LL problem, which ensures implicit differentiation based on unique LL
solution and simplifies analysis [7; 4 |8; [39; 140; 415 142} 143]]. However, this assumption is often restrictive.
When the LL problem is merely convex, multiple optimal solutions may arise, which introduces additional
difficulties. To mitigate this, alternative approaches have been developed, including value function-based
methods[44; 455 146; 47; 48], primal—dual frameworks [49] and penalty-based techniques [S0; 5151525 53]].

Beyond convex settings, nonsmooth LL problems present additional difficulties. Further extensions have
been proposed, including implicit differentiation based on partial smoothness [54;15], difference-of-convex
(DC) and penalized DC methods [55; 156} 1571, gradient-free approaches [38], duality-based cone program-
ming [59]. A separate stream introduces smoothing strategies [60; 615 62]], with Moreau-envelope formula-
tions further enabling efficient single-loop algorithms [63} (64 [65]].

1.2 OUR NOVELTY AND CONTRIBUTIONS

In this work, we focus on unified framework and efficient algorithms for nonsmooth regularized BLO (3) that
avoids smoothing techniques and off-the-shelf solvers, while retaining a single-loop structure. We highlight
our novelty in Table [3|and summarize contributions as follows.

* We propose Lower-level Duality based Penalty Methods (LDPM), along with single-loop Hessian-
free algorithms LDP-PGM and LDP-ADMM, in which utilize effective epigraphic projections to
handle nonsmooth components and significantly reduce computational cost.

* We provide analysis of stationary conditions for nonsmooth regularized BLO in penalty framework,
and establish non-asymptotic convergence guarantees for our methods under mild assumptions
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* We conduct extensive experiments on both synthetic and real-world tasks, which consistently
demonstrate the efficiency and robustness of our approach compared with existing methods.

2 LOWER-LEVEL DUALITY BASED PENALIZATION FRAMEWORK

In this section, we propose our framework with lower-level duality based penalization method (LDPM). Prior
to this, we observe that the loss functions of base learners in Table [I]| share a unified structure of the form
©(Ax — b) where Ax — b abstracts the linear data-sample relationship and ¢ may in general be nonlinear.
Accordingly, we denote that

I(x) = p(Aix — by). )

We provide specific forms of ¢ and corresponding (A, b;) associated with examples in Tableas follows:

Least squares loss: ©(t) = %tz, with A;x — by = Apx — by,.

Smoothed hinge loss: p(t) = [;(t) with A;x — by = (by, Ay )X. (I, is defined in Table
Huber loss: ¢(t) = I5(t), with A;x — by = Ay x — by, (Is is defined in Table 1)

Building on the structure of ¢, we reformulate (3) based on lower-level duality. Embracing the idea initially
proposed by [59], we state the following lemma as a modification and extension of [59, Theorem 2.1].

Lemma 2.1. Given the convex lower semi-continuauunctions land R;, ifri(dom IN(NM T dom R;)) #
q’f] then problem (E]) has the following equivalent form:

M1 M1
160+ Y- Meulo) +¢7(6) + Y MRi(8) +€7be < 0,
. i=1 i=1
Jin L(x) st Mt 5)

Ack+ ) pi = 0.
i=1

where p = (p1, ..., pr+1)- ©* and R} are the conjugate functions of v and R;, respectively.

Remark 2.2. The equivalence holds both in terms of the set of minimizers and the optimal objective value.
A detailed proof and further explanations for Lemma 2.1 are provided in Appendix

Remark 2.3. Slater’s condition is broadly satisfied by all examples in Table [1} ensuring strong duality for
the LL problem in (3) without requiring strong convexity. For instance, the least squares loss is not strongly
convex, yet strong duality still holds under this condition.

Our reformulation differs from [59, Theorem 2.1] in that it explicitly exploits inner structures of I(x). We
emphasize that ¢* and R; admit closed-form expressions for all problems in Table [T} making Lemma [2.1]
applicable. For clarity, the explicit forms of * are provided in Appendix [B.4]

In particular, fori = 1,..., M with R;(x) = ||x[| ;. the conjugate is the indicator of the dual-norm unit ball

2
{1l < 1} [66, Example 3.26 For Rar41(x) = 3|3, one has Ayyy1 Ry, (2052) = Ional

[66, Example 3.27]. To refine the constraints in , we introduce r; and s such that R;(x) < r; and
||PM+1H§
2AM+1

< s, yielding the following reformulation.

!"The definitions of lower semi-continuity and conjugate are provided in Definition
*This condition is commonly known as Slater’s condition. ri(-) denotes the relative interior of the set.
*|| - |l¢iy denoted the dual norm of || - ||
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Proposition 2.4. Under the assumptions of Lemma problem (3)) can be further reformulated as
M+1 M+1
%)+ > Airi+ 0 (€) + €'y +5 <0, A+ > pi =0,

i=1 i=1
min L(x) s.t. . 6
X,A,0,1,€,8 (x) Ixllciy < 7oy |oillay < Niy i =1,2,..., M, ©

1
§HX||§ < ras, [|partlls < 2 4.

For simplicity, we rewrite the left-hand of the first inequality constraint in (6] as:

M+1
PO, €, 8) = 1(x) + > Airi +¢7(6) + €7Dy + 5. ©)
=1

We then consider the following penalized problem,

x|y <1, illey < Aoy i=1,2,..., M,
in \(2) {| o < [pill«ca) ©

z=(x,A,p.1.€,9) sIxI5 < 7rargr,  lloarsalls < 2Aar41s.

M+1
where Fj,(z) := L(x) + Bep(x, A, 1, §,s) + %’“HAtS + Y pil|? with penalty parameter (. This penalty
i=1
approach is standard in BLO [50; 163} 1645 65 44]. Inspired by [67, Theorem 17.1], the following theorem
establishes the connection between the optimal solutions of the penalized problem and reformulation (6).

Theorem 2.5. Assume L, and R; are lower semi-continuous, with | and R; convex. Let 3;, — oo and let
z**1 denote a minimizer of (8) with By, then every limit point z* of the sequence {z*} is a solution to (@)

The proof of Theorem[2.3]is provided in Appendix [B.3] From the equivalence between (5) and (6)), Theorem
also reveals the connection between (3)) and (8).

3  PROJECTION-BASED FIRST-ORDER ALGORITHMS

In this section, we develop our algorithms under the penalization framework LDPM. We begin with the
following assumptions to support analysis and algorithm design.

Assumption 3.1. The UL objective L is bounded below and «1,-smooth with respect to x.

Assumption 3.2. The function ¢ is convex. ¢ and ™ are c,- and ag-smooth in their domains, respectively.
Remark 3.3. Assumptions [3.1] and [3.2] are satisfied by common loss functions, including those in Table [I]
They are also suitable for the framework in Section[2] We emphasize that UL objective L can be nonconvex.

Remark 3.4. Assumption [3.2]implies strong convexity of ¢ and ¢*, which is detailed in Appendix
We emphasize that it does not force the LL objective to be strongly convex. In fact, I(x) = p(A:x — by) is
convex but not strongly convex when A; is not of full row rank.

To handle the nonsmooth constraints of @I) induced by different norms, we introduce the cone sets

’Ci = {(X,I‘) | HX||(7,) < Ti}» K;i = {(p’ba)‘l) ‘ ||pl||*(z) < Ai}7 i=1,2, "'aMa
Karr = {(x0) | %[5 < 2raraa} Kipp o= {(par+1, Anr41:8) | loar4ll3 < 20ar418}-

€))

Each of these set is projection-friendly, which enables efficient epigraphic projections. The details of the
projection operations are provided in Appendix [C] Hence, a natural strategy is to manage the constraints
of via projections onto K; and K¢. We develop algorithms for two settings: (i) single-round global
regularization on x in Section [3.1]and (ii) multiple interacting regularizers in Section
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3.1 SEPARABLE REGULARIZERS

In this subsection, we present the algorithm for (3)) when the LL problem involves separate regularizers as a
group of component-wise terms. In this case, the LL problem is written as

M
x € argmin {I(X) + Z )\1-||$<(i)||(t)}, with x = (x, . xM)) M > 1,
x i=1
where x(?) represents the i-th subvector of x and || - Il +) represents a prescribed norm applied to each group.

When M = 1, it involves a single regularizer R; (x), corresponding to simpler models such as toy Lasso or
logistic regression. If R;(x) = [|x[|(1), the constraints of (8) reduce to:

Iy <71, llpller) < A1 (10)

If Ry (x) = ||x||3, the constraints of (8) simplify to:

1 1
slxl3 <71 Sllells < Avs. (1n
and are consistent with the structure in (9) and can be compactly expressed as
zcK:=K xK{ (12)

When M > 1, the LL problem in involves group regularization, with group-wise {s-regularization as
the most common example such as group Lasso. Although multiple terms appear, this setting essentially
corresponds to a single-round regularization over the entire x, under which the constraints in (§) reduce to:

Hx(l)”(f) S T, Hp(l)”(f) S )‘iv with pP = (p(l)v seey p(M))v 1= ]-7 ceey M7
where p(?) is the i-th subvector of p. The above constraints are separable in i and equivalent to:

(xM 7, x@ rg L xM rar) € Ky X oo x Kar, (p,A) € K x -+ x K4,
z€K = (Kix xKpy)x (K¢ x--xK)).

In summary, the penalized problem (8] can be uniformly expressed as

13)

1
min —Fy(z) s.t. zeKk,
z [
where K is defined in (I2)) or (I3) and remains projection-friendly. Accordingly, we adopt projection gradient
descent to solve it in this setting, as outlined in Algorithm[I] In each iteration, we update z as

. e
k1 — prom(zk - —szFk(zk)), (14)

Br

where e, > 0 are the step sizes and proj(x) is the projection of x onto K.

Z

Algorithm 1 Lower-level Duality Penalization Projection Gradient Method (LDP-PGM)
1: Input AY > 0, €9, step sizes {ey }, penalty parameters {3, }. Initialize x°, r", p°, s°.
2: fork=0,1,2,...do
3:  Update z"*1 with (14).

4: end for

We remark that Algorithm [1]is a single loop algorithm that does not require solving any subproblem. The
initialization is detailed in Appendix We now turn to the non-asymptotic convergence analysis of
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Algorithm |1} From the proof of Lemmam and the definition of p, it follows that p(x, A, r, &, s) > 0 and
the feasible set has no interior point [68}; 1445 59]. Consequently, the classical KKT conditions for nonsmooth
constrained optimization [69] are inapplicable. Instead, we adopt the approximate KKT conditions [[70]] and
introduce the following merit functions,

k o(z) := dist (0, V.Fi(z) —|—N)c(z)),
drea(z) = max{p(x, A1, §, ), | Ak + pl|*}-

The residual function ¢¥, (z) quantifies the stationarity for , because ¢*  (z) = 0 if and only if z is
a stationary point of . Meanwhile, the function ¢.,(z) is interpreted as a feasibility measure for the
penalized constraints [71]. Combined with the structure of BLO, ¢ ¢, (z) regulates optimality conditions of

LL problem of (3)). We clarify corresponding conclusions and explanations in Appendix
Theorem 3.5. UnderAssumptionsand suppose By = B(14 k)P with 3 > 0 and p € (0,1/2). If the

step sizes {ey} in Algorithmsatisfy 0 < e < e < min{ %Jrﬁ\léAtH%ocp .1, adHIlAtH% }, the sequence {z"*}

5)

generated by Algorithm|]] satisfies
L.+1/e)p
min ¢F_ (2" =0 (( /)>,

0<k<Kk '€ K3—p

where L. := max{%aL + | A¢l|3ap, aa + [|ALl|3, 1}. Furthermore, if the sequence {Fy(z*)} is bounded,

then it holds that

< mi ky = )
0< min rea(z) = O(1/K7)

We remark that the lower bound ¢ and the boundedness assumption on {F}(z*)} are widely adopted in
single-loop Hessian-free BLO algorithms [64; 65} [63]. We provide detailed proofs in Appendix [D.3]

Meanwhile, the boundedness assumption on {F}(z*)} is standard and necessary in single-loop penalty-
based methods for BLO without lower-level strong convexity. Relaxing this assumption in nonconvex,
nonsmooth single-loop bilevel settings would require substantially stronger analytical tools derived from
structural properties of the problem, such as global error bounds, Kurdyka—t.ojasiewicz (KL) inequalities.
To the best of our knowledge, establishing such results for nonconvex nonsmooth bilevel penalty methods
remains open. In this sense, the boundedness of {F},(z*)} should be regarded as a available technical
condition, rather than any undesirable behavior of our algorithms.

3.2 NONSEPARABLE REGULARIZERS

In this subsection, we focus on the scenarios that LL problem in (3)) involves multiple interacting regularizers,
where several regularization terms are applied to the entire vector, such as elastic net or sparse group Lasso.
Using the definitions of /C; and IC? from @) the constraints of (8) can be written as

(X,I‘) S ICl', (p17>\2) (S ]Csl, 7= 1,2, ...,M,
(x,1) € Knrg1, (prr41, A1, 8) € Ky,

which can be further expressed as
(x,1) € K1 N NKars1, (P A 8) € KT x - x KGpyq. (16)
We denote K¢ := K¢ x -+ x K4, . can be equivalently expressed as

zeK = (Kin- NKyy1) x K x - Ky = (Kin-- N Kargr) x K4
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Since each K¢ is projection-friendly, the product set K¢ inherits this property. In contrast, the intersection
ﬂﬁvffllCi defined over the shared variable (x,r) may not be projection-friendly. Although projection onto
such intersections has been studied [[72f 73], the required iterations are often complex. To address this, we
reformulate the constraint to avoid direct projection onto the intersection:

zeK;x K4, i=1,2,..,M+1. (17)

For each i, since K¢ and K; are projection-friendly, the product set K; x K¢ remains projection-friendly.
Hence, we introduce auxiliary variables u;, leading to uniform expression of (g):
) 1
R
where u = (uy, ..., upr41). We define the indicator function as g;(z) = I, xxa(2),i = 1,2,...., M + 1.
The augmented Lagrangian function of problem is given by:

Fi(z) st z=w, wy€K;xKd, i=1,..,M+1, (18)

1 M+1 M+1 - M+1
Lo = SR+ Y )+ D =)+ 2 Y lw—alf (9)
=1 i=1 i=1

where @ := (p1, ..., par+1) denotes the Lagrangian multiplier associated with constraint z = u;. Based
on £,’§(z, u, i), we adopt an alternative approach to solve inspired by the core idea of the Alternating
Direction Method of Multipliers (ADMM). Here, ~ serves as a penalty parameter and is taken to be a
independent positive constant. This is because ADMM is well known to be robust to the choice of ~y, and
convergence is guaranteed for any fixed v > 0 [74;[75]. The method alternately updates the primal variables
zkand u, followed by a dual ascent step on p. At iteration k, we perform a gradient update on z initialized at
z":

2"t =2k — e db, (20)
where the update direction d¥ corresponds to the gradient of E’fY with respect to z evaluated at (z*, u*, u*)

and ey, is the step size of k-th iteration. This is equivalent to minimize the proximal subproblem of E’;:

1 k|12
7l =21,

Next, for the u-subproblem, we update u; by minimizing ij with respect to u; as

2" = argmin{L% (2", u*, p*) + (V.LE (2", 0¥, ph), 2 — 2F) +

k
uf ™ = argmin{gi(w;) + %Huz — 2" 4 %”2}7 2

u;

which is equivalent to performing the direct projection onto K; x K¢, yielding:
k
uy ! =projfcix;cg<“72 —2M) =1, M+ 1 (22)

Finally, for the dual multipliers p¢;, we update them as

pitt = byt Y i =1, ML (23)
We summarize these iterations in Algorithm [2]and the initialization is detailed in Appendix [D.T]
Algorithm [2| differs from standard ADMM in two key aspects: (i) the augmented Lagrangian E’fY varies

with the iterative ;. (ii) instead of exactly minimizing ,C’f/ in the z-subproblem, we adopt its first-order

approximation at zF. The strategy is commonly employed in gradient-based ADMM [76} [77]. We now
discuss the non-asymptotic convergence property of Algorithm [2| Similar to Theorem we define the
following merit functions analogous to (I3):

k o(z) := dist (O7 VFEy(z)+ N;C(Z)P,

M
¢fea(z) = max{p(xv >‘7 r, E? 8)7 HAtg + Zi:Jlrl pz||2}
To establish the convergence results for Algorithm 2] we invoke the following assumption.

