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Abstract

This work proposes Segmenting changepoint Gaus-
sian process regression (SegCPGP), an offline
changepoint detection method that integrates Gaus-
sian process regression with the changepoint ker-
nel, the likelihood ratio test and binary search. We
use the spectral mixture kernel to detect various
types of changes without prior knowledge of their
type. SegCPGP outperforms state-of-the-art meth-
ods when detecting various change types in syn-
thetic datasets; in real world changepoint detection
datasets, it performs on par with its competitors.
While its hypothesis test shows slight miscalibra-
tion, we find SegCPGP remains reasonably reli-
able.

1 INTRODUCTION

Changepoint detection (CPD) refers to the problem of find-
ing and characterizing changes in data generating processes,
such as changes in the mean, variance, trend, periodicity, or
other properties of the data. Applications of change point
detection algorithms include climate data [Reeves et al.,
2007], quality control, [Lai, 1995] EEG analysis, network
analysis [Tartakovsky et al., 2012] and finance [Andreou
and Ghysels, 2009].

Changepoint detection is an extensively studied problem
[Truong et al., 2020, Aminikhanghahi and Cook, 2017,
Reeves et al., 2007, Van den Burg and Williams, 2020, Aue
and Horváth, 2013]; available methods can be divided in
online methods, which detect changepoints as new data ar-
rives, and offline methods, which analyze the entire dataset
at once to identify changepoints.

In online changepoint detection, CPD algorithms need to be
efficient enough to process a potentially never-ending stream
of data. Processing only one window of data at a time is a

common strategy for these algorithms [Keogh et al., 2001,
Chen et al., 2022]. For example, a popular Bayesian online
changepoint detection (BOCPD) method estimates the run
length, which represents the number of time steps since the
last changepoint and essentially dynamically detects shifts
in the data as new observations arrive [Adams and MacKay,
2007]. Several variations on BOCPD, for instance robust
versions [Altamirano et al., 2023, Knoblauch et al., 2018],
and model selection Knoblauch and Damoulas [2018]) have
been proposed as extensions.

Numerous other offline changepoint detection methods exist
[Killick et al., 2012, Auger and Lawrence, 1989, Haynes
et al., 2017, Zou et al., 2014, Celisse et al., 2018] — for
a comprehensive overview, see [Truong et al., 2020]. An
offline method of particular interest to this paper is binary
segmentation [Scott and Knott, 1974, Vostrikova, 1981],
which recursively partitions the signal by selecting split
points that optimize a specific metric, such as likelihood
or information criterion. Some variations of this algorithm
exist [Fryzlewicz, 2014, Olshen et al., 2004].

Many CPD methods are designed for specific changes (e.g.,
detecting mean or variance shifts in time series). Gaussian
processes (GPs) provide a flexible framework where differ-
ent types of changes may be incorporated at the same time.
CPD methods based on Gaussian processes (GPs) have been
widely studied in online setting [Caldarelli et al., 2022, Gar-
nett et al., 2009, Saatçi et al., 2010], but their application in
the offline setting remains underexplored. In offline meth-
ods where GPs are used, the focus has primarily been on
detecting mean shifts [Keshavarz et al., 2018, Lebarbier,
2005].

A Gaussian process is fully determined by its mean and
covariance function, also known as the kernel, making their
selection a crucial step in its application. The choice of
kernel reflects prior beliefs about the types of functions the
GP should model. In the context of CPD, this is especially
important when little is known about the data or the nature of
the changes to be detected. Thus, the selection of a suitable
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kernel may prove crucial to the overall performance of a
GP-based CPD method.

Consequently, our research aims to answer the question: can
we devise an offline, Gaussian process based changepoint
detection method without the need to devote much attention
to kernel selection? In the next section, we will proceed with
a more detailed discussion of available Gaussian process-
based changepoint detection methods.

2 RELATED WORK

Gaussian processes (GPs) are flexible, nonparametric mod-
els that are capable of modeling spatiotemporal correlations.
GPs have found ample application in changepoint detec-
tion, particularly in the online setting. GPTS-CP [Saatçi
et al., 2010] models temporal correlations in the BOCPD
framework, using GPs as an underlying predictive model.
However, the BOCPD framework can be highly sensitive to
the choice of hyperparameters which can hinder its perfor-
mance in real-world setting.

As an alternative to BOCPD, Adaptive Gaussian process
change point detection (ADAGA) [Caldarelli et al., 2022]
is an online changepoint detection method based on statis-
tical hypothesis testing. ADAGA detects changepoints via
a window sliding method and tests whether the function
values in the subwindow come from the same observational
model as the rest of the window. The authors derive the-
oretical bounds for the probability of Type I and Type II
errors in their changepoint detection heuristic. Nevertheless,
ADAGA still relies on a prior specification of the kernel for
different types of changes.

Garnett et al. [2009] exploited the kernel structure of GPs for
CPD in the online setting, inspired by work on general linear
models [Ruanaidh et al., 1994]. By using block-diagonal
covariance matrices, their approach captures abrupt transi-
tions between regimes governed by different kernels. In this
case, the location of the changepoint can then be treated
as a kernel parameter. In contrast, the changepoint kernel
[Lloyd et al., 2014] parametrizes changepoints via steep-
ness as well as location. This kernel has been proposed in
an automatic statistician-type of framework for modeling
complex time series behavior, but, to our knowledge, has
not been explored in the context of CPD.

The likelihood ratio test has been used in the context of CPD
more frequently, for instance in Caldarelli et al. [2022]. For
a general overview, see Aminikhanghahi and Cook [2017],
Truong et al. [2020].

Contributions We propose SegCPGP, a flexible offline
changepoint detection method based on Gaussian processes
that makes no assumptions about the type or nature of
changes that might occur in the data. SegCPGP builds upon
several components. First, we utilize the changepoint ker-

nel, allowing for both steep and smooth transitions. Second,
we use the likelihood ratio test with binary segmentation
[Scott and Knott, 1974] for sequential detection of multiple
changepoints in the data. Finally, we propose incorporat-
ing the spectral mixture kernel [Wilson and Adams, 2013]
within the changepoint kernel framework, allowing for flex-
ibility beyond mean/variance changes and eliminating the
need to specify the nature of changes a priori. Code for
SegCPGP is publicly available1.

3 BACKGROUND

This section is structured as follows. We begin with an
overview of Gaussian processes and Gaussian process re-
gression. Next, we introduce two specific kernels that form
the basis of our approach: the spectral mixture kernel, which
aims to alleviate the challenge of kernel selection, and the
changepoint kernel.

