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Abstract: In this work, we tackle one-shot visual search of object parts. Given a
single reference image of an object with annotated affordance regions, we segment
semantically corresponding parts within a target scene. We propose AffCorrs, an
unsupervised model that combines the properties of pre-trained DINO-ViT’s im-
age descriptors and cyclic correspondences. We use AffCorrs to find correspond-
ing affordances both for intra- and inter-class one-shot part segmentation. This
task is more difficult than supervised alternatives, but enables future work such
as learning affordances via imitation and assisted teleoperation. Project page with
code and dataset: https://sites.google.com/view/affcorrs
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1 Introduction

Robot agents can significantly benefit from perceiving and understanding what the environment
affords them to do. Affordances [1] are representations of how a part of the environment can be
used, e.g., a spoon affords to be grasped, and to contain liquid. Being grounded on human semantics,
they are intuitive and explainable. Part-based affordance representations can be efficiently used as
an intermediate representation that reduces the dimensionality of many robot learning problems
significantly [2]. Just as people are able to transfer the knowledge of an object’s functionality to
other objects from only a few examples, e.g., the graspable handles of jugs to mugs, it would be
beneficial for robots to understand such correspondences, too. We motivate the topic of recognizing
known affordance regions in unseen novel objects as a useful step toward more autonomous robots,
assisted teleoperation, visual inspection, and scene understanding.

Evidently, semantic part correspondence can be achieved with fully supervised methods [3, 4]. How-
ever, they are limited to objects similar to the ones present in the dataset, each requiring multiple
instances for better generalization of the object category. Meanwhile, the self-supervision and un-
supervised learning paradigms, present an alternative direction, which alleviates the data annotation
bottleneck [5], and could enable robots to learn continually by themselves [6].

In this work, we demonstrate how the pre-trained DINO-ViT model [7], which is shown to produce
good co-segmentation and point correspondences [8], can be used for part querying and finding
semantically corresponding parts in one-shot – a novel formulation of the One-Shot Instance Seg-
mentation (OSIS) problem extended to parts, which we call One-Shot Affordance Part Segmentation
(OSAPS). The method enables us to query on any segmentation mask leveraging the semantic prior
given by a user, or a preceding system. In particular, we demonstrate how querying on affordance
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part regions can be associated with predefined skills. As far as we are aware, this work is one of
the first to extend one-shot instance segmentation to part masks, and affordance parts in particular.
Our proposed method presents several contributions: (i) One-Shot transfer of affordance regions in-
stead of learning through supervision; (ii) Decoupled skills that allow the separation of affordance
discovery and execution; (iii) Query-based transfer instead of co-part segmentation, which allows
us to transfer specific semantic parts rather than parts based on visual or geometric features only;
(iv) Benchmark subset of an affordance dataset curated for one-shot part transfer.

2 Related Work

Most affordance learning work focuses on fully supervised methods that learn a particular af-
fordance, predefined in the training set as image segments, contact points or interaction re-
gions [9, 10, 11]. Some works focus on learning from interaction combined with geometric and
perceptual features [12, 13]. Model-based approaches are a potential path towards efficient knowl-
edge transfer. However, they still rely on expensive annotations, such as full object template mod-
els [14]. One-shot affordance detection was recently demonstrated [15], but this approach is limited
to instance masks and bounding boxes, which are insufficient to transfer knowledge to a robot.

Models requiring little to no supervision have great potential for robot applications that benefit from
adapting quickly and learning continuously. It is of particular interest to understand how previous
works in computer and robot vision solve the semantic correspondence problem in the domains of
point- and part-correspondence with limited supervision.

