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ABSTRACT

Neural networks, especially deep learning, have achieved revolutionary advances
in several domains, including image and speech recognition, with excellent re-
sults. However, their reliance on labeled data, lack of interpretability, and incon-
sistency with physical principles limit their applicability in groundwater seepage
prediction and other scientific disciplines. Physics-Informed Neural Networks
(PINNs) significantly improve these issues by integrating physical knowledge
with neural networks. This study focuses on modeling the groundwater flow
field and proposes a physics-informed river-canal groundwater seepage model
(PI-RGSM). This model enables self-supervised learning by incorporating hard
constraints of boundary and initial conditions, utilizing hydrogeological param-
eters and boundary conditions as direct inputs, thus diminishing dependence on
observable data. Compared to the baseline PINNs, the PI-RGSM adapts to and ac-
curately predicts diverse seepage situations with just one training session, achiev-
ing a mean coefficient of determination of 0.978. To further enhance applicability
in complex dynamic groundwater seepage situations, we propose PI-RGSM-K,
which builds upon PI-RGSM. This model simulates heterogeneous groundwa-
ter seepage fields and improves performance in complex seepage environments
through parameterized hydraulic conductivity field K(x, y) and fine-adjusted
model architecture, attaining a mean coefficient of determination of 0.982. The
physics-informed neural network models proposed in this study demonstrate ex-
ceptional efficacy in precisely forecasting groundwater seepage behavior.

1 INTRODUCTION

Groundwater is a crucial source of fresh water for the global population, essential for residential
life, agricultural irrigation, industrial production, and ecosystem protection (Massuel et al., 2018;
Xie et al., 2023; Mishra, 2023). It is imperative to manage this rich resource sustainably to en-
sure its long-term availability. Therefore, it is very important to understand groundwater dynamics.
Field-based observations, theoretical analysis, hydrogeological modeling are essential ways to study
groundwater dynamics (Li et al., 2021; Su et al., 2023). However, although some field-based obser-
vations (e.g., pump tests, tracer Tests, monitoring wells, etc.) are inevitable, large amount of field-
based observations for analyzing groundwater dynamics are time-consuming and labor-intensive;
although theoretical analysis is effective in providing deep understanding of the basic principles and
flexibility in exploring simplified complex systems, the oversimplification, heavy dependence on as-
sumptions and lack of specificity limit the further application. Hydrogeological modeling is widely
used to simulate groundwater dynamics for its relatively easy and cheap of implementing, ability
of complex system representation, scenario analyzing, results visualization (Chen et al., 2020; Jing
et al., 2023).

With the evolution of scientific paradigms (Caı́no-Lores et al., 2020), researches on natural science
has mitigated from empirical and theoretical approaches to computational and data-intensive scien-
tific paradigms driven by computer simulations and big data (Babovi & Bajat, 2023; Li et al., 2023).
In the field of computational fluid dynamics, numerical models have achieved accurate simulations
of physical processes (refer to Appendix A). Important issues in those spatial discretization meth-
ods for solving the partial differential equations (PDEs) of groundwater are the computationally
intensive. Continuous advancements in data-intensive scientific paradigms have empowered deep
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neural networks (DNN) to achieve significant breakthroughs in many fields (refer to Appendix A).
However, the ”black box” nature of DNN exhibiting a lack of transparency in their decision-making
processes and the significant dependence on extensive training data, limit their use in groundwa-
ter research. The physics-informed neural networks (PINNs) which combine the physical laws and
neural networks have improved the interpretability of models and diminished reliance on extensive
datasets. Wang et al. (2020) proposed a theoretically guided neural network model (TgNN) based on
the loss function of groundwater seepage differential equations, which improved the generalization
performance of the groundwater seepage model with limited observational data. Additionally, the
team demonstrated that the physics-informed model could effectively use physical information to
predict groundwater seepage responses beyond the training set through groundwater seepage trans-
fer learning tasks. Wang et al. (2021a) proposed a neural network constrained by geostatistical infor-
mation and a physics-guided autoencoder based on convolutional neural networks (CNNs) (Wang
et al., 2021b), applying the physical guidance method to the parameter inversion of groundwater
hydraulic conductivity fields. The model’s accuracy and practicality were further enhanced. The
study by (Pashaei Kalajahi et al., 2022) demonstrated that, even with limited data, physics-guided
neural networks could accurately estimate key parameters such as hydraulic conductivity and poros-
ity of the medium, showcasing their strong ability to combine data-driven approaches with physical
guidance. Daolun et al. (2021) established a new specialized neuron model incorporating pressure
gradient information and proposed an algorithm called signpost neural network (SNN), which signif-
icantly improves the accuracy of solving unsteady seepage partial differential equations. Although
significant progress has been made in improving groundwater seepage models using PINNs, current
models still heavily depend on the adequacy and quality of observed data. Moreover, after the model
has been trained, its applicability is generally limited to specific hydrogeological parameter settings,
making it difficult to generalize to broader or unforeseen hydrogeological scenarios, thus restricting
the model’s versatility and practicality.

Contributions: In this paper, a self-supervised deep learning method for groundwater seepage pre-
diction, PI-RGSM, is proposed to address the limitations of baseline PINNs, which depends on ob-
served data and have limited flexibility. Strategies of incorporating hard constraints combined with
boundary condition inputs into the baseline PINNs and utilizing hydrogeological parameters and
boundary conditions as direct inputs are adopted. These allow the model to adapt new hydrogeolog-
ical environments without retraining. Additionally, an extended version of the model, PI-RGSM-K,
is developed to simulate more complex heterogeneous seepage scenarios by parameterizing hy-
draulic conductivity field K(x, y). This enhances the precision and adaptability of groundwater
seepage prediction, effectively overcoming the limitations of baseline models in heterogeneous seep-
age fields. Several representative river-canal groundwater seepage cases are designed to evaluate the
accuracy and efficiency of the proposed method.