3.1 GAUSSIAN PROCESSES

Gaussian Process (GP) A Gaussian process is a collec-
tion of random variables, any finite subset of which has
a multivariate Gaussian distribution (see for an extensive
introduction Williams and Rasmussen [2006]). It is fully
defined by its mean function µ(t) and covariance function
k(t, t′). For a finite set of input points t = {t1, t2, . . . , tn},
a Gaussian process is denoted as

f(t) ∼ GP(µ(t), k(t, t′)).

In this paper, without loss of generality, we assume that
µ(t) = 0, but the proposed approach can be straightfor-
wardly extended to specific mean functions.

Gaussian Process Regression (GPR): Gaussian process
regression is a non-parametric Bayesian approach that as-
signs a Gaussian process prior on the functional relationship
between input and output variables. A Gaussian process
regression is defined as

y(t) = f(t) + ϵ(t), (1)

where ϵ(t) ∼ N(0, σ2
ϵ ) is Gaussian noise.

Given a set of observed input-output pairs
D = {(t1, y1), (t2, y2), . . . , (tn, yn)}, the goal is to
estimate the function f(t) and make predictions for new,
unseen inputs t∗. In the case of the Gaussian likelihood, the
posterior distribution over f(t∗) is available in the closed
form [Williams and Rasmussen, 2006]

p(f(t∗)|D) = N (f(t∗)|µ∗,Σ∗), (2)

1https://github.com/JVerbeek/segcpgp/



where µ∗ is the predictive mean and Σ∗ is the predictive
covariance. The mean and covariance of the posterior distri-
bution are given by

µ∗ = k(t∗, t)[K + σ2
ϵ I]

−1y, (3)

Σ∗ = k(t∗, t∗)− k(t∗, t)[K + σ2
ϵ I]

−1k(t, t∗) (4)

where k(t∗, t) is the covariance matrix between the test
inputs t∗ and the training inputs t, k(t∗, t∗) is the covariance
matrix between the test inputs,K = k(t, t) is the covariance
matrix for the training inputs, y is the vector of observed
outputs, and σ2

ϵ is the noise variance.

The kernel hyperparameters of the GP prior and the vari-
ance of the noise, denoted together by θ, are inferred by
maximizing the marginal log-likelihood, given by

log p(y|t, θ) = −1

2
yT [K + σ2

ϵ I]
−1y

−1

2
log |K + σ2

ϵ I| −
N

2
log 2π. (5)

Equations (1) through (5) represent the mathematical for-
mulation of Gaussian Process Regression, allowing for the
estimation of the posterior distribution over the function val-
ues and providing predictions with associated uncertainties.

3.2 SPECTRAL MIXTURE KERNEL

In Equations (3)-(4), the covariance function, also known
as a kernel, plays a crucial role in modeling the similar-
ity or correlation between different inputs. The structural
form of the kernel directly determines which kinds of func-
tions can be drawn from a Gaussian process prior [Williams
and Rasmussen, 2006]. Notable examples of kernel func-
tions include: the squared exponential kernel, for modeling
smooth functions without discontinuities or abrupt changes;
the Matérn family kernels, which allow for modeling some
degree of roughness or discontinuities; and the periodic ker-
nel, which allows for modeling repeating patterns in time
series, such as seasonality. For an illustration of these kernel
functions, see Appendix A.

If there is no prior knowledge about the most suitable kernel
function for a given task, the appropriate structural form can
be determined through kernel search [Duvenaud et al., 2013]
and kernel learning [Bach, 2008]. Kernel search involves
exploring the space of possible kernels, which can be com-
putationally expensive. In contrast, kernel learning offers
a more efficient alternative, potentially reducing the com-
putational complexity of GPR from cubic to linear [Wilson
et al., 2016]. Kernel learning in the context of changepoint
detection, however, would likely require training data with
labeled changepoints, which may not always be available in
the context of CP detection.

Kernel selection may be sidestepped by using kernels that
are sufficiently expressive, such as the spectral mixture (SM)

kernel Wilson and Adams [2013]. The SM kernel can in
theory approximate any stationary covariance kernel as a
mixture of Gaussians in the frequency domain. We will
further discuss this kernel in the remainder of the section
and later apply it in the context of change point detection
problem.

According to Bochner’s theorem, any stationary covariance
function k(·) can be expressed as an integral of the form

k(τ) =

∫
RP

e2πis
⊤τψ(dt), (6)

where we use τ = t−t′ as a notational shorthand similarly to
Wilson and Adams [2013] and ψ is a positive finite measure.
If ψ(ds) has a spectral density S(s), then k(τ) and S(s) are
Fourier duals

k(τ) =

∫
RP

S(s)e2πis
⊤τds,

S(s) =

∫
RP

k(τ)e−2πis⊤τdτ.

The spectral density S(s) can be approximated via a Gaus-
sian mixture model (GMM). A GMM models the data as
a mixture of Q Gaussian densities with means µ1, . . . , µQ

and variances σ2
1 , . . . , σ

2
Q so that k(τ) has the form

k(τ) =

Q∑
q=1

wq exp(−2π2τ2σ2
q ) cos(2πτµq). (7)

The weights wq specify the relative contribution of each
component, and do not necessarily sum to 1 as in a GMM.
For a single Gaussian component, the mean µ can be in-
terpreted as the frequency captured by the component. The
inverse of the standard deviation σ represents the length-
scale, which determines how smooth or wiggly the function
is. A large lengthscale for a spectral mixture component
leads to functions that are almost constant, while a small
lengthscale may result in a more periodic function. Note
that since τ is the difference between t and t′, the quantity
−2π2τ2σ2 corresponds to a squared Euclidean norm scaled
by lengthscale. Provided enough Gaussian mixture compo-
nents are used, any stationary covariance function can be
approximated in this way [Wilson and Adams, 2013].

To the best of our knowledge, the spectral mixture kernel
has not been used in the context of changepoint detection.
Due to its versatility, we apply the spectral mixture kernel
in the context of multiple changepoint detection to detect
different types of changepoints with a single kernel. Ker-
nel selection is therefore largely bypassed. We use the SM
kernel implementation of Leeftink and Hinne [2020]. To
initialize the SM kernel hyperparameters, a Lomb-Scargle
periodogram is used to approximate the empirical spectrum
(as in Leeftink and Hinne [2020]); subsequently, a GMM is
fit to this spectrum.



Figure 1: Left: kernel structure of the changepoint kernel
with periodic base kernels for three changepoints at loca-
tions 25, 50 and 75. The steepness of the changes is 0.3,
1 and 10 at index 25, 50 and 75, respectively. Right: two
samples from the kernel displayed on the left.