Many works enforce the semantic relationship between two inputs through cyclic matching, ei-
ther through a cyclic loss or a proxy representation. Recent examples include the use of uniform
category-level representations of objects as template 3D objects [16] or unit spheres [17]. Dense
Object Nets [18] extended previous work [19] and presented a method trained with self-supervision
by projecting points across multiple viewpoints of the same objects, and showing how the learned
object descriptors effectively generalize over other semantically similar objects. Recently, they have
been extended to learn from even less data and work with more objects through optical flow of
monocular videos [20], neural radiance fields [21], and unsupervised object classification [22]. Part-
based methods also often use latent representations that encode each part’s appearance, shape, or
pose [23, 24]. Very close to our method is [25] in that it is using cycle-consistency over transformer
descriptors to produce one-shot instance segmentation.

Other methods rely on large image datasets, such as ImageNet, for pre-training of vision mod-
els as means of encoding semantic and perceptual information. Such works in point correspon-
dence [26, 27, 28, 29] and part correspondence [23, 24] show state-of-the-art performance on several
computer vision benchmarks. However, these methods often struggle with highly occluded inputs
with large viewpoint variance. Caron et al. [7] show that DINO-ViT, a variant of ViT [30] trained
via self-supervised knowledge distillation, can produce descriptors that contain explicit informa-
tion about the underlying semantic content, with properties suitable for k-nearest neighbours (kNN)
search. These properties were recently used in unison with cyclic correspondence for unparalleled
co-part segmentation without fine-tuning [8]. However, the co-segmentation task does not solve our
problem, since it often results in segmentation that is consistent but semantically meaningless.

The literature review leads to several conclusions: (i) for any local descriptor to be suitable for
semantic correspondence, it needs to be ‘aware’ of the full semantic context of the object that it is
part of; (ii) in matching any two objects belonging to the same semantic category, not all points will
always have a true correspondence, either due to occlusion or the lack or addition of parts (such as
handle on a cup, or a switch on a lamp); (iii) the currently best performing models combine semantic
priors provided by pre-trained models and cyclicity.

3 Method

The one-shot semantic instance segmentation (OSIS) problem [31] is defined as finding and seg-
menting a previously unseen object in a novel scene, based on a single instruction example. Simi-
larly, in this work, we aim to solve one-shot affordance part segmentation (OSAPS): given a support
reference image IR ∈ R3×HR×WR and query mask region MQ ∈ {0,1}HR×WR , the task is to find the
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semantically corresponding region in the target image IT ∈R3×HT×WT . The variables HR, WR denote
the height and width of the support, while HT , WT denote those of the target, respectively.

Figure 1: The overall system diagram: The support descriptors FR belonging to the query area MQ
are grouped into KQ query centroids. The salient target image descriptors are grouped into KT target
descriptors. Cyclic correspondence is enforced by matching KQ to KT (forward matching), and KT
to FT (backward matching). A score is computed for each centroid in the target. The centroid scores
are mapped to the descriptors belonging to each grouping. Finally, each pixel is determined to be
foreground (or not) by the CRF, which compares the scores with a baseline energy level.

3.1 Query Region Correspondence

Pre-processing: The key takeaway from successful attempts in related works is that cyclicity plays
an important role in correspondence—a matching region corresponds to the query region and vice
versa (i.e., the query region corresponds to the matching region). Given the kNN-like properties
of DINO-ViT, we propose to use its descriptors to find correspondences. Thus, we get descriptor
images FR and FT corresponding to IR and IT , respectively. Since dense descriptors retain their
spatial locations, we can use the query mask MQ and target mask MT (e.g., one generated through
saliency or user-provided) to only select the foreground pixels (Fig. 1-Step 1).

A conventional pixel correspondence method, such as [32], can then be applied to find matches
between the two images. However, it is dealing with several issues: (i) occluded or missing
parts/objects in the target (e.g., a cup that does not have a handle); (ii) some parts are more dis-
tinctive than others (e.g., the tip of a blade versus its centre); (iii) descriptors could be noisy and
Euclidean distance between them is not sufficient for best-matching (see [18, 22]). We start by
grouping the descriptors into KQ query groups and KT target groups (see Fig. 1-Step 2), we get
mean descriptors FQ and FT, f g, respectively, which are less noisy than single descriptors.

