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Abstract

Dense embedding-based retrieval is widely used for semantic search and ranking. However,
conventional two-stage approaches, involving contrastive embedding learning followed by
approximate nearest neighbor search (ANNS), can suffer from misalignment between these
stages. This mismatch degrades retrieval performance. We propose End-to-end Hierarchical
Indexing (EHI), a novel method that directly addresses this issue by jointly optimizing
embedding generation and ANNS structure. EHI leverages a dual encoder for embedding
queries and documents while simultaneously learning an inverted file index (IVF)-style tree
structure. To facilitate the effective learning of this discrete structure, EHI introduces dense
path embeddings that encodes the path traversed by queries and documents within the
tree. Extensive evaluations on standard benchmarks, including MS MARCO (Dev set) and
TREC DL19, demonstrate EHI’s superiority over traditional ANNS index. Under the same
computational constraints, EHI outperforms existing state-of-the-art methods by +1.45%
in MRR@10 on MS MARCO (Dev) and +8.2% in nDCG@10 on TREC DL19, highlighting
the benefits of our end-to-end approach.

1 Introduction

Semantic search (Johnson et al., 2019) aims to retrieve relevant or semantically similar documents/items for
a given query. In the past few years, semantic search has been applied to numerous real-world applications
like web search, product search, and news search (Nayak, 2019; Dahiya et al., 2021). The problem in the
∗Equal Contribution
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simplest form can be abstracted as: for a given query q, retrieve the relevant document(s) d(q) from a static
set of documents {d1, d2, . . . , dN} s.t. d(q) = arg max1≤j≤N SIM(q,dj). Here SIM is a similarity function that
has high fidelity to the training data B = {(qi, dj , yij)}. Tuple (qi, dj , yij) indicates if document dj is relevant
(yij = 1) or irrelevant (yij = −1) for a given query qi ∈ Q.

Dense embedding-based retrieval (Johnson et al., 2019; Jayaram Subramanya et al., 2019; Guo et al., 2020) is
the state-of-the-art (SOTA) approach for semantic search and typically follows a two-stage process. In the
first stage, it embeds the documents and the query using a deep network like BERT (Devlin et al., 2018)
(Additional details about the encoder used in EHI is described in Section 3.2, and the training methodology
expanded in Section 3.5). That is, it defines similarity SIM(q, d) := 〈Eθ(q), Eθ(d)〉 as the inner product between
embeddings Eθ(q) and Eθ(d) of the query q and the document d, respectively. Eθ(·) is a dense embedding
function learned using contrastive losses (Ni et al., 2021; Menon et al., 2022).

In the second stage, approximate nearest neighbor search (ANNS) retrieves relevant documents for a given
query. That is, all the documents are indexed offline and are then retrieved online for the input query. ANNS
in itself has been extensively studied for decades with techniques like ScaNN (Guo et al., 2020), IVF (Sivic &
Zisserman, 2003), HNSW (Malkov & Yashunin, 2020), DiskANN (Jayaram Subramanya et al., 2019) and
many others being used heavily in practice.

1.1 Motivation for EHI

The prevailing two-stage approach to dense retrieval, involving separate training of the embedding encoder
and the approximate nearest neighbor search (ANNS) structure, suffers from inherent limitations:

Embedding-ANNS Misalignment: The lack of joint optimization leads to a potential mismatch between
the learned embedding space and the requirements of the ANNS structure. This misalignment can cause
suboptimal clustering of data points, hindering the ANNS algorithm’s ability to efficiently identify semantically
similar examples. For example, the documents might be clustered in six clusters to optimize encoder loss.
However, due to computational constraints, ANNS might allow only five branches/clusters, thus splitting or
merging clusters unnaturally and inaccurately. Figure 1(a) helps illustrate the issue with the disjoint training
regime typically used in dense retrieval literature. If the disjoint ANNS tries to cluster these documents
into buckets, the resulting model will achieve suboptimal performance since the encoder was never aware of
the task of ANNS. Instead, EHI proposes the learning of both the encoder and ANNS structure in a single
pipeline. This leads to efficient clustering, as the embeddings being learned already share information about
how many clusters the ANNS is hashing.

Disregard for Query Distribution: Conventional ANNS methods focus on generic retrieval efficiency,
potentially neglecting the specific characteristics of the query distribution. This can result in an indexing
structure that is ill-suited to the patterns present in the actual queries encountered during deployment (Jaiswal
et al., 2022). To provide an illustrative instance, let us consider a scenario in which there exists a corpus
of documents denoted by D, with two classes of documents categorized as [D1, D2], following a certain
probability distribution [d1, d2]. Suppose, d1 � d2, then under the utilization of the unsupervised off-the-shelf
ANNS indexer such as ScaNN algorithm, clustering into two partitions, the algorithm would distribute the
two document classes in an approximately uniform manner across the resultant clusters. Concurrently, the
documents of class D1 would be allocated to both of these clusters, as guided by the partitioning procedure,
regardless of the query distribution. However, supposing a scenario in which an overwhelming majority of the
queries target D2, the goal emerges to rigorously isolate the clusters associated with D1 and D2 since we
would like to improve latency in the downstream evaluation and visit fewer documents for each query. In this
context, the EHI emerges as a viable solution as it takes the query distribution into consideration, effectively
addressing this concern by facilitating a clear delineation between the clusters corresponding to the distinct
domains. Figure 1(b) depicts the query distribution of EHI model trained on the MS MARCO dataset. It
is important here to highlight that for tail queries, which are barely searched in practice, EHI is able to
grasp the niche concepts and hash as few documents in these buckets as indicated by the very few average
number of documents visited. Moving towards more popular queries, or the torso queries, we note a rise in
the average number of documents visited as these queries are more broad in general. Moving even further to
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(a) Misalignment of representations (b) Query Distribution MSMARCO

Figure 1: Motivation of EHI.

the head queries, we again notice a drop in the average number of documents visited, which showcases the
efficiency and improved latency of the EHI model.

1.2 Overview and Evaluation

Motivated by the aforementioned issues, we propose EHI– End-to-end learning of Hierarchical Index – that
jointly trains both the encoder and the search data structure; see Figure 3. To the best of our knowledge,
EHI is the first end-to-end learning method for dense retrieval. Similar to two-stage approaches, EHI employs
a tree-structured inverted file-like index, but unlike DE+ANNS (the conventional two-stage approach where a
standard Dual Encoder (DE) is trained independently, followed by an Approximate Nearest Neighbor Search
(ANNS) using the learned embeddings), EHI integrates the training process to simultaneously learn the
discrete document assignments within its index and refine the encoder parameters without any warm-starting.
We can learn balanced and roughly uniform clusters with just the query, document pairs information which is
generally available in the supervised training paradigm of most encoders, and does not require any proxy
information through KNN or other clustering algorithms for learning the INF-style tree structure. EHI’s core
innovation lies in the introduction of dense path embeddings. These embeddings represent the traversal paths
of queries and documents within the tree index, enabling the learning of discrete document assignments. By
optimizing the index such that semantically similar (query, document) pairs share similar path embeddings,
EHI facilitates efficient retrieval by clustering relevant pairs within the same leaf nodes.

We conduct an extensive empirical evaluation of our method against SOTA techniques on standard benchmarks.
Our experiments on the popular MS MARCO benchmark (Bajaj et al., 2016) demonstrate that EHI shows
improvements of 0.6% in terms of nDCG@10 compared to dense-retrieval with ScaNN baselines when only
10% of documents are searched. We attribute these improved embeddings to the fact that EHI enables an
additional signal to the encoder from the indexer as well as the integrated hard negative mining as it can
retrieve irrelevant or negative documents from indexed leaf nodes of a query. Here, the indexer parameters
are always fresh, unlike techniques akin to ANCE (Xiong et al., 2020). Similarly, EHI provides upto 8.2%
higher nDCG@10 than state-of-the-art (SOTA) baselines on the MS MARCO TREC DL19 (Craswell et al.,
2020) benchmarks for the same compute budget. EHI also achieves SOTA exact search performance on both
MRR@10 and nDCG@10 metrics with up to 80% reduction in latency, indicating the effectiveness of the
joint learning objective. Similarly, we outperform SOTA architectures such as NCI on NQ320k by 0.6% and
1.8% on Recall@10 and Recall@100 metrics. (see Section 4.2).

1.3 Contributions

Our work introduces several key advancements to the field of dense retrieval:
• Novel End-to-End Paradigm. We propose End-to-end Hierarchical Indexing (EHI), an end-to-end learn-

ing framework that jointly optimizes the embedding encoder and the search index structure. EHI addresses
the inherent misalignment in conventional two-stage approaches, enabling more efficient and accurate
retrieval (Section 3, Figure 2). To the best of our knowledge, we are the first to propose this without any
warm starting or soft labels.

3



Published in Transactions on Machine Learning Research (08/2024)

• Rigorous Empirical Validation. We conduct comprehensive evaluations on the industry-standard MS
MARCO benchmark, demonstrating EHI’s superiority over state-of-the-art ANNS techniques such as
ScaNN, Faiss. Furthermore, we also showcase that EHI is competitive with other SOTA baselines such as
ColBERT, SGPT, cpt-text, ANCE, DyNNIBAL. Our experiments underscore EHI’s focus on enhancing
retrieval accuracy within a fixed computational budget (Section 4.2, Appendix 4.3).

• Framework Flexibility. EHI is designed to be agnostic to specific encoder architectures, similarity metrics,
and hard negative mining strategies. This flexibility underscores its potential for broad applicability within
the dense retrieval domain.

2 Related Works

Dense retrieval (Mitra et al., 2018) underlies a myriad of web-scale applications like search (Nayak, 2019),
recommendations (Eksombatchai et al., 2018; Jain et al., 2019), and is powered by (a) learned representa-
tions (Devlin et al., 2018; Kolesnikov et al., 2020; Radford et al., 2021), (b) ANNS (Johnson et al., 2019;
Sivic & Zisserman, 2003; Guo et al., 2020) and (c) LLMs in retrieval (Tay et al., 2022; Wang et al., 2022;
Guu et al., 2020). Figure 2 illustrates the difference between dual encoder trained with an ANNS (DE +
ANNS), Generative Retrieval approaches (such as DSI, NCI) and EHI.

Stage-1

ANNS

Generative-Retrieval 

Stage-2

Encoder

DE + ANNS

BERT Model

k-Means

Encoder

EHI

Indexer

1 2
3

Semantic id

Stage-1 Stage-2

Encoder

Decoder

Learns next sequence 
prediction with 

generated semantic id's 
as target

Figure 2: Comparison between EHI’s end-to-end training paradigm in comparison to other approaches such
as Dual encoder + ANNS and Generative Retrieval approaches which require a multi-stage training.We
denote stages which are not optimized for the task objective by a grey shade. Note that unlike DE + ANNS,
and Generative Retrieval, EHI optimizes for recall in both encoder and indexer.