3.3 CHANGEPOINT KERNEL

The changepoint (CP) kernel was first proposed by Lloyd
et al. [2014] in an automatic statistician-type framework.
The kernel specifies a structural change in a signal, in partic-
ular (possibly) a smooth transition between two base kernels.
In the following section, we will give a definition of the CP
kernel.

Let k1(t, t
′) and k2(t, t

′) be base kernels (such as
RBF/linear/local periodic/spectral mixture). Then the
change point kernel is defined as

cov(f(t), f(t′)) = k1(t, t
′)ψ̄(t, t′) + k2(t, t

′)ψ(t, t′), (8)

where ψ(t, t′) = ψ(t)ψ(t′) and ψ̄(t, t′) = (1− ψ(t))(1−
ψ(t′)). The sigmoid ψ(t) is parametrized by the loca-
tion (t0) and steepness (s) parameters, ψ(t) = 1/(1 +
exp(−s(t− t0))). Besides inferring kernel parameters such
as variance, period or lengthscale defined previously, we can
also infer the location of the change point t0 and steepness
of the change s.

As an example, Figure 1 shows a changepoint kernel with
changepoints at several locations, as well as a sample from
that kernel. The steepness of each of these changepoints
is different, leading to smoother or more abrupt transitions
from regime to regime.

4 METHODOLOGY

In this section, we define an algorithm based on Gaussian
process regression with change point kernel and binary
search to detect multiple changepoints.

4.1 MODEL SELECTION

To determine whether a dataset contains a changepoint, we
propose to compare two models with a likelihood-ratio test

(LRT): a GPR with a single kernel and one with a change-
point kernel.

Let the Gaussian process regression with a single kernel be
the single GPR

y(t) = f(t) + ϵ(t),

f(t) ∼ GP(0, k(t, t′)).

Furthermore, let the Gaussian process regression that em-
ploys the changepoint kernel be the changepoint GPR

y(t) = f(t) + ϵ(t),

f(t) ∼ GP(0, k1(t, t′)ψ̄(t, t′) + k2(t, t
′)ψ(t, t′)),

where the Gaussian process is defined by the change point
kernel as in (8). The (log-)likelihoods for both these models
can be computed using (5).

The likelihood ratio test statisticR is given by

R = −2(log p(y|t, θ0)− log p(y|t, θ1)), (9)

where θ0 are hyperparameters of the single GPR model
and θ1 are hyperparameters of the changepoint GPR. If the
models are composite (or nested) — that is, the parameter
space of the null model is in the interior of the parameter
space of the alternative model — then in theoryR follows
a χ2

d-distribution under the null hypothesis, where d is the
difference in dimensionality between the two models [Wilks,
1938]. The p-value is then obtained as the density of the χ2

d

distribution larger thanR.

We are interested in applying the likelihood ratio test be-
tween the single and changepoint GPR; we thus need to
reduce the alternative model to the null model. Placing the
constraint s =∞ on the steepness parameter of the change-
point kernel with base kernels k1(t, t′) and k2(t, t′), reduces
the changepoint kernel to k1(t, t′) or k2(t, t′) respectively
(for a detailed elaboration, see Appendix B). Thus, when
we set the single GPR’s kernel equal to k1 or k2, we arrive
at the desired model selection.

Setting s = ∞ means that the null and alternative models
are no longer composite. Since∞ lies on the boundary of
the admissible values for s, the null model does not lie in the
interior of the alternative model’s parameter space. There-
fore, in practice, the distribution ofR may (slightly) deviate
from χ2

d. We will further discuss this in the Experiments
section.

4.2 SEGCPGP

The model selection described in the previous paragraph
can be used to detect single changepoints. In real applica-
tions, it is often desirable to detect multiple changepoints.
The changepoint kernel can be extended to support multi-
ple changepoints (see (13)). In optimization, however, the



changepoint locations would then need to be constrained
such that each changepoint location parameter estimates a
unique location. Consequently, we combine the detection
of single changepoints with a sequential search strategy to
detect multiple changepoints.

To detect multiple changepoints, we propose segment-
ing changepoint Gaussian process regression (SegCPGP)
to estimate multiple changepoints at unknown locations.
SegCPGP combines binary search with a changepoint GPR
that estimates a changepoint at a single location.

SegCPGP estimates changepoints sequentially. The proce-
dure is first run on the whole time series to identify a poten-
tial changepoint. If a changepoint is found, the time series is
divided at that point. The method then repeats this process
on each resulting subwindow. Two GPRs — the changepoint
GPR and the single GPR, as defined in the previous section
— are fit on the full signal by optimizing the log marginal
likelihood (LML). Any valid kernel function can be used
as base kernels (k1(t, t′) or k2(t, t′)) in the change point
kernel, and may be selected to reflect prior beliefs about the
change type. We evaluate standard kernel choices as well
as the SM kernel that could be adopted in situations when
there are no prior beliefs about the types of changes.

The likelihood in (5) is known to suffer from multiple local
optima [Williams and Rasmussen, 2006]. Thus, we apply
the standard GPR practice of restarting the optimization
multiple times before selecting the highest likelihood model.

The single and changepoint GPR are compared via the like-
lihood ratio statistic described in the previous section. As
the null distribution, we use the χ2

d distribution, setting d
equal to the difference in the dimensionality between the
single and changepoint GPR. The value of d depends on
the number of kernel hyperparameters in k1 and/or k2. For
most of our experiments, we set the p-value of the LRT at
p = 0.1 unless otherwise specified.

The changepoint detection procedure is sequential. If the
LRT returns significant, the value of the changepoint ker-
nel’s location parameter is the estimated changepoint, which
we denote by t̂. Since t̂ is regressed it is rounded to the near-
est integer. Then, the signal is split into two halves. To
avoid detecting the same changepoint multiple times, we
remove a margin ϵ of the signal in the neighborhood of the
detected changepoint. For a detected changepoint t̂, the sig-
nal is therefore split at t̂+ ϵ and t̂− ϵ, where we set ϵ to 5
timesteps in practice. The changepoint search stops when
t̂ is outside the domain of the signal, when the LRT is not
significant, or when only a single time step is left in the
signal.

Pseudocode for the above procedure can be found in Algo-
rithm 1.

5 EXPERIMENTS

Here, we demonstrate the performance of SegCPGP on syn-
thetic and real-world datasets and compare it against several
baseline algorithms. We provide an empirical analysis of
SegCPGP’s and ADAGA’s Type I and Type II error rates.