(24)
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Algorithm 2 Lower-level Duality Penalization Alternating Direction Method of Multipliers (LDP-ADMM)

: Input A% > 0, £°, constant y > 0. Initialize x°, %, p?, s° and u? = z°. Input sequences {ex}, {8k}
:fork=0,1,2,...do
Update z"+! with
Update u**! with
update g1 with
end for

AN A el e

Assumption 3.6. The sequence of multipliers { "} is bounded.

As discusses in [[74; [75]], the convergence of ADMM for nonconvex nonsmooth composite optimization is
highly challenging without imposing assumptions like Assumption[3.6] which is an open question. Assump-
tion [3.6]is popularly employed in ADMM approaches [[78 [79; 80 [81]].

Theorem 3.7. Under Assumptions let B, = B(1 + k)P with B > 0 and p € (0,1/2). If step
sizes ey, satisfy 0 < e < e, < 1/M,, where M. is a constant defined as

1
M, = max{gaL + || Ael30, ca + (| Aell3, 1} + (M + 1),

then the sequence {z*} in Algorithmsatisﬁes limy 00 ¢F, (2511) = 0. Moreover, if { F}.(z*)} is bounded,
then limy o0 ¢fea(z”) =0

We remark that the lower bound e and the boundedness assumption on { F(z*)} are analogous to Theorem
[3.3] We provide the detailed explanations and proofs of Theorem [3.7)in Appendix [D.4]

4 NUMERICAL EXPERIMENTS

In this section, we assess the numerical performance of our proposed algorithms through experiments on
both synthetic and real datasets. Specifically, we compare with several existing hyperparameter optimization
algorithms under the BLO framework , including search methods, TPE [82], IGJO [14], IFDM [54; [15],
VF-iDCA [57]], LDMMA [59], MEHA [[63]], BiC-GAFFA [63], as detailed in Appedix [E.T}

We evaluate all tasks listed in Table[I] The comparison is based on validation and test errors obtained from
the LL minimizers, together with the overall running time. In addition, we also report the lower-level duality
gap and the sparsity of the resulting solutions. These metrics are standard in the assessment of (bilevel)
hyperparameter optimization [57; [14]. For each task, we conduct experiments across diverse data settings
or datasets with 10 independent repetitions, and report aggregated statistical outcomes. Depending on the
regularization structure, we employ either LDP-PGM (Algorithm [T)) or LDP-ADMM (Algorithm [2). The
specific choice of algorithm for each problem is detailed in the corresponding subsection of Appendix [E] In
all reported experimental results, both variants are uniformly denoted as LDPM in this section.

4.1 EXPERIMENTS ON SYNTHETIC DATA

We focus on two prototypical tasks built from simple synthetic data: least squares/Huber regression with
various Lasso-type regularizers and low-rank matrix completion, as listed in Table [I] The synthetic data
consists of observation matrices sampled from specific distributions and response vectors generated with
controlled noise. The detailed data generation process is provided in Appendix [E.2]

Lasso-type Regression. We consider three regularizers: elastic net [[16], group Lasso [83]], and sparse group
Lasso [17]. These formulations all promote sparsity while balancing model complexity and predictive accu-
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racy. Table [2] presents the statistical results for the sparse group Lasso problem, including validation error,
test error, and running time. Results for the elastic net and group Lasso problems are reported in Tables[5]and
[6] respectively. Detailed experimental settings for each method are provided in the corresponding subsec-
tions of Appendix [E.2] Overall, LDPM demonstrates superior performance on synthetic data, consistently
achieving the lowest test errors while requiring the least computational time compared to baseline methods.

Table 2: Sparse group Lasso problems on synthetic data, where p represents the number of features.

Settings l p = 600 p = 1200
= Time(s) Val. Err. Test Err. [ Time(s) Val. Err. Test Err.
Grid 6.36 + 1.88 84.73 +5.29 87.34 + 15.91 |[13.68 +2.49 84.68 +4.31 86.00 + 18.43
Random 6.02 & 2.01 135.17 +£5.95 147.43 £ 25.54(12.64 £ 2.84 137.87 &+ 14.21 146.25 + 15.52
1GJO 1.58 £0.28 101.93 +4.07 96.36 £ 13.72 | 7.35 £ 1.46 130.56 4= 14.02 106.70 *+ 4.01
VF-IDCA | 0.56 + 0.15 56.96 + 5.58 76.84 + 11.33 | 8.63 4+ 2.91 86.38 £ 6.40 87.58 + 8.90
LDMMA 0.57 +£0.13 82.70 +5.03 72.44 + 14.72 | 4.72 £ 2.15 83.93 £ 7.32 84.03 + 9.08
MEHA 0.44 £ 0.04 70.53 +£6.34 73.124+10.98 | 2.84 £0.22 84.93 +5.74 82.94 + 7.91
BiC-GAFFA | 0.39 £ 0.02 67.42 + 6.28 71.45 +£10.74 | 2.52 & 0.29 82.21 + 5.03 79.81 £+ 7.66
LDPM 0.31 £0.03 65.11 £6.62 65.91+8.12 |2.02+0.11 76.39+4.68 74.11 + 6.35
Settings I p = 2400 p = 4800
> [ Time(s) Val. Err. Test Err. [ Time(s) Val. Err. Test Err.
Grid 24.23 +4.05 95.63 + 14.13 84.86 + 15.09 |47.09 £+ 6.34 128.94 + 24.11 115.41 £+ 17.62
Random [22.17 +6.85 120.04 £ 15.36 146.77 & 16.70| 46.3 &= 5.57 99.41 + 16.55 122.49 £ 19.46
1GJO 11.14 £ 7.44 91.59 £ 14.97 115.98 +14.94(29.76 & 9.44 99.75 £+ 15.14 106.49 £ 7.48
VF-iDCA |[14.31 +1.45 63.21 £5.36 81.92 + 10.54 |45.12 +£3.10 73.66 + 10.53 96.09 +9.14
LDMMA 7.50 & 0.21 66.23 & 7.47 79.09 + 13.75 [36.14 + 3.65 78.61 £+ 12.32 95.81 +9.43
MEHA 6.32 +0.18 74.92 £ 9.10 77.58 & 10.21 | 5.96 £ 0.41 87.42 4+ 7.52 93.11 + 7.44
BiC-GAFFA | 5.11 4+ 0.10 86.83 +13.53  76.38 £ 8.60 5.03 + 0.63 94.34 + 8.19 92.05 + 7.13
LDPM 4.61 £0.06 84.85+6.21 72.93+2.64 |4.32+£0.14 83.12+5.70 88.64+5.11

Low-rank matrix completion. For this problem, we conduct the numerical experiments on 60 x 60 matrices
[57; 14]. The data generation process, detailed statistical results, and corresponding analysis are presented

in Appendix [E.2.4]

Robust regression. For this problem, we consider numerical experiments on regression problems with
Huber loss combined with norm regularizers. The data generation process, detailed statistical results, and
corresponding analysis are presented in Appendix [E.2.5]

Sensitivity of parameters. We conduct sensitivity experiments on LDP-PGM and LDP-ADMM. The re-
sults summarized in Table 9] show that both algorithms exhibit stable convergence across various parameter
settings.

4.2 EXPERIMENTS ON REAL-WORLD DATA

To assess robustness of our algorithms, we conduct experiments on larger real-world datasets with more
complex sampling distributions. Specifically, we consider experiments on elastic net, smoothing SVM and
sparse logistic regression, as listed in Table[I} All datasets are drawn from the LIBSVM repository. For each
repetition, we randomly shuffle and split the data into training, validation and test sets.

Elastic Net. In this part, we conduct experiments on datasets gisette [[84] and sensit [85]. We summarize
the comparative experimental results in Table[T0]and show the validation and test error curves over time for
each algorithm in Figure|l} Even in these high-dimensional settings, LDPM delivers competitive accuracy
while maintaining fast convergence. Additional experimental details are provided in Appendix [E.4.1]
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Figure 1: Comparison of the algorithms on Elastic Net problem for real-world datasets.

Smoothed Support Vector Machine. We perform 6-fold cross-validation using medical statistics datasets,
including diabetes, sonar, ala [86]]. Details of the datasets and experimental setup are given in Appendix
[E.-4.2] We plots the validation and test errors of each algorithm over time in Figure 2] which clearly shows
that LDPM converges more rapidly and achieves lower error levels than the competing methods.

Sparse Logistic Regression. [87;24]] In this part, we conduct experiments on three large-scale document
classification datasets, news20.binary, rcvl.binary and real-sim. Dataset characteristics and experimental
details are provided in Appendix We plot the validation and test error curves over time in Figure
and report the corresponding final validation and test accuracies in Table for comparison. LDPM
consistently converges faster and achieves the lowest validation and test errors.

5 CONCLUSION

In this paper, we introduce a penalty framework based on lower-level duality for nonsmooth bilevel hyperpa-
rameter optimization (3. Notably, we solve the penalized problem using single-loop first-order algorithms.
Theoretically, we establish convergence guarantees for the proposed algorithms. Empirically, through nu-
merical experiments on both synthetic and real-world datasets, our methods exhibit superior performance
compared to existing approaches, particularly among the illustrated examples.

ETHICS STATEMENT

This work does not present any apparent ethical concerns. The proposed algorithms are purelytheoretical
and experimental in nature, and they do not involve human subjects, sensitive personaldata, or applications
that pose foreseeable risks of harm. Nevertheless, we recognize the importanceof ethical considerations in
machine learning research and adhere to the ICLR Code of Ethics.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide the following: (1) all theoretical results are accompaniedby complete
proofs in the appendix; (2) experimental setups, including dataset preprocessing andhyperparameter set-
tings, are described in detail; (3) source code implementing our algorithms will bemade available in the
supplementary material. These resources should allow others to fully replicateour findings.
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THE USE OF LARGE LANGUAGE MODELS (LLMS)

No large language models (LLMs) were used in the development of the research ideas, theoretical results,
experiments, or writing of this paper. All contents are solely the work of the authors.

A EXPANDED INTRODUCTION

BLO underpins many machine learning tasks, including meta-learning [30], adversarial learning 31532533,
reinforcement learning [88 895 (905 [91]], model selection [34;35]], generative adversarial networks [36; 37],
and game theory [38]]. Early approaches mainly used gradient-based methods, broadly categorized into
Iterative Differentiation (ITD), which unrolls the LL problem and computes hypergradients via backpropa-
gation [7; 45 1415192} 193} 18], and Approximate Implicit Differentiation (AID), which derives gradients from
LL optimality conditions [39; 405 945 95; 96].

Recent advances explore fully first-order methods that avoid Hessian or implicit gradients [S8} 97t 47].
To handle multiple LL minima, [44] proposed a value-function reformulation, inspiring penalty-based al-
gorithms [455 1505 1525 1485 1535 151]]. Another promising direction employs the Moreau envelope to smooth
the bilevel structure, enabling single-loop, Hessian-free algorithms converging to well-defined KKT points
(198 164 165]].

For BLO with nonsmooth LL problems, [54] introduces an implicit differentiation framework via block
coordinate descent, later extended to general nonsmooth settings [15]. Alternative approaches include
difference-of-convex (DC) and penalized DC methods [55; 56} 157, which rely on the LL value function,
and smoothing strategies [60;[615162]]. More recent work explores gradient-free algorithms with inexact sub-
problems [58]], duality-based cone programming that bypasses the value function [59], and Moreau-envelope
methods extended to nonsmooth cases, yielding efficient single-loop algorithms [63]]. Compared with ex-

Table 3: Comparison between our algorithm and other single-loop Hessian-free methods

Method LL Objective UL Objective  Nonsmooth  Single-loop Hessian-free = Non-asymptotic

BOME[>1) Gratié?l?lggglnded PI]:-g(r)rrllcc)l?ttihon Inapplicable X v v
GALET[Z?] Gra(i;;:i?—qggtlhnded PL]j-g(r)rrllcc)l(i)ttilZ)n Inapplicable X X v
DR g A T LSOl i .
VE-iDCA[57] Convex NS:’::;’E’(‘) " Offs'glf;};df v v X
LDMMA([59] Convex Nﬁq‘fr‘r‘l’ o Offs'g;sgzelf v v X
SLMI00] L-Smooth Pig(‘)‘;‘l‘é‘l’g(‘)  Inapplicable X v v
MEHA[63] L-Smooth Nonsmooth S(rlf/‘[‘z)org:::)g v v v
BiC-GAFFA[63] L-Smooth Clzmsjg;’l";: | S(I&%(;L}:fll)g v v v
LV-HBA[64] L-Smooth C]:)Ii‘;;’:’;: | S(I&zorte}::l‘;g v v v
LDPM(Ours) L-Smooth Ngri)srrlr‘ig)éth Projection v v v

isting methods under the same oracles, our approach demonstrates distinctive advantages. Our framework
LDPM does not rely on smoothing schemes. We directly address the nonsmooth components via efficient
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projection operations. Therefore, each iteration in our method requires only gradient evaluations and projec-
tions. By contrast, BIC-GAFFA depends on smoothing-based reformulation that converts LL problem into a
constrained lower-level problem, which also introduces additional computational burden. Similarly, MEHA
adopts the Moreau envelope to achieve smooth approximations. Meanwhile, LDMMA and VF-iDCA also
differ significantly from our proposed LDPM. We primarily combine gradient descent and projection al-
gorithms, whereas LDMMA and VF-iDCA directly use an off-the-shelf solver to address the subproblem.
Furthermore, an important aspect of the LDMMA algorithm is the value function and an additional parame-
ter €, which yields an approximation of the original BLO, while LDPM directly solves the original BLO.