Representation learning. Powerful representations are typically learned through supervised and un/self-
supervised learning paradigms that use proxy tasks like masked language modeling (Devlin et al., 2018)
and autoregressive training (Radford et al., 2018). Recent advances in contrastive learning (Gutmann &
Hyvärinen, 2010) helped power strong dual encoder-based dense retrievers (Ni et al., 2021; Izacard et al., 2021;
Nayak, 2019). They consist of query and document encoders, often shared, which are trained with contrastive
learning using limited positively relevant query and document pairs (Menon et al., 2022; Xiong et al., 2020).
While most modern-day systems use these learned representations as is for large-scale ANNS, there is no
need for them to be aligned with the distance metrics or topology of the data structures. Recent works have
tried to address these concerns by warm-starting the learning with a clustering structure (Gupta et al., 2022)
but fall short of learning jointly optimized representations alongside the search structure. We explicitly state
the challenges of directly adapting methods like ELIAS, originally designed for classification, to the dense
retrieval task. However, we include a comparison against ELIAS on a classification benchmark with label
features in Appendix C.3. Other works such as RepCONC (Zhan et al., 2022), and SPLADE (Formal et al.,
2022) also work on the efficiency aspect of retrieval, where they focus on quantization of the representations
using regularizers which explicitly work on reducing FLOPS.
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Approximate nearest neighbor search (ANNS). The goal of ANNS is to retrieve almost nearest
neighbors without paying exorbitant costs of retrieving true neighbors (Clarkson, 1994; Indyk & Motwani,
1998; Weber et al., 1998). The “approximate” nature comes from pruning-based search data structures (Sivic
& Zisserman, 2003; Malkov & Yashunin, 2020; Beygelzimer et al., 2006) as well as from the quantization
based cheaper distance computation (Jegou et al., 2010; Ge et al., 2013). This paper focuses on ANNS
data structures and notes that compression is often complementary. Search data structures reduce the
number of data points visited during the search. This is often achieved through hashing (Datar et al., 2004;
Salakhutdinov & Hinton, 2009; Kusupati et al., 2021), trees (Friedman et al., 1977; Sivic & Zisserman, 2003;
Bernhardsson, 2018; Guo et al., 2020) and graphs (Malkov & Yashunin, 2020; Jayaram Subramanya et al.,
2019). ANNS data structures also carefully handle the systems considerations involved in a deployment like
load-balancing, disk I/O, main memory overhead, etc., and often tree-based data structures tend to prove
highly performant owing to their simplicity and flexibility (Guo et al., 2020). For a more comprehensive
review of ANNS structures, please refer to Cai (2021); Li et al. (2020); Wang et al. (2021). Works such
as CCSA (Lassance et al., 2021) propose alternate ANN structures for efficient retrieval via constrained
clustering. Other works such as TDM (Zhu et al., 2018) proposes learning a tree-like ANNS but the ANNS is
learnt in a disjoint fashion where k-means algorithm is used for learning the clustering without any supervision.
Works such as JTM (Zhu et al., 2019), and Deep Retrieval (Gao et al., 2020b) also attempt to optimize
the learn the indexer with a neural network - but they require pre-computation of optimal paths taken
by the query and document for learning. Prior works including PQN (Yu et al., 2018) and GPQ (Jang
& Cho, 2020) have explored end-to-end ANNS techniques in the visual domain which primarily rely on
hashing-based approaches, and not an hierarchical tree-like structure. EHI differentiates itself through its
novel tree structure and dense path embeddings, tailored for the unique characteristics of text data and
semantic search. Furthermore, EHI handles a significantly larger number of buckets (e.g., 7000) compared to
the 48-bit hashing used in approaches like GPQ, demonstrating its suitability for the scale of textual datasets
with millions of documents. Similarly, the scale of the experiments are also significantly larger as PQN, GPQ
showcase their efficacy on ∼170K images to be indexed (where the overhead of exact search might not be
very large), while we experiment on ∼10M documents, where exact search is a significant overhead during
inference.

EHI works in an end-to-end fashion without any pre-computation of optimal paths, and is the first end-to-end
hierarchical indexer framework to the best of our knowledge.

Generative Retrieval for Semantic Search. Recently, there have been some efforts towards modeling
retrieval as a sequence-to-sequence problem. In particular, Differential Search Index (DSI) (Tay et al., 2022)
and more recent Neural Corpus indexer (NCI) (Wang et al., 2022) method proposed encoding the query and
then find relevant document by running a learned decoder. However, both these techniques, at their core,
use a separately computed hierarchical k-means-based clustering of document embeddings for semantically
assigning the document-id. That is, they also index the documents using an ad-hoc clustering method which
might not be aligned with the end objective of improving retrieval accuracy. In contrast, EHI jointly learns
both representation and a k-ary tree-based search data structure end-to-end. This advantage is reflected on
MS MARCO dataset EHI is upto 7.12% more accurate (in terms of nDCG@10) compared to DSI. Recently,
retrieval has been used to augment LLMs also (Guu et al., 2020; Izacard & Grave, 2020b;a; Izacard et al.,
2022). We would like to stress that the goal with LLMs is language modeling while retrieval’s goal is precise
document retrieval. However, retrieval techniques like EHI can be applied to improve retrieval subcomponents
in such LLMs.

3 End-to-end Hieararchical Indexing (EHI)

Problem definition and Notation. Consider a problem with a corpus of N documents D = {d1, ..., dN},
a set of Q training queries Q = {q1, ..., qQ}, and training data (qi, dk, yik), where yik ∈ {−1, 1} is the label
for a given training (query, document) tuple and yik = 1 denotes that dk is relevant to qi. Given these inputs,
the goal is to learn a retriever that maps a given query to a set of relevant documents while minimizing the
computation cost. While wall-clock time is the primary cost metric, comparing different methods against it is
challenging due to very different setups (language, architecture, parallelism, etc.). Instead, we rely on recall vs.
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% searched curves, widely considered a reasonable proxy for wall-clock time modulo other setup/environment
changes (Guo et al., 2020).

3.1 Overview of EHI
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Figure 3: EHI is an end-to-end hierarchical indexer which comprises an encoder and a hierarchical tree as
the indexer where the entire pipeline is learnable and differentiable. Here, variables V98, V123, and V576 are
dense representations (embeddings) of the text and P98, P123, and P576 are path embeddings of the respective
samples. To efficiently train EHI without any warm starting, we use a combination of objectives - Lsiamese,
Lindexing, Lintra-leaf (see Section 3 for details).

At a high level, EHI has three key components: Encoder Eθ, Indexer Iφ and Retriever. Parameters θ of the
query/document encoder and φ of the indexer are the trainable parameters of EHI. Unlike most existing
techniques, which train the encoder and indexer in a two-step disjoint process, we train both the encoder
and indexer parameters jointly with an appropriate loss function; see Section 3.5. Learning the indexer –
generally a discontinuous function – is a combinatorial problem that also requires multiple rounds of indexing
the entire corpus. However, by modeling the indexer using a hierarchical tree and its “internal representation”
as compressed path embedding, we demonstrate that the training and retrieval with encoder+indexer can be
executed efficiently and effectively.

In the following sections, we provide details of the encoder and indexer components. In Section 3.4, we detail
how encoder+indexer can be used to retrieve specific documents for a given query, which is used for inference
and hard-negative mining (further elaborated in Appendix C.2) during training. Section 3.5 provides an
overview of the training procedure. Finally, Section 3.6 summarizes how documents are ranked after retrieval.

3.2 Encoder Eθ: Dense embedding of query/documents

Our method is agnostic to the architecture used for dual encoder. But for simplicity, we use standard
dual encoder (Ni et al., 2021) to map input queries and documents to a common vector space. That is,
encoder Eθ parameterized by θ, maps query (q ∈ Q) and document (d ∈ D) to a common vector space:
Eθ(q) ∈ Rm, and Eθ(d) ∈ Rm, where m is the embedding size of the model (768 here). While such an encoder
can also be multi-modal as well as multi-vector, for simplicity, we mainly focus on standard textual data with
single embedding per query/document. We use the standard BERT architecture for encoder Eθ and initialize
parameters θ using a pre-trained Sentence-BERT distilbert model (Reimers & Gurevych, 2019). Our base
model has 6 layers, 768 dimensions, 12 heads with 66 million parameters. We then fine-tune the final layer of
the model for the target downstream dataset.

3.3 Indexer Iφ: Indexing of query/document in the hierarchical data structure

EHI’s indexer (Iφ) is a tree with height H and branching factor B. Each tree node contains a classifier that
provides a distribution over its children. So, given a query/document, we can find out the leaf nodes that the
query/document indexes into, as well as the probabilistic path taken in the tree.
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The final leaf nodes reached by the query are essential for retrieval. But, we also propose to use the path taken
by a query/document in the tree as an embedding of the query/document – which can be used in training
through the loss function. However, the path a query/document takes is an object in an exponentially large
(in height H) vector space, owing to BH leaf nodes, making it computationally intractable even for a small H
and B. For instance, with B = 10 and H = 5, a relatively small tree, there would be 100,000 (105) possible
paths.

Instead, below, we provide a significantly more compressed path embedding – denoted by T (·;φ) and
parameterized by φ – embeds any given query or document in a relatively low-dimensional (B ·H) vector
space (which would lead to just 50 in the above example). For simplicity, we denote the query and the
document path embedding as Tφ(q) = T (Eθ(q);φ) and Tφ(d) = T (Eθ(d);φ), respectively.

We construct path embedding of a query/document as:

T (Eθ(q)) = T (Eθ(q);φ) = [pH ; pH−1; . . . ; p1],

Where ph ∈ [0, 1]B denotes the probability distribution of children nodes for a parent at height h. For a
given leaf l, say path from root node is defined as l = [i1l , i2l . . . iHl ] where ihl ∈ [1 . . . B] for h ∈ [H]. The
probability at a given height in a path is approximated using a height-specific simple feed-forward neural
network parameterized by Wh+1 ∈ R(B·h+m)×B and Uh+1 ∈ R(B·h+m)×(B·h+m) (m is the embedding size).
That is,

ph+1 = Softmax(W>
h+1Kh; Uh+1)) · ph[ihl ] (1)

where Kh = F([o(ihl ); o(ih−1
l ); . . . ; o(i1l ); Eθ(q)], and one-hot-vector o(i) is the i-th canonical basis vector and

F is a non-linear transformation given by F(x; Uh) = x + ReLU(U>h x).