Evaluation Results are reported in terms of the modified
F1-score, a commonly used metric in changepoint detection
[Caldarelli et al., 2022, Killick et al., 2012, Van den Burg
and Williams, 2020]. A detailed description of the F1-score
is provided in Appendix H.1. An estimated changepoint
is considered a true positive (TP) if it falls within a small
margin around the true change point. A false positive (FP)
is then any estimated changepoint outside of these margins,
while a false negative (FN) is any missed changepoint within
these margins and a true negative (TN) is the correctly iden-
tified absence of a changepoint. Setting the margin around
the true changepoint to 0 skews the accuracy of classifica-
tion metrics, since changepoints are only a small subset of
the total number of datapoints. Thus, the margin is often set
to 5 time steps in practice [Caldarelli et al., 2022, Killick
et al., 2012, Van den Burg and Williams, 2020].

Differences in performance between methods in the bench-
mark dataset of Van den Burg and Williams [2020] are
tested via a Wilcoxon signed-rank test. When ranking two
algorithms, one with performance P , another with perfor-
mance Q, the null hypothesis of the Wilcoxon signed-rank
test is that the distribution F of the differences in perfor-
mance F (P − Q) is symmetric around 0, or equivalently,
that F (Q− P ) = F (P −Q), meaning the algorithms are
effectively interchangeable. The Wilcoxon signed-rank test
is appropriate for evaluating the pairwise differences be-
tween algorithms in our experiments [Benavoli et al., 2016,
Van den Burg and Williams, 2020]. We set the significance
level of the test to 10% (i.e., p-value = 0.1). In order to
correct for multiple testing, we apply a Holm correction
[Demšar, 2006].

Baseline methods We use a subset of the methods avail-
able in the Turing changepoint detection benchmark of
Van den Burg and Williams [2020] in our experimental eval-
uation. In particular, we include the following commonly
used methods: BinSeg [Scott and Knott, 1974], PELT [Kil-
lick et al., 2012], BOCPD [Adams and MacKay, 2007] and
RBOCPDMS [Knoblauch and Damoulas, 2018]. Addition-
ally, we incorporate kernel-based and Gaussian process-
based methods in our comparison, namely KCPA [Har-
chaoui et al., 2009] and ADAGA [Caldarelli et al., 2022],
as well as nonparametric methods, namely CPNP [Haynes
et al., 2017] and ECP [Matteson and James, 2014]. For
these algorithms, their default initializations are used, which
corresponds to applying the algorithms without prior knowl-
edge of what reasonable hyperparameter settings might be.
This experimental setting is also adopted, and was described



as being the most realistic, in Van den Burg and Williams
[2020], Caldarelli et al. [2022]. A ZERO method is included
in the evaluation, which corresponds to a method that by
definition finds no changepoints.

We evaluate SegCPGP with four different base kernels:
a spectral mixture kernel with 4 mixture components
(SegCPGP-SM4), a Matern kernel with smoothness 5/2
(SegCPGP-Mat52), a squared exponential kernel (SegCPGP-
RBF), and a linear kernel (SegCPGP-Lin). The number of
mixture components was selected such that the spectral mix-
ture kernel is sufficiently expressive. The other Gaussian
process based method, ADAGA, is combined with these
same kernels, except for the spectral mixture kernel, due to
software version incompatibilities.

Synthetic Data We evaluate the performance of several
CPD methods on mean, variance, periodicity, and trend
changes.

By combining the changepoint kernel with various base ker-
nels, we can create changepoint datasets with predefined
change locations and transition steepness. Trend and period-
icity change datasets are not generated with the changepoint
kernel.

For each change category, ten 400-point datasets are gen-
erated, each containing three change points at index 100,
200 and 300. Section D of the appendix provides the exact
generative parameters of each of the datasets and examples
for each of the change categories.

Table 1 shows F1 scores for a variety of changepoint de-
tection methods for mean, variance, trend and periodicity
changes, as well as each method’s average. SegCPGP, when
combined with the 4-component spectral mixture kernel,
achieves particularly strong overall performance. In par-
ticular, it is the best performing method for the trend and
periodicity change category, although the performance of
SegCPGP with the Matern52 or RBF kernels is not signif-
icantly different. In the mean and trend change categories,
multiple methods perform equally well to the best perform-
ing methods (ECP for mean changes, BOCPD for variance
changes) according to the Wilcoxon signed-rank test. For
mean changes, SegCPGP with linear or RBF base kernels is
able to perform equally well to the best performing method;
the SM4 kernel also leads to good results, but does perform
significantly differently from ECP.

The proposed method, SegCPGP, using either the SM4 or
Matern52 kernel, demonstrates strong performance overall
and across various change categories, where the spectral
mixture kernel may be preferred for the trend and periodicity
changes, the RBF kernel may be preferred for mean changes,
and the Matern52 kernel may be preferred for variance
changes.

Benchmark Data The performance of SegCPGP is eval-
uated on the Turing changepoint detection benchmark
datasets [Van den Burg and Williams, 2020]. The datasets
are annotated by multiple experts. We incorporate the same
datasets as in Caldarelli et al. [2022]: Business Invento-
ries (businv), Ozone (ozone), and GDPs of Japan, Iran and
Argentina (gdp_argentina, gdp_iran, gdp_japan). We omit
the Run Log dataset, as our method does not yet support
multivariate datasets. All datasets are standardized to have
zero mean and unit variance. Appendix E provides more
extensive descriptions of the benchmark datasets.

Table 2 displays the F1-score for various CPD algorithms on
each of the benchmark datasets, as well as each method’s av-
erage F1-score. SegCPGP-SM4 obtains the highest F1 score
on GDP Japan. For the GDP Argentina dataset, SegCPGP-
SM4 performs on par with BOCPD, obtaining the high-
est scores. PELT detects the changepoints perfectly on the
ozone dataset, while SegCPGP-Lin and SegCPGP-SM4, as
well as ADAGA-Lin and ADAGA-Mat52, achieve the sec-
ond best score of 0.966. On both the Business Inventories
and GDP Japan dataset, SegCPGP does not outperform the
zero method. For the Business Inventories dataset, only the
ADAGA-based methods outperform the ZERO method; for
the GDP Japan dataset, no method outscores the ZERO
method.

On average, SegCPGP-SM4 obtains the highest F1 score
in absolute terms (0.790), closely followed by ADAGA-
Matern52 (0.786) and SegCPGP-Lin (0.784), highlighting
the utility of Gaussian process-based changepoint detection
methods.