B PROOFS AND EXPLANATIONS FOR SECTION 2]

In this subsection, we provide the proofs of the results concerning the penalty framework in Section [2| The
definitions of convex and lower semi-continuous functions in Lemma 2.1]are given as follows.

Definition B.1. (Convex Function): Let C' C R" be a convex set. A function f : C' — R is called convex
if for all x,y € C and for all 6 € [0, 1], the following inequality holds:

flOx+ (1 —-0)y) <6f(x)+(1-0)f(y).
Definition B.2. (Lower semi-continuous Function): A function f : R” — R U {400} is said to be lower
semi-continuous at a point xo € R™ if

liminf f(x) 2 f(xo)-

Equivalently, for all @ € R, the sublevel set {x € R™ | f(x) < «} is a closed set. If f is lower semi-
continuous at every point in its domain, we say that f is a lower semi-continuous function.

These two properties are essential in our framework: convexity ensures the validity of lower-level duality,
while the lower semi-continuity guarantees the existence of a minimizer in the LL problem.

Definition B.3. (Conjugate function): Given a function f : R — R U {400}, the conjugate function fx

is defined as
fy) = sgﬂgl{yTx - f®)}, yeR™

Definition B.4. (Domain): Let f : R™ — R U {4+o00}. The domain of f, also called the effective domain,
is the set of points where f takes finite values:

dom(f) :={x e R| f(x) < +o0}.

B.1 PROOF OF LEMMA[2.]]

The following proof follows [S9].

Proof. We prove the conclusion based on the formulation (3). First we introduce augmented variables z and
z;,i=1,2,..., M + 1 and deduce the equivalent form of LL problem of (3),

M+1
min p(z) + E MNRi(z;) stz=Ax—b, x=2;1=12 .. . M+1 (25)
i i=1

Since [, R; are convex and the constraints are affine, strong duality holds under Slater’s condition. If
ri(dom I N (N dom R;)) # 0, then is equivalent to its Lagrangian dual problem:

M+1 M+1
max min ¢(z) + Z \iRi(z;) — €T (Ayx — by —z) + Z ol (x —z),
i=1 i=1

£,p X,2,Z;
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where £ is Lagrangian multiplier of constraint A;x — b; = z, while p; are those associated with constraints
x = z;. By adding the negative signs, we obtain

M+1 M+1
max — max \iRi(z;) + €7 (Ax — b, — 2) T(x —
nax — max —p(z 2 )+&7(Ax—by—2) = 3 pf(

The above problem can be further simplified as,

M+1
max —9* (&) = > MRi(§) —€Tby.

P M+11',=1 (26)
st. A+ > p;=0.
i=1

Meanwhile, leveraging the value function of the lower-level problem, the constraint of (3)) is equivalent to

M+1 M+1
x) + Z AiRi(x) < min{l(x Z AiRi( 27)
=1

From the equivalence of (25) and (26), is further equivalent to

M+1 M+1 M+1
)+ 2 Aifli(x) < max{—g"(§) - ; NRF () — €7by | Ak + ; pi=0} (28

i=1

Because the inequality in holds if and only if there exists a feasible pair (£, p) satisfying , dropping
the max operator, we obtain that the constraint in (3) is equivalent to

M+1 M+1
+ 3 ARi(x)+ o Z i R* +£Tbt <0,
i=1
M+1
A6+ Z pi =0.
i=1
We complete the proof. O

B.2 EXPLANATIONS FOR LEMMA [2.1]

(a) Explanations for equivalence:

In Lemma [2.1] the phrase equivalent form denotes equivalence both in the set of minimizers and in the
optimal objective value. We explain the reasons as follows.

Under Slater’s condition, strong duality holds between the LL problem in (3)) and its Fenchel dual, guarantee-
ing that their optimal values coincide. Our notion of equivalence derives precisely from this fact. Concretely,
in the proof of Lemma [2.1] we clarify that the LL problem in (3) is equivalent to the relation

M+1 M+1

X)+ Y NRi(x) < min{l(x Z NiRi(
=1

The above inequality appears in (27). We reformulate is by replacing the right part with its Fenchel dual in
(27)-(28). Therefore, the constraint enforces recovery of the LL solution and its dual multipliers introduced

for 23).
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As a result, if (x,\, p, &) is the minimizer of , then x is the minimizer of . Moreover, since the
objective L(x) remains unchanged, the optimal value is also preserved.

(b) Explanations for specific forms of the LL problems:

We stress that our work is firmly centered on bilevel hyperparameter optimization, where regularization in
the form of a sum of norms naturally arises in real applications. This is not an artificial construct but a
practical necessity.

We emphasize that our reformulation strategy extends beyond sums of norms. Whenever the lower-level
problem takes the form

y € argmin{g(x,y) + 3 gi(x,¥)}, i > L.
Y i

it can be reformulated via lower-level duality [59, Lemma 2.1], making both the reformulation @ and
penalty framework are both applicable.

B.3 PROOF OF THEOREM [2.3]

M+1
Proof. We adopt the convention A(z) = $[| A&+ Y p;||%. Itis straightforward that A(z) > 0. Let z be
i=1

any limit point of the sequence {z*} and {z"/} C {zg} be the subsequence such that z*/ — z.

Assume that z* is a solution of the reformulation (6). Then it holds that L(x*) < L(x) for all
z = (x,A, p,r,&,5) feasible to (6). Note that the constraints in @ subsume those in , so any point
z feasible to (6)) is also feasible to (8).

Since z**1! is the minimizer of the problem with S, it follows that

L) 1 Bu(p(2 1) + A@) € Lix) + Bulp(z’) + Alz")) € L(x"). (29)

Here, (a) follows from the feasibility of z**! and z* for the penalized problem and the optimalif
29)

z"*1. Since z* is feasible to @, we have p(z*) < 0 and A(z*) = 0, and thus (b) holds. Rearranging (
we deduce that

k)

p(z" ) + A(z" 1) < —(L(x*) — L(xFT)). (30)

x
Bre
Proof for L(x*) < L(x):

* Since the functions p is lower semi-continuous and A is continuous in z, letting £ = k; and taking
k; — oo, we obtain that

p(z) + A(z) < lim p(z") + A(z").

k‘]‘ — 00

¢ From 3, — oo as k — 0o, we have

1

B—(L(x*) — L(x"1)) =0, ask — oc.
k

Combining these facts, (30) gives that

p(z) + A(Z) (g lim p(z") 4+ A(z") < lim L(L(x*) — L(x")) =0,

kj—o00 T kj—oo0 /Bkj
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where (c) is derived from Definition Therefore, we obtain that p(z) + A(z) < 0. Since the assump-
tions of Theorem are consistent with those of Lemma [2.1] we obtain the following relation from the
formulation of p and

M+1 M+1

p(z) =1(x) + > NiRi(x) — min{l(x) + > AiRi(x)},
i=1 i=1

which directly implies that p(z) > 0 for all z. Combined with A(z) > 0 for all z, we further deduce that
p(z) =0, A(z) =0. @31)
Therefore, Z is feasible for (6). Since z* is optimal for (6), it holds that L(x*) < L(X).
Proof for L(x) < L(x*):
From the non-negativity of p(z) and A(z) for all z, inequality yields
L(xEH1) < LxH) 4 By(p(z* ) + A(z51) < Lix"),

which implies that L(z**1) < L(x*). Since L is lower semicontinuous, letting k = k; and taking the limit
as 7 — oo in the inequality above, we obtain
_ @ .
L(z) < khm L(x") < L(x"),
j—» 00

where (d) is also derived from Definition B.2] Therefore, we have L(x) < L(x*).

In summary, we deduce that L(X) = L(x*) and Z is an optimal solution of (6. This completes the proof. [

B.4 CONJUGATE FUNCTIONS FOR PROBLEMS LISTED IN TABLE[]

we calculate the closed-form expression of the conjugate functions of ¢ in problems as follows:

For least squares loss, ©*(v) = %02-

For smoothed hinge loss, ©*(v) = v? 4+ vif —1 < v < 0 and ¢*(v) = oo otherwise.

For Huber loss, ¢*(v) = v if [v] < & and ¢*(v) = &|v| — 362 if [v] < 4.

C EPIGRAPHICAL PROJECTIONS

In this section, we discuss the projection onto the cones in Algorithms[T]and 2] According to different cases
detailed in Section [3.1]and [3.2] we discuss the projections when involving different norm regularizers. We
summarize the computation cost of these projections in Appendix

C.1 PROJECTIONS INVOLVING VECTOR NORMS

When R; represents different norm terms, the explicit forms of &C; and K¢ defined in @]) are expressed as
follows.

* Ri(z) = Ix[li: Ki = {(x,70) | [x]ly < i} K = {(ps, M) | [|o3lloe < Ai}-
© Ri(x) = [Ixl2: Ki = {(x, ) | [Ixll2 <7} KE = {(pi Xo) | | pill2 < Ai}-
* Ri(2) = [X[loo: Ki = {(x,79) | Xlloe < i}, KF = {(pss Xi) | lpalls < A}
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© Ri(x) = 5lIx(13: Ki = {(x,73) | [|x]13 < 2r:}, K = {(pi, Aiv s) | lpill3 < 2Xis}

(1) Projection onto the epigraph of /5 norm:
Proposition C.1. [10]| Example 6.37] Let L} = {(x,t) | ||x|l2 < t}, for any (x,t) € R% x R, we have

(Udlla bty oty =)y > o),

. 2[|x[l2 2
projz . ((x,t)) = 4 (0,0), t < |x|l2 < —t,
(x,1), lIx|]2 < t.

We next turn to the epigraphical projection for other norms. To this end, we recall a general result on
projections onto epigraphs of convex functions.

Theorem C.2. [[[0]] Theorem 6.36] Let C = epi(g) = {(x,t) | g(x) < t} where g is convex. Then for any
(x,t) € R x R, it holds that

. X, t ) g\X S t7
profc((x 1) = { 0% L0
(proxy.,(x),t +7%), g(x) >t,
where y* is any positive root of the function
w(’Y) = g(pI'OX,yg(X) —-7= t)

In addition, 1) is nonincreasing.

(2) Projection onto the epigraph of /; norm:
Proposition C.3. [10]) Example 6.38] Let L} = {(x,t) | ||x||1 < t}, for any (x,t) € R% x R, we have

| ), Il <,
projry ((x,1)) = { (To-(X),t+ %), [Ix]h > t,

where 7, = prox, ., denotes the proximal of /1-norm, defined as

-1

T(y) = [lyl =]+ sgn(y) = 4 0, lyl <,
y+v y< -7
Here, A* is any positive root of the nonincreasing function ¢)(y) = ||7y(x)||1 —~ — s. In practice, the ¢;

norm epigraphical projection can be computed in linear time using the quick-select algorithm proposed by
[102].

(3) Projection onto the epigraph of /., norm:

It can be computed directly via the Moreau decomposition. Let L7 = {(x,t) | ||X||cc < t}, then the
projection is given by
pI‘Ongo (X? t) = (X7 t) - pI‘OjL? (X7 t)
(4) Projection onto the epigraph of squared /5 norm:
According to Theorem for any (x,t) € R% x IR, we have
(x,1), I3 < 2t,

proj,CMH(x,t) {
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where ~* is any positive root of the nonincreasing function ¢(y) = (37 + t)(1 + 292) — ||=(|3. Similar

to ¢1-norm epigraphic projection, it can also be effectively solved in linear time with quick-select algorithm
proposed by [102].

(5) Projection onto rotated second-order cones:

For the rotated second-order cone K9, = {(ps,\i,s) | [pill3 < 2Xis} where p € R, an equivalent
representation is given by {(pi, A, s) | [|[(pis Mi, s)|l2 < A + s}. We introduce auxiliary variables w =
(pisNiys) € R and t = \; + s € R. In this way, the projection onto K¢, | for given (p;, \;, 5) is
equivalent to the following optimization problem with (W, ):

1 1
miP §||w —w|*+ 5(7& —1)?st. |wlle <t,wlco=t,
where ¢y = (0, ...,0,1,1) € R% 2, The problem can be solved directly using the analytic solution provided
in [103| Proposition 6.4].
(6) Projections for block-wise regularization:

When the regularization involves a group component-wise regularizers, i.e., R;(x) = ||x?|| (t)» We observe
that projection onto the set C; and K¢ corresponds to the ¢y, {3 or {,,-norm. The same projection applies

to the vector p = (p(l)7 oy pM )). Specifically, we project each group independently and then assemble the
full vector.

C.2 PROIJECTIONS INVOLVING MATRIX NORMS

Now we study the projection onto the epigraphs of nuclear norm || - || and spectral norm || - ||,,. Since our
reformulation relies on conjugate functions and the conjugate of a norm is its dual norm, we need to take
both into consideration.

min{m,n}
For a matrix X € R™*™, the nuclear norm is defined as || X||. = Y.  0;(X) and the spectral norm is
i=1

defined as || X||,, = max o;(X), where o;(X) is singular values for X. In this case, the explicit of C; and
7

K¢ is given by
© Ri(X) = [ Xt Ky = {(X,r0) [IX e < rido £F = {(pi, X) | pillop < Ai}-

(1) Projection onto the epigraph of nuclear norm:

Given a matrix A € R™*™ and a scalar ¢, the projection onto the epigraph of the nuclear norm {X €
R™*™ 7 >0 | || X||« < 7} involves solving the following optimization problem
1 1
in —||X — A} + S|t — 77 st [| X« <
min 21X = Al + 5l - 7l s X <7
where || - || p denotes Frobenius norm of a matrix.

o If ||A||« < t, the point (A, t) already lies in the epigraph and the projection is simply (X,7) =

o If ||Al|« > t, we first compute the singular value decomposition of A as A = UXV, where ¥ =
diag{o1, 09, ...,0.} is the single value matrix of A and U € R™*", V € R"*". According to
[1,Theorem 6.36], the projected matrix is obtained by soft-thresholding the singular values:

o; = max(o; —v*,0),i=1,2,...,r,
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where 7* is determined by the equation Z max(c; — v,0) = t + . This equation is typically

solved efficiently via a bisection search. Subsequently, we obtain the solutlon 7" =t +~* and
reconstruct the projected matrix as X* = USV7T where & = diag{5y, 79, ..., 5, }. The projected
pair (X*,7*) is the closest point to (A, t) in the epigraph of the nuclear norm.