In summary, the path embedding for height 1 represents a probability distribution over the leaves. During
training, we compute path embedding for higher heights for only the most probable path, ensuring that the
summation of leaf node logits remains a probability distribution. Also, the indexer and path embedding
function T (·;φ) has the following collection of trainable parameters: φ = {WH , . . . ,W1,UH , . . . ,U1}, which
we learn by optimizing a loss function based on the path embeddings; see Section 3.5. Please refer to
Appendix E for additional details about the indexer in EHI.

3.4 Retriever: Indexing items for retrieving

Indexing and retrieval form a backbone for any search structure. EHI efficiently encodes the index path of the
query and documents in (B ·H)-dimensional embedding space. During retrieval for a query q, EHI explores
the tree structure to find the “most relevant” leaves and retrieves documents associated with those leaves.
For retrieval, it requires encoder and indexer parameters (θ, φ) along with Leaf, document hashmapM.

The relevance of a leaf l for a query q is measured by the probability of a query reaching a leaf at height H
(P(q, l,H)). Recall from previous section that path to a leaf l is defined as l = [i1l , i2l . . . iHl ] where ihl ∈ [1 . . . B]
for h ∈ [H]. The probability of reaching a leaf l for a given query q ∈ Q to an arbitrary leaf l ∈ Leaves can be
computed as P(q, l,H) = pH [iHl ] using equation 1. But, we only need to compute the most probable leaves
for every query during inference, which we obtain by using the standard beam-search procedure summarized
below:
1. For all parent node at height h − 1, compute probability of reaching their children Ŝ =
∪c∈child(p)P(q, c, h) ∀p∈P

2. Keep top β children based on score Ŝ and designate them as the parents for the next height.
Repeat steps 1 and 2 until the leaf nodes are reached.

Once we select β leaves EHI retrieves documents associated with each leaf, which is stored in the hashmap
M. To compute this hash map, EHI indexes each document d ∈ D (similar to query) with β = 1. Here,
β = 1 is a design choice considering memory and space requirements and is kept as a tuneable parameter. It
stores document-to-leaf associations, allowing us to strategically focus the search on the most relevant subset
of documents. The hashmapM is used to store the information of which documents reach which leaves in
our tree. This is essentially the result of the indexing step. Note that to add new ad-hoc documents after
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training EHI, one would need to follow the indexing step listed above to store the new documents in the
appropriate buckets and update the hashmapM.

During retrieval, we find out which leaves the query goes to, and we only use those documents which have
reached similar leaves. This is how we sample a few documents to search over instead of searching over the
entire document space. Algorithm 2 in the appendix depicts the approach used by our Indexer for better
understanding.

3.5 Training EHI

Given the definition of all three EHI components – encoder, indexer, and retriever – we are ready to present
the training procedure. As mentioned earlier, the encoder and the indexer parameters (θ;φ) are optimized
simultaneously with our proposed loss function, which is designed to have the following properties: a) Relevant
documents and queries should be semantically similar, b) documents and queries should be indexed together
iff they are relevant, and c) documents should be indexed together iff they are similar.

Given the encoder and the indexer, we design one loss term for each of the properties mentioned above and
combine them to get the final loss function. To this end, we first define the triplet loss as:

L(a, b, c) = [ac− ab+ γ]+ (2)

where we penalize if similarity between query q and an irrelevant document d− (y(q, d−) 6= 1) is within γ
margin of the corresponding similarity between q and a relevant document d+ (y(q, d+) = 1).We now define
the following three loss terms:

1. Semantic Similarity: the first term is a standard dual-encoder contrastive loss between a relevant
document d+ – i.e., y(q, d+) = +1 – and an irrelevant document with y(q, d−) 6= 1.

Lsiamese = L(Eθ(q), Eθ(d+), Eθ(d−); θ) (3)

2. Indexing Similarity: the second term is essentially a similar contrastive loss over the query, relevant-doc,
irrelevant-doc triplet, but where the query and documents are represented using the path-embedding Tφ(·)
given by the indexer Iφ.

Lindexing = L(Tφ(q), Tφ(d+), Tφ(d−); θ, φ) (4)
3. Intra-leaf Similarity: to spread out irrelevant docs, third loss applies triplet loss over the sampled

relevant and irrelevant documents for a query q. Note that we apply the loss only if the two docs
are semantically dissimilar according to the latest encoder, i.e., SIM(a,b, τ) = Eθ(a)T Eθ(b)

|Eθ(a)||Eθ(b)| < τ for a
pre-specified threshold τ = 0.9.

Lintra-leaf = SIM(d+, d−, τ)Tφ(d+)>Tφ(d−) (5)

The final loss function L is given as the weighted sum of the above three losses:

L = λ1Lsiamese + λ2Lindexing + λ3Lintra-leaf (6)

Here γ is set to 0.3 for all loss components, and λ1, λ2, λ3 are tuneable hyper-parameters. Our trainer (see
Algorithm 1) learns θ and φ by optimizing L using standard techniques; for our implementation we used
AdamW (Loshchilov & Hutter, 2017). Note that the loss function only uses in-batch documents’ encoder
embeddings and path embeddings, i.e., we are not even required to index all the documents in the tree
structure, thus allowing efficient joint training of both encoder and indexer. To ensure fast convergence, we
use hard negatives mined from the indexed leaves of a given query q for which we require documents to be
indexed in the tree. But, this procedure can be done once in every r step where r is a hyper-parameter set to
5 by default across our experiments. We will like to stress that existing methods like DSI, NCI, or ANCE
not only have to use stale indexing of documents, but they also use stale or even fixed indexers – like DSI,
NCI learns a fixed semantic structure over docids using one-time hierarchical clustering. In contrast, EHI
jointly updates the indexer and the encoder in each iteration, thus can better align the embeddings with the
tree/indexer.
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3.6 Re-ranking and Evaluation

This section describes the re-ranking step and the test-time evaluation process after retrieval. In Section 3.4,
we discussed how each document is indexed, and we now have a learned mapping of d× l, where d is the
corpus size, and l is the number of leaves. Given a query at test time, we perform a forward pass similar to
the indexing pipeline presented in Section 3.4 and find the top-b leaves (b here is the beam size) the given
query reaches. We collate all the documents that reached these b leaves (set operation to avoid any repetition
of the same documents across multiple leaves) and rank them based on an appropriate similarity metric such
as cosine similarity, dot product, manhattan distance, etc. We use the cosine similarity metric for ranking
throughout our experiments (see Section 4.2).

4 Experiments

We conduct a comprehensive empirical evaluation of EHI on established dense retrieval benchmarks. Our
experiments have two primary objectives:

(a)Validate the End-to-end Paradigm: We seek to demonstrate the superiority of EHI’s joint optimization
of the embedding encoder and Indexer compared to the conventional disjoint training approach that utilizes
off-the-shelf ANNS methods (e.g., ScaNN, Faiss-IVF) or alternative generative retrieval or sparse retrieval
approaches. This comparison provides strong evidence for the benefits of our proposed paradigm shift.

(b) Justify Design Decisions: Through systematic experimentation, we aim to elucidate the rationale
behind the design choices within EHI. These insights will solidify the theoretical foundations of our method
and guide future research in this domain.

Detailed training hyperparameters for EHI are provided in Appendix B.
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Figure 4: EHI is significantly more accurate than DE + ScaNN or Faiss-IVF, especially when restricted to
visit a small fraction of documents. See Figure 10 in Appendix for results on Scifact, Fiqa.

4.1 Experimental Setup

Datasets. We evaluate EHI on four standard but diverse retrieval datasets of increasing size: SciFact (Wad-
den et al., 2020), FIQA (Maia et al., 2018), NQ320k (Kwiatkowski et al., 2019), and MS MARCO (Bajaj
et al., 2016). Appendix A provides additional details about these datasets.

We establish a robust set of baselines to comprehensively evaluate EHI’s performance and isolate the impact
of our core contributions:

State-of-the-Art (SOTA) Comparisons. We evaluate EHI against leading dense retrieval methods such
as ColBERT-v2 (Santhanam et al., 2021), SPLADE (Formal et al., 2022), and many other baselines on the
MS MARCO benchmark (see Table 1, Section 4.3). These comparisons, while acknowledging architectural
differences, demonstrate EHI’s strong performance and its potential within the broader research landscape.
Importantly, EHI achieves this competitiveness using a significantly small encoder (66M parameters), high-
lighting the effectiveness of our end-to-end index learning approach. We note that re-ranking and other
late interaction methods employed in ColBERT-v2 and SPLADE currently outperform EHI in exact search
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scenarios on the MS MARCO benchmark. This presents a promising future research direction to explore how
re-ranking losses and other techniques could be integrated into EHI. Note that methods like ColBERT-v2,
due to their late-interaction similarity computation, are less readily adaptable to ANNS-based retrieval.

Controlled Ablation Studies. To directly assess the value of EHI’s end-to-end indexer, we construct
baselines using the same DistilBERT encoder paired with: (a) Dual Encoder (DE with ANCE hard-negatives;
Menon et al. (2022)) + Exact Search (for theoretical upper bound), (b) DE + ScaNN (representative of
popular ANNS libraries; Guo et al. (2020)), and (c) DE + Faiss-IVF (for comparison with another IVF-style
index; Johnson et al. (2019)).

Generative Retrieval. We include baselines like DSI (Tay et al., 2022) and NCI (Wang et al., 2022) to
provide context, acknowledging their potential limitations in this setting. We report DSI numbers on MS
MARCO using an implementation validated by the authors. However, we note that NCI fails to scale to
large datasets like MS MARCO.

Sparse Neural Retrieval. We include sparse neural IR baselines like CCSA (Lassance et al., 2021) and
SPLADE (Formal et al., 2022) for a comprehensive comparison in Table 1. However, it’s important to
note their potential differences in our context. Methods like CCSA, with their two-step disjoint training,
face inherent challenges similar to those discussed earlier. While SPLADE offers notable improvements by
replacing ANNS with sparse representations and using a FLOP-minimizing regularization term, this approach
necessitates training multiple models for different FLOP targets of the practitioner. In contrast, EHI achieves
this flexibility and elasticity within a single model. Furthermore, as Lassance et al. (2023) observes, SPLADE
models can exhibit slower inference speeds compared to dense IR models which could be alleviated with static
pruning, but the earlier limitation still holds water. However, the distillation-based improvements achieved
by SPLADE are promising, and exploring the integration of distillation techniques with EHI represents an
exciting direction for future research.