Paper Organization: The theoretical background is summarized in Section 2, along with a dis-
cussion of the improvement method for baseline PINNs. Section 3 introduces the construction and
experimental setup of the PI-RGSM and PI-RGSM-K models. A series of experiments verifying the
predictive capability of PI-RGSM and its extended model, PI-RGSM-K, under various hydrogeolog-
ical conditions (including variations in precipitation, hydraulic conductivity, boundary conditions,
and heterogeneous hydraulic conductivity field) are presented in Section 4. Finally, the summary
and conclusions are provided in Section 5.

2 METHOD

2.1 GROUNDWATER SEEPAGE IN A RIVER-CANAL SYSTEM

As a key hydraulic engineering structure, river-canal system is a typical system which combines
river, canal and groundwater.The river-canal system significantly influences the surrounding ground-
water flow, making its study crucial for groundwater resource assessment, artificial drainage system
design, and agricultural irrigation strategy formulation. Its uniqueness lies in considering scenarios
where two parallel river-canals cross the aquifers to reach impermeable bottom layers. As illustrated
in Figure 1, the groundwater between the two river-canals forms a specific flow pattern, with the left
and right canals serving as Dirichlet boundaries to create a convex hydraulic head surface, known as
the phreatic surface. The morphology of the phreatic line, represented by the cross-sectional curve
of the phreatic hydraulic head H , is affected by the water levels Ha and Hb on both sides, as well
as rainfall infiltration W . In a phreatic aquifer, assuming negligible variation in hydrogeological
conditions in the vertical direction, groundwater flow is governed by the two-dimensional (in the
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horizontal plane XY ) seepage PDE (Equation 1). Where t is time (T ); K is the hydraulic conduc-
tivitie (LT−1) along the x, y axes, respectively. µs is the specific storage (L−1) of the aquifer below
the free surface. Full details in Appendix B.

µ
∂H

∂t
=

∂

∂x

(
KH

∂H

∂x

)
+

∂

∂y

(
KH

∂H

∂y

)
+W (1)

Figure 1: The schematic diagram of groundwater seepage in a river-canal system.
2.2 LOSS FUNCTION OF BASELINE PINNS

In the equations of physics-informed groundwater seepage, the loss function is integrated with the
basic PDE of groundwater seepage, initial and boundary conditions, observational data, and engi-
neering control to guide the optimization direction of the neural network and ensure its physical
consistency.
(1) Loss function of PDE: Considering the specific case of a two-dimensional heterogeneous seep-
age field with unit formation thickness, the seepage equation is:

∂

∂x

(
K(x, y)H

∂H(x, y, t)

∂x

)
+

∂

∂y

(
K(x, y)H

∂H(x, y, t)

∂y

)
+W = µs

∂H(x, y, t)

∂t
(2)

Where K (x, y) is the hydraulic conductivity. Using this equation, we define the PDE residuals
RESPDE :

RESPDE =
∂

∂x

(
K(x, y)Ĥ

∂Ĥ

∂x

)
+

∂

∂y

(
K(x, y)Ĥ

∂Ĥ

∂y

)
+W − µs

∂Ĥ

∂t
(3)

When the physical consistency between the input and output variables of the model is higher,
RESPDE approaches 0. During the calculation process, RESPDE requires the model output (hy-
draulic head Ĥ) to perform higher-order differentiation with respect to the input spatial-temporal
coordinate points (x, y, t). This task can be performed directly and efficiently using the automatic
differentiation provided by modern machine learning frameworks such as TensorFlow or PyTorch.
The hyperbolic tangent function (Tanh) is chosen as the activation function in this study because its
favorable second-order differentiability meets the model’s requirements.
(2) Constraint from definite solution condition: Consider the first type boundary condition
(Dirichlet condition), where the water level at any given time at every point in a specific bound-
ary region is known, which can be expressed as:

H(x, y, t)
∣∣
Γ1

= φ(x, y, t), (x, y, t) ∈ Γ1 (4)

Where H (x, y, t) represents the hydraulic head at boundary Γ1, and ϕ (x, y, t) represents the hy-
draulic head function with spatial-temporal coordinates as the independent variable. By moving
the function ϕ (x, y, t) to the left-hand side of the equation and substitute the hydraulic head on the
boundary by the outputs of neural network (fnet), the residual of boundary condition RESBC is:

RESBC = Ĥ − φ(x, y, t), (x, y, t) ∈ Γ1 (5)

For initial conditions, this can be expressed as ϕ (x, y, 0) = H0 (x, y), where H0 is the hydraulic
head distribution function at the initial time. Therefore, the residual of initial condition RESIC can
be expressed as:

RESIC = φ(x, y, 0)− Ĥ, t = 0 (6)
(3) Constraint from engineering control: It is often necessary to incorporate specific ecological
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and policy-oriented engineering control measures when solving actual groundwater seepage prob-
lems. For example, in ecological restoration, it may be essential to limit the decline of the hydraulic
head in an area to a predetermined threshold HEC . By constructing a residual term (RESEC) for
engineering control, it is possible to measure the discrepancy between the model prediction and the
actual control objective:

RESEC =

{
HEC − Ĥ, HEC > Ĥ

0, HEC ≤ Ĥ
(7)

(4) Constraint from observed data: The difference between the hydraulic head predicted by the
neural network and the actual hydraulic head observed can be quantified by constructing the residual
RESOB of the observed data:

RESOB = HOB − Ĥ (8)
The combined physics-informed loss function is synthesized from Eq. 3,5,6,7,and 8, to impose
multiple constraints on the neural network:

L =
∑

i={PDE,BC,IC,EC,OB}

λi

 1

N

N∑
j=1

[RESj ]
2


i

(9)

Where j represents each input data point. By assigning weights λi to each residual term, the contri-
bution of different residual constraints to the total loss function can be adjusted to effectively inform
the training process of the neural network.