(2) Projection onto the epigraph of spectral norm:

Given a matrix A € R™*" and a scalar ¢, now we consider projection onto the epigraph of the nuclear norm
{(X eR™M 7 >0 [|X]lop <7}

o If || A|lop < t, the point (A,t) already lies in the epigraph and the projection is simply (X, 7) =

o If ||A]lop > ¢, we first compute the singular value decomposition of A as A = UXV, where
¥ = diag{o1, 02, ..., 0, } is the single value matrix of A and U € R™*", V' € R"*",

Since the epigraph of the spectral norm is defined by the constraint ||.X ||, = maxo;(X) < 7, we

need to adjust the singular values so that the largest does not exceed the new scalar 7* as
&; =min{o;, 7"} fori=1,2,...,r.
To determine 7*, we solve the one-dimensional optimization problem

1 5 1 9
min 5 ‘Z (i = 7)* + 5 (r — )%,
1:0;>T
In practice, the optimal 7* can be efficiently computed using a bisection search. Subsequently, we
reconstruct the projected matrix as X* = U SVT where ¥ = diag{&1,09,...,0.}.

The projected pair (X*, 7*) is the closest point to (A, ¢) in the epigraph of the spectral norm.

From the above discussions, it is evident that the projections can be computed efficiently.

C.3 COMPUTATION COST

In this subsection, we denote the dimension of vector input as x € R% = R™ and matrix input as X €
Rd X — Rmxn.

The projections onto the /5 norm cones and rotated second-order cones have closed-form solutions, whose
cost is O(n). For the other norms, which do not admit explicit epigraphic projection formulas, the projection
can be computed by finding the root of a nonincreasing scalar function (). These procedures leverage
efficient quick-select routines to ensure fast computation. In summary, we deduce that

 For epigraphic projection for vector inputs, the overall runtime is @(n), where the tilde hides
logarithmic factors.

* For epigraphic projection for matrix inputs, the dominant cost arises from computing the SVD,
which takes O(mn min{m,n}), followed by a root-finding step of complexity O(r) with r =
rank(X). Moreover, for nuclear-norm or spectral-norm projections, only the nonzero singular
components are needed, so an economy-size SVD is not only sufficient but standard and computa-
tionally preferable [102]].

* For epigraphic projection of group norms, the total cost is O(n).
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Table 4: Computation cost of epigraphical projections for vector x € R™ or matrix X € R™*" with
r = rank(X).

Projection Type Complexity

{5 norm O(n)

¢1 norm O(n) (quick-select)
{~, norm O(n) (quick-select)
Squared ¢ norm O(n)
Nuclear norm O(mnr)
Spectral norm O(mnr)
Rotated SOC O(n)

More detailed results are provided in the following table. Since each projection uses the same low-
dimensional routine, the overall computation remains efficient.

Based on Table[d we present a comparison of the per-iteration computational costs of our method and other
single-loop Hessian-free methods for BLO with nonsmooth LL problems. When the LL variable is x € R"
with inputs A € R¥*™ and b € R? or a matrix 2 € R™*™ with rank of r, the corresponding computational
costs are summarized in the table below.

Table NEW 1: per-iteration computation cost. Here, GD stands for gradient descent.

Methods Vector Variable Matrix variable
Cost(Nonsmooth Terms) Cost(GD) \ Cost(Nonsmooth Terms) Cost(GD)

VF-iDCA[57] off-the-shelf solvers off-the-shelf solvers

LDMMAJ59] off-the-shelf solvers off-the-shelf solvers
MEHA[63]] O(dn) O(d*n) O(mnmin{m,n}) O(mnmin{m,n})
LV-HBA[64] O(dn) O(d?n) O(mnmin{m,n}) O(mnmin{m,n})
BiC-GAFFA[63] O(dn) O(d?n) O(mnmin{m,n}) O(mnmin{m,n})
LDPM(Ours) O(n) O(dn) O(mnr) O(mnmin{m,n})

Because LDPM handles nonsmooth regularizers via explicit epigraphical projection, its gradient computa-
tion involves only one first-order update of the penalty objective. In contrast, Moreau-envelope-based and
gap-function-based methods compute the proximal operators of the nonsmooth termspenalty terms, which
requires Jacobian operations or full SVDs. Therefore, LDPM achieves the lowest computational cost among
existing single-loop Hessian-free methods for BLO with a nonsmooth LL problem.

D PROOFS AND EXPLANATIONS FOR SECTION 3]

In this section, we provide additional explanations and the proofs for the convergence results of our proposed
algorithms in Section[3]

D.1 INITIALIZATION OF ALGORITHMS [I]AND
We initialize the starting point by following the algorithms for BLO proposed in [57; 59} 164]. For Algorithm

given the input A°, £°, we initialize x° by solving the LL problem of (3). The remaining initial variables
are set as ¥ = R;(x), p° = —VI(x°) and s = ||p||?/2A}. For Algorithm 2] given the input X°, £°, we
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also initialize x° with solving the LL problem of (3). The other initial variables are set as r) = R;(x°),
P = _ﬁAtfo and 50 = ||p(1)\4+1||2/2>‘(1)\4+1'

This initialization strategy ensures a feasible starting point for the corresponding reformulation of original
BLO, thereby facilitating convergence and enhancing the overall efficiency of the optimization process.

D.2 EXPLANATIONS FOR MERIT FUNCTIONS

To initiate the proof of the convergence results, we establish the rationale for selecting ¢*., and ¢ ., as the

merit measures. Note that ¢¥, and ¢ e, in Section [3.1] n and [3.2) . are both defined based on the penalized
formulation (8) within a unified framework as follows:

b ou(2) o= dist (0, V, Fi(2) + Nic(2)), (32)
M+1
(bfea(z) = maX{P(X7 Aa r, Ea S)a ||At£ + Z pz||}7 (33)

i=1
where K = (Ky N -+ N Karq1) x K§ x ---K4,,,. For the case of single-round global regularization
discussed in Section the set K reduces to K = K1 x K¢ and (p1, ..., pas+1) is replaced by a single p.

From Lemma [2.1] we know that (5) is a direct reformulation of (3)). For convenience, we simplify the left
hand of the first constraint as:

M+1 M+1

F(x,\, p, & Z iR ( Z A R* +&"b,.

Similar to @) we construct the penalized formulation for @ as follows,

M+1
min L(x) + BF (%, X, p,€) + ||Ats+ Z pill?, (34)

where (), serves as the penalty parameter.

Proposition D.1. If ¢fc.(z) = 0, then (x A, p, €) is a feasible point to (5). Moreover, if ¢ teq(z) = 0 and
¢res(z) = 0 both hold, then (x, X, p, €) is a stationary point of .

Proof. (a) When ¢¢., = 0 holds:
From the non-negativity of the function p and | - [|2, if ¢feq(z) = 0, it holds that p(x, A, 1, &, s) = 0 and

M1
A+ > pi=0
=1

According to the constraints of @I), we know that

\ \
=

RZ()SZ‘,Z M+1
Ri(£) =0, L M.
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2
Additionally, we restore Aps41 R}, (5252) with the inequality lomarlly < o Consequently, we observe

AM+1 2A M 41
that
M+1 M+1 pi
Fx A p, &) = 1x)+ D MRi(x)+¢"(€) + Y MRI(T) +€7by
i=1 i=1 v
& * * PM+1 T
= 100+ 3 MR(x) + 0" (&) + MR (T +€7b
=1
M+1

< I(x) + Z Airi + 0" (&) +€Tby + s
i=1

= p(X7A7r7£78):O7
which implies that (x, A, p, £) is feasible to (5).
(b) When ¢*, (z) = 0 and ¢.,(z) = 0 both hold:

In this part, we use Moreau-Rockafellar theorem [[104, Theorem 23.8] to calculate the sum rule of subdif-

ferentials. If f; and f, are convex and lower continuous at x and f5 is differentiable at z € int(dom(f1)) N
int(dom(f2)), then it holds that

(f1+ f2)(x) C Ofi(x) + Ofa(w).

We analyze ¢F,,(z) = 0 for each component of z.

e For x and r, we have

7(VL(X> + Bkvl(x)v ﬂk)‘) S N)C1ﬁ-~ﬁICM+1 (X7 I‘), (35)

where KC; = {(x,r) | Ri(x) < r;}. Let OR; denote the limiting subdifferential of the function R;
[69]. According to the definition of the normal cone of inequality constraints [105; [106] and the
definition of C; in (9, we know that
Niinonkae, (%,1) = cone{(OR;(x),—1),i=1,...,M + 1}
M+1

= {Z ti(ORi(x), —1) | t; > 0},

where cone denotes the conic hull of a set. Combining with @, we obtain

M+1
0 € VL(x) + BVI(x) + B Y NiOR;(x). (36)
i=1
¢ For &, we have
M+1
Ve (€) + by + AT (A + Y pi) = 0. 37)
i=1
e For (p;, \;),i =1,..., M, we have
M+1
_(Até + Z pivri) S N]C?(pzv )\Z)az = 17 teey M7
i=1
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where K¢ = {(pi, \i) | ||pill«y < Ai}. From and the definition of p, we know that
F(x,X,p,€) >0 for all (x, A, p,8). If ¢ca(z) = 0, the following chain of inequalities holds:
0 S F(XaA7p7£) SP(X,)\,I‘,E,S) S 0
which naturally reduces to equalities. Consequently, we have F(x, A, p,€) = p(x, A, 1,&, ),
implying that R;(x) = r;,7 = 1, ..., M. Therefore, we obtain that
M+1
—(A+ > pi Ri(X)) € Niea(pis \i),i = 1,.., M,

=1

1}. Combining with the fact that the normal cone is equivalent to the subdifferential of indicator
function, for the variables p; and \;, the above formulation implies that

Meanwhile, we note that for i = 1,..., M, R} is the indicator function of the set {||y|l.;) <

M+1
—(Ak+ D pi) € Do Il o <rt = Opi (ol /ni<1) = O i[/\iRi(;)} (38)
=1 )

(a)
—Ri(x) € Lpl.y<nit = 3A11{\|p(|\*)m91} + Lol <ri}
= O J{pll.y<ny T RI(KE) = 0, {MRZ‘(%)},

where (a) follows the fact ||p[.;y < A; and () holds from the direct calculation of the subdiffer-
ential.

(39)

 For (par4+1, Aar+1, 8), we have
M1
— (A& + Z PiTv1,1) € N;chl(PMH, AM+155),
i=1

where K9, 1 = {(prr+1, Ani+158) | [|Paa+1l13 < 2Anr41s}. Similar to the deduction for (p;, A; )
in (38) and (39), we can obtain

M+1
A€+ L p1) € Do [Mara Ry 1 (5252)],

A
= M+41

~Rars1(%) € Oy [Mari Rig i (B2

In summary, We find that the equations (36), (37), (38), @ and @) coincide with the stationary
conditions of (34). Therefore, we conclude that (x, A, &, p) is a stationary point of ( .

(40)

O

From deduction (27) and , we conclude that ¢ f.,(z) = 0 implies
M1 M+1

x) + Z AiRi(x) = mln{l Z AiRi(

Following the reasoning in Theorem we conclude that as 8, — oo, any limit point of the sequence of
optimal solutions to (34) with j3; is an optimal solution of (3)). According to (36)), we further obtain that

M+1 1
dist(0, VI(x) + Z NOR;(x)) < FHVL(X)H -0,
k
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as Bx — oc. These results demonstrate that ¢%_, and ¢ fea can effectively character the optimality condition
of the LL problem in ( . In summary, the selection of ¢%,, and ¢ s, is reasonable.

Tes

We provide the proofs for non-asymptotic convergence of Algorithm[IJand[2]in the subsequent sections.

D.3 PROOF OF THEOREM [3.3]

We first recall the update for the variables of z in Algorithm|T]as follows. We calculate the update directions
of zasdf = (df,d}, dk, df, dk ,d¥), where

dy = 5-VL(x*) + Vi(x"),

dg v‘ﬂ (ék) + bt + AT(AtEk + P ) (41)
dA:rk dk = )\k ¥ =1,
With these directions, the gradient descent step is performed as
" =28 —epdb.
For zFt1 = (k1 NF+1 phtl ghtl ght1 5h+1) we subsequently apply the projection
2" = proj(z21). (42)

Note that the variable £ is not involved in the projection step and thus it is evolved directly as £+ = gF+1,

Next, we discuss the sufficient decrease property for Algorithm [I]
Lemma D.2. Suppose Assumptions n . hold For k € N, let {zk} be genemted from Algorithm l

Under Assumptlons we let L := infy L(x) > —oo. Define Vj, = (Fk( k) — L), then the following
inequality holds:
2
Vigr — Ve < (% _ i) [xE+L — xF||2 + (% _ é) 1P+ — pF |12
_i”5k+l — |2 4 (% _ 7) (IAFFL = XR||2 o [kt — pk)2) (43)

A, 12
+ (a(rHé s i) ||€k+1 o £k||2'

Proof. Given Assumption [3.2) that ¢ is a;,-smooth, we know that [ is || 4;||3c,-smooth. By applying the
sufficient decrease lemma [101, Lemma 5.7], we obtain that
1 1 1
FL(X’CH) +1(xFh SB—L(X’“) +1(x*) + <ﬁ—VL(x’“) + ViI(xF), xk L — xk)
k k k

+ 550w+ AdlBag) [ = x|
Based on the convexity of the cones and the second projection theorem [101, Theorem 6.41], we have
(R FEHL) (L pktL) (xk pk) - (xEHL PR <,
We combine the above inequalities and the same derivation for r, it holds that
ﬂ%L(xk“) () o (AR PR Ry

+8k || Al 20,
B L) + U(xF) + (et Bgfulinn L) okt — k|2 4 (4 — L e+t — x|

IA
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Subtracting 3% L from both sides of the inequality, we obtain

é(L(ka) CL) 4+ (L) 4 (ARFL gLy

+B8kllAcll3
< ﬁ%(L(Xk)) ~L) —|—l(xk) + (aL I;‘[th”zap _ é) ||Xk:+1 _ka2 + (% _ é) ||I.k+1 _ rk”z.