4.2 Results

Evaluations and findings on Scifact and Fiqa datasets is presented in Appendix C. We evaluate EHI on the
MS MARCO passage retrieval task, a widely recognized benchmark for semantic search. Results are presented
for both the standard dev set and the TREC DL-19 set (Craswell et al., 2020). We also report our findings on
other datasets such as NQ320k (Kwiatkowski et al., 2019). We compare against the standard Sentence-BERT
model (Huggingface, 2019), trained on the MS MARCO dataset, which is further fine-tuned to the various
datasets compared in this paper.

Efficiency-Accuracy Trade-off: EHI demonstrates a compelling advantage in the efficiency-accuracy
trade-off. For instance, on the standard MS MARCO dev set, EHI matches or exceeds the accuracy of Exact
Search while visiting 80% fewer documents (see Figure 4(a)). This significantly outperforms DE+ScaNN and
DE+Faiss-IVF, which require visiting nearly double the documents for comparable accuracy. Furthermore,
on the TREC-DL 19 benchmark, EHI is able to match or surpass the nDCG@10 of baseline Exact Search
with an 78% reduction in latency (see Figure 4(b)). On the NQ320k dataset, EHI matches or surpasses the
accuracy of baseline Exact Search with a 60% reduction in latency (see Figure 4(c)).

Gains in compute bottlenecks: We emphasize the significance of EHI’s 3.6% nDCG@10 improvement
(with only 1% documents visited) on the well-optimized MS MARCO benchmark. Such gains underscore the
practical value of our approach. Similarly, when restricted to visiting 1% of the documents, EHI achieves
8.2% higher nDCG@10 than DE+ScaNN and DE+Faiss-IVF on the TREC-DL benchmark.

Comparison with Generative Retrieval Methods: We note that the DSI base model with 250M
parameters is almost four times the size of the current EHI model. After multiple weeks of DSI training with
doc2query + atomic id + base model, DSI achieves a MRR@10 metric of 26% on the MS MARCO dev set,
which is 8.58% lower than EHI with just 1% visited documents (see Table 1). Note that despite significant
efforts, we could not scale NCI code (Wang et al., 2022) on MS MARCO due to the dataset size; NCI paper
does not provide metrics on MS MARCO dataset. To compare against NCI, we report our findings on the
NQ320k dataset. Note that EHI is able to significantly outperform DSI and NCI (without query generation)
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Table 1: Performance metrics (%) evaluated on the MS MARCO dev dataset. The best value for each metric
is indicated in bold font.

Method MRR@10 (Dev) nDCG@10 (Dev) #. parameters
DPR Thakur et al. (2021) - 17.7 110M (BERT-base)
BM25 (official) Khattab & Zaharia (2020) 16.7 22.8 -
BM25 (Anserini) Khattab & Zaharia (2020) 18.7 - -
cpt-text S Neelakantan et al. (2022) 19.9 - 300M (cpt-text S)
cpt-text M Neelakantan et al. (2022) 20.6 - 1.2B (cpt-text M)
cpt-text L Neelakantan et al. (2022) 21.5 - 6B (cpt-text L)
cpt-text XL Neelakantan et al. (2022) 22.7 - 175B (cpt-text XL)
DSI (Atomic Docid + Doc2Query + Base Model) Tay et al. (2022) 26.0 32.28 250M (T5-base)
DSI (Naive String Docid + Doc2Query + XL Model) Tay et al. (2022) 21.0 - 3B (T5-XL)
DSI (Naive String Docid + Doc2Query + XXL Model) Tay et al. (2022) 16.5 - 11B (T5-XXL)
DSI (Semantic String Docid + Doc2Query + XL Model) Tay et al. (2022) 20.3 27.86 3B (T5-XL)
CCSA Lassance et al. (2021) 28.9 - 110M (BERT-base)
HNSW Malkov & Yashunin (2018) 28.9 - -
RoBERTa-base + In-batch Negatives Monath et al. (2023) 24.2 - 123M (RoBERTa-base)
RoBERTa-base + Uniform Negatives Monath et al. (2023) 30.5 - 123M (RoBERTa-base)
RoBERTa-base + DyNNIBAL Monath et al. (2023) 33.4 - 123M (RoBERTa-base)
RoBERTa-base + Stochastic Negatives Monath et al. (2023) 33.1 - 123M (RoBERTa-base)
RoBERTa-base +Negative Cache Monath et al. (2023) 33.1 - 123M (RoBERTa-base)
RoBERTa-base + Exhaustive Negatives Monath et al. (2023) 34.5 - 123M (RoBERTa-base)
SGPT-CE-2.7B Muennighoff (2022) - 27.8 2.7B (GPT-Neo)
SGPT-CE-6.1B Muennighoff (2022) - 29.0 6.1B (GPT-J-6B)
SGPT-BE-5.8B Muennighoff (2022) - 39.9 5.8B (GPT-J)
doc2query Khattab & Zaharia (2020) 21.5 - -
DeepCT Thakur et al. (2021) 24.3 29.6 110M (BERT-base)
docTTTTquery Khattab & Zaharia (2020) 27.7 - -
SPARTA Thakur et al. (2021) - 35.1 110M (BERT-base)
docT5query Thakur et al. (2021) - 33.8 -
ANCE 33.0 38.8 -
EHI (distilbert-cos; Ours) 33.8 39.4 66M (distilBERT)
RepCONC Zhan et al. (2022) 34.0 - 123M (RoBERTa-base)
TAS-B Thakur et al. (2021) - 40.8 110M (BERT-base)
GenQ Thakur et al. (2021) - 40.8 -
ColBERT (re-rank) Khattab & Zaharia (2020) 34.8 - 110M(BERT-base)
ColBERT (end-to-end) Khattab & Zaharia (2020) 36.0 40.1 110M (BERT-base)
BM25 + CE Thakur et al. (2021) - 41.3 -
SPLADE (simple training) Formal et al. (2022) 34.2 - 110M (BERT-base)
SPLADE + DistilMSE Formal et al. (2022) 35.8 - 66M (distilBERT)
SPLADE + SelfDistil Formal et al. (2022) 36.8 - 66M (distilBERT)
SPLADE + EnsembleDistil Formal et al. (2022) 36.9 - 66M (distilBERT)
EHI (distilbert-dot; Ours) 37.2 43.3 66M (distilBERT)
SPLADE + CoCondenser-SelfDistil Formal et al. (2022) 37.5 - 66M (distilBERT)
SPLADE + CoCondenser-EnsembleDistil Formal et al. (2022) 38.0 - 66M (distilBERT)
ColBERT-v2 Santhanam et al. (2021) 39.7 - 110M (BERT-base)

despite NCI utilizing a 10× larger encoder! Furthermore, even with query generation, NCI is 0.6% and 1.8%
less accurate than EHI on Recall@10 and Recall@100 metrics, respectively. (see Table 3)

Our observations about EHI are statistically significant as evidenced by p-value tests Section 4.5. Additional
experiments such as the results on other benchmarks such as scifact, fiqa, negative mining, comparison against
Elias (Gupta et al., 2022), and qualitative analysis on the leaves of the indexer learned by the EHI model is
depicted in Appendix C.

4.3 Comparisons to SOTA

In this section, we compare EHI with SOTA approaches such as ColBERT, SGPT, cpt-text, ANCE, DyN-
NIBAL, which use different dot-product metrics or hard-negative mining mechanisms, etc. Note that EHI
proposed in this paper is a paradigm shift of training and can be clubbed with any of the above architectures.
So the main comparison is not with SOTA architectures, but it is against the existing paradigm of two-stage
dense retrieval as highlighted in Section 4.2. Nevertheless, we showcase that EHI outperforms SOTA ap-
proaches on both MS MARCO dev set as well as MS MARCO TREC DL-19 setting as highlighted in Table 1
and Table 2 respectively. Table 3 depicts the performance of EHI in comparison to other SOTA approaches.
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Table 2: Performance metrics (%) evaluated on the MS MARCO TREC-DL 2019 Craswell et al. (2020)
dataset. The best value for each metric is indicated in bold font.

Method MRR@10 nDCG@10 #. parameters
BM25 Robertson et al. (2009) 68.9 50.1 -
CCSA Lassance et al. (2021) - 58.3 110M (BERT-base)
RepCONC Zhan et al. (2022) 66.8 - 123M (RoBERTa-base)
Cross-attention BERT (12-layer) Menon et al. (2022) 82.9 74.9 110M (BERT-base)
Dual Encoder BERT (6-layer) Menon et al. (2022) 83.4 67.7 66M (distilBERT)
DistilBERT + MSE Menon et al. (2022) 78.1 69.3 66M (distilBERT)
SPLADE (simple training) Formal et al. (2022) - 69.9 110M (BERT-base)
DistilBERT + Margin MSE Menon et al. (2022) 86.7 71.8 66M (distilBERT)
DistilBERT + RankDistil-B Menon et al. (2022) 85.2 70.8 66M (distilBERT)
DistilBERT + Softmax CE Menon et al. (2022) 84.6 72.6 66M (distilBERT)
DistilBERT + M3SE Menon et al. (2022) 85.2 71.4 66M (distilBERT)
SPLADE + DistilMSE Formal et al. (2022) - 72.9 66M (distilBERT)
SPLADE + SelfDistil Formal et al. (2022) - 72.3 66M (distilBERT)
SPLADE + EnsembleDistil Formal et al. (2022) - 72.1 66M (distilBERT)
SPLADE + CoCondenser-SelfDistil Formal et al. (2022) - 73.0 66M (distilBERT)
SPLADE + CoCondenser-EnsembleDistil Formal et al. (2022) - 73.2 66M (distilBERT)
EHI (distilbert-cos; Ours) 97.7 88.4 66M (distilBERT)

Table 3: Performance metrics (%) evaluated on the NQ320k dataset (Kwiatkowski et al., 2019). The best
value for each metric is indicated in bold font.