2.3 CONSTRAINTS FROM BOUNDARY AND INITIAL CONDITION (HARD CONSTRAINTS)

The optimization process of the neural network relies on the physics-informed loss function, which
is centered around the groundwater seepage PDE, as discussed in Section 2.2. The physics-informed
loss function involves the interaction between multiple loss function terms, and if multiple losses
are solved iteratively without additional processing, the solution mode is referred to as a “soft con-
straint”. In soft constraint, the direction of the neural network solution may deviate due to different
solution gradients of tasks, particularly when the boundaries of the objective function or initial con-
ditions are unconventional. Thus, assigning weights to the loss function for each task is a relative
compromise; however, these loss weights are usually manually adjusted in a tedious trial-and-error
process which also increases the computational cost. To address this issue, we introduce the “hard
constraints” by constructing the neural network output in the form of an elementary function that
satisfies Dirichlet boundary conditions, along with the boundary condition equation. Thus, avoiding
directly constructing the residual terms RESBC and RESIC for the boundary and initial condi-
tions, significantly reducing the number of residuals, alleviating the pressure on the model when
faced with multiple optimization problems, and facilitating the manual adjustment of training hy-
perparameters λi. Simultaneously, since the hydraulic head processed with hard constraints satisfies
the constraints of boundary and initial conditions, the model does not need to find a specific solution
under uncertain boundary conditions during the optimization stage, thus enhancing the overall con-
vergence effect and eliminating the need for labeled data to provide specific solution information.

ĤC = C(x, y, t)Ĥ + φ(x, y, t),

{
φ(x, y, 0) = H0(x, y)

φ(x, y, t) = H(x, y, t)
∣∣
Γ1
, (x, y, t) ∈ Γ1

(10)

Where ĤC is the predicted hydraulic head of the model considering hard constraints; C (x, y, t) is
a boundary constraint function characterized by its output gradually tending toward 0 as the input
spatial-temporal coordinates (x, y, t) approach the model boundary or initial time. For groundwater
dynamics in the river-canal system addressed in this study, since Dirichlet boundary conditions exist
only on the left-hand and right-hand sides, the following constraint function can be constructed:

C(x, y, t) =
(x− xmin)(xmax − x)t

Ns
(11)

Where xmin and xmax are the minimum and maximum values of the spatial coordinates in the x-
axis direction of the canal (the x-coordinate values of the left and right boundary conditions); Ns is
a zoom factor used to balance the data magnitude, which is set as the maximum value of l2t. With
hard constraints applied, the model’s output at boundary and initial points directly matches φ(X),
while other points are constrained by the PDE. Since φ(X) inherently satisfies boundary and initial
conditions, separate loss functions for these conditions are unnecessary, reducing the overall loss
functions and improving the model’s solution accuracy.
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2.4 INPUT FEATURE FUSION

In the river-canal groundwater seepage field, the water levels (Ha, Hb) of the left and right canals
play a crucial role in the morphology of the phreatic surface, and these water levels are the key
boundary conditions for defining specific solutions of the PDE of groundwater seepage. In the base-
line PINNs (as discussed in Section 2.2), the convergence of the model depends on fixed boundary
conditions to find a specific solution, making it difficult to adjust once the boundary conditions are
set. In this study, we proposed to adopt an innovative constraint to the equation which integrates the
left and right canal water levels (Ha, Hb) as dynamic input features into the model and utilizes them
in the constraint equation, thus limiting the model outputs to a preset boundary condition:

ĤC = C(x, y, t)Ĥ(x, y, t,Ha, Hb) + φBC(x, y, t,Ha, Hb),

{
φBC(x = xmin, y, t) = Ha

φBC(x = xmax, y, t) = Hb
(12)

Where φBC is a condition function of definite solution for input features( discussed in Section 2.3) .

In the groundwater seepage equation of a river-canal system(Eq. 2), in addition to the spatial-
temporal coordinate variables (x, y, t), the hydraulic conductivity (K) and the source/sink term (W )
are also important parameters affecting groundwater seepage behavior. Incorporating these param-
eters into the model’s input features can provide complete hydrogeological background information
for the groundwater seepage equation, thereby improving the model’s flexibility and adaptability
in simulating different groundwater seepage scenarios. In this study, randomly generated hydraulic
conductivities and source/sink terms are added to the training dataset of spatial-temporal coordi-
nate points, creating a dataset with more features to integrate hydraulic conductivity and source/sink
term information into the training process. These additional variables are then introduced into the
physics-informed residual term of PDE (Eq. 13), allowing the model to receive and process diverse
seepage scenarios described by the hydrogeological parameters. By constructing random datasets,
the model can be trained on a large number of generated training cases, each representing a specific
hydrogeological condition, thus enhancing the model’s ability to simulate different groundwater
seepage conditions.