Given B = 3(1 + k)P, we have ﬂk—lﬂ < ﬂ—lk From Assumption let L(x®) — L > 0 holds for all k, so

we have ﬁ%H(L(Xk“) - L)< ﬁ%(L(Xk+1) — L). Then we can derive that

(1) 4 (AT il pky

—(L(x*) — L)

T . JAc
ar+pB |5 0p . ,
< (L) L) 1) 4 (R ) ot k2 g (- ) e
(44)
The same derivation process applies to p, \;, r;, leading to the following results:
“At£k+1 +pk+1H2 4 <)\k+1 _ )\k7rk>
(45)

<A M (5 ) 108 FR (3 - ) X R
For the variable s, we deduce that 88 T1 = s¥ — ¢, and (sF+! — sF+1 sk — sh+1) <0, which implies that
1
sPHL b < || Pt — 5F )2 (46)
ek

Next, we define Hy, (&) = ¢*(€) + €7b, + 3|| A& + p||?, noting that Hy, is (cvg + || A¢]|3)-smooth. Then
the update of £ in Algorithm T|can be expressed as

€k+1 — €k+1 — €k o ekVHk(Sk)

Applying the sufficient decrease lemma [[101, Lemma 5.7], we obtain

2
HL(E) < (") + (VHi(€), 6 — ) + Ot Il e gy

which simplifies to

ag + || 4¢3 1
Hy(€") < Hy(€%) + (2””2 - o) e =gt (47)
Summing up the estimates (@4)—(@7), we arrive at the inequality (@3). O

Now we provide the proof for Theorem 3.5]
Proof. We compress (@#3) from k& = 0 to K — 1 and obtain that

K—-1 2 2
kz_:l [(i _ aL+,ngA’:t”2ap> ||Xk+1 _XkHQ + (i _ Oéd-HéAtHz) ||£k+1 _ €k||2

=+ ( 1 %) (”pk—i-l _ pk||2 + ||)\k+1 _ )\kH? + ||I.l~c+1 _ I.Ic||2)} <Vy— Vk.

er

(48)

From the definition of V},, we deduce that

M+1
1

Vie= é(Fk(Z’“) -L)= @(L(X’“) — L)+ p(x", A% ok g b ][ A88 + > pl|”.
’ i=1
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From the non-negativity of L(xk) — L and we know that Vi > 0 and Vy — Vi < Vj. Subsequently,
according to the update rule of variables (x, £) in Algorithm 1, we have that

0 € ex(g; VL(x") + VI(x*)) + (xF = xF) + N (x" 1),
er(A7 (A" + p*) + by + V* (€9)) + (€51 - £F) = 0.
Therefore, it holds that
VL(x®) + B VI(xF) + 2 (xF+1 = xb) € N (xb+1),

(49)
VeFi(z") + 2 (¢ — €)= 0.
Furthermore, we have similar conclusions for A\, r, p, s as follows,
0e (v)\,vrgvpyvs)Fk(Zk> + %(A]f"!‘l _ )\k’rk-i-l o rk’pk-i-l _ pk7sk+1 _ Sk) (50)

—‘r./\/;c(Ak'H, I,k-q—l7 pk+17 sk-&-l).

Now we define

MY = V,F(z"+) — gdt — i(zk+1 s () V. Fi(z"+Y) - V, Fi.(z") — @(Zkﬂ — k),
ek €k

where () holds from d; = 3-V,F.(z"). Using the directions specified in (41) and the relationship given
in (@9) and (30), we obtain

M} € VF(2") + Nic (2", (51)
Based on the definition of the residual function ¢*__ in (15) and the relationship , we know that

TES

|02 = dist (0, Vo Fi(2) + Nie (7)) = ki, (2) (52)

TEeS

Subsequently, we estimate the value || M7 | with respect to z. By using Assumptions [3.1/and [3.2} we find
that ||V, Fy (271 =V, Fi (2°)|| < B Ly |25 —2¥|| where Ly, = max{g-ar +[|As[3ap, aa+ A3, 1}.
Then we have

B
|ME|| < 8Ly |2t — 2¥|| + e—:nzk“ —z". (53)

By combining (52)) and the inequality (53), we deduce that

TEeS ’

o (@) < BLilld ! — 2F) + f—:nzk“ .
which further implies that
1 1
3O (2T < (L + —)? ||z — 28| (54)
Bk €L

From f3;, = B(1 + k)P, we observe i < Land

[[=

1
Ly < max{gar + 1A¢ 30, aa + (| Ael[3, 1} = Le.

Here, we define the constant in the right hand of the above inequality as L. and each entry of L. is positive.
Therefore, we observe from the admissible range of ey, that

1 inf B L 1
— = 1min — s 1y
L. ar+ Bl Adll5ap’ 7 aa+ [|Adl

2}26k22>07
2

*The non-negativity p(z) > 0 for all z is from the formulation of p and , which is mentioned in the proof of
Theorem 2.5]in Appendix[B.3]
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which implies that L < L, < é Therefore, can be written as

1 1 1 ) 1.1
s (B < (L —)(Li + )25 =28 < (Le + )5 125 = 211
. ek ek er’ 2ey,
Meanwhile, the condition e < ej, simply means that i < é In summary, the above inequality can be
calculated as -
Lok okt1y2 Lol ok kg2
— <(Le+-)— — . 55
G0k S (Lt )5k = ok (55)
From (48), we deduce that
z ﬁuzkﬁ-l _ Zk||2
(a) x 48, 1| A, 12 g I1A, 112
S0 [(f e ) It o (- ) e - g (s
(& = 3) (P = pHII I = A2 4 b — k) 2) |
< V.

Here, (a) is directly calculated from the admissible range for ej. By compressing from k£ = 0 to co and
combining with the inequality (56), we obtain that

<1 1
> Ok < (Lot )V
k=0 "k €

Given By = (1 + k)P and 0 < p < %, we conclude that

1

. k(o k+1ly _
min ¢}, (z )*O(m)-

0<k<K
From the definition of ¢, in (15), we know that
0 < Brdrea(a”) < 2(Fy(2") — L(2")).

If the sequence {F},(z*)} is bounded, we know that there exists Mp such that F(z") < Mp for each k.
Then we have

0 < Brdfea(2z") < 2Mp — L,
which implies that ¢ e, (z) = O(%). O
D.4 PROOF OF THEOREM[3.7]]
We first recall the updates of (z, u, ) in Algorithm The detailed procedure is:

« Update z with 0): (2", u*, u*) — (2F+1, u¥, pb).
« Update u with @3): (z"*1, u¥, p*) — (2541, ub+1, k).
» Update p with (22): (2F+1, ub*1, pk) — (281, ubt!, phth),

Now we provide the proof for Theorem [3.7]as follows.
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Proof. From the update rule for u in (22)), we have

Elj/,(zk+1’uk+1,uk) < Ei(zk—&-l’uk)uk). (57)
Additionally, the update rule for g in (23) implies
1
LE(M 1 ut T ) — L1 T k) = — | — R, (58)

According to Assumptions and we know that E’fy(z, u, ) is My-smooth with respect to z, where
My, = max{g-ar + || A¢l50p, aa + [|A¢]13, 1} + (M + 1)7. According to [I0I} Lemma 5.7], we have

M,
ch(2 b ) < £ ut ) (VaLh (@R uf k), B ) S )R

Given the update rule z**t! = z¥ — ¢, V,LF (z u”_ p*), the inequality becomes

1

) sz+1 o ZkHQ-

€k

My _
2

Combining (57)), and and dividing both sides by 3, we conclude
M, 1 1
LRt e )
€L Y
Subtracting Bik L from both sides of the inequality, we obtain

2
M, 1 1
L+( k _ )nﬁ“—ﬁW—uﬁ“—uW?
ek Y

1

£k (F T b, pky < £h (R ok k) + < (59)

Es(zk+1,uk+1,uk+l) < Es(zk’uk,uk‘) =+ (

1
?L S [h]:/(zk7 uka IJ‘k)

1
B

uk+1

) )

L,{j(zk+1 Mk+1) _

According to B = (1 + k)P,

. From Assumptlon | let L := inf L(x) > —o0,

= Bk
then we have /3}91“ (L(xF1) - L) < ﬁlk (L(x k“) L). By the definition of F}, it is equivalent to
1 1
(Fi(z"") — L) < -~ (F.(z""") = L)
Brt1 B
From the definition of £%, we obtain
1
LR (g1 bt k)
v I Gk
1 M+1 M+1 M+1
_ (Fk(zk+1) _L) + Z gl( k+1) Z <l"‘f+17 ?+1 _ Zk+1> + b Z ||11§+1 _ Zk+1||2
Bt i=1 i=1 23
1 M+1 M+1 - M2
SE(Fk(ZkJrl) —L)+ Y gi(af T+ Y i -2 3 D Mt =2
i=1 i=1 i=1
1
=£§(Zk+1, uk+17 /J'k+1) _ @L
Now we define U, = [,fj (2%, ub, pub) — FlkL' Combining the above fact, implies that
M, 1 1
U}.H_l —U, < (2 _ ) ||Zk+1 _ Zk||2 _ 7”“16—&-1 _ l"’kHQ 61)
€k v
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Meanwhile, we observe that

1
M. = max{Zor + A0, a + | Adll3, 1} + (M + 1)y

1
2 max{ o + | Adzop, aa + A3, 1} + (M + 1)y = My.

This gives that 0 < e < e, < 71~ < Mik Then we can deduce from l) that

e

1 1
U1 — Ui, < 727||Zk+1 — 2" |? — =l — )P
€k 0
From the expression for Lk, we can deduce the following,
. ) M+1 M+1 M+1 )
[':'y(z7u7“) = EF/G(Z)—F 22:1 gt(ul)+ ZZ:I <N17ul_z>+ 3 Z:l ||ut _ZH
L 858 ML aa?
- BTF()“‘ZQZ(uz)"' ZHul—Z—&-’” _Z:l e

(62)

According to Assumption we know that there exists some M, such that ||u*||> < M, forall k € N.

Additionally, L(z*) — L and p are non-negative. This implies that

& kn?

X

indicating that U}, is lower bounded. By telescoping the inequality for £ = 0 to oo, we get

(M +1)M,

2 Ly, Vk €N,
27y

o0

Lokt kg2 1 k41 k2
—|z" T —Z||F + = - < Uy— Ly.
> 5l I D I P < U £

(63)

(64)

The sufficient decrease property (61)) ensures that the Uy — £, > Uy — Uy, > 0 for any £ € N. In addition,

the step size satisfies 0 < e < e < 1/M,, which ensures the boundedness of =, 1e.,

1 1
0O<M, < —< -

€k €

Together with the positivity of ej, and -, it follows from (64) that

lim kL k| =o.

i”zk+1 _
k—oo €f

2> =0, lim |p
k—o0

Consequently, (63)) implies that
k+1 Zk” -0

lim ||z
k—o0
From the update of w;, we further derive that
lim [[uf — 2| = o0.
k—o0
Meanwhile, from the form (21)) for updating u;, we derive
k+1 k1 kbl B
agz( ) + ’Y( + v )
N, xxa(u +1)+’7( R AR
Nicorca () + i =1, M +1,

0

2 M

—~
N

—~
<o
=
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where (a) utilizes the fact that the normal cone is equivalent to the subdifferential of indicator functions and

(b) follows from the update of [Lk+1 In l@b we use Moreau-Rockafellar theorem [104, Theorem 23.8] to
calculate the sum rule of subdifferentials. (68)) implies that

—p; € Ni,wrca (0 ).
Combining the outer semi-continuity of the normal cone and (67), we can obtain that
Jim dist(—pl, Nic, xica(z)) = 0. (69)
—00 *
Furthermore, according to the definition L = (K1 N --- N Kare1) x K4, we know that £ = (K; x K¢) N
N (Karp1 x K4). Tt implies that
Nic = Nic,xica + -+ Nicyypa xicd-

From (69), we know
M+1

lim dist(— Z kN (z)) = 0. (70)

k—o0

From the update of z, we have
2"t =28 — eV, Lk (z u”, ph).
Combining with the definition of F}, in (8], the above equality can be further expressed as

0 —_1 k+1_k+LVF(k_MZ+1 k_ MZH k_gk)
= (z z") + 5 VaFi(2") Ky —7 (ui —z
i=1 i=1 71
M+1 ( )

L k1 _ kY 4 1 oy e MR k_ k
=— (" _z)—i—@Vsz(z)—Z:lui +z:1(“i —pi) = Z:l(ui—z).

Now we define
M+1

_v Fk: k+1 B Z uk-‘,—l

From (70), we know that
lim dist(M;, Vo Fi (2" + Nie(2*)) = 0.
—00

Therefore, we evaluate || MF|| as follows. According to , we know that

k _ /Bk k+1 k k+1 & k"rl & k k
M, _7616 (Z —z )+(szk(Z ) Vv Fk E ﬁk )+’}/ﬂk E (ui —Z )
=1

With the notation My, F(z) is (8x M} )-smooth with respect to z. Then we have

M+1
M| < Bl = 2F) B M|z — 2R Bl = ]|+ B ) [uf — 2"
=

@ skl ok k1 k M ek
< TR =2+ Bl — ptl + B Z: ui — 2",

where (a) use the fact that e, < - Combining the definition of ki , we obtain

lﬁes(zk+1) < HMzkH + dlst( Z,Vsz(zk+1) +NIC(ZI€+1))
M+1
2
< 2| ZR Y — K| 4 Bl bt — b 4 B 21 [k — 2%
i=

+ dist(MF, V, Fj. (21 4+ N (zFH1)).
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6 and (66) imply that 21— 2¥]) < O(1/VR), [+1 — ]| < O(1/VF) and [ — 5| < O(1/ V)
Combining with the fact that 0 < M, < é < Land 0 < p < 1/2, we take the limit as k — oo in the above

inequality and obtain that

lim ¢F, (z") = 0.
k—o0

If the sequence { F}(z*)} is bounded, there exists a constant M such that F(z") < Mp for all k. From
the formulation ¢, in (24), we observe that

0 < Brdfea(z”) < 2(F(2") — L(2")) < 2Mp — L.

With the non-negativity of ¢ .4, we take the limit £ — oo in the above inequality and obtain that

klggo Gfea(z") = 0.

D.5 EXPLANATIONS FOR ASSUMPTIONS IN SECTION[3]

We show that our assumptions are reasonable, broadly applicable to machine learning scenarios, and aligned
with standard conditions widely adopted in ADMM-based methods.

D.5.1 EXPLANATIONS FOR ASSUMPTION[3.2]

We emphasize that Assumption [3.2]is more general than the strong convexity of LL objective, and in fact
does not force the LL objective to be strongly convex. This is consistent with explicit clarification in Remark
For example, the function [(x) = ¢(A;x + b;) is convex but not strongly convex when A; is not of full
row rank.

We illustrate with the examples in Table[T|that Assumption[3.2]is satisfied in all cases. Specifically, referring
to the explicit forms of ¢ and its conjugate ¢*, we verify the local smoothness and local strong convexity as
follows.

Least Squares Loss: o, = 1 and ooy = 1. ¢ and ¢* are 1/2-strongly convex in their domains.

Smoothed SVM: o, = % and ag = 1. ¢ is 3-strongly convex only on the interval [0, 1]. ©* is 3-strongly
convex in its domain.

Huber loss: o, = 1 and g = 1. ¢ and @™ are %—strongly convex only on the interval [—4, d].

E EXPERIMENTS

All experiments are implemented using Python 3.9 on a computer equipped with an Apple M2 chip (8-core
architecture: 4 performance cores and 4 efficiency cores), running the macOS operating system with 8 GB
memory. The competing methods are implemented using the code provided by [575159; [64]].

E.1 INTRODUCTION FOR COMPETITORS
We now introduce the competing methods evaluated in our experiments:

¢ Grid Search: We perform a 10 x 10 uniformly-spaced grid search over the hyperparameter space.
* Random Search: We uniformly sample 100 configurations for each hyperparameter direction.
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» Implicit Differentiation: This category includes IGJO [14] and IFDM [54;[15]], both of which rely
on implicit differentiation techniques.