Calibration In this section we provide an empirical analy-
sis of the FPR and FNR for ADAGA and SegCPGP. We gen-
erate 3000 random mean-change datasets. On each dataset,
ADAGA is fit with δ = 0.3 and δ = 0.6. SegCPGP is fit
with p = 0.05 and p = 0.1. For each fit and each method
the number of true positives (TPs), false positives (FPs), true
negatives (TNs) and false negatives (FNs) are computed; we
again consider changepoints estimated within 5 time steps
of the true changepoint TPs. We elaborate on the computa-
tion of TPs, FPs, TNs and FNs, as well as the FNR and FPR
in Appendix H.3.

As a heuristic to detect changepoints, ADAGA [Caldarelli
et al., 2022] uses a likelihood ratio test (LRT) at the window
level: A Gaussian process regression is fit locally, on a data
windowW , and another GPR is fit on a subwindow S. If
the fit onW differs from the fit on S according to the LRT,
a changepoint is detected. The threshold δ for the likelihood
ratio statistic is chosen such that the probability of a Type
I and Type II error on the window level is at most δ. Since
the null and alternative hypotheses are defined for GPRs fit
on the window and sub-window only, the bounds derived in
Caldarelli et al. [2022] may not hold for the entire signal.



Table 1: F1 score per method for synthetic datasets, grouped by change type. Each F1 score is the method’s average over
that change category, across 10 datasets. Methods that do not perform differently from the best-performing method (bold)
according to a Holm-corrected Wilcoxon signed-rank (p = 0.05) test are indicated with an ∗. SegCPGP-SM4 performs
well overall. Most methods, including the ZERO method, perform equally well to the best performing method on the mean
change datasets.
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mean 0.638 0.376 0.395 0.943∗ 0.839∗ 0.916∗ 0.975∗ 0.020 0.943∗ 0.462 0.888∗ 0.811∗ 0.946∗ 0.986∗ 0.400
periodicity 0.396 0.392 0.409 0.393 0.401 0.358 0.403 0.020 0.381 0.513 0.877∗ 0.393 0.738∗ 0.851∗ 0.400
trend 0.242 0.308 0.289 0.256 0.160 0.223 0.180 0.020 0.263 0.227 0.870∗ 0.231 0.828∗ 0.671∗ 0.400
variance 0.369 0.312 0.324 0.393 0.738∗ 0.427 0.599∗ 0.020 0.356 0.282 0.515∗ 0.400 0.575∗ 0.699∗ 0.400
overall 0.411 0.347 0.354 0.496 0.534 0.481 0.539 0.020 0.486 0.371 0.787∗ 0.459 0.772∗ 0.802∗ 0.400

Table 2: Comparison of several changepoint detection meth-
ods on benchmark datasets. For each dataset the best per-
forming methods are highlighted in bold; the best overall
mean F1 score is also in bold. SegCPGP performs com-
parably to the best performing methods in the benchmark.
Note that none of the methods performs differently from
the zero method, according to a Holm-corrected Wilcoxon
signed-rank test with p = 0.05.
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adaga (Lin) 0.630 0.824 0.713 0.471 0.966 0.720
adaga (Matern52) 0.723 0.824 0.800 0.615 0.966 0.786
adaga (RBF) 0.681 0.824 0.800 0.615 0.776 0.739
binseg 0.370 0.889 0.492 0.615 0.650 0.603
bocpd 0.270 0.947 0.622 0.800 0.650 0.715
cpnp 0.304 0.818 0.330 0.667 0.750 0.574
ecp 0.301 0.824 0.652 0.889 0.723 0.697
kcpa 0.047 0.131 0.219 0.068 0.109 0.121
pelt 0.370 0.889 0.492 0.615 1.000 0.673
segcpgp (SM4) 0.370 0.947 0.868 0.800 0.966 0.790
segcpgp (Lin) 0.588 0.824 0.652 0.889 0.966 0.784
segcpgp (Matern52) 0.559 0.824 0.589 0.889 0.651 0.702
segcpgp (RBF) 0.588 0.824 0.673 0.889 0.750 0.745
zero 0.588 0.824 0.652 0.889 0.723 0.735

Table 3 shows the empirical FNR and FPR for SegCPGP and
ADAGA computed across the 3000 random mean-change
datasets, with various parameter settings for their hypothesis
tests.

The FPR does seem to be bounded by δ. When δ = 0.3 the
FNR is 0.983(> 0.3), while when δ = 0.6 the FNR (0.245)
indeed falls within the bounds. When looking to bound the
false positive rate, ADAGA could be a good method to use,
but the results for δ = 0.3 suggest that ADAGA is sensitive
to the setting of the δ parameter: changes in δ have a large
effect on the trade-off between the FNR and the FPR.

For p = 0.05, the empirical FPR for SegCPGP is 0.074
while the FNR is 0.258; for p = 0.1, the empirical FPR
is 0.096 and the FNR is 0.273. Thus, SegCPGP closely
approximates the FPR. SegCPGP’s FNR appears to be less
sensitive to changes in its p-value. Thus, we can conclude
SegCPGP is slightly miscalibrated, but remains reasonably
reliable.

We further investigate the miscalibration by approximating
the distribution of the LR statistic. Recall from Section 4.1
that the distribution of the LR statistic may not be χ2

d un-
der the null hypothesis. We generate 3900 noised datasets
without a changepoint — the null hypothesis — from a GP
with an RBF kernel. Then, we fit a changepoint Gaussian
process regression to these data and collect corresponding
LR statistics.

Figure 2 shows a quantile-quantile (Q-Q) plot of the em-
pirical null distribution versus the χ2

d distribution, for
SegCPGP with RBF base kernels (left) and SegCPGP with
4-component spectral mixture base kernels (right). The Q-Q
plot is slightly shifted from the diagonal (in blue), indi-
cating that the empirical distribution has more degrees of
freedom than the χ2

d-distribution. To test whether the sam-
ples from the empirical null distribution are drawn from a
χ2
d-distribution, we apply a Kolmogorov-Smirnoff test: for

both kernels, the null hypothesis of the sample coming from
the χ2

d-distribution are firmly rejected (p < 10−60 for both
kernels). The empirical null distribution closely matches a
χ2
d-distribution with a higher number of degrees of freedom.

6 DISCUSSION

Limitations and possible extensions The cubic computa-
tional complexity of GPs may be a limiting factor in large-
scale CPD problems. Future extensions could address this by
incorporating a sparse GP implementation of the proposed
framework, for instance, by parameterizing the covariance



Table 3: Empirical FPR and FNR over 3000 samples of
random mean-change datasets, for ADAGA and SegCPGP.
In the ADAGA hypothesis test, the probability of Type I/II
errors should be at most δ.