RESPDE(x, y, t,W,K) =
∂

∂x

(
KĤC

∂ĤC

∂x

)
+

∂

∂y

(
KĤC

∂ĤC

∂y

)
+W − µ

∂ĤC

∂t
(13)

This model can simulate more complex and diverse hydrogeological conditions by incorporating the
hydraulic conductivity, source/sink term, and boundary conditions (left and right canal water levels)
into the model input features, covering a wider range of practical applications, greatly enhancing the
usefulness and flexibility of the model.

3 EXPERIMENT

The PI-RGSM model proposed in this study consists of fully connected neural networks (FCNN),
hard constraints, and loss function design. As shown in Figure 2 (ignoring the red dashed line in the
input feature section), the input features of the model include the spatial-temporal coordinates of the
river-canals seepage (x, y, t), adjustable water levels of the river-canals (Ha, Hb), and hydrogeolog-
ical parameters (e.g., the source/sink term W and hydraulic conductivity K). These multidimen-
sional input data are processed through the neural network to output the initial predicted hydraulic
head H . The model introduces boundary condition function C(X) and condition function of definite
solution φ(X) as hard constraints to constrain the model to predict the hydraulic head (ĤC). Au-
tomatic differentiation (AD) is then employed to compute the partial derivatives of hydraulic head.
The source/sink term (W ) and hydrogeological parameters (e.g., hydraulic conductivity) are incor-
porated into the PDE constraint (LOSSPHY ), along with the engineering control loss (LOSSEC),
to form a system of PDEs (Ketkar et al., 2021). These two loss terms are balanced to optimize
the overall training by adjusting the parameters λ1 and λ2. The model demonstrates flexibility by
outputting the corresponding hydraulic head for different boundary conditions and hydrogeological
parameters without retraining.
To verify the performance of PI-RGSM, a case involving groundwater seepage in a river-canal sys-
tem under a unconfined aquifer was established. Without loss generality, the unit of length is set to
meter (m), and the unit of time is set to day (d). The schematic of this case is illustrated in Figure 1,
where the porous media region between the left and right canals represents the infiltration area. The
infiltration area has a length (x) of 40m and a width (y) of 10m. The impermeable bottom boundary
is considered to be flat, with a formation thickness (M ) is 5m. The specific storage (µ) is 0.1. The
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Figure 2: The structure of PI-RGSM and PI-RGSM-K: where the blue line section represents the
PI-RGSM, and the red dashed section highlights the extended model PI-RGSM-K, which builds on
PI-RGSM by parameterizing K as a spatial function of x and y.

hydraulic conductivity (K) ranges from 0.5m/d to 0.9m/d. The source/sink term (W ) is positive
(representing recharge) and varies from 0.000m/d to 0.007m/d. The initial water levels (Ha, Hb)
of the left and right canals vary between 2m and 3.5m.

The core architecture of PI-RGSM is a deep neural network with 7 layers, each containing 50 neu-
rons, using the Adam optimizer. This configuration was chosen to align with the optimal architecture
identified during the hyperparameter tuning process for the baseline PINNs (as detailed in the ap-
pendix F). According to the experimental settings of hydrogeological parameters, boundary and ini-
tial conditions (hard constraints), and engineering control, the physics-informed losses (LOSSPHY

and LOSSEC) are defined as follows:
LOSSPHY = RESPDE =

∂

∂x

(
KĤC

∂ĤC

∂x

)
+

∂

∂y

(
KĤC

∂ĤC

∂y

)
+W − 0.1

∂ĤC

∂t

LOSSEC = RESEC =

{
2− ĤC , ĤC < 2

0, 2 ≤ ĤC

(14)

Since the PI-RGSM model adopts a self-supervised learning approach which does not rely on labeled
training data. It requires the generation of random values within specified ranges for each input
feature to simulate diverse scenarios due to the scarcity of real hydrogeological data in groundwater
systems. Table 1 lists all input features and their corresponding value ranges. These datas were
validated through their application in professional simulation software like MODFLOW, ensuring
their relevance to real-world conditions. In this experiment, 10,000 training samples were generated,
and all input data were normalized. The model was trained using these data for 1,000 iterations.

Table 1: Input features and value ranges of the PI-RGSM

Input features x(m) y(m) t(d) W (m/d) K(m/d) Ha(m) Hb(m)
Value ranges [0,40] [0,10] [0,100] [0,0.007] [0.5,0.9] [2,3.5] [2,3.5]

Although the PI-RGSM model demonstrates potential in predicting groundwater seepage in river-
canal system, its application is limited by relatively simplified geological environment assumptions,
such as the homogeneous hydraulic conductivity which ignores the heterogeneity of the hydraulic
conductivity in practical application scenarios. To address complex geological conditions, this study
proposes an extension of the PI-RGSM framework (hereafter refer to PI-RGSM-K).