* TPE: We adopt the Tree-structured Parzen Estimator approach [82], a widely used Bayesian opti-
mization method.

* VF-iDCA: [57] formulates the lower-level problem as a value function and approximately solves
the bilevel problem via DC programming.

« LDMMA: Based on lower-level duality, [59] reformulates the original problem into a more
tractable form.

¢ BiC-GAFFA: [65]] solves the bilevel optimization problem using a gap function-based framework.

» MEHA: [63] solves the bilevel optimization problem using Moreau envelope-based framework.

We apply IFDM only to the elastic net and logistic regression problems, as its available implementation
supports only these two among our tested tasks. LDMMA is used exclusively for Lasso-type regression
and the smoothed support vector machine, as its reformulation is not compatible with logistic regression.
Furthermore, [57] does not provide experimental results for logistic regression, and therefore we do not
include it in the comparison for that task.

E.2 EXPERIMENTAL ON SYNTHETIC DATA

For experiments on synthetic data, we consider hyperparameter optimization for elastic net, group Lasso,
and sparse group Lasso. These models are equipped with a least squares loss and different regularization
terms. We outline the specific mathematical form of (3] for each problem below.

Elastic net [16] is a linear combination of the Lasso and ridge penalties. Its formulation in (3) is given by:

min %HAMIX — bya|?

x . . . . 72
st x € argmin d[[An& — be | + AdlIE] + 2 %3, (72)

X

Group Lasso [83] is an extension of the Lasso with penalty to predefined groups of coefficients. This problem
is captured in (3)) as:
H;in %HAvalX_ bvalH2
M ) 73
st x € argmin 2[| A% — by |2+ 3 A% Do, 73
% i=1

where x(¥) is a sub-vector of x and x = (x(M), ..., x(*)).
Sparse group Lasso [17] combines the group Lasso and Lasso penalties, which are designed to encourage
sparsity and grouping of predictors [14]. Its formulation in (3)) is represented as:

m)in %”Avalx - bval”2

1 . 9 . Ay ) (74)
s.t.  x € argmin 5||AyX — by ||* + Anrpa X0+ D0 Nal[X |2,
% i=1

where x(¥) is a sub-vector of x and x = (x(M), ..., x(*)).

Based on the different cases discussed in Section and Section we naturally employ LDP-PGM
(Algorithm [I) to solve (73), and LDP-ADMM (Algorithm [2) to address and (74). To evaluate the
performance of each method, we calculate validation and test error with obtained LL minimizers in each
experiment. We provide detailed experimental settings and report the results for elastic net and group lasso
below.
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E.2.1 ELASTIC NET

Data Generation:

The synthetic data is generated following the methodology described by [14], as outlined below. Feature
vectors a; € RP are sampled from a multivariate normal distribution with a mean of 0 and covariance
structure cor(aij, ai) = 0.519=*I. The response vector b is computed as b; = BTa; + oe;, where 3; € RP
is generated such that each element takes a value of either 0 or 1, with exactly 15 nonzero elements. The
noise € is sampled from a standard normal distribution, and the value of ¢ is determined to ensure that the

signal-to-noise ratio satisfies SNR 2 1ABII/b — AB|| = 2.
Experimental Settings:

Since [64] does not provide experiments or code for the elastic net problem, we compare only with search-
based methods, IGJO, IFDM, VF-iDCA and LDMMA in this experiment. We implement the algorithms
we compared with the same settings according to the description in [57; 59]. For LDP-ADMM, we set
Br = (1 +k)%3, e, = 0.1, v = 10 and initial A\Y = 0.1, \Y = 0.05. For elastic net problem, the stopping
criterion is set as ||zF ! — z¥|| /||z¥ 1| < 0.1.

Results and Discussions:

We conduct repeated experiments with 10 randomly generated synthetic data, and calculate the mean and
variance. The numerical results on elastic net are reported in Table E} Overall, LDPM (LDP-ADMM)
achieves the lowest test error while maintaining a significantly reduced time cost, especially for large-scale
datasets. In contrast, the search methods incur a high computational cost and exhibit poor performance on
the test dataset. The gradient-based method IGJO demonstrates slightly better accuracy and efficiency but
converges very slowly.

As discussed in [S7;159], both VF-iDCA and LDMMA achieve consistently low validation errors across
various experiments, indicating strong learning performance on training and validation sets. However, they
tend to suffer from overfitting, as reflected in increasing test errors over iterations and poor generalization
to unseen data. This phenomenon occurs across experiments with several machine learning models. We
observe that the running time performance of IFDM is highly competitive and significantly fast in large
scale. This is because the IFDM algorithm leverages the sparsity of the Jacobian of the hyper-objective in
bilevel optimization, which is also stated in [15]].

Table 5: Elastic net problems on synthetic data, where ||, |Iyai|, |Ite| and p represent the number of
training observations, validation observations, predictors and features, respectively.

Settings Methods Time(s) Val. Err. Test Err. ‘ Settings Time(s) Val. Err. Test Err.
Grid 5.76 £0.33 7.05+2.02 6.98+1.14 11.72+£1.32 6.05+1.47 6.49 £+ 0.82
Random 5.744+0.26 7.01 £2.01 7.01 £1.11 12.85+2.11 6.04 £1.45 6.49 £ 0.83
|Itr| = 100 IGIO 1.54 £0.84 4.99+1.69 5.42+1.21 ||[4-] =100 3.37+1.85 5.22+1.50 5.72 £ 0.91
|Iyq1] =20 IFDM 1.20 £ 0.50 4.19+£0.91 4.81 £1.39 ||[,4;| =100 1.44 +2.85 4.89 +£0.12 4.98 +0.17
|Ite| = 250 VF-iDCA 3.16 £ 0.63 2.72+1.57 5.18 £ 1.40 ||[te| =250 6.08 £2.24 3.13+£0.78 5.39 £+ 0.92
p = 250 LDMMA 1.64 4+ 0.07 0.00 4+ 0.00 6.97 £0.79 |p = 450 3.95+0.22 0.00+0.00 6.56 £ 0.70
BiC-GAFFA 0.92 £ 0.05 2.48 £0.62 5.86 £ 0.65 1.45+0.14 3.92+0.48 5.01 £0.58
LDPM 0.60 + 0.02 2.56 + 0.80 4.92 + 0.51 1.02 £ 0.03 3.42+0.39 4.23 £ 0.37
Grid 6.09 £0.60 6.39 £1.09 6.27 +1.02 32.99 +£3.81 7.81 £1.53 8.82+0.92
Random 6.44 +£1.28 4.39 £1.10 6.27 £ 1.05 33.82 £ 2.66 6.44 £ 1.53 8.67 £ 0.94
|I¢r| = 100 1GJO 3.86 +2.09 4.41+0.98 4.31+0.95 ||I4r| =100 31.30+6.41 7.78 £1.12 8.61 + 0.82
|Tyq1] = 100 IFDM 1.17£0.38 4.54 £1.06 4.38+£1.06 ||[,q;] =100 3.94 £2.28 7.57£0.79 8.10 £ 1.45
|Ite| = 250 VF-iDCA 4.74 +£1.77 2.35+1.56 4.47 £ 1.11 ||[¢¢| = 100 23.21 £+4.96 0.00 £ 0.00 4.61 £ 0.77
p = 250 LDMMA 0.98 £0.09 0.00£0.00 5.61+0.77 |p = 2500 16.26 £ 1.44 0.00 £0.00 5.67 +1.21
BiC-GAFFA 0.85 4+ 0.07 4.12 4+ 0.41 4.62 £ 0.55 6.12 4+ 0.35 2.48 £0.32 4.98 +0.72
LDPM 0.73 £ 0.08 3.41 + 0.48 3.51 + 0.40 4.83 £ 0.08 1.65+0.14 4.37 + 0.65
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In our experiments, we report the numerical results of VF-iDCA and LDMMA based on the final iteration
output when the algorithm terminates. In contrast, [S7; |S9] reports the best results observed across all
iterations. As a result, the test errors reported for VF-iDCA and LDMMA in Table [5| appear slightly worse
in our study. Additionally, our test error is slightly worse than that reported in [59] only under the first data
setting in Table 5] [59] implements LDMMA with employing off-the-shelf solver MOSEK in MATLAB to
solve the subproblems. Therefore, LDMMA yields highly favorable results for small-scale problems, while
its efficiency deteriorates significantly as the data size increases, making it less effective for large-scale
problem instances.

Table NEW2: Total iterations, lower-level duality gap, and sparsity comparison for elastic net on synthetic

data.
Methods Total Iterations Lower-level Duality Gap  Sparsity(%)
Setting: |I;,| = 100, |I,q4;] = 20, |Ite]| = 250, p = 250
Grid Search / / 15
Random Search / / 15
IGJO 240 + 31 1.902 x 1076 17.1+£1.8
IFDM 195 £+ 25 1.103 x 1076 16.3 1.5
VF-iDCA 132 £ 16 3.568 x 1075 33.5+4.9
LDMMA 118 + 14 4.215 x 107 40.8 £ 6.4
BiC-GAFFA 101 £+ 11 2.184 x 10~ 7 18.9 + 2.0
LDPM (Ours) 85 + 10 7.213 x 108 15.7+1.2

Setting: |I;,.| = 100, |I,q;| = 100, |Isc| = 250, p = 450

Grid Search — — 15

Random Search — — 15

IGJO 390 + 48 2.843 x 10~° 18.0+ 2.4
IFDM 315 + 38 1.482 x 1076 17.2+1.9
VF-iDCA 175 + 21 4.972 x 107° 36.8 + 6.2
LDMMA 152 + 17 6.318 x 1077 43.5+ 7.6
BiC-GAFFA 128 + 15 3.412 x 107 20.5 + 2.2
LDPM (Ours) 102 + 12 8.905 x 108 16.0+1.4

The lower-level duality gaps in Table NEW2 show a clear separation among methods. VF-iDCA and LD-
MMA depend on convex solvers, whose fixed tolerances lead to noticeably larger gaps. BiC-GAFFA reduces
the gap via an explicit gap function, but its accuracy remains below that of our method.

In contrast, LDPM achieves by far the smallest duality gap, confirming the effectiveness of our penalty-based
first-order scheme and supporting the strong-duality-based reformulation in Lemma 2.1} In terms of spar-
sity, LDPM also produces solutions closest to the true sparsity pattern, while VF-iDCA and LDMMA tend
to generate overly dense solutions, indicating overfitting. These results collectively demonstrate superior
stability and generalization of LDPM.

E.2.2 SPARSE GROUP LASSO

Data Generation:

We generate the synthetic data with the method in [[14], including 100 training, validation and test samples,
respectively. The feature vector a; € RP is drawn from a standard normal distribution. The response vector
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b is computed as b; = B a; + o¢;, where B = [V, 3D )] 81 = (1,2,3,4,5,0,...,0), for
1 = 1,2,3. The noise vector € follows a standard normal distribution, and ¢ is set such that the signal-to-
noise ratio (SNR) is 2. For different dimensions in Table 2] we set the group size to 30 for p = 600 and
p = 1200, and to 300 for p = 2400 and p = 4800. Notably, compared to [57}; [59], our feature vector
dimensions are larger, while the number of samples is evidently smaller.

Experimental Settings:

We compare our method with search methods, IGJO, VF-iDCA, LDMMA and BiC-GAFFA in this ex-
periment. For the compared method BiC-GAFFA, we follow the recommended procedure outlined in
[64]. For the other comparison methods, we adopt the exact settings from [57; 59]. For LDP-ADMM,
we set B, = (1 + k)3, v = 10 and the step size e, = 0.001. The hyperparameters are initialized as
A =0.1,i=1,2,.., M and \Y, 41 = 0.05. For sparse group Lasso problem, the stopping criterion is set

as ||z"“rl — ZkH/HZkHH <0.2.
Results and Discussions:

From Table [2| we observe that LDPM (LDP-ADMM) achieves lowest test error and outperforms other
algorithms in terms of time cost. As the scale of data increases, LDPM (LDP-ADMM) consistently finds
the best hyperparameters and model solutions. In comparison, search methods become extremely unstable
when facing dozens of hyperparameters. IGJO converges slowly and requires huge amount of computation.
Similar to the experiments on the elastic net problem, LDMMA and VF-iDCA still exhibit a certain degree
of overfitting. Both LDPM and BiC-GAFFA belong to the class of single-loop Hessian-free algorithms.
Since LDPM (LDP-ADMM) employs projection to handle nonsmooth constraints, it achieves slightly better
performance and efficiency compared to BiC-GAFFA.

E.2.3 GRoOUP LASSO

Compared to the sparse group Lasso problem, this experiment removes the ¢;-norm regularization term,
leading to a reduction in the complexity of the LL problem. However, this omission also results in weaker
control over the sparsity of x, potentially affecting the structure and interpretability of the solution. While
the lower computational complexity may improve efficiency, the trade-off is a less strictly enforced sparsity
constraint, which could affect the ability to capture key features in high-dimensional settings.

Experimental Settings:

The synthetic data is generated following the same procedure as described in Appendix [E:2.2] For this
experiment, we adopt the same settings for other compared algorithms as those used in the experiment for
the sparse group Lasso problem in Appendix We conduct LDP-PGM with 3, = (1+k)°%3, e, = 0.01
and initial \) = (0.1,0.1,...,0.1),i = 1,2, ..., M.

Results and Discussions:

We conduct experiments with different data scales and report numerical results over 10 repetitions in Table
[l The overall comparison results in Table[6]are similar to those in Table[2] In this case, LDPM (LDP-PGM)
only requires projected gradient descent, leading to a significant improvement in efficiency.

To better evaluate scalability under the most challenging conditions, we report the total iterations and lower-
level duality gaps on the largest-scale setting (p = 4800) for both Group Lasso and Sparse Group Lasso.
Since these two tasks share similar bilevel structures, summarizing their lower-level optimality in a single
table provides a clear comparison of efficiency across methods. As shown in Table NEW3, LDPM achieves
the fewest iterations and the smallest duality gap, demonstrating superior convergence behavior in large-
scale nonsmooth bilevel optimization.
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Table 6: Group Lasso problems on the synthetic data, where p represents the number of features.