Model FNR FPR
ADAGA, δ = 0.3 0.245 0.597
ADAGA, δ = 0.6 0.984 0.002

SegCPGP, p = 0.05 0.258 0.073
SegCPGP, p = 0.10 0.273 0.095

Figure 2: Quantile-quantile plot of the empirical null dis-
tribution versus the χ2

d distribution, for changepoint GPR’s
with a RBF (left) and 4-component spectral mixture kernel
SM4 (right). If the empirical null distribution and the χ2

d-
distribution are equal, the black scatter should lie along the
blue line; here, that is not the case.

using locations of pseudoinputs [Snelson and Ghahramani,
2005]. In this case, the evidence lower bound (ELBO) could
be naturally used for model selection. Additionally, an ex-
tension of SegCPGP could involve a variational implementa-
tion of GPR [Hensman et al., 2015], enabling the modeling
of data with different likelihoods, thereby further increas-
ing the versatility of the proposed approach. Furthermore,
expanding SegCPGP to multivariate data, for instance via
multi-output GPs, would broaden the method’s applicability.

Uncertainty quantification over the location and/or number
of change points could be another worthwhile extension. Us-
ing Markov chain Monte Carlo (MCMC) methods, one can
obtain a distribution over the changepoint locations, similar
to Green [1995]. However, this would require deriving the
posterior over changepoint locations, as well as an efficient
implementation of MCMC.

For broader applications it may be desirable to devise an
automated procedure for the selection of the number of com-
ponents in the spectral mixture kernel. A similar problem
is considered in Gaussian Mixture Models (GMMs), which
could inspire the model selection procedure for the spec-
tral mixture kernel. For example, model compression [Chen
et al., 2024] or a variational solution as proposed in [Cor-
duneanu and Bishop, 2001] could be applied to mitigate

overfitting.

Finally, while most online methods can be directly ap-
plied in the offline setting, the reverse is not true; adapt-
ing SegCPGP’s hypothesis testing procedure into an online
method might thus be another research direction.

Benchmark annotations When testing the pairwise dif-
ferences between the methods in Table 2 with a Wilcoxon
signed-rank test, we found that none of the methods per-
form significantly differently from the ZERO method. The
Default experiment of Van den Burg and Williams [2020]
shows a similar result, explaining that this may either be
due to the small number of changepoints as compared to
the total number of datapoints or be due to each method
detecting a large number of false positives. Upon closer
examination, we found that none of the expert annotators
performs differently from the ZERO method (Appendix G).

The likely culprit is the inclusion of t = 1 as a trivial
changepoint for all annotators as well as the predictions,
which skews the F1-score upwards. We discuss this in more
detail and provide an example in Appendix H.2.

Overall, while the benchmark is certainly useful for compar-
ing changepoint detection methods amongst themselves, we
recommend excluding the ZERO method from evaluation or
conducting further research to establish metrics that is less
beneficial to the ZERO method.

Calibration Addressing the slight miscalibration requires
estimating the null distribution separately for each kernel,
but the computational cost may be too high and this estima-
tion is beyond the scope of this work. Alternatively, deriv-
ing new statistics, as in finite mixture models [Frühwirth-
Schnatter, 2006, Chen et al., 2004], or approximating the
null distribution via Monte Carlo methods [Wolfe, 1971,
Hogg, 1956] could be promising directions for future re-
search in SegCPGP.

7 CONCLUSION

In this work, we introduced SegCPGP, a flexible frame-
work for changepoint detection in the offline setting, based
on Gaussian process regression (GPR). We showed that
SegCPGP can detect a wide range of changes without re-
quiring prior knowledge of their types. We tested the algo-
rithm with various kernels and compared its performance
on simulated and benchmark data sets to state-of-the-art
methods. We found that SegCPGP provides better overall
performance on simulated data and comparable performance
on benchmark data sets.
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A KERNEL TYPES

(a) (b) (c)

Figure 3: Illustration of samples from a squared exponential kernel with ℓ = 5, σ2 = 1 (a), samples from a Matérn kernel
with ℓ = 5, σ2 = 1, and samples from a linear kernel with σ2=1. The squared exponential kernel results in smoother
functions than the Matérn kernel. The linear kernel results in straight lines.

Squared exponential kernel The squared exponential kernel is a stationary kernel — a kernel dependent on the distance
between t and t′ scaled by lengthscale ℓ, ||t−t′||

ℓ — given by

k(t, t′) = σ2 exp(0.5
||t− t′||

ℓ
). (10)

where σ2 is the variance, ℓ is the lengthscale, and ||t−t′|| is the Euclidean distance between t and t′. The squared exponential
kernel is also known as the radial basis function (RBF) kernel.

Matérn kernel A Matérn kernel with smoothness parameter ν = 5/2 is given by

k(t, t′) = σ2(1 +
√
5
||t− t′||

ℓ
) + 5/3

||t− t′||
ℓ

exp(−
√
5
||t− t′||

ℓ
). (11)

Linear kernel The linear kernel is given by
k(t, t′) = σ2tt′, (12)

where σ2 is again a variance parameter. The kernel models linear functions. Note that since this kernel does not depend on
||t− t′||, it is nonstationary.

Figure 3 illustrates samples from a Gaussian process prior with (a) squared exponential, (b) Matérn and (c) linear kernels.
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B STEEPNESS IN THE CHANGEPOINT KERNEL

Below, we provide a detail analysis for the effect of setting the steepness parameter in the changepoint kernel to∞.

The specification of the CP kernel is

k(f(t), f(t)) = k1(t, t
′)ψ(t, t′) + k2(t, t

′), ψ̄(t, t′),

where for a location t0 and steepness s,

ψ(t, t′) = ψ(t)ψ(t′) =
1

1 + exp (−s(t− t0))
× 1

1 + exp (−s(t′ − t0))
,

and
ψ̄(t, t′) = (1− ψ(t))(1− ψ(t′))

In the case that s =∞, the components ψ(t, t′) and ψ̄(t, t′) are driven to 1 and 0, respectively:

ψ(t, t′) = ψ(t)ψ(t′) =
1

1 + exp (−∞(t− t0))
× 1

1 + exp (−∞(t′ − t0))
,

then
ψ(t, t′) = ψ(t)ψ(t′) =

1

1 + 0
× 1

1 + 0
,

and thus
ψ(t, t′) = 1;

ψ̄(t, t′) = (1− ψ(t))(1− ψ(t′)) = 0.

so we would conclude that then the changepoint kernel becomes equivalent to the first base kernel,

k(f(t), f(t)) = k1(t, t
′).