To consider the heterogeneity of the hydraulic conductivity field, we replace the homogeneous hy-
draulic conductivity (a single value for the whole area) as input by regarding the hydraulic conduc-
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tivity as a function of the two-dimensional space coordinates x and y (i.e., K(x, y)). This approach
allows the model to directly map the hydraulic conductivities and their gradients along the coordi-
nate axes into a physics-informed loss function, thus incorporating geological features in training
process. Based on this improvement, the core structure of the PI-RGSM-K can be directly extended
from the PI-RGSM framework (shown in Figure 2). The key modification involves constructing the
hydraulic conductivity K as an independent function K(x, y) dependent on two-dimensional spatial
coordinates. Along with the source/sink term W in the input features, it is incorporated into the
PDE constraint (LOSSPHY ) to improve prediction under heterogeneous porous media. Compared
to PI-RGSM, PI-RGSM-K uses a function K=-0.01x+0.8 as input (data details in appendix E) in
our study. However, K can also be parameterized using other functions of x and y, or even as a
randomly generated hydraulic conductivity field. When K is a random permeability field that can
better reflect the real geological environment, we can build a separate neural network to take (x, y)
as the input of the neural network, and K as the output. Using the powerful function approximation
ability and automatic differential characteristics of the neural network, we can obtain the gradient
characteristics of K about x and y, which is the direction we need to improve in the future.

4 RESULTS AND DISCUSSION

4.1 PI-RGSM

The major advantage of PI-RGSM is the self-supervised learning scheme. To verify whether the hard
constraint method enables PI-RGSM to achieve self-supervised learning and reduce the dependence
on observations, experiments were conducted between PI-RGSM and baseline PINNs and their
extended models. The experiment did not use observations but instead relied solely on the physics-
informed loss function for model training. Since the baseline PINNs and their extended models
cannot modify the predefined hydrogeological parameters after training, the experiment was set
to fixed conditions: precipitation W=0.004m/d, homogeneous hydraulic conductivity K=0.7m/d,
and canal heights of 2m. The prediction results were compared with reference data generated by
MODFLOW. For the baseline PINNs, the loss term weights were set as λPDE = 100, λBC = 1,
λIC = 1, λEC = 1, and λOB = 1 based on empirical experience to balance their contributions
to the overall loss function. The network structure of baseline PINNs was determined through hy-
perparameter tuning, with 7 layers and 50 neurons per layer identified as the optimal configuration.
Detailed tuning processes and results are provided in the appendix F.

The performance metrics of models are calculated and shown in Table 2. Results show that the
baseline PINNs fail to capture the variation trend of phreatic head, with high errors. Extensions
like RCNN and GW-PINN demonstrate significantly better performance compared to the baseline,
achieving R2 values of 0.95862 and 0.96246, respectively, but they are limited to a single hydrogeo-
logical environment. However, PI-RGSM further outperforms them under the same test conditions,
achieving an R2 accuracy exceeding 0.98. This result demonstrates that the PI-RGSM successfully
eliminates dependence on observations and realizes self-supervised learning.

Table 2: Performance of baseline PINNs and PI-RGSM without observations
MAE RMSE R2

Baseline PINNs (Raissi et al., 2019) 0.33046 0.36150 -4.32762
RCNN (Sun et al., 2023) 0.13026 0.11265 0.95862

GW-PINN (Zhang et al., 2022) 0.12658 0.09523 0.96246
PI-RGSM 0.01391 0.01651 0.98889

Another advantage of the PI-RGSM is its adaptivity to different source/sink terms and hydroge-
ological parameters for inference without retraining. To verify whether PI-RGSM can accurately
capture phreatic surface based on source/sink term and hydrogeological parameter without retrain-
ing, the trained PI-RGSM is applied to different source/sink terms and hydrogeological parameters
as inputs. The results are compared with reference data generated by MODFLOW.

(1) The influence of precipitation and hydraulic conductivity: To evaluate the performance of the
PI-RGSM under different source/sink terms and hydrogeological conditions, a series of experiments
was designed to simulate different groundwater seepage scenarios by adjusting precipitation W and
hydraulic conductivity K. All experiments were carried out under fixed left and right canal water
levels Ha=Hb=2m to ensure consistent boundary conditions. Various combinations of hydrogeo-
logical parameters were set up in the experiment. First, the effect of source/sink terms (precipitation
W ) on the model was tested under a fixed hydraulic conductivity of K=0.700m/d with three differ-
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ent precipitation levels: low, medium, and high (W=0.002m/d,W=0.004m/d, and W=0.006m/d).
Then, the hydraulic conductivity was adjusted, and three different values were tested (K=0.500m/d,
K=0.700m/d, and K=0.900m/d) under a constant precipitation rate of W=0.005m/d.

The test results are shown in Table 3. For each set of test configurations, the hydraulic head predicted
by the model is displayed as a 3D graph (Figure 3 and 4), with the phreatic line profile extracted at
y=5m for comparison with the reference data generated by MODFLOW. The 3D image on the top
displays the prediction of the phreatic surface, while the profile on the bottom shows the phreatic
line at y=5m; The blue curve represents the model prediction, and the red curve denotes the refer-
ence curve from MODFLOW. The highest hydraulic head obtained from the prediction curve and
the reference curve are marked in the figure. The results demonstrate that the phreatic surface pre-
dicted by the model is smooth, consistent with the typical morphology of groundwater seepage in
river-canal system, and almost completely matches the reference curve from MODFLOW. In Figure
3, as precipitation increases from 0.002m/d to 0.006m/d, the model predicts a corresponding rise
in hydraulic head. For example, at the lowest precipitation (0.002m/d), the predicted maximum
hydraulic head is approximately 2.29m, while at the highest precipitation (0.006m/d), it rises to
about 2.75m, demonstrating the model’s sensitivity and adaptability to changes in precipitation. In
the case of different hydraulic conductivity (Figure 4), PI-RGSM also shows a high degree of accu-
racy, with a mean R2 exceeding 0.977 relative to the reference data. These experiments confirm the
high adaptability and accuracy of the model under different source/sink terms and hydrogeological
conditions and its physical consistency and reliability in capturing groundwater seepage behavior.