Forward matching: Through pairwise cosine similarity, we can find how close each of the FQ
centroids is to each FT, f g centroid descriptors, as sim(FQ,FT, f g) ∈RKQ×KT . For each query centroid,
we determine the probability that it matches the target centroids as

AQT = softmaxT, f g
(
sim(FQ,FT, f g)/τQT

)
, (1)

where τQT is the softmax temperature and T, f g is the target centroid axis. We want to enable one-to-
many matching, as well as matching of regions with different scales (e.g., matching a small handle
to a large one). However, we find that the matching probability AQT in larger less distinctive areas
is spread more and thus – much smaller. By summing over the query centroids as in Eq. (2), we get
‘votes’ VQT which deal with this issue by summing over the query centroids as

VQT = ∑
Q

AQT . (2)

The votes balance well between matches to distinctive areas (which are fewer but more confident)
and matches to less distinctive ones (which are more numerous but less confident).

3



Backward matching: Similarly, we could find the matches from the target to the support. We
match to the full support descriptor image FR rather than the centroids of the selected area FQ – with
this information, any matches that correspond to another area of the support image can be excluded.
Thus, our backward matching affinity is computed with the full FR as

AT R = softmaxR
(
sim(FT, f g,FR)/τT R

)
, (3)

while the probability that each target centroid corresponds to the query region of the support image
is computed by summing over the mask query pixels MQ:

PT Q = ∑
MQ

AT R (4)

Post-processing: By multiplying PT Q and VQT , we get a ‘score’ ST, f g for each target centroid, as
ST, f g = VQT ·PT Q. We map each pixel to the score value of the centroid which represents it (See
Fig. 1-Step 3). Each target centroid with PT Q > 0.5 is likely a correspondence. Meanwhile, VQT is
not a probability, but rather a sum of KQ probabilities, each of which represents a match that is more
likely than average to represent a true correspondence if it’s larger than 1/KT . Hence, we deem
the heuristic threshold VQT > KQ/KT as representative of a likely match for each target centroid.
Finally, the two thresholds can be multiplied to get a ‘score’ threshold for each centroid.

Using a Conditional Random Field (CRF), a smooth binary mask can be produced which loosely
follows an energy boundary - we set the foreground energy term to be the scores image, while the
background energy – a constant of KQ/2KT which is the score threshold.

Design choices: Our choice of descriptor model is the DINO-ViT-S with patch size 8, pre-trained on
ImageNet, due to superior properties in the similar task of co-part segmentation [8]. The support and
target descriptors filtering is done by applying the support query and saliency masks, respectively.
Clustering is achieved via Fast K-Means [33] into an over-segmented image with KQ = KT = 10 2 3.
We choose τQT = 0.2, τT R = 0.02 empirically. Having a large τQT means the forward matching is
lenient and selects many potential candidates, while the low τT R filters in only the parts of those
candidates that are confidently matching to the query part rather than the rest of the reference.

3.2 Affordance Transfer

We propose one-shot affordance skill transfer by defining a stack of skills S, i.e., affordance functions
Si(oa f f ) associated with manually annotated parts (and their descriptors) oa f f sensor inputs. Those
skills would then be transferred to the corresponding parts ôa f f of other objects by applying Si(ôa f f ).
For example, a skill might be to grasp at the centroid of a graspable region, or place a ball in a
containment region. In more general terms, the skill can be formulated as Si(ôa f f ,oclass,X), where
oclass is the (either categorical or latent) class of the support object and X is the robot’s sensory state.
The skills can be either robot-specific or robot-agnostic, since the chosen affordance representation
does not make assumptions. In this work, we show this system with simple first-order affordances
(grasping and containing) in simple scenes, and leave multi-object manipulations for the future.

4 Experiments

4.1 Quality of Part Transfer

Metrics: We use metrics standard in affordance learning literature [34, 35]: per-affordance class In-
tersection over Union (also called Jaccard index), and Fw

b -measure [36] which is a weighted version
of IoU that accounts for pixel location and mask interpolation.