When the location of the changepoint is moved to one of the extremes of the data window (say, t0 = 0), we instead get

ψ(t, t′) = ψ(t)ψ(t′) =
1

1 + exp (−s(t− 0))
× 1

1 + exp (−s(t′ − 0))
.

We will briefly discuss the difference between setting the steepness to an extreme versus moving the location to an extreme
(i.e. the edge of a window).

If the location of the change is at, or even beyond the edge of the window, both kernels can still describe the signal in the
window if the steepness is sufficiently low. In Figure 4, we visualize this in one dimension by plotting the area influenced
by each base kernel via sigmoids. The location t0 is plotted with the red dotted line. We have shaded the area influenced
by kernel 1 blue and the area influenced by kernel 2 orange. As can be seen from the figure, even if the location is placed
outside the right bound of the data window, the signal in the window would still be modeled by both kernels.

In practice the steepness can of course be set to some high value, which would result in a similar effect as for s =∞, that is,
only one of the kernels will describe the signal in the window. Figure 5 shows the effect for steepness 500.

In conclusion, the effect of moving the location is different from setting the steepness to infinity.

C SEGCPGP ALGORITHM

Algorithm 1 shows pseudocode for the SegCPGP procedure.

D SYNTHETIC DATA GENERATION

We describe the generation process for the synthetic datasets. Examples of datasets from each change category are found in
Figure 6.



Figure 4: Visualization of the effect of setting the steepness parameter to a low value, while the location of the changepoint
is outside the window.

Figure 5: Visualization of the effect of setting the steepness parameter to 500, while the location of the changepoint is
outside the window.

Multiple changepoints The changepoint kernel can be extended to multiple change points

Let [kc]Cc=0 denote a list of kernels. For C kernels, there are C − 1 changepoints, and the kernel for multiple changepoints
becomes

cov(f(t), f(t′)) = ψ̄1(t, t
′)k1(t, t

′) +

C−2∑
c=0

(ψc(t, t
′)ψ̄c+1(t, t

′)kc(t, t
′) ) + ψC−1(t, t

′)kC(t, t
′). (13)

Mean changes Mean change data is sampled from a changepoint Gaussian process with a list of Constant kernels. A
constant kernel,

k(t, t′) = σ2, (14)

has only a variance parameter σ2. To the mean change data, we add Gaussian noise with mean 0 and variance 0.01.

Variance changes Variance change data is sampled from a changepoint Gaussian process with a list of noise (or white)
kernels. The noise kernel,

k(ti, tj) = δijσ
2, (15)



Algorithm 1 Segmenting CPGP

1: location← []
2: procedure SEGMENTINGCPGP(X, y, k1, k2)
3: location← minxX + (maxxX −minxX)/2)
4: steepness← 1
5: M1 := GPR(X, y,CHANGEPOINT(k1, k2, location, steepness))
6: M0 := GPR(X, y, k1)
7: for M in [M0,M1] do:
8: M̂ ← OPTIMIZE(M)

9: df ← |M1| − |M0|
10: R ← −2 log p(y|M̂1)− log p(y|M̂0)
11: p← χ2(R, df)
12: if p > r then return
13: if p <= r then
14: location← M̂1.location
15: steepness← M̂1.steepness
16: ϵ← 5
17: if minxX < location < maxxX then
18: Xleft, Xright ← X[: location + ϵ], X[location− ϵ :]
19: yleft, yright ← y[: location + ϵ], y[location− ϵ :]
20: SEGMENTINGCPGP(Xleft, yleft, k1, k2)
21: SEGMENTINGCPGP(Xright, yright, k1, k2)

return
return

where δij = 1 if i = j, and 0 otherwise, and σ2 is again the variance parameter. To ensure that there exist variance changes,
the variance parameter is 1 when the kernel index c is even, and sampled from [3, 20) otherwise. As the variance data
represents changes in noise, we do not add extra noise to the variance change data.

Trend changes Trend changes are generated according to the well-known line equation f(t) = at + b, where in each
segment the slope a is randomly sampled from U(0, 2), and the sign of the slope switches for each segment.

Since our objective is to test the ability of each method to detect only one particular type of change, it is crucial that no other
types of changes occur in the signal. A bias term b is thus added to the signal, such that there are no jumps in the signal. To
the trend change data, we add Gaussian noise with mean 0 and variance 1.

Periodicity changes A periodic signal is generated according to a sine wave, f(t) = sin(ωt), where the angular frequency
ω is randomly sampled from [1, 100). As we stated earlier, we only want to test the detection capacity of the benchmark
models on a single change type. We therefore do not change the amplitude of the signal, since that might be interpreted as a
change in variance. To the periodicity change data, we add Gaussian noise with mean 0 and variance 0.1.

E DESCRIPTION OF BENCHMARK DATASETS

We briefly describe the benchmark datasets used in this paper, which were originally presented in Van den Burg and Williams
[2020]. All datasets used in this paper are univariate.

Business Inventories The Business Inventories dataset contains United States monthly total business inventories. The
length of the dataset is 330. The minimum amount of changepoints found by annotators is 0; the maximum amount of
changepoints found by annotators is 3.

GDP Argentina The GDP Argentina contains the gross domestic product of Argentina, measured from 1960 up to 2019.
The dataset has length 59. The minimum amount of changepoints found by annotators is 0; the maximum amount of
changepoints found by annotators is 3.
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Figure 6: Examples of synthetic trend (a), variance (b), mean (c) and periodicity (d) changepoint dataset. The datasets
include 400 samples, and changepoints at locations 100, 200 and 300. The steepness of the mean and variance changepoints,
which were generated from changepoint Gaussian processes, is 1.

GDP Iran The GDP Iran dataset contains the gross domestic product of Iran, measured from 1960 to 2020. The dataset
has length 58. The minimum amount of changepoints found by annotators is 0; the maximum amount of changepoints found
by annotators is 3.

GDP Japan The GDP Japan dataset contains the gross domestic product of Japan measured yearly from 1960 to 2020.
The dataset has length 58. The minimum amount of changepoints found by annotators is 0; the maximum amount of
changepoints found by annotators is 1.

Ozone The Ozone dataset contains yearly measurements of the global emissions of ozone-depleting substances. The
dataset has length 54. The minimum amount of changepoints found by annotators is 0; the maximum amount of changepoints
found by annotators is 1.

F HYPERPARAMETERS OF COMPARED MODELS

We give an overview of the hyperparameters used for the models in our synthetic data and benchmark experiments.

F.1 GAUSSIAN PROCESS-BASED MODELS

Both ADAGA and SegCPGP use GPFlow [Matthews et al., 2017], a Python package implementing Gaussian processes and
Gaussian process regression in TensorFlow, [Abadi et al., 2015]. The kernels used in both ADAGA and SegCPGP use their
default hyperparameters from the GPFlow package.