Method R@10 R@100 #. parameters
BM25 Robertson et al. (2009) 32.48 50.54 -
BERT + ANN (Faiss) Johnson et al. (2019) 53.63 73.01 110M (BERT-base)
BERT + BruteForce Wang et al. (2022) 53.42 73.16 110M (BERT-base)
BM25 + DocT5Query Nogueira et al. (2019) 61.83 76.92 -
ANCE (FirstP) Xiong et al. (2020) 80.33 91.78 -
ANCE (MaxP) Xiong et al. (2020) 80.38 91.31 -
SEAL (Base) Bevilacqua et al. (2022) 79.97 91.39 139M (BART-base)
SEAL (Large) Bevilacqua et al. (2022) 81.24 91.93 406M (BART-large)
RoBERTa-base + In-batch Negatives Monath et al. (2023) 69.5 84.3 123M (RoBERTa-base)
RoBERTa-base + Uniform Negatives Monath et al. (2023) 72.3 84.8 123M (RoBERTa-base)
RoBERTa-base + DyNNIBAL Monath et al. (2023) 75.4 86.2 123M (RoBERTa-base)
RoBERTa-base + Stochastic Negatives Monath et al. (2023) 75.8 86.2 123M (RoBERTa-base)
RoBERTa-base +Negative Cache Monath et al. (2023) - 85.6 123M (RoBERTa-base)
RoBERTa-base + Exhaustive Negatives Monath et al. (2023) 80.4 86.6 123M (RoBERTa-base)
DSI (Base) Tay et al. (2022) 56.6 - 250M (T5-base)
DSI (Large) Tay et al. (2022) 62.6 - 3B (T5-XL)
DSI (XXL) Tay et al. (2022) 70.3 - 11B (T5-XXL)
NCI (Base) Wang et al. (2022) 85.2 92.42 220M (T5-base)
NCI (Large) Wang et al. (2022) 85.27 92.49 770M (T5-L)
NCI w/ qg-ft (Base) Wang et al. (2022) 88.48 94.48 220M (T5-base)
NCI w/ qg-ft (Large) Wang et al. (2022) 88.45 94.53 770M (T5-L)
EHI (distilbert-cos; Ours) 88.98 96.3 66M (distilBERT)
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Figure 5: Ablations studies depicting the various properties of EHI’s training paradigm.

4.4 Robustness to initializations

In this section, we showcase the robustness of our proposed approach - EHI to various initializations of
the model. Note that analysis in this manner is uncommon in efficient retrieval works, as showcased in
ScaNN, DSI, and NCI. However, such approaches worked with two disjoint processes for learning embeddings,
followed by the ANNS. Since we attempt to solve the problem in an end-to-end framework in a differentiable
fashion through neural networks, it is worth understanding the effect of different initializations or seeds on
our learning. Overall, we run the same model for the best hyperparameters over five different seeds and
report the mean and standard deviation numbers below in Table 4.

Table 4: Performance metrics (%) evaluated on the various datasets across various ranges of visited documents.
The best value for each metric, corresponding to a specific number of visited documents, is indicated in
bold font. Here, n denotes the number of seeds run for the given model. We report the mean and standard
deviation of the metrics for EHI and showcase a robustness to initialization.

Metric Method 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Scifact - R@100

Exact Search 91.77
ScaNN 67.89 80.76 83.76 87.49 89.82 90.6 91.6 91.27 91.27 91.77
Faiss-IVF 71.81 79.42 83.93 86.93 89.6 91.1 91.77 91.77 91.77 91.77
EHI (n = 5) 80.68 ± 1.51 87.05 ± 1.92 90.06 ± 0.97 91.75 ± 0.89 93.03 ± 0.77 93.26 ± 0.72 93.34 ± 0.73 93.44 ± 0.62 93.51 ± 0.62 93.51 ± 0.62

Fiqa - R@100

Exact Search 53.78
ScaNN 51.0 51.9 52.33 52.69 52.63 53.39 52.49 52.97 53.64 53.78
Faiss-IVF 52.75 53.27 53.65 53.65 53.65 53.63 53.78 53.78 53.78 53.78
EHI (n = 5) 57.23 ± 0.42 57.74 ± 0.27 57.91 ± 0.27 57.98 ± 0.26 58.07 ± 0.25 58.08 ± 0.24 58.11 ± 0.21 58.11 ± 0.21 58.1 ± 0.22 58.1 ± 0.22

MS Marco - nDCG@10

Exact Search 39.39
ScaNN 38.61 39.1 39.25 39.3 39.37 39.36 39.38 39.38 39.39 39.39
Faiss-IVF 38.86 39.09 39.23 39.31 39.35 39.36 39.36 39.38 39.38 39.39
EHI (n = 5) 39.17 ± 0.04 39.34 ± 0.03 39.39 ± 0.02 39.41 ± 0.01 39.41 ± 0.01 39.42 ± 0.01 39.42 ± 0.01 39.42 ± 0.01 39.42 ± 0.01 39.42 ± 0.01

MSMarco - MRR@10

Exact Search 33.77
ScaNN 33.16 33.58 33.67 33.7 33.76 33.75 33.77 33.77 33.77 33.77
Faiss-IVF 33.34 33.54 33.66 33.72 33.75 33.75 33.74 33.76 33.76 33.77
EHI (n = 5) 33.62 ± 0.03 33.74 ± 0.03 33.77 ± 0.02 33.78 ± 0.01 33.78 ± 0.01 33.79 ± 0.01 33.79 ± 0.01 33.79 ± 0.01 33.79 ± 0.01 33.79 ± 0.01

4.5 Statistical Significance Tests

In this section, we aim to show that the improvements achieved by EHI over other baselines as depicted in
Section 4.2 are statistically significant. We confirm with hypothesis tests that all the results on datasets
considered in this work are statistically significant with a p-value less than 0.05.

Table 5: Statistical Significance p-test.

Dataset Scifact (R@100) Fiqa (R@100) MSMARCO (nDCG@10) MSMARCO (MRR@10)

p-value 0.0016 7.97E-07 0.0036 0.0018
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Figure 6: Leaf distribution of documents and queries of MS Marco in our trained EHI model. Our model
learns splits closer to ideal split (uniform), this suggests that all the leaves are efficiently used, and our model
does not learn very lob sided clusters. This roughly uniform spread of both queries (Figure 6(b)), as well as
documents (Figure 6(a)) provides a more fine-grained clustering structure which not only takes advantage of
all the leaves but also shows state of the art performance compared to baselines as discussed extensively in
Section 4.2.

4.6 Load balancing

Load balancing is a crucial objective that we aim to accomplish in this work. By achieving nearly uniform
clusters, we can create clusters with finer granularity, ultimately reducing latency in our model. In Figure 6(a),
we can observe the distribution of documents across different leaf nodes. It is noteworthy that the expected
number of documents per leaf, calculated as

∑l=#Leaf
i=1 pici, where pi represents the probability of a document

in bucket index i and ci denotes the number of documents in bucket i, yields an optimal value of approximately
1263.12. Currently, our approach attains an expected number of documents per leaf of 1404.65. Despite a
slight skewness in the distribution, we view this as advantageous since we can allocate some leaves to store
infrequently accessed tail documents from our training dataset. Additionally, our analysis demonstrates
that queries are roughly evenly divided, highlighting the successful load balancing achieved, as illustrated in
Figure 6.

4.7 Learning to balance load over epochs

In the previous section, we showed that our learned clusters are almost uniformly distributed, and help
improve latency as shown in Section 4.2. In this section, we study the progression of expected documents per
leaf as defined above over training progression on the Scifact dataset. In Figure 7 demonstrates the decline of
the expected documents per leaf over the training regime.

4.8 Discussions

In the previous section, we demonstrated the effectiveness of EHI against multiple baselines on diverse
benchmarks. In this section, we report results from multiple ablation studies to better understand the
behavior of EHI.

Fraction of visited documents as a proxy for latency. Ideally, we would want to compare query
throughput against recall/MRR, but obtaining head-to-head latency numbers is challenging as different
systems are implemented using different environments and optimizations (for instance, off-the-shelf indexers
such as SCANN, FAISS work better with CPU optimization while EHI takes advantage of GPUs). Thus,
following standard practice in the ANNS community, we use a fraction of documents visited/searched as a
proxy for latency (Jayaram Subramanya et al., 2019; Guo et al., 2020).

Stand-alone Indexer comparisons. To showcase the alignment between the embeddings and the down-
stream clusters learned, we conduct an experiment where we initialize the encoders with the encoder trained
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Figure 7: Load balancing of documents over the training regime of EHI. EHI learning objective encourages
well balances leaf nodes as well as state of the art accuracy.

via EHI. We find the indexer trained by EHI is better aligned with the representations and leads to better
performance when visiting fewer fraction of documents (see Figure 8). This underscores the crucial alignment
and efficiency gains achieved through EHI’s joint optimization.

To isolate the EHI indexer’s impact, we fix encoder embeddings (pre-trained EHI model) and compare
EHI indexing against ScaNN, and Faiss-IVF. Figure 5(a) illustrates that EHI outperforms other baselines by
up to 4.6% when visiting a limited number of documents, highlighting the EHI indexer’s intrinsic efficiency.

Effect of branching factor. Figure 5(b) shows recall@100 of EHI on SciFact with varying branching
factors. We consider two versions of EHI, one with exact-search, and another where where we restrict EHI to
visit about 10% visited document. Interestingly, for EHI + Exact Search, the accuracy decreases with a
higher branching factor, while it increases for the smaller beam-size of 0.1. We attribute this to documents in
a leaf node being very similar to each other for high branching factors (fewer points per leaf). We hypothesize
that EHI is sampling highly relevant documents for hard negatives leading to a lower exact search accuracy.

Ablation w.r.t loss components. Next, on FIQA dataset, we study performance of EHI when one of
the loss components equation 6 is turned off; see Figure 5(c). First, we observe that EHI outperforms the
other three vanilla variants, implying that each loss term contributes non-trivially to the performance of
EHI. Next, we observe that removing the document-similarity-based loss term (λ3), Eq. equation 5, has
the least effect on the performance of EHI, as the other two-loss terms already capture some of its desired
consequences. However, turning off the contrastive loss on either encoder embedding (λ1), Eq. equation 3,
or path embedding (λ2), Eq. equation 4, loss leads to a significant loss in accuracy. This also indicates the
importance of jointly and accurately learning encoder and indexer parameters.
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Figure 8: EHI indexer is significantly more accurate than EHI encoder + off-the-shelf indexers such as ScaNN,
Faiss-IVF especially when restricted to visit a small fraction of documents. Note that all the algorithms have
been initialized with the same EHI encoder for computing embeddings.
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Figure 9: EHI upon extending to deeper trees.

4.9 Scaling to deeper trees

In this section, we further motivate the need to extend to deep trees and showcase how this extension is
critical to be deployed in production. We show that the hierarchical part in EHI can be tailored for large-scale
tasks (>1B documents or otherwise) and is absolutely necessary for two reasons:

Sub-optimal convergence and blow-up in path embedding: When working with hundreds of billions
of scale datasets as ones generally used in industry, a single height indexer would not work. Having more than
a billion logits returned by a single classification layer would be suboptimal and lead to poor results. This is
a common trend observed in other domains, such as Extreme Classification, and thus warrants hierarchy in
our model design. Furthermore, the path embedding would blow up if we use a single height indexer, and
optimization and gradient alignments would become the bottleneck in this scenario.