Datasets: As our main benchmark, we use the UMD Affordance Dataset [37] due to its variety of
objects, allowing us to evaluate affordance transfer in both inter- and intra-class pairs. Similarly to
how works in one-shot instance transfer use modified folds of PASCAL-5i [38] and COCO-20i [39],
we present UMDi – a one-shot correspondence variant of UMD, which is composed of a single

2Any similar method such as superpixelization could work as long as the final patches are dense, loosely
follow the objects’ geometry and produce segments smaller or equal in size to the smallest distinctive part.

3We found that any value larger than 3 leads to comparable results for the used datasets. However, the
number of segments should be larger than the number of distinct areas of the query parts.
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instance of each object in the dataset with both RGB image and affordance ground truth annotation.
The original annotations are kept to highlight the difficulties of semantic transfer, as no two human
annotations are the same. The classes include common objects such as bowls, ladles, and knives,
with manually labelled grasp, scoop, wrap-grasp, support, contain, cut, and pound affordances.

Experimental Setup: For each object in UMDi, we attempt to transfer its ground truth part masks
to each other object of the same class (intra-class) and to each other object of classes that possess
the same affordance (inter-class) from the dataset. The quantitative metrics are averaged over each
affordance type. The qualitative comparison is shown as well.

Baselines: As an upper baseline, we include the reported metrics of fully supervised [34, 35] on the
UMD dataset (standard split for intra- and novel split for inter-class results). These are not directly
comparable with our method, since they could learn the way affordances are labelled within the
dataset through supervision and are evaluated on the test subset of UMD, instead of UMDi. As base-
lines, we have included two variants of the current SotA in one-shot instance transfer–BAM [40].
We also include the unsupervised co-segmentation method [8], which inspired our work. Since
this method produces 2 to 10 unsupervised segments (by using K-Means elbow point), we take all
segments in the support that have at least 50% overlap with the support ground truth, and use the
aggregate of their correspondences as the ‘estimated parts’. This estimate is then compared with the
target ground truth.

Finally, to showcase the difficulty of semantic labelling we also included a ‘human level’: a person
is shown two objects from the same class, they are given the task of one-shot transferring labels by
observing the ground truth annotation of one image and annotating the second. This is done once
for each UMDi object as the target, after which the metric score is scaled by the number of objects
belonging to that class before computing the per-affordance means.

Figure 2: The annotated affordance regions from each support image are transferred with AffCorrs
to intra- and inter-class targets on the same row. Colours represent grasp, cut, contain, wrap-grasp.

Grasp Cut Scoop Contain Wrap-grasp Pound Support
IoU Fw

β
IoU Fw

β
IoU Fw

β
IoU Fw

β
IoU Fw

β
IoU Fw

β
IoU Fw

β

Supervised
ResNet [34] 0.71 - 0.79 - 0.86 - 0.86 - 0.84 - 0.72 - 0.55 -
ADNet [35] - 0.73 - 0.72 - 0.80 - 0.85 - 0.81 - 0.87 - 0.76
AffNet [3] - 0.73 - 0.81 - 0.76 - 0.83 - 0.82 - 0.79 - 0.84

Unsupervised / One-Shot Transfer
BAM-ResNet [40] 0.26 0.26 0.28 0.23 0.52 0.57 0.57 0.60 0.42 0.45 0.45 0.50 0.43 0.60
BAM-VGG [40] 0.15 0.17 0.17 0.13 0.43 0.45 0.56 0.59 0.41 0.45 0.39 0.44 0.27 0.41
DINO-ViT [8] 0.45 0.51 0.57 0.64 0.61 0.64 0.42 0.48 0.53 0.62 0.66 0.76 0.66 0.75
AffCorrs (ours) 0.55 0.65 0.72 0.81 0.73 0.81 0.82 0.87 0.83 0.89 0.78 0.87 0.82 0.87

Human level 0.59 0.79 0.64 0.82 0.66 0.83 0.72 0.79 0.73 0.74 0.74 0.74 0.74 0.75

Table 1: Comparison of per-affordance metrics on intra-class pairs.
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Figure 3: Visual comparison of the segmentation produced by various methods. Colours represent
grasp, cut, contain, wrap-grasp. Note that Co-part segmentation has a separate colouring.