Settings \ p = 600 p = 1200
| Time(s) Val. Err. Test Err. | Time(s) Val. Err. Test Err.
Grid 5.72+1.69 93.20£5.82 96.07 £17.50 |12.31 +2.24 93.15+4.74 94.60 £ 20.27
Random 5.42+1.81 148.69 + 6.55 162.17 + 28.09|11.38 + 2.56 151.66 £+ 15.63 160.88 £+ 17.07
1GJO 1.42 £0.25 112.12+4.48 105.99 £ 15.09| 6.62 £ 1.31 143.62 £ 15.42 117.37 + 4.41
VF-iIDCA | 0.50 £ 0.14 62.66 £ 6.14 84.52 + 12.46 | 7.77 £2.62 95.02 £+ 7.04 96.34 + 9.79
LDMMA | 0.51 £0.12 90.97 £5.53 79.68 £16.19 | 4.25 £1.94 92.32 £+ 8.05 92.43 £ 9.99
MEHA 0.41 +0.03 78.82+6.91 78.04 £ 11.52 | 3.11 £0.26 91.44 £+ 6.01 89.36 + 8.20
BiC-GAFFA | 0.35 £ 0.02 74.16 £6.91 78.60 £ 11.81 | 2.27 £0.26 90.43 £ 5.53 87.79 £+ 8.43
LDPM 0.29 £ 0.03 70.44+6.85 70.92+9.71 [1.81 £0.12 88.92+ 6.41 82.76 + 6.51
Settings [ p = 2400 p = 4800
‘ Time(s) Val. Err. Test Err. [ Time(s) Val. Err. Test Err.

Grid 21.81 4+ 3.65 105.19 + 15.54 93.35 + 16.60 |42.38 & 5.71 141.83 + 26.52 126.95 + 19.38
Random 19.95 + 6.17 132.04 + 16.90 161.45 + 18.37[41.67 4+ 5.01 109.35 £+ 18.21 134.74 + 21.41
1GJO 10.03 + 6.69 100.75 + 16.47 127.58 + 16.43|26.78 + 8.50 109.73 £+ 16.66 117.14 + 8.23
VF-iDCA [12.88 +£1.31 69.53 £5.90 90.11 £ 11.59 [40.61 £2.79 81.03 4+ 11.58 105.70 £ 10.05
LDMMA 6.75+0.19 72.85+8.22 87.00 £ 15.13 |32.53 + 3.29 86.47 £+ 13.55 105.39 £ 10.37
MEHA 5.32+0.16 88.55+11.72 84.93+10.38 | 4.89 £0.49 99.92+8.88 102.77 = 7.70
BiC-GAFFA | 4.60 £ 0.09 95.51 4 14.88 84.02 £ 9.46 4.53 £0.57 103.77 £9.01 101.26 + 7.84
LDPM 4.22+0.06 92.94+6.92 78.41 +2.98 (3.98+0.13 91.28 +6.27 94.42 1+ 6.01

Table NEW3: Total iterations and lower-level duality gap on the largest-scale setting (p = 4800) for both

Group Lasso and Sparse Group Lasso.

Group Lasso (p = 4800) Sparse Group Lasso (p = 4800)

Methods } Total Iterations Lower-level Duality Gap | Total Iterations Lower-level Duality Gap
IGJO 520 %+ 60 1.46 x 1075 545 + 58 1.52 x 107°
VF-iDCA 365 + 45 6.92 x 107° 382 + 41 7.15 x 107°
LDMMA 305 + 33 4.21 x 1077 318 + 35 4.56 x 1077
MEHA 255 + 23 3.08 x 1076 268 + 24 3.31x 1076
BiC-GAFFA 220 + 20 1.92 x 1077 233+ 19 2.04 x 1077
LDPM (Ours) 172+ 16 6.11 x 10~ 8 185 4+ 18 5.94 x 1078

E.2.4 LOW-RANK MATRIX COMPLETION

We consider low-rank matrix completion problem on synthetic data. The formulation in (3)) of the low-rank
matrix completion is given as:

min M;: —x;0 —z;8 —T;;|?

nin (i,j)ZG:QmL | Mi iB — T

st. (0,8,T) € aggmin { ‘ Z |M;; —x;0 —z;3 — T';;|? (75
,8,T (4,5) EQr

G G
o[l + 22 Ag[10]|2 + Zl Ag+c:||ﬁ‘(g>||2}
9= 9=

Data Generation:

The data generation procedure follows the approach in [[14;/57]. Specifically, two entries per row and column
are selected as the training set {2;,, and one entry per row and column is selected as the validation set €2y,).
The remaining entries form the test set {2ey.. The row and column features are each grouped into 12 groups,
with 3 covariates per group, resulting in p = 36 and G = 12.

The true coefficients are set as a9 = g1sforg = 1,...,4 and B9 = ¢14 for g = 1,2, with all other
group coefficients set to zero. The low-rank effect matrix I is generated as a rank-one matrix I' = uv',
where u and v are sampled from the standard normal distribution.
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The row features X and column features Z are also sampled from a standard normal distribution and then
scaled so that the Frobenius norm of X1 +(Z31 ") T matches that of I. Finally, the matrix observations
are generated as

M;; = XiTOé + ZjTﬁ + T + o€y,
where ¢;; is standard Gaussian noise, and the noise level o is chosen such that the signal-to-noise ratio (SNR)
equals 2.

Experimental Settings:

In this experiment, since multiple regularizers are involved, we employ LDP-ADMM. we compare LDP-
ADMM with grid serach, random search, TPE, IGJO, VF-iDCA. For grid search, we explore two hyper-
parameters /11 and pgp with the regularization parameters defined as A\g = 10#* and A\, = 10#2 for each
g=1,...,2G. A 10 x 10 grid uniformly spaced over the range [—3.5,—1] x [—3.5, —1] is employed,
consistent with the approach of [14]. For both the random search and TPE methods, the optimization
is conducted over transformed variables u, = log;o(Am) for m = 0,1,2,...,2G, where each ug is
drawn from a uniform distribution on the interval [—3.5, —1]. For IGJO, the initial values for the regu-
larization vector A are set to [0.005,0.005,...,0.005]. For VF-iDCA, the initial guess for the auxiliary
parameter r is chosen as [1,0.1,0.1,...,0.1]. The algorithm is terminated when the stopping criterion
(||z5*+* — 2*||)/||z*|] < 0.1 is satisfied. For LDP-ADMM, we set 3, = (1 + k)%3, v = 10, step size
er = 0.025 and initial \; = 0.05,2 =0,1,2, ..., 2G.

Results and Discussions:

Throughout all experiments, feature grouping is performed sequentially as follows, every three consecutive
features are assigned to the same group, starting from the first feature onward.

We present the statistical results in repeated experiments in Table [/l VF-iDCA and LDPM (LDP-ADMM)
incur longer runtimes than search methods because they perform more intensive iterative updates. VF-
iDCA leverages inexact DC-programming steps to more faithfully enforce the low-rank and group-sparsity
penalties. This additional computational effort yields tighter approximation of the underlying low-rank
factors, resulting in substantially lower validation and test errors. LDPM (LDP-ADMM) repeatedly perform
costly matrix projections as discussed in Appendix [C.2]to enforce the rank constraints accurately. These
intensive projection steps allow them to recover the underlying low-rank structure more precisely, which
translates into substantially lower validation and test errors.

Table 7: Low-rank matrix completion problems on synthetic data

Methods Time(s) Val. Acc. Test Acc.

Grid 21.024+0.95 0.71 £0.21 0.76 £0.20
Random 33.124+2.10 0.72+£0.22 0.79£0.19
TPE 36.80 =9.45 0.69 +0.20 0.75 + 0.18

1GJO 1205.0 £ 312.5 0.67 £0.20 0.71 +0.17
VF-iDCA 55.20 + 12.05 0.65 + 0.18 0.69 4+ 0.15
LDPM 62.10 + 15.31 0.58 +0.14 0.66 + 0.13

E.2.5 ROBUST REGRESSION

Experimental Settings:

Robust Regression is captured in (3]) as:

min  I5(Apax — byar)

s.t. x €argmin l5(AyX — by ) + M[%[1 + 22 (1%3, (76)

X
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where [; is defined in Table|I|and we select § = 1.345. The synthetic data are generated following the same
methodology as in the elastic net experiments, detailed in Appendix In this setting, the regression
loss is replaced by the Huber loss to enhance robustness against outliers and we also employ LDP-ADMM
due to the presence of multiple regularizers. Since [64] does not provide experiments or code for the robust
regression problem, we compare only with search-based methods, IGJO, IFDM, VF-iDCA and LDMMA in
this experiment. All algorithms are implemented under the same settings as those described in Appendix
For LDP-ADMM, we set 3, = (14 k)%, e, = 0.1, v = 10 and initial A = 0.1, A\ = 0.05. For the
robust regression problem, the stopping criterion is set as || z*+1 — z*|| /|| z"*+1| < 0.1.

Results and Discussions:

We conduct repeated experiments with 10 randomly generated synthetic data, and calculate the mean and
variance. The numerical results on robust regression are reported in Table[§] Overall, LDPM (LDP-ADMM)
achieves the lowest test error while maintaining a significantly reduced time cost, especially for large-scale
datasets. In contrast, the search methods incur a high computational cost and exhibit poor performance on
the test dataset. The gradient-based method IGJO demonstrates slightly better accuracy and efficiency but
converges very slowly.

Table 8: Robust regression problems with Huber loss on synthetic data, where |Ii.|, |Iyai|, |Ite| and p
represent the number of training observations, validation observations, predictors and features, respectively.

Settings Methods Time(s) Val. Err. Test Err. ‘ Settings Time(s) Val. Err. Test Err.
Grid 6.22 £ 0.55 6.28 +1.05 6.12 £ 1.00 33.21 £3.74 7.62+£1.42 8.59+0.88
Random 6.37 £ 1.12 4.25+1.06 6.19 £ 1.01 34.07 £2.59 6.32+ 1.46 8.48 +0.92
|Iir| = 100 1GJO 3.74 £1.98 4.351+0.94 4.25+0.91 |Iir| = 100 30.82 £ 6.18 7.59 + 1.09 8.45 £+ 0.79
I " | = 100 IFDM 1.21 £0.35 4.40 +1.01 4.26 £ 1.02 \I“ | = 100 3.88+2.15 7.45+0.73 8.02 4+ 1.32
Hvat VF-iDCA 4.63+1.62 2.28 +1.42 4.39 + 1.05 val 22.98 +4.75 2.15 + 0.88 4.50 £ 0.73
Llf: |2§0250 LDMMA 0.95 £ 0.08 2.34 +1.01 5.52 £0.74 Llf: |2§O(1)00 15.89 £1.39 2.41+£0.92 5.61 £ 1.12
- MEHA 0.82 £ 0.06 1.87+0.55 4.08 + 0.66 - 8.12+0.52 1.98 +0.40 4.92 +0.58
BiC-GAFFA 0.75 4+ 0.05 1.65 £ 0.48 3.76 + 0.54 6.25 + 0.47 1.80 £ 0.36 4.63 + 0.50
LDPM 0.60 £ 0.07 1.29 +0.42 3.02 +0.38 4.65 +0.09 1.58+0.13 3.78 + 0.60

E.3 SENSITIVITY OF PARAMETERS

In this part, we conduct experiments to analyze the sensitivity of our methods to different parameter com-
binations. We evaluate both LDP-PGM (Algorithm [T) and LDP-ADMM (Algorithm [2)). To investigate the
parameter sensitivity of LDP-PGM, we carry out supplementary experiments on the group Lasso problem
with a problem dimension of 1200. In each trial, we vary one parameter while keeping the others fixed. The
corresponding convergence times and projected gradient descent (PGD) iteration counts are summarized in
Table A similar analysis is also performed for LDP-ADMM on the sparse group Lasso instance, also
with a dimension of 1200. The convergence performance, including time and steps, is likewise reported in
Table

In LDP-ADMM, larger ~y enforces the constraint more aggressively, so the primal residual in z-subproblem
drops quickly. Smaller v makes z-update more flexible, but the residual decays more slowly, so it end up
needing more iterations and longer overall runtime. As presented in Table [9} the algorithm consistently
achieves convergence and exhibits strong robustness across a broad spectrum of parameter configurations,
highlighting its stability and reliability under varying conditions.

E.4 EXPERIMENTAL ON REAL-WORLD DATASETS

This section of the experiments aims to demonstrate the numerical performance of our method on real-world
datasets.
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Strategy e, B p Steps Time(s) Strategy ex S p 7 Steps Time(s)

. Original 0.01 1 03 10 36 2.30
0005 1 03 42 375 e, 005 1 03 10 21 189
eg 005 1 03 18 1.67 008 1 03 10 17 1.54
008 1 03 14 1.42 001 2 03 10 48 4.16
0.01 2 03 40 3.60 B 0.01 10 03 10 56 4.35
B 001 10 03 44  3.89 0.01 40 03 10 52 515
- 0.01 40 03 38 3.95 001 1 005 10 129 16.57
00l 1 005 95 1172 p 001 10 015 10 58  6.12

001 40 05 10 72 8.83
001 1 03 5 62 5.12
00l 1 03 20 39 2.48

(b) Parameter Sensitivity for LDP-ADMM

D 0.01 10 0.15 56 4.85
0.01 40 05 31 2.93 ¥
(a) Parameter Sensitivity for LDP-PGM

Table 9: Parameter Sensitivity Analysis for LDP-PGM and LDP-ADMM

E.4.1 ELASTIC NET

Data Introduction:

We consider elastic net problem on high dimendional datasets gisette and sensit. The mathmatical for-
mulation follows (72). The datasets have a large number of features, which are suitable for evaluating the
performance of regularization techniques like the elastic net. Following the approach in [57]], we partition the
datasets as follows: 50 and 25 examples are extracted as the training set, respectively; 50 and 25 examples
are used as the validation set, respectively; and the remaining data was reserved for testing.

Experimental Settings:

For the same reasons as in Appendix we also compare LDP-ADMM with search method, IGJO,
IFDM, VF-iDCA and LDMMA in this experiment. We conduct compared algorithms with the same settings
as [57;159]. For LDP-ADMM, we adopt the same settings as those used in Appendix The stopping
criterion in this experiment is also set as ||z*+1 — 2| /||z*+1|| < 0.1.

Results and Discussions:

We report the experimental results in Figure [I|and summarize them in Table [10] as auxiliary experimental
results. These demonstrate that LDPM (LDP-ADMM) consistently achieves competitive performance while
maintaining fast computational speeds on real-world datasets for elastic net problems.

Table 10: Elastic net problem on datasets gisette and sensit, where |I;.|, |Iyai|, |Ite| and p represent the
number of training samples, validation samples, test samples and features, respectively.

Dataset Methods Time(s) Val. Err.  Test Err. \Dataset Time(s) Val. Err.  Test Err.