Sub-linear scaling and improved latency: Furthermore, increasing the height of EHI can be shown to
scale to very large leaves and documents. Consider a case where our encoder has P parameters, and the
indexer is a single height tree that tries to index each document of D dimension into L leaves. The complexity
of forward pass in this setting would be O(P +DL). However, for very large values of L, this computation
could blow up and lead to suboptimal latency and blow up in memory. Note, however, that by extending
the same into multiple leaves (H), one can reduce the complexity at each height to a sublinear scale. The
complexity of forward pass the hierarchical k-ary tree would be O(P +HDL1/H). Note that since L� H,
the hierarchical k-ary tree can be shown to have a better complexity and latency, which helps in scaling to
documents of the scale of billions as observed in general applications in real-world scenarios. For instance,
EHI trained on Scifact with equal number of leaves, we notice a significant speedup with increasing height;
for example at (B = 64, H = 1), (B = 8, H = 2), and (B = 4, H = 3), we notice a per-query latency of
2.48ms, 2.40ms, and 1.99ms respectively at the same computation budget.

We study the accuracy of EHI when extending to multiple heights of the tree structure to extend its
effectiveness in accurately indexing extensive web-scale document collections. Traditional indexing methods
that rely on a single-height approach can be computationally impractical and sub-optimal when dealing with
billions or more documents. To address this challenge, EHI treats height as a hyperparameter and learns
the entire tree structure end-to-end. This extension to hierarchical k-ary tree is absolutely necessary for
scalability.

In the above results presented in Figure 9, we showcase that one could increase the depth of the tree to allow
multiple linear layers of lower logits - say 1000 clusters at each height instead of doing so at a single level. This
is precisely where the hierarchical part of the method is absolutely necessary for scalability. Furthermore,
we also extend EHI model on other datasets such as Scifact to showcase this phenomenon as depicted in
Table 6. We do confirm with a p-test with a p-value of 0.05 and confirm that the results across different
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permutations are nearly identical, and the improvements on R@50 and R@100 over other permutations are
not statistically significant (improvements < 0.5%). Furthermore, improvements of other permutations of
(B,H) on the R@10 and R@20 metrics over the H=1 baseline are also statistically insignificant. Our current
experiments on Scifact/MSMARCO not only portray that our method does indeed scale to deeper trees but
also showcase that EHI can extend to deeper trees with little to no loss in performance and improved latency.
We also maintain a roughly similar performance and uniform splitting of documents even when extended to
deeper trees as depicted in Figure 9.

Table 6: Performance metrics (%) evaluated on the Scifact dataset across various permutations of braching
factor (B) and height (H). The best value for each metric, corresponding to a specific number of visited
documents, is indicated in bold font.

Scifact R@10 R@20 R@50 R@100

Two-tower model (with Exact Search) 75.82 82.93 87.9 91.77
EHI (B=40, H=1) 84.73 87.57 93.87 95.27
EHI (B=4, H=2) 86.23 88.7 93.43 94.77
EHI (B=6, H=2) 83.8 88.63 92.77 95.27
EHI (B=8, H=2) 84.46 88.47 93.27 95.27
EHI (B=4, H=3) 84.96 88.7 93.6 94.77
EHI (B=6, H=3) 85.36 89.3 93.6 94.77
EHI (B=8, H=3) 83.86 87.47 92.27 95.27

5 Conclusions, Limitations, and Future Work

We presented EHI, a novel framework that fundamentally shifts the paradigm of dense retrieval by jointly
optimizing the query/document encoder and the search indexer. EHI’s core components – the encoder,
indexer, and retriever – work in tandem to generate compact path embeddings. These path embeddings,
representing the path taken by queries and documents within the index tree, are crucial for EHI’s effective
joint training. Extensive evaluations on standard benchmarks demonstrate EHI’s superior efficiency and
accuracy compared to traditional approaches. While the success of path embeddings highlights their potential,
a deeper theoretical understanding and formal guarantees would be valuable. Additionally, exploring the
integration of EHI with hierarchical representations like Matryoshka Embeddings (Kusupati et al., 2022) or
techniques like RGD (Kumar et al., 2023), and extending to billion scale (see Appendix D) could further
enhance performance, particularly for complex and tail queries, and be of interest to the broader research
community. We believe EHI lays a strong foundation for future innovations in dense retrieval, promising
more efficient and accurate semantic search systems.

Broader Impact Statement

Our proposed approach helps improve large scale retrieval and has potential to be applied to multiple industry
grade retrieval solutions. Improving scale and recall quality of retrieval itself might have multiple societal
conquences, but noe of which are specific to our method.
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A Datasets

In this section, we briefly discuss the open-source datasets used in this work adapted from the Beir benchmark
Thakur et al. (2021).

Scifact: Scifact (Wadden et al., 2020) is a fact-checking benchmark that verifies scientific claims using
evidence from research literature containing scientific paper abstracts. The dataset has ∼ 5000 documents
and has a standard train-test split. We use the original publicly available dev split from the task having 300
test queries and include all documents from the original dataset as our corpus. The scale of this dataset is
smaller and included to demonstrate even splits and improvement over baselines even when the number of
documents is in the order of 5000.

Fiqa: Fiqa (Maia et al., 2018) is an open-domain question-answering task in the domain of financial data
by crawling StackExchange posts under the Investment topic from 2009-2017 as our corpus. It consists of
57, 368 documents and publicly available test split from (Thakur et al., 2021) As the test set, we use the
random sample of 500 queries provided by Thakur et al. (2021). The scale of this dataset is 10x higher than
Scifact, with almost 57,638 documents in our corpus.

MS Marco: The MSMarco benchmark Bajaj et al. (2016) has been included since it is widely recognized
as the gold standard for evaluating and benchmarking large-scale information retrieval systems (Thakur et al.,
2021; Ni et al., 2021). It is a collection of real-world search queries and corresponding documents carefully
curated from the Microsoft Bing search engine. What sets MSMarco apart from other datasets is its scale
and diversity, consisting of approximately 9 million documents in its corpus and 532,761 query-passage pairs
for fine-tuning the majority of the retrievers. Due to the increased complexity in scale and missing labels,
the benchmark is widely known to be challenging. The dataset has been extensively explored and used for
fine-tuning dense retrievers in recent works (Thakur et al., 2021; Nogueira & Cho, 2019; Gao et al., 2020a;
Qu et al., 2020). MSMarco has gained significant attention and popularity in the research community due to
its realistic and challenging nature. Its large-scale and diverse dataset reflects the complexities and nuances
of real-world search scenarios, making it an excellent testbed for evaluating the performance of information
retrieval algorithms.

NQ320k: The NQ320k benchmark (Kwiatkowski et al., 2019) has become a standard information retrieval
benchmark used to showcase the efficacy of various SOTA approaches such as DSI (Tay et al., 2022) and
NCI (Wang et al., 2022). In this work, we use the same NQ320k preprocessing steps as NCI. The queries are
natural language questions, and the corpus is Wikipedia articles in HTML format. During preprocessing, we
filter out tags and other special characters and extract the title, abstract, and content strings. Please refer to
Wang et al. (2022) for additional details about this dataset.

Table 7 presents more information about our datasets.

Table 7: Dataset details.

Dataset # Train Pairs # Test Queries # Test Corpus Avg. Test Doc per Query

Scifact 920 300 5183 1.1
Fiqa-2018 14,166 648 57,638 2.6
MS Marco 532,761 6,980 8,841,823 1.1

B Model and Hyperparameter details

We followed a standard approach called grid search to determine the optimal hyperparameters for training
the EHI model. This involved selecting a subset of the training dataset and systematically exploring different
combinations of hyperparameter values that perform best on this held-out set. The key hyperparameters we
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focused on were the Encoder (Eθ ) and Indexer (Iφ) learning rates. Other hyperparameters to tune involved
the weights assigned to each component of the loss function, denoted as λ1, λ2, λ3 in Equation 6.

The specific hyperparameter values used in our experiments are detailed in Table 8. This table provides a
comprehensive overview of the exact settings for each hyperparameter. The transformer block used in this
work is the sentence transformers distilBERT model, which has been trained on the MSMarco dataset (https:
//huggingface.co/sentence-transformers/msmarco-distilbert-cos-v5). We fine-tune the encoder for
our task and report our performance metrics.

Table 8: Hyperparameters used for training EHI on various datasets. Note that number of epoch and
refresh rate (r) was set to 100 and 5, respectively. EHI initializes with distilBERT with encoder embedding
representation as 768

Description Scifact Fiqa MSMarco NQ320k argument_name

General Settings
Batch size 64 64 4096 1024 batch_size
Number of leaves 40 5000 7000 1000 leaves

Optimizer Settings
Encoder Learning rate 4e−4 2e−4 2.5e−8 1e−4 enc_lr
Classifier Learning rate 0.016 9e−4 8e−3 4e−4 cl_lr
Loss factor 1 0.2 0.03 0.11 0.2 λ1
Loss factor 2 0.8 0.46 0.84 0.4 λ2
Loss factor 3 0.2 0.54 0.60 0.11 λ3

C Additional Experiments

This section presents additional experiments conducted on our proposed model, referred to as EHI. The precise
performance metrics of our model, as discussed in Section 4.2, are provided in Appendix C.1. This analysis
demonstrates that our approach achieves state-of-the-art performance even with different initializations,
highlighting its robustness (Appendix 4.4).

Furthermore, we delve into the document-to-leaves ratio concept, showcasing its adaptability to degrees
greater than one and the advantages of doing so, provided that our computational requirements are met
(Appendix C.4). This flexibility allows for the exploration of more nuanced clustering possibilities. We also
examine load balancing in EHI and emphasize the utilization of all leaves in a well-distributed manner. This
indicates that our model learns efficient representations and enables the formation of finer-grained clusters
(Appendix 4.6).

To shed light on the learning process, we present the expected documents per leaf metric over the training
regime in Appendix 4.7. This analysis demonstrates how EHI learns to create more evenly distributed clusters
as training progresses, further supporting its effectiveness.

Finally, we provide additional insights into the semantic analysis of the Indexer in Appendix C.4, highlighting
the comprehensive examination performed to understand the inner workings of our model better.

Through these additional experiments and analyses, we reinforce the efficacy, robustness, and interpretability
of our proposed EHI model, demonstrating its potential to advance the field of information retrieval.

SciFact. We first start with the small-scale SciFact dataset. Figure 10(a) and Table 9 compares EHI to
three DE baselines. Clearly, EHI’s recall-compute curve dominates that of DE+ScaNN and DE+Faiss-IVF.
For example, when allowed to visit/search about 10% of documents, EHI obtains up to +15.64% higher
Recall@100. Furthermore, EHI can outperform DE+Exact Search with a 60% reduction in latency. Finally,
representations from EHI’s encoder with exact search can be as much as 4% more accurate (in terms of
Recall@100) than baseline dual-encoder+Exact Search, indicating effectiveness of EHI’s integrated hard
negative mining.
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Table 9: Performance metrics (%) evaluated on the Scifact dataset across various ranges of visited documents.
The best value for each metric, corresponding to a specific number of visited documents, is indicated in bold
font.