Grasp Cut Scoop Contain Wrap-grasp Pound Support
IoU Fw

β
IoU Fw

β
IoU Fw

β
IoU Fw

β
IoU Fw

β
IoU Fw

β
IoU Fw

β

Supervised
ResNet [34] 0.33 - 0.51 - 0.69 - 0.52 - 0.85 - 0.09 - 0.51 -

Unsupervised / One-Shot Transfer
BAM-ResNet [40] 0.22 0.25 0.22 0.25 0.20 0.21 0.51 0.54 0.17 0.18 0.15 0.16 0.12 0.13
BAM-VGG [40] 0.13 0.15 0.13 0.14 0.17 0.18 0.50 0.52 0.16 0.18 0.13 0.15 0.05 0.05
DINO-ViT [8] 0.39 0.45 0.50 0.57 0.58 0.60 0.30 0.34 0.56 0.64 0.66 0.75 0.68 0.76
AffCorrs (ours) 0.39 0.41 0.51 0.50 0.62 0.65 0.71 0.75 0.83 0.87 0.72 0.73 0.82 0.79

Table 2: Comparison of per-affordance metrics on inter-class pairs.

Results: A visualization of parts transferred with AffCorrs in Figure 2 shows that the masks are rel-
atively robust to viewpoint variance (see mugs), and missing correspondences (see knife-to-hammer,
and mug-to-cup), while being surprisingly capable of transferring affordance across dissimilar re-
gions. In Figure 3 we show a comparison with the unsupervised baselines. Both the qualitative and
quantitative comparisons (in Tables 1 and 2) affirm that AffCorrs performs better on UMDi4 . The
BAM baseline under-performs, likely due to being tailored for whole object instance transfer rather
than parts. Meanwhile, the co-part segmentation, which uses the same saliency masks and backbone
as AffCorrs, appears to often ignore the foreground when it doesn’t deem it common enough across
the objects, and produce parts that don’t align with what we would consider semantically significant.

4.2 Affordance Transfer in the Real World

Experimental Setup: To showcase the application to affordance transfer and evaluate the current
limitations in realistic scenes, we present the following evaluation setup: we use a Franka Emika ma-
nipulator with an arm-mounted RGB-D camera. As a query, we use a single image of a screwdriver
toy with annotated grasping area, and a mug with annotated containment. The query is one-shot
transferred to the robot’s unseen environment. Finally, the robot attempts to use the affordance skill.

We test the method in two settings (See Figure 4) – single object and multiple objects. Single
object scenes contain one object that belongs to the same class as the query (intra-class), or an
object from a different class (inter-class) that has an affordance equivalent to the queried one (e.g.,
graspable part). In the scenes containing multiple objects, there are several objects that are ‘true’
correspondences (See Appx. C) , along with distractor objects. In both cases, the background was
varied with different surfaces (table, carton, textile, whiteboard). The objects used are relatively
spaced out, with occasional occlusion. Ten examples of either setting were used for the following
robot experiments.

4The appendices detail an ablation over AffCorrs variants (Appx. A) , further outputs of AffCorrs (Appx.
D, E) and a comparison with a flow-based baseline (Appx. F).
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Figure 4: Examples of robot test scenes - either with one object or multiple. The red area denotes
correspondences, the circle - the next object selected for manipulation based on the highest point.

Two simple first-order affordance skills are shown: grasping and containment. More complex multi-
object interactions are left for future work. The grasping skill is defined as picking at the 3D centroid
of a part, with grasp orientation along the largest PCA axis in XY-space (i.e., we assume a top
grasp). The containment skill is defined as opening the robot gripper above the XY centroid of the
affordance region. Each affordance is attempted ten times for each setting. An attempt is deemed
successful if the robot successfully uses the affordance of all objects that correspond to the query,
e.g., grasps all objects with tool handles and doesn’t attempt to grasp a non-corresponding object.