Figure 3: Phreatic surfaces from PI-RGSM under different precipitation conditions.

Figure 4: Phreatic surfaces from PI-RGSM under different hydraulic conductivities.
(2) The influence of boundary condition changes: A series of experiments were designed to
evaluate the response of the PI-RGSM to changes in boundary conditions, maintaining precipitation
W and hydraulic conductivity K at 0.004m/d and 0.700m/d, respectively, to ensure consistency in
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hydrogeological parameters. The key variables in this experiment are the water levels of the left and
right canals (i.e., Ha and Hb). Here, Hb is kept constant at 2.000m, while Ha varied at 2.500m,
3.000m, and 3.500m. This configuration aims to simulate diverse water level differences to examine
the model performance under varying boundary conditions.

The test results are summarized in Table 4. To visualize the prediction performance of the model un-
der different boundary water levels, 3D graphs are plotted. As Ha gradually increases from 2.500m
to 3.500m, the predicted hydraulic head changes accordingly (shown in Figure 5). In particular, the
profile comparison at y=5m reveals that the predicted hydraulic head gradually increases with the
elevation of Ha, maintaining a high degree of consistency with the MODFLOW reference. These
results demonstrate the response of the PI-RGSM under changing boundary conditions and empha-
sizes its high prediction accuracy, with an mean R2 exceeding 0.99.

Figure 5: Phreatic surfaces from PI-RGSM under different boundary conditions.

Table 3: Performance of PI-RGSM under different source/sink terms and hydrogeological

Input features MAE RMSE R2

Ha = Hb = 2.000
W = 0.002 0.01621 0.01847 0.95065

K = 0.700 W = 0.004 0.01391 0.01651 0.98889
W = 0.006 0.02639 0.03064 0.98110
K = 0.500 0.03388 0.03934 0.97598

W = 0.003 K = 0.700 0.02013 0.02394 0.98420
K = 0.900 0.01685 0.01938 0.98390

Table 4: Performance of PI-RGSM under different boundary conditions

Input features MAE RMSE R2

W = 0.004,K = 0.700
Ha = 2.500, Hb = 2.000 0.02189 0.02392 0.99410
Ha = 3.000, Hb = 2.000 0.01701 0.02077 0.98926
Ha = 3.500, Hb = 2.000 0.04012 0.04411 0.99002

4.2 PI-RGSM-K

To evaluate the performance of the PI-RGSM-K in handling heterogeneous hydraulic conductivity
fields, experiments was conducted by under different conditions of source/sink terms and water
levels of left and right canals. Under the complex geological conditions of heterogeneous hydraulic
conductivity field, the performance metrics were calculated and shown in Table 5. The predicted
phreatic surface was visualized using 3D graphs and cross-sectional diagrams of the phreatic line
(Figure 6 and 8). Vertical and dashed lines indicated the positions of the predicted and referenced
maximum hydraulic heads.
In the experiment different precipitation (Figure 6), the phreatic surface predicted by PI-RGSM-
K rose accordingly as precipitation increased from 0.003m/d to 0.007m/d, especially under high
precipitation conditions. This demonstrates that PI-RGSM-K can accurately capture the impact of
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precipitation change on the phreatic surface in heterogeneous hydraulic conductivity field. The pre-
dicted results are highly consistent with the reference curve of MODFLOW, with R2 exceeding
0.99. In the experiment in response to boundary condition changes (results in appendix G), the hy-
draulic head predicted by the model changes correspondingly as the water level Ha increases from
2.500m to 3.500m. In the profile comparison at y=5m, it is evident that the predicted hydraulic
head increases with the elevation of Ha. The results indicate a high degree of consistency with the
MODFLOW reference, with a mean R2 above 0.98. It is further proven that the PI-RGSM-K has
strong adaptability and accuracy in processing boundary conditions, especially under heterogeneous
hydraulic conductivity field, and can accurately capture changes in phreatic surface morphology
caused by river-canal water levels changes. Additionally, when responding to changes in precipita-
tion and boundary conditions, it can be observed that the groundwater flow increases on the left side
as the hydraulic conductivity field gradually decreases from the left side to the right side. This result
in the shift of the peak value of the phreatic surface to the right side, as clearly seen in the figures.
This high level of physical consistency proves its superior performance in groundwater seepage pre-
diction tasks involving heterogeneous hydraulic conductivity field. The performance remains stable
under various hydrogeological conditions, which demonstrate the potential application of the model
in future groundwater resource management and hydrology research. Future studies will further
explore the applicability and optimization methods of the model in a wider range of groundwater
seepage scenarios.