Metric Method 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

R@10

Exact Search 82.73
ScaNN 66.2 74.11 78.28 79.94 81.28 81.61 81.94 82.28 82.28 82.28
Faiss-IVF 70.74 78.27 80.07 82.23 82.9 82.73 82.73 82.73 82.73 82.73
EHI 76.97 81.93 83.33 83.67 84.73 85.07 84.73 84.73 84.73 84.73

R@20

Exact Search 86.9
ScaNN 68.32 77.97 0.8247 84.63 85.97 86.3 86.63 86.97 86.97 86.97
Faiss-IVF 73.26 81.43 84.07 86.73 87.4 87.23 86.9 86.9 86.9 86.9
EHI 81.03 85.27 86.5 86.17 87.23 87.57 87.57 87.57 87.57 87.57

R@50

Exact Search 92.53
ScaNN 72.39 82.7 87.2 90.2 91.53 91.87 92.2 92.53 92.53 92.53
Faiss-IVF 76.66 85.4 87.37 90.03 91.03 90.87 90.87 90.87 90.87 90.87
EHI 82.87 88.67 91.73 92.07 93.2 93.53 93.53 93.53 93.87 93.87

R@100

Exact Search 94.1
ScaNN 72.62 83.03 88.53 91.53 92.87 93.2 93.53 93.87 93.87 93.87
Faiss-IVF 77.16 87.3 89.93 92.6 93.27 93.43 93.43 93.77 94.1 94.1
EHI 83.53 89.33 92.9 93.23 94.43 94.77 94.77 94.93 95.27 95.27

FIQA. Here also we observe a similar trend as SciFact; see Figure 10(b) and Table 10. That is, when
restricted to visit only 15% documents (on an average), EHI outperforms ScaNN and Faiss-IVF in Recall@100
metric by 5.46% and 4.36% respectively. Furthermore, EHI outperforms the exact search in FIQA with a
84% reduction in latency or documents visited. Finally, when allowed to visit about 50% of the documents,
EHI is about 5% more accurate than Exact Search, which visits all the documents. Thus indicating better
quality of learned embeddings.

C.1 Results on various benchmarks

In this section, we depict the precise numbers we achieve with various baselines as well as EHI as shown in
Table 9, Table 10, and Table 11 for Scifact, Fiqa, and MS Marco respectively.
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Figure 10: (a), (b): Recall@100 of EHI and baselines on Scifact and Fiqa dataset. EHI is significantly more
accurate than dual encoder + ScaNN or Faiss-IVF baselines, especially when computationally restricted to
visit a small fraction of documents. For example, on Scifact dataset, at 10% document visit rate, EHI has
11.7% higher Recall@100 than baselines.

To understand how the performance of EHI model is on a smaller number of k in Recall@k, we report
Recall@10, Recall@25, and Recall@50 metrics on the Scifact dataset. Figure 11 depicts the performance of
the EHI model in this setting. On the Recall@10, Recall@20 and Recall@50 metric, EHI outperforms exact
search metric by 8.91%, 4.64% and 5.97% respectively.
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Table 10: Performance metrics (%) evaluated on the Fiqa dataset across various ranges of visited documents.
The best value for each metric, corresponding to a specific number of visited documents, is indicated in bold
font.

Metric Method 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

R@10

Exact Search 30.13
ScaNN 23.95 29.08 29.69 29.98 29.83 30.13 30.08 30.08 30.13 30.13
Faiss-IVF 26.8 29.67 29.9 29.93 29.93 29.93 29.98 30.13 30.13 30.13
EHI 27.43 32.02 32.12 32.19 32.42 32.42 32.42 32.42 32.47 32.47

R@20

Exact Search 36.0
ScaNN 28.54 34.45 35.34 35.67 35.7 36.0 35.88 35.95 36.0 36.0
Faiss-IVF 32.17 35.51 35.77 35.8 35.8 35.8 35.85 36.0 36.0 36.0
EHI 33.47 39.01 39.36 39.45 39.68 39.68 39.68 39.68 39.73 39.73

R@50

Exact Search 45.4
ScaNN 35.93 43.38 44.51 45.11 45.02 45.12 45.07 45.48 45.5 45.4
Faiss-IVF 39.78 44.45 44.86 45.19 45.19 45.19 45.24 45.4 45.4 45.4
EHI 41.03 49.77 50.35 50.62 50.75 50.83 50.99 50.99 51.04 51.04

R@100

Exact Search 53.78
ScaNN 51.0 51.9 52.33 52.69 52.63 53.39 52.49 52.97 53.64 53.78
Faiss-IVF 52.75 53.27 53.65 53.65 53.65 53.63 53.78 53.78 53.78 53.78
EHI 57.36 58.42 58.97 59.18 59.13 59.29 59.29 59.34 59.34 59.39

Table 11: Performance metrics (%) evaluated on the MS Marco dataset across various ranges of visited
documents. The best value for each metric, corresponding to a specific number of visited documents, is
indicated in bold font.

Metric Method 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

nDCG@1

Exact Search 22.41
ScaNN 22.06 22.38 22.36 22.36 22.41 22.39 22.41 22.41 22.41 22.41
Faiss-IVF 22.16 22.32 22.38 22.41 22.41 22.41 22.39 22.39 22.39 22.41
EHI 22.39 22.48 22.46 22.46 22.46 22.46 22.46 22.46 22.46 22.46

nDCG@3

Exact Search 32.5
ScaNN 31.96 32.36 32.42 32.43 32.49 32.48 32.5 32.5 32.5 32.5
Faiss-IVF 32.05 32.25 32.39 32.44 32.48 32.48 32.48 32.5 32.5 32.5
EHI 32.45 32.61 32.61 32.6 32.6 32.6 32.6 32.6 32.6 32.6

nDCG@5

Exact Search 36.03
ScaNN 35.38 35.82 35.91 35.94 36.01 36.01 36.03 36.02 36.03 36.03
Faiss-IVF 35.56 35.75 35.89 35.96 36.0 36.0 36.02 36.04 36.04 36.03
EHI 35.9 36.08 36.08 36.08 36.08 36.08 36.08 36.08 36.08 36.08

nDCG@10

Exact Search 39.39
ScaNN 38.61 39.1 39.25 39.3 39.37 39.36 39.38 39.38 39.39 39.39
Faiss-IVF 38.86 39.09 39.23 39.31 39.35 39.36 39.36 39.38 39.38 39.39
EHI 39.19 39.42 39.42 39.42 39.43 39.43 39.43 39.43 39.43 39.43

MRR@10

Exact Search 33.77
ScaNN 33.16 33.58 33.67 33.7 33.76 33.75 33.77 33.77 33.77 33.77
Faiss-IVF 33.34 33.54 33.66 33.72 33.75 33.75 33.74 33.76 33.76 33.77
EHI 33.64 33.81 33.81 33.8 33.81 33.8 33.8 33.8 33.8 33.8
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Figure 11: Additional Results for other Recall@k metrics of EHI trained on the Scifact dataset.

Table 12: Performance metrics (%) evaluated on the various datasets showcasing the effect of negative mining
when finetuned from a distilbert-cos model trained on MS Marco benchmark.

Dataset Metric EHI’s indexer negative mining ANCE
Scifact R@100 95.27 95.27
MS Marco (distilbert-cos) MRR@10 33.8 33.79
MS Marco (distilbert-cos) nDCG@10 39.43 39.4

Furthermore, we note that most prior works, including ScaNN, DSI, and NCI, all report their numbers for a
single seed. To show the robustness of our approach to initializations, we also report our numbers on multiple
seeds and showcase that we significantly outperform our baselines across all the boards as further described
in Section 4.4.

C.2 Negative Mining

In this section, we discuss additional details on the exact working of our possible negative mining approach.
The idea is that given positive document (d+), you would like to sample other documents which reached the
same bucket as d+ but are not considered relevant to the query (q) per the ground truth data. Note that
the dynamic negative mining is something EHI achieves for almost free, as the built indexer is also used for
the ANNS. Prior approaches including Monath et al. (2023); Dahiya et al. (2023); Hofstätter et al. (2021)
do study this dynamic negative sampling approaches as well. However, the difference lies in the fact that
EHI does not need to build an new index for clustering every few steps, and the hierarchical tree index learned
by EHI is used for the downstream ANNS task. This contrasts with works such as Monath et al. (2023);
Dahiya et al. (2023); Hofstätter et al. (2021), where the index is used during training and hard negative
mining, but is finally discarded. We leave this as an hyperparameter left to the practitioner. Note that we
fine-tune a distilbert model which was trained on the MS Marco dataset with mined hard negatives. Thus,
addition of this negative mining feature in our experiments does not lead to any significant drops as further
shown in Table 12, and leads to efficient re-using of the same indexer learnt during inference.

C.3 Comparisons against ELIAS

In this section, we compare against other end-to-end training paradigms such as ELIAS (Gupta et al.,
2022) which requires warm starting of a knn index. It should be noted that ELIAS and BLISS are tailored
for the domain of extreme classification while we focus on the dense information literature domain (note
that label classifiers, and pre-computing KNN structure for datasets the size of MSMARCO is indeed a
significant overhead). Regardless, we report our findings on the LF-AmazonTitles-131K (XC dataset) below
(see Table 13). Note that below comparison is still unfair, as ELIAS utilizes additional million auxiliary
parameters in their label classifiers, while EHI does not. Furthermore, EHI uses label features for encoding,
while ELIAS does not. Although EHI outperforms ELIAS by 4.16% in P@1, it must be recognized that
comparing against extreme classification based methods is unfair.
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Table 13: Performance metrics (%) evaluated on the LF-AmazonTitles-131K dataset showcasing the efficacy
of EHI in comparison to ELIAS.

LF-AmazonTitles-131K P@1 P@3 P@5
ELIAS 40.13 27.11 19.54
EHI 41.8 28.64 20.79
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Figure 12: Ablation study of docs to leaves on the MS Marco benchmark. Overall, we notice that as long as
computational power is available, increasing number of leaves indexed for documents aids performance in
retrieval.

C.4 Allowing documents to have multiple semantics

Note that throughout training, our model works with a beam size for both query and document and tries
to send relevant documents and queries to the same leaves. While testing, we have only presented results
where beam size is used to send queries to multiple leaves, limiting the number of leaves per document to 1.
We could use a number of leaves per document as a hyperparameter and allow documents to reach multiple
leaves as long as our computational power allows.