Figure 5: Example of the robot finding and using the handle-grasp affordance.

Results: An example grasp in multi-object scene is shown in Figure 5. In the one-object setting,
we observed a 100% success rate for both grasping and containment. In the multi-object setting, the
grasping success rate dropped to 70% and the containment – to 80%. Refer to Appendix B for grasp-
ing location examples and baseline comparison. As noted by previous OSIS approaches [31, 25],
AffCorrs too shows that cluttered scenes are more challenging, which underscores the importance
of extending the model in order to process such scenes robustly.

Figure 6: Several examples of one-shot transfer, from left to right: Transfer (i) from a mug simulated
in Isaac Sim to a real jug; (ii) from a USB cable to an Ethernet cable; (iii) from a rose to water loti.
Note that the reflection of the flower was marked as corresponding as well.

4.3 Transfer across Less Common Objects

Finally, we briefly motivate the practical usefulness of the one-shot property of AffCorrs over su-
pervised methods: AffCorrs can produce good semantic part correspondences across less common
objects, allowing it to work with very specific affordances that likely are not represented in any big
dataset. Moreover, transferring a skill from simulation to reality could be made easy by using such
an affordance representation; see examples in Figure 6.
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5 Limitations

We highlight several important limitations of the current method (see Figure 7): AffCorrs searches
for correspondences with probability-based cycle-consistency, which means that it can find corre-
spondences between vastly different objects provided that they have similar descriptors. This is in
the method’s favour when the support image is suitable - e.g., when transferring from a screwdriver
to a hammer’s handle, but not as much when the support image is different, such as a bowl to a
hammer. We have seen that the descriptor similarity alone may not be enough to always prevent
incorrect matches from appearing, which limits the current model to simpler scenes without severe
clutter. This is also limiting the method’s ability to perform well in clutter. Meanwhile, the alterna-
tive of having a conservative matching would limit the transfer-ability across inter-class pairs.

Another issue stems from the descriptors themselves – the DINO-ViT descriptors confuse between
an object’s texture (e.g., a print of a dog on a mug) and an actual object (e.g., a real dog). This would
mean that two same-class objects with and without textures sometimes result in different parts. The
transformer’s positional encoding makes the model biased toward picking a correspondence that
is similarly located within the image instead of the actual correspondence. This limitation could
potentially be addressed by performing flipping and cropping augmentations before the clustering
steps. In terms of affordances, this work shows some simple affordance interactions, however the
method could, in theory, be applied to multi-object interactions. The limitations of that direction are
yet to be assessed.

Figure 7: Six examples of model failures: some failure can likely be explained by the colour and
shape of the parts shown on the top row of examples, e.g., a black knife handle mismatched to a
black hammer. AffCorrs also fails due to the inherited positional encoding, observed in the bottom
row examples.

6 Conclusion and Future Work

In this work, we showed how pre-trained DINO-ViT’s descriptors can be adapted for part-based
transfer of affordances. We have shown that AffCorrs is better suited for this task than the cur-
rent best one-shot instance segmentation baseline and has an impressive cross-object transfer of part
segmentation. However, it’s limitations in working with clutter need to be addressed before any
real-world application. Potential candidates to solve this problem include using an object detection
model (such as DetCo [41]), more sophisticated matching, or some form of unsupervised latent clas-
sification. Solving this issue would make the method suitable for more complex dataset benchmarks,
such as the IIT’s affordance dataset [10]. While this work is the first tackling the one-shot affordance
transfer problem, it opens the door for many future directions such as learning to both discover and
use affordances from one-shot observations by looking at how people interact with objects; using
affordance regions for transfer of more complex multi-object interactions; assisting teleoperation
using affordance-guided object manipulation rather than hand-to-robot movement transfer.
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