Table 5: Performance of PI-RGSM under different precipitations and boundary conditions

Input features MAE RMSE R2

W = 0.003 0.01037 0.01335 0.99113
Ha = 2.000, Hb = 2.000 W = 0.005 0.01419 0.01650 0.99446

W = 0.007 0.01514 0.01758 0.99641
Ha = 2.500, Hb = 2.000 0.02778 0.02814 0.98821

W = 0.003 Ha = 2.700, Hb = 2.000 0.03245 0.03308 0.98057
Ha = 3.000, Hb = 2.000 0.02157 0.02501 0.98149

Figure 6: Phreatic surfaces from PI-RGSM-K under different precipitation conditions.
5 CONCLUSION

This study proposes the PI-RGSM and its extension PI-RGSM-K based on PINNs which signifi-
cantly improve the accuracy and adaptability of groundwater seepage prediction. The main con-
tributions are as follows: (1) Self-supervised learning of PI-RGSM is achieved by integrating hard
constraints of boundary and initial conditions, reducing the dependence on observations. (2) PI-
RGSM demonstrates strong generalization capabilities, as it can adapt to varying hydrogeological
conditions without requiring retraining, significantly improving its practicality in real-world ap-
plications. (3) PI-RGSM-K is proposed to simulate heterogeneous porous media by considering
heterogeneous hydraulic conductivity. This study demonstrates that integrating physical knowledge
into a neural network framework provides an effective scientific method for the sustainable manage-
ment and protection of groundwater resources, highlighting the great potential and practical value
of the physics-informed method in groundwater seepage modeling.
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A RELATED WORKS

With the evolution of scientific paradigms (Caı́no-Lores et al., 2020), researches on natural science
has mitigated from empirical and theoretical approaches to computational and data-intensive sci-
entific paradigms driven by computer simulations and big data (Babovi & Bajat, 2023; Li et al.,
2023). In the field of computational fluid dynamics, numerical models including FLUENT (Galeev
et al., 2013), MODFLOW (Brunner et al., 2010; Harbaugh, 2005; Hariharan & Shankar, 2017), and
COMSOL Multiphysics (Multiphysics, 1998), have achieved accurate simulations of physical pro-
cesses like complex multiphase flow, solute transport, and interactions between surface and soil wa-
ter within groundwater systems. Important issues in those spatial discretization methods for solving
the partial differential equations (PDEs) of groundwater are the computationally intensive. More-
over, the implementation of these models is typically challenging for personnel at water resource
management agencies, as highly specialized knowledge and extensive experience in numerical mod-
eling are required. Continuous advancements in data-intensive scientific paradigms have empowered
deep neural networks to achieve significant breakthroughs in image recognition (Krizhevsky et al.,
2017), meteorological modeling (Wan et al., 2018), material informatics (Niu et al., 2020), hydrol-
ogy (Maxwell et al., 2021), and mathematics(Choudhary et al., 2020), due to the powerful feature
extraction (Yu et al., 2013; Hinton & Salakhutdinov, 2006) and complex function approximation
abilities (Cybenko, 1989). Nonetheless, as ”black box” models, neural networks exhibit a lack of
transparency in their decision-making processes and depend significantly on extensive training data,
limiting their use in groundwater research. Recently, by combining physical laws with neural net-
works, the physics-informed neural network (PINNs) method has improved the interpretability of
models and diminished reliance on extensive datasets, providing an efficient and accurate approach
for groundwater system modeling, and thus promoting the scientific and reliability of groundwater
prediction and management decisions.

The concept of PINNs was first proposed by Raissi et al. (2019). In their approach, the neural net-
work was trained by constructing physical constraints, and optimized by using the residuals based
on initial conditions, boundary conditions, and governing equations as loss functions. Neural net-
work derivatives were computed through automatic differentiation (AD). This method effectively
solves both continuous and discrete PDEs, marking a new era of integration of physical knowl-
edge and deep learning. The introduction of PINNs has significantly expanded the scope of neural
networks in scientific research and engineering applications, while markedly enhancing the predic-
tion accuracy, generalization ability, and interpretability of models. Since then, researchers have
continued to explore and innovate within the PINNs framework, applying it to various fields such
as fluid mechanics (Haghighat et al., 2021), structural dynamics (Moradi et al., 2023), acoustics
(Song et al., 2021), and solid mechanics (Wang et al., 2023). In hydrological research, PINNs of-
fer a new perspective for more convenient and efficient prediction of groundwater flow with their
unique physical guidance characteristics. Wang et al. (2020) proposed a theoretically guided neural
network model (TgNN) based on the loss function of groundwater seepage differential equations,
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which improved the generalization performance of the groundwater seepage model with limited
observational data. Additionally, the team demonstrated that the physics-informed model could ef-
fectively use physical information to predict groundwater seepage responses beyond the training set
through groundwater seepage transfer learning tasks. Cho & Kim (2022) used an LSTM network
to regress the residual differences between a neural network model and the Weather Research and
Forecasting model-Hydro (WRF-Hydro). They developed a hybrid model (WRF-Hydro-LSTM) to
predict groundwater levels, and experimental results indicated that this hybrid model achieved higher
prediction accuracy, less sensitivity to training datasets, and better generalization performance than
the LSTM network or WRF-Hydro model alone. Wang et al. (2021a) proposed a neural network
constrained by geostatistical information and a physics-guided autoencoder based on convolutional
neural networks (CNNs) (Wang et al., 2021b), applying the physical guidance method to the pa-
rameter inversion of groundwater hydraulic conductivity fields. The model’s accuracy and practi-
cality were further enhanced. The study by (Pashaei Kalajahi et al., 2022) demonstrated that, even
with limited data, physics-guided neural networks could accurately estimate key parameters such
as hydraulic conductivity and porosity of the medium, showcasing their strong ability to combine
data-driven approaches with physical guidance. Daolun et al. (2021) established a new specialized
neuron model incorporating pressure gradient information and proposed an algorithm called sign-
post neural network (SNN), which significantly improves the accuracy of solving unsteady seepage
partial differential equations. Although significant progress has been made in improving groundwa-
ter seepage models using PINNs, current models still heavily depend on the adequacy and quality
of observed data and remain sensitive to outliers. If the training datasets are insufficient or contain
corrupted data, the simulation results may exhibit considerable bias. Moreover, after the model has
been trained, its applicability is generally limited to specific hydrogeological parameter settings,
making it difficult to generalize to broader or unforeseen hydrogeological scenarios, thus restricting
the model’s versatility and practicality.