Accuracy: In this section, we extend our results on increasing this factor on the MS Marco dataset as
presented in Figure 12. Intuitively, each document could have multiple views, and simply sending them to
only one leaf might not be ideal, but efficient indexing. Furthermore, increasing this hyperparameter from
the default d2l = 1 setting shows strictly superior performance and improves our metrics on the MRR@10 as
well as nDCG@10 metric.

Advantages of Multiple Leaves per Document: While assigning a document to multiple leaf nodes
incurs additional memory costs, we uncover intriguing semantic properties from this approach. For the
analysis, we assign multiple leaves for a document (Doc) ranked based on decreasing order of similarity, as
shown in Figure 13. For Figure 13, we showcase three distinct examples of diverse domains showcasing not
only the semantic correlation of the documents which reach similar leaves but also the queries which reach the
same leaf as our example. It can be seen that each leaf captures slightly different semantics for the document.
On further observations, queries mapped to the same leaf also share the semantic similarity with the Doc.
Note that semantic similarity decreases as the document’s relevance to a label decreases (left to right). This
shows that EHI’s training objection (Part 2 and Part 3) ensures queries with similar semantic meaning as
documents and similar documents are clustered together.

Diverse Concepts Across Leaf Nodes: Our analysis, as showcased in Figure 14, reveals a wide range of
diverse concepts captured by the word clouds derived from the leaf nodes ofEHI. For Figure 14, we visualize
only a subset of randomly chosen leaves (54) instead of all leaf nodes clarity, which was obtained through
random sampling. Below, we highlight some intriguing findings from our analysis. These concepts span
various domains such as phones, plants, healthcare, judiciary, and more. Moreover, within each leaf node, we
observe a cohesive theme among the words. For instance, the word cloud at coordinates (1, 1) reflects an
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Figure 13: We deploy the concept of word cloud to summarize the semantics of all queries and documents in
a leaf. Here, every document and query can hold multiple semantics therefore for the analysis, each document
(Doc) was assigned to multiple leafs with decreasing order of similarity. It can be seen that for each leaf
captures slightly different semantic for the document. On further observations, queries that were mapped to
the same leaf also shares the semantic similarity with the Doc. Note that semantic similarity decreases as the
relevance of document to a label decreases (left to right). This shows that EHI’s training objection (Part 2
and Part 3) ensure queries with similar semantic meaning as document as as well as similar documents are
clustered together.
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Figure 14: Figure shows that EHI’s learning objective encourages leaf nodes to have different semantics. Here
semantic information in each leaf is shown in the form of word cloud. The seemingly similar leaves such as
(1,1), (5, 5) or (8,2) shares the similar words like “year” however, they capture completely different meaning
such as financial, criminal and sports respectively.

30



Published in Transactions on Machine Learning Research (08/2024)

international finance theme, while the word cloud at (1, 2) pertains to fitness. This observation highlights
the importance of grouping similar documents into the same leaf nodes and excluding irrelevant documents
using our objective function. Note that seemingly similar leaves such as (1, 1), (5, 5), or (8, 2) share similar
words like “year”; however, they capture completely different meanings such as financial, criminal, and sports,
respectively.

D Extending to billion-scale corpus

While this work focused on datasets up to 10M in size (MS MARCO) showing no training bottlenecks ( see
Section 4), EHI holds strong theoretical advantages for scaling:

Sublinear Retrieval Complexity The hierarchical tree structure results in sublinear time complexity for
retrieval, outperforming flat indexes as the dataset grows. This is supported by our findings in Section 4.9,
where deeper trees show benefits for larger datasets.

Efficient Search Space Partitioning The tree efficiently partitions the search space, allowing retrieval to
focus on smaller candidate subsets and significantly reducing distance computations.

Regarding the retrieval process itself, determining relevant leaf nodes for a query requires just a single forward
pass through the indexer which is a standard IVF style data-structure. Final document retrieval from those
leaves can leverage efficient, parallelizable matrix multiplications, similar to techniques used in billion-scale
systems like ScaNN (Guo et al., 2020).

The primary computational cost lies in the initial indexing task, demanding a forward pass through the
corpus. However, once indexed, retrieval becomes analogous to ScaNN, reducible to a parallelizable matrix
multiplication with a (D, 768) matrix (D being the candidate document set, controlled by the beam size) and
the (1, 768) query vector.

For inference, the learned index structure is equivalent to ScaNN-like data structures so the same scaling
will hold (Note that even the ScaNN paper showcased its efficacy on the Glove-1.2M benchmark, while
parallelizing to billions of documents in production). Furthermore, ScaNN is deployable at a billion-scale so
EHI would also hold.

Training EHI is analogous to standard contrastive-style learning and poses no theoretical bottleneck in terms
of document size. While our primary focus in this paper is to showcase the potential of our novel paradigm
shift for dense retrieval and demonstrate its efficacy on well-tested gold benchmarks such as MS MARCO,
running EHI on a billion-scale benchmark would be an interesting direction for future work. Large-scale
retrieval systems like Differentiable Search Index (DSI; Tay et al. (2022)) and Neural Corpus Indexer (NCI;
Wang et al. (2022)) operate in similar regimes of MS MARCO/NQ-320K, and exploring EHI’s scalability in
such contexts could unlock further benefits.

E Additional information of EHI’s indexer

In this section, we hope to shed more light on the indexing process of EHI at both training and inference time.
We expand upon our Figure 3, and only discuss the indexer part or the tree segment of the image in Figure 15.
For a given query/document, the root node uses the embedding information (V98 in this case) alone, and
we use a linear layer (U1) to transform the embeddings received by the encoder to another 768-dimensional
embedding. Having these affine transformations at each height is essential as we would like to focus on
different aspects of the same query/document at each height to classify which children node the item needs
to go to. This is followed by another linear layer (W1) to predict logits for the children at the node (2 in this
case). This, followed by the softmax in the tree, leads to the probability distribution deciding which node
to go towards - (p1 = [P1, P2]). This is followed by the logic at the following height, which follows roughly
the same process as the root node with one significant difference. The affine transformation at this height
takes both the embedding input (V98) and the one hot version of the probabilities at the previous height to
make the predictions. During training, we have 1 at the index with the highest probability and 0 otherwise
(assume P1 > P2, and hence one-hot version is [1, 0]). However, once the conditional probability at the next
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Figure 15: EHI indexer is a simple tree-structure where each height uses a neural network to. decide which
path the given query or document needs to go. Following the similar paradigm as Figure 3, variables V98 is
the dense representations (embeddings) of the text of query or document.

height is computed, we multiply by this P1 to have the actual probability of reaching nodes 3 and 4 (note
these numberings follow the same logic as used in Figure 3). The final path embedding is the concatenation
of these probability distributions leading to [P1, P2, P1P3, P1, P4] as depicted in Figure 15. During inference,
the indexer follows a similar setup where, instead of only doing one forward pass with the highest probability,
we do b forward passes at a given height with top-b highest probabilities.
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Algorithm 1 Training step for EHI. u(q) & v(d) denote the query (q) & document (d) representation
from encoder Eθ. Similarly path embedding by the indexer (Iφ) is denoted by T (q) & T (d). Please refer
to Algorithm 2 in appendix for the definition of TOPK-INDEXER and INDEXER. Note that the Update(.)
function updates the encoder and indexer parameters through the back-propagation of the loss through
AdamW (Loshchilov & Hutter, 2017) in our case, while other optimizers could also be used for the same (e.g.
SGD, Adam, etc.).
Require: φ ← Indexer Parameters, θ ← Encoder parameters, τ ← similarity threshold, B ← indexer
branching factor, H ← indexer height, β ← beam size, M ← Mapping of leaf to documents, Q̂ =
{q1, q2, . . . , qs} ∼ Q (randomly sampled mini-batch), INDEXER ← Returns path embedding, TOPK-INDEXER
← Returns most relevant leaf

procedure RETRIEVER(u, φ, β) – Retrieves most relevant doc
_,_,Leafs = TOPK-INDEXER(u, φ,B,H, β) . Refer to Alg 2
return ∪l∈LeafsM(l)

end procedure
procedure Training(Q̂) – jointly update encoder and indexer parameters θ, φ

loss = 0
for qi ∈ Q̂ do

di ∼ {k|yik = 1} . Sample a relevant document
hi ∼ {d|RETRIEVER(Eθ(qi), φ, β)} \ {k|yik = 1} . Sample a hard neg. from retriever
loss += L(Eθ(qi), Eθ(di), Eθ(hi)) . Triplet loss against hard negative
for qj ∈ Q̂ and qi 6= qj do

dj ∼ {k|yik = −1 ∩ yjk = 1} . Sample an in-batch negative
loss += L(Eθ(qi), Eθ(di), Eθ(dj)) . Uses θ to encode doc. and query
loss += L(Tφ(qi), Tφ(di), Tφ(dj)) . Uses INDEXER in Alg 2 for Tφ.
loss += 1{SIM(v(di),v(dj)) < τ}L(Tφ(di), Tφ(di), Tφ(dj))

end for
end for
return Update(θ, φ, loss) . Update encoder and indexer parameters with gradient of loss

end procedure
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Algorithm 2 Training step for EHI. u(q) & v(d) denote the query (q) & document (d) representation from
encoder Eθ. Similarly path embedding by the indexer (Iφ) is denoted by T (q) & T (d).
Require: φ = {WH , . . . ,W1,UH , . . . ,U1} ← Indexer Parameters, θ ← Encoder parameters, τ ← Inter-
document similarity threshold, B ← branching factor of the Indexer, H ← height of the indexer, β ←
beam size,M← Mapping of leaf to documents, Q̂ = {q1, q2, . . . , qs} ∼ Q (randomly sampled mini-batch)
procedure INDEXER(u, φ,B,H) – Computes indexer path emb. for a query/document

l = TOPK-INDEXER(u, φ,B,H, β = 1)
Tφ = []
pl = 1
for h ∈ 1 . . . H do

p̂ = S([o(ih−1
l ); o(ih−2

l ); . . . ; o(i1l ); u]; Wh,Uh)
Tφ = [Tφ; p̂ · pl]
pl = pl · p̂[ihl ]

end for
return Tφ

end procedure

procedure TOPK-INDEXER(u, φ,B,H, β) – Indexes a query/document in the β most relevant leaves
h← 1, P = {< 1,u, 0 >} . Tuple of score, path and node ID
while h ≤ H do
P̂ = Max-Heap(size = β)
for s,p, n ∈ P.pop() do

p̂ = S(p; Wh,Uh)× s; For all i ∈ 1 . . . B: P̂.push(< p̂[i],o(i); p, n ·B + i >)
end for
P = P̂

end while
return P

end procedure
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