Grid 37.21 +4.80 0.24 +0.02 0.24 £ 0.02 1.62+£0.19 1.41 £0.75 1.33 £0.47
Random 56.67 +9.55 0.22 £ 0.05 0.26 £ 0.02 1.46 +£0.12 1.52 + 0.58 1.48 £0.43
I1GJO 18.24 £3.17 0.24 £0.02 0.23 £0.03 0.57+£0.14 0.52+£0.18 0.61 +£0.14
gisette IFDM 35.4040.74 0.224+0.02 0.23+0.03 | sensit 6.35 4 0.04 0.37 +0.10 0.41 +0.23
VEF-iDCA 10.75 +2.72 0.01 +0.00 0.22 £ 0.01 0.47 £0.06 0.27 4 0.03 0.52 £ 0.06
LDMMA 9.45£2.98 0.01 £0.00 0.21 4 0.01 0.41 £ 0.05 0.25 4 0.04 0.50 + 0.04
LDPM 4.854+0.23 0.09£0.05 0.14 £0.03 0.28 £ 0.02 0.08 £ 0.01 0.34 + 0.05
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As described in [57; 59], the implementation of VF-iDCA and LDMMA relies heavily on optimization
solvers. In particular, the subproblems of LDMMA are entirely dependent on the commercial solver
MOSEK, while the subproblems of VF-iDCA also rely on the CVXPY package, utilizing ECOS or CSC
as solvers. For large-scale datasets, frequent solver calls can become a major computational bottleneck,
limiting the scalability of these methods in high-dimensional or complex problem settings. Furthermore,
the conic programming reformulation proposed in [S9] introduces second-order cone constraints, making
LDMMA inherently a second-order algorithm. Consequently, its efficiency deteriorates significantly when
applied to large-scale problems.

In this experiment, we omit the validation/test error-vs-time curves in Figure [T] for both the grid/random
search methods and IFDM because their numerical instability leads to highly erratic traces. As discussed
in [[14;54], implicit differentiation methods can suffer from numerical instability when applied to problems
with sparse regularization like elastic net. In such cases, the inner optimization problems often have poor
conditioning, causing oscillatory behavior during convergence.

Similar to the experiments on synthetic data, We report the total iterations, lower-level duality gaps, and
sparsity levels for all methods on the real elastic net datasets in Table NEW4. Across both datasets, LDPM
achieves the smallest duality gaps and the fewest iterations, while also producing solutions whose spar-
sity is closest to the ground truth, reflecting both superior convergence efficiency and better generalization
performance.

Table NEW4: Total iterations, lower-level duality gap, and sparsity comparison for elastic net on real
datasets (gisette and sensit).

Methods | gisette | sensit

| Total Tter. LL Gap Sparsity(%) | Total Iter. LL Gap Sparsity(%)
Grid Search / / 10.0 / / 7.0
Random Search / / 10.0 / / 7.0
IGJO 520460 1.6 x 107° 11.84+1.9 | 430£51 1.8x10°° 84+1.3
IFDM 415+48 9.4 x 107* 11.24+1.6 | 365+45 1.1x107* 79+1.2
VF-iDCA 285 +32 3.8x107% 26.344.0 | 240+30 4.1x107° 19.8+3.7
LDMMA 242427 57x1077 281449 | 210425 6.5x 1077 22.0+4.1

LDPM (Ours) | 1324+14 7.5x10°% 107+1.3|118+12 89x10°% 7.6+1.0

E.4.2 SMOOTHED SUPPORT VECTOR MACHINE

The smoothed support vector machine incorporates smoothed hinge loss function and squared ¢5-norm reg-
ularization. The formulation in (3) of the smoothed support vector machine is given as:

min > In(—b;al'x)
XA i€1ya1 (77)
st. x€argmin Y ly(bal'k) + 3[%(3,

X 1€,

where [}, denotes the smoothed hinge loss function detailed in Table[I] Since there is only one regularization
term in (77), we conduct LDP-PGM due to the single regularizer.

Data Introduction:

We use the LIBSVM toolbox [107] E]to load the datasets and extract the corresponding observation matrix
and label vector for each dataset. Each dataset is divided into two separate parts: a cross-validation training
set ) consisting of 3| N/6| samples, and a test set e containing the remaining samples. Within this
division, the training set is further partitioned into multiple equal parts, and we iteratively use one part as

>https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
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the validation set while utilizing the remaining parts as the training set to solve the SVM problem. For the
experiments, we conducted 6-fold cross-validation on the training and validation sets across all three datasets
to optimize the hyperparameters.

Experimental Settings:

During the process of solving the smoothed support vector machine problem with K-fold cross-validation,
the loss function on the validation set is defined as follows:

1 2
@’Ual(x )Xy

Z In(bjal " (78)

vatl
’Ua J eQ'ual

K
yC)t E Z:

Following the approach used for support vector machine [23]], we reformulate the primal problem into the
following bilevel optimization model for the smoothed support vector machine:

min = O, (x!,x2%,...,xK ¢c)
x,C
st A>0,xp <X <X,
s Xip S X S Xyp (79)
xF € argmin¢ > lh(bja]TX) %HXH% Jk=1,2,... K,
—x<x<X JGQ?T
where x!, x2,...,x% are K parallel copies of c and x. X, and X;; are the upper and lower bounds of X.
Similarly, we define the loss function on the training set in a manner analogous to (78)):
K
O, (xhx%,.. ., xE ) Z In(bjalx"). (80)
k: ek

We also implement other competitive methods following the effective practice in [57; 59]. For LDP-PGM,
the penalty parameter is configured as 3, = (1+ k)% and the step size in each iteration is fixed at e, = 0.1.
For the hyperparameter, we set initial value as \° = 0.1 for LDP-PGM.

Results and Discussions:

We plot the convergence curves of each algorithm for validation and test error in Figure 2] From Figure [3]
we observe that LDPM (LDP-PGM) consistently achieves the lowest validation and test errors across all
datasets (diabetes, sonar, ala). In particular, its convergence curves drop rapidly at the early stage and
remain stable afterwards, while the competing methods converge more slowly or plateau at higher error

levels. This demonstrates that LDPM not only converges faster but also generalizes better, highlighting its
superiority in both efficiency and accuracy.
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Figure 2: Comparison of the algorithms for SSVM problem on real-world datasets.

E.4.3 SPARSE LOGISTIC REGRESSION

The sparse logistic regression [24] is equipped with logistic loss function and ¢;-norm regularization. Its
formulation in (3) is

min > log(l+ ebialx)

XA i€Tow . 81)

st. x€argmin Y log(1+e~ba X) 4+ \||x];.

x 1€,

According to the definition of ¢, we observe that the logistic loss can be abstracted with p(t) = log(1+e~")
and A;x — by = ((b4 A4 )x). Correspondingly, the conjugate is calculated as ¢*(v) = —vlog(v) — (1 —
v)log(l — ) if 0 < v < 1 and v*(v) = oo otherwise.

Data Introduction:

Following the experimental setup in [15], we conduct our evaluations on large-scale real-world datasets.
Specifically, we use the same datasets as [15], namely news20, rcvl, real-sim and webspam, all of which
can be downloaded from LIBSVM website. Table[TT|provides a brief introduction to the basic characteristics
of these three datasets.

Table 11: Dataset Overview

Datasets Samples Features Sparsity Ratio

news20.binary 19,996 1,355,191 0.034% 0.5236
revlbinary 20,242 47,236  0.155% 0.46948
real-sim 72,309 20,958  0.245% 0.33113
webspam 350,000 16,609,143 0.024% 0.6657

Experimental Settings:

Due to the single regularizer, we also apply LDP-PGM in this experiment. This experiment is initially
conducted in [15]]. Since VF-iDCA and LDMMA are not suitable for solving large-scale problems, and the
reformulation of LDMMA is not applicable to the logistic loss function, we do not compare these algorithms
in this experiment. We compare our method with search methods, IFDM, and BiC-GAFFA. Random search
uniformly samples 50 hyperparameter values in the interval [Apax —410g(10), Apax). The algorithm settings
for IFDM follow the configurations in [[15] for each real dataset without modification. For BiC-GAFFA, we
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use y1 = 10,v5 = 0.01, 9 = 0.01,r = 5, ax = 0.01, p = 0.3, with a maximum iteration limit of 1000. For
LDP-PGM, we set 8, = (1 + k)%3, e, = 0.05 and initial \° = 0.5. In addition, we consider Assumption
o(t) is %-smooth and satisfies it. In contrast, ¢* is only gradient Lipschitz on any compact set of

0,1). Therefore, in our implementation, we enforce a simple numerical safeguard by truncating the dual
variable £ onto min(max(&;, €), 1 —€) with e = 1075, This ensures that all iterates remain within a compact
domain, thereby guaranteeing that Assumption [3.2)is satisfied in our experiments. Moreover, in practice we
observe that the iterates never approach the boundary 0 or 1, so the safeguard is never activated but provides
theoretical soundness.

Results and Discussions:

In this experiment, we implement the code provided in [15]]. Each experiment is repeated 10 times to com-
pute the average and variance of runtime, validation error, validation accuracy, test error, and test accuracy.
The convergence curves of each algorithm with respect to validation and test error are illustrated in Figure
B] Additionally, we calculate the corresponding accuracy and report them in Table[12]

Overall, we observe from Figure E| and Table @ that LDPM (LDP-PGM) achieves the lowest time cost and
test error in the experiment on sparse logistic regression. The comprehensive experimental results provide
strong evidence of the efficiency and practicality of our algorithm in addressing bilevel hyperparameter
optimization. These results highlight its effectiveness in real-world applications, demonstrating its ability to
achieve superior performance while maintaining computational efficiency.

Table 12: Accuracy of sparse logistic regression problem on real-world datasets.

Dataset ~ Methods Time(s) Val. Acc. Test Acc.
Random 654.63 + 33.26 81.49+1.10 80.89 +1.24
IFDM 41.16 £ 6.81 86.87 +1.14 84.07 +1.09
news20.binary MEHA 35.42+4.92 89.85+1.08 89.41 £ 0.92
BiC-GAFFA 32.64 +4.48 90.98 +1.03 90.17 £ 0.81
LDPM 30.85 +3.29 90.59 + 1.15 92.94 +0.73
Random 214.46 + 67.15 96.51 £ 1.19 94.24 £+ 2.39
IFDM 21.08 +5.47 97.95+0.26 96.12 £+ 1.29
rcvl.binary MEHA 17.82+1.26 98.41 £0.22 96.21 +1.11
BiC-GAFFA 15.924+0.94 98.72+0.25 96.50 £ 1.21
LDPM 14.13 £1.43 98.70 £ 0.33 97.92 £ 1.29
Random 624.45 + 38.03 68.30 +1.10 67.65 4+ 1.23
IFDM 25.86 = 1.57 91.23 +£2.18 91.10 £ 1.31
real-sim MEHA 20.93 £0.88 92.75+£1.64 91.46 £ 1.88
BiC-GAFFA 18.08 £0.71 93.28 +1.48 91.68 + 2.42
LDPM 17.93 £0.68 95.10 £1.13 94.19 £ 1.57
Random 712.34 +41.28 92.15 £ 0.74 91.68 £ 0.82
IFDM 38.92 £ 2.17 96.84 £0.38 96.57 £ 0.41
webspam  MEHA 28.53+1.12 97.23 +£0.35 96.88 £ 0.33
BiC-GAFFA 26.47 +1.03 97.52+0.31 97.28 +0.29
LDPM 22.63 +0.88 97.93 +£0.27 97.64 = 0.25

We further report the total iterations, lower-level duality gap, and sparsity for all methods on the real sparse
logistic regression tasks in Table NEWS5. These metrics provide a more direct evaluation of how accu-
rately and efficiently each algorithm solves the underlying bilevel optimization problem. Across all datasets,
LDPM achieves the smallest LL duality gaps and the fewest iterations, indicating a more precise enforcement
of the lower-level optimality. Moreover, LDPM consistently yields the sparsest solutions, demonstrating su-
perior structural recovery and generalization compared with existing bilevel algorithms.
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F FURTHER DISCUSSIONS

LDPM effectively solves bilevel optimization problems of the form (3), as demonstrated by strong empirical
results. However, the core of LDPM relies on a projected gradient descent, which currently cannot handle
nonsmooth loss functions without dedicated solvers, such as the hinge loss in SVMs. In contrast, [57; 159]

circumvent this issue by leveraging existing solvers to deal with such nonsmooth components.

news20.binary

Figure 3: Comparison of the algorithms for sparse logistic regression on real-world datasets.

Table NEWS: Total iterations, LL duality gap, and sparsity comparison for sparse logistic regression.

news20.binary rcvl.binary
Methods Total Iter.  LL Duality Gap  Sparsity(%) Methods Total Iter.  LL Duality Gap  Sparsity(%)
Random / / 41+£0.3 Random / / 10.3+0.7
IFDM 280 + 35 3.203 x 107 6.4+ 0.5 IFDM 210 + 30 2.814 x 1076 5.8+ 0.4
MEHA 185 + 22 2.137 x 1077 7.3+£0.6 MEHA 165 £ 18 1.824 x 1077 6.1+0.5
BiC-GAFFA 162+ 19 1.487 x 1077 7.0+04 BiC-GAFFA 148 £16 1.271 x 1077 59+04
LDPM 120+14 4531 x10°% 58+0.3 LDPM 110+12 3873 x10°% 46+0.3
real-sim webspam
Methods Total Iter.  LL Duality Gap  Sparsity(%) Methods Total Iter.  LL Duality Gap  Sparsity(%)
Random / / 11.8+0.8 Random / / 1454+ 1.0
IFDM 190 £ 21 3.067 x 1076 6.2+0.5 IFDM 260 £ 28 4.512 x 107° 10.2+0.7
MEHA 150 £ 15 1.927 x 1077 6.7+ 0.4 MEHA 180 + 20 2.732 x 1077 8.8+ 0.6
BiC-GAFFA 132+14 1.403 x 1077 6.5+0.4 BiC-GAFFA 163 £17 1.932 x 1077 8.5+0.5
LDPM 1024+11 3.184x107% 44403 LDPM 1154+13 5287 x107% 81+04

50



	Introduction
	Related Work
	Our Novelty and Contributions

	Lower-level Duality based Penalization Framework
	Projection-based First-order Algorithms
	Separable Regularizers
	Nonseparable Regularizers

	Numerical Experiments
	Experiments on synthetic data
	Experiments on real-world data

	Conclusion
	Expanded Introduction
	Proofs and Explanations for Section 2
	Proof of Lemma 2.1
	Explanations for Lemma 2.1
	Proof of Theorem 2.5
	Conjugate functions for problems listed in Table 1

	Epigraphical Projections
	Projections Involving Vector Norms
	Projections Involving Matrix Norms
	Computation cost

	Proofs and Explanations for Section 3
	Initialization of Algorithms 1 and 2
	Explanations for Merit Functions
	Proof of Theorem 3.5
	Proof of Theorem 3.7
	Explanations for Assumptions in Section 3
	Explanations for Assumption 3.2


	Experiments
	Introduction for Competitors
	Experimental on Synthetic Data
	Elastic Net
	Sparse Group Lasso
	Group Lasso
	Low-rank Matrix Completion
	Robust Regression

	Sensitivity of Parameters
	Experimental on Real-world Datasets
	Elastic Net
	Smoothed Support Vector Machine
	Sparse Logistic Regression


	Further Discussions