B BASIC LAW OF GROUNDWATER SEEPAGE

Without considering changes in water density, the flow of groundwater in a three-dimensional
aquifer within porous media can be expressed by the following partial differential equation:

∂
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Where t is time (T ); Kxx, Kyy , and Kzz are the hydraulic conductivities (LT−1) along the x, y,
and z axes, respectively. H is the hydraulic head (L) at the corresponding space-time point; W is
the source/sink term of groundwater (such as precipitation, pumping, etc.); µs is the specific storage
(L−1) of the aquifer below the free surface. M is the thickness of the aquifer. Combined with fixed
solution conditions (boundary conditions and initial conditions), it can reflect the water balance
relationship per unit volume and per unit time under Darcy flow conditions.

C DEEP NEURAL NETWORK

The Deep Neural Network (DNN) consists of an input layer, several hidden layers, and an output
layer, where each layer contains multiple neurons connected by a weight matrix (which may include
bias terms). Consider a deep neural network with L layers, denoted as Y = fnet (X, θ) , with nl

neurons in the L-th layer. The number of neurons in the input layer equals the dimension of the
input feature vector X , and the number of neurons in the output layer equals the dimensionality of
the output vector Y . The value of the i-th neuron in L-th layer, zl,i , is computed as the product of
the weight WT

l,i and neurons from the previous layer, plus the bias term bl,i:

zl,i = WT
l,ial−1 + bl,i (16)

The output of neurons is nonlinearly transformed by the activation function, which provides nonlin-
ear capability to the network. After processing zl,i with the activation function σ, the output of the
i-th neuron in the L-th layer, al,i, Lis obtained:

al,i = σ(zl,i) (17)
The final output of the network is produced by the output layer of the multi-layer neural network,
and the network training process relies on a loss function that quantitatively assesses the difference
between the network’s predictions and the actual target values.
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D PERFORMANCE METRICS

To evaluate the performance of the model, three main indicators were used for quantitative analysis:
Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Determination Coefficient
(R2). Their definitions are as follows:

MAE =
1

n

n∑
i=1

|yi − ŷi| (18)

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (19)

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
(20)

Where n represents the total number of samples, yi represents the reference output from MODFLOW
of the i-th sample, ŷi represents the predicted value of the i-th sample by the DNN model, and ȳi
is the average of the reference values of all samples. Ideally, the closer MAE and RMSE are to 0,
the smaller the prediction error and the higher the accuracy of the model. The closer the R2 value is
to 1, the better prediction the DNN model achieves.

E DETAILS OF PI-RGSM-K MODEL

Given that the PI-RGSM-K model is a specific application of the PI-RGSM model under conditions
of a heterogeneous hydraulic conductivity field, and since the structures of both models are similar,
most of the experimental settings are identical to PI-RGSM as follows:

(1) As the hydraulic conductivity field has been integrated into the physics-informed loss function,
the model input features are spatial-temporal coordinates (x, y, t), canal water levels (Ha, Hb), and
source/sink term W . The model still uses a random method to generate input data for self-supervised
training (shown in Table 6).

(2) A heterogeneous hydraulic conductivity field is introduced, with K defined as a function that
varies linearly with x (i.e., K = −0.01x + 0.8). The hydraulic conductivity linearly changes from
0.8m/d at the left boundary to 0.4m/d at the right boundary.

Table 6: Input features and value ranges of the PI-RGSM-K

Input features x(m) y(m) t(d) W (m/d) Ha(m) Hb(m)
Value ranges [0,40] [0,10] [0,100] [0,0.007] [2,3.5] [2,3.5]

F HYPERPARAMETER TUNING PROCEDURE OF BASELINE PINNS

The hyperparameter settings of the neural network, including the learning rate, layers, and neurons,
directly influence the predictive accuracy of baseline PINNs. Figure 7 illustrates the effects of these
factors on the L2 relative error. As the initial learning rate decreases, the error drops significantly
and stabilizes below 1%, reaching a minimum at a learning rate of 0.001. However, further reducing
the learning rate introduces additional errors. The results show that increasing the number of layers
generally improves prediction accuracy, but the improvement becomes negligible beyond 5 layers.
Similarly, increasing the number of neurons per layer reduces the error, with the most significant
reduction observed up to 30 neurons per layer. After this point, further increases in neurons yield
diminishing returns.

The optimal network structure identified in this study consists of 7 layers with 50 neurons per layer,
achieving an L2 error of 2.83%. While deeper or wider networks may further improve accuracy
slightly, the additional computational cost outweighs the marginal benefits due to the relatively low
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complexity of the governing equations in this study. In summary, Too many or too few neurons in
hidden layers can cause overfitting or underfitting. Excessive neurons may lead to overfitting due to
insufficient training data, while also increasing training time without achieving better performance.
Selecting an appropriate number of neurons is essential for balancing accuracy and efficiency.

Figure 7: Impact of learning rate (left) and network parameters (Layers and Neurons) on the perfor-
mance of baseline PINNs.

G PHREATIC SURFACES FROM PI-RGSM-K UNDER DIFFERENT BOUNDARY
CONDITIONS.

Figure 8: Phreatic surfaces from PI-RGSM-K under different boundary conditions.
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