ADAGA For ADAGA, as in Caldarelli et al. [2022], the minimal window size is set to 15 and the batch size is set to 1. δ is
set to 0.6 by default. The version used in the benchmark experiment is the inducing points version; an implementation can



be found here.

SegCPGP The p-value for SegCPGP is set to 0.1 by default.

F.2 TURING CHANGEPOINT DATASET BENCHMARK METHODS

We briefly describe some specific hyperparameters used in Default setting for the Turing Changepoint Dataset Benchmark
(TCPDBench). TCPDBench uses methods implemented in Python and R, which can be found here. In principle, running
this benchmark after cloning the TCPDBench repository should already have the default parameters set correctly. The
parameters of the default experiment are also described in Van den Burg and Williams [2020]; for completeness, we also
describe them here.

Where possible, links to the documentation of the original packages are provided.

BinSeg & PELT The implementations of BinSeg and PELT originate from the changepoint R package [Killick and Eckley,
2014]. Both methods by default try to find a change in mean. They both use the Modified Bayesian Information Criterion as
penalty. The test statistic used by both methods is the Normal test statistic, which assumes a normal distribution for the
errors.

CPNP The documentation for CPNP, a nonparametric version of PELT implemented in R, is found here. In TCPDBench,
the number of quantiles is set to 10.

ECP & KCPA Kernel Change Point Analysis, proposed by [Harchaoui et al., 2009] combines the kernel trick and dynamic
programming to detect changepoints. The constant penalty of KCPA is set to 1.0; the maximum number of changepoints is
set to the maximum number possible.

Energy change points, or ECP, was proposed by Matteson and James [2014]. The parameter α of ECP is set to 1. The
minimum number of timesteps between changepoints is set to 30; 199 random permutations are used in each permutation
test; the significance level is set to 0.05.

The documentation for both methods can be found here, [James and Matteson, 2013].

BOCPD The implementation of Bayesian online changepoint detection (BOCPD) is the one found in the Online Change-
Point (OCP) package. The documentation for the OCP package can be found here. The prior parameters a, b and k are all
set to 1. The hazard function intensity lambda is set to 100.

RBOCPDMS The authors of Van den Burg and Williams [2020] also created RBOCPDMS Knoblauch et al. [2018]. For
the benchmark, the code is run from this repository. In case of RBOCPDMS, the run length is pruned to the best 100 run
lengths; α0 and αrld were both set to 0.5. The timeout for RBOCPDMS is set to 4 hours by default for the benchmark
experiment.

G ONE-VERSUS-REST F1-SCORES

For each of the annotators in the annotations of Van den Burg and Williams [2020], we compute their one-versus-rest
F1-score for each benchmark dataset. Then, we compute the ZERO-versus-rest F1 score for each benchmark dataset. We
compare their pairwise differences using the Wilcoxon signed-rank test described earlier. We also added a PERFECT
method, which (artificially) obtains an F1-score of 1 on every single dataset.

The one versus rest F1 scores for each annotator are found in Table 4. Both the ZERO and PERFECT method are included;
the ZERO method never returns any changepoints, while the PERFECT method artificially obtains an F1-score of 1 on each
dataset. Table 4 displays the results. Unfortunately, none of the annotators, including the PERFECT annotator, performs
significantly differently from the ZERO method.

In conclusion, if not any single expert annotator nor a perfect score can perform differently from the ZERO method, we
conjecture that any changepoint algorithm set loose on this benchmark is faced with an impossible task.

https://github.com/lasgroup/adaga
https://github.com/alan-turing-institute/TCPDBench
https://github.com/alan-turing-institute/TCPDBench/tree/master/execs
https://cran.r-project.org/package=changepoint
https://cran.r-project.org/package=changepoint.np
https://cran.r-project.org/package=ecp
https://cran.r-project.org/package=ocp
https://github.com/GjjvdBurg/rbocpdms


Table 4: One-versus-rest F1 scores for every annotator versus the rest of the annotators, for each dataset. Not all datasets have
been annotated by all annotators; missing values are represented with —. The ZERO method never returns any changepoints;
the PERFECT method artificially returns an F1-score of 1 for every dataset.

annot. businv gdp_argentina gdp_iran gdp_japan ozone

6 1.000 0.769 0.829 0.857 0.957
7 0.426 0.769 — 0.857 0.957
8 0.897 0.769 0.523 0.857 0.629
9 1.000 — 0.857 1.000 —
10 — — 0.968 — 0.957
12 — 1.000 0.968 1.000 0.800
13 1.000 1.000 — — —
ZERO 0.588 0.824 0.652 0.889 0.723
PERFECT 1.000 1.000 1.000 1.000 1.000

H CLASSIFICATION MEASURES

Changepoint detection can be evaluated as a classification problem, when finding the locations of the changepoints is of
interest. In this section we give a detailed description of the computation of the F1-score for changepoint detection, as also
presented in Van den Burg and Williams [2020]; then, we highlight a problem with the F1-score when a trivial changepoint
is included. Finally, we describe how the false negative and false positive rate are computed in our experiments.

H.1 THE F1-SCORE

In the context of changepoint detection, a true positive (TP) is any changepoint detected within a certain margin from the
true changepoint [Van den Burg and Williams, 2020, Killick et al., 2012, Truong et al., 2020]. Let X denote the predictions
of some changepoint detection algorithm on some dataset. Assume there are K annotators, that each provide an annotation,
so that the set of all annotations is T = {Tk}Kk=1. Since some of the annotators may naturally identify the same change
points, we also define the set of unique annotations as T ∗ =

⋃
k{Tk}.

Let TP(X , T ∗) be a set-based evaluation of true positives for predictions X and the set of all unique annotators T ∗,

TP(X , T ∗) = {∀t ∈ X ,∀τ ∈ T ∗ : |t− τ | ≤M},

and TP(X , Tk) be the true positives found by annotator k ∈ K,

TP(X , Tk) = {∀t ∈ X ,∀τ ∈ Tk : |t− τ | ≤M}.

where M is some margin around the true changepoint. Generally, M ≥ 0, but M is usually set to 5 time steps in practice.

The precision (P) is calculated as the proportion of detected change points by the algorithm that are true positives,

P =
TP(X , T ∗)

|X |
,

the recall (R) is calculated as the average true positives, computed over all annotators,

R =
1

K

K∑
k=1

TP(X , Tk)
|Tk|

.

The F1-score is then computed as

F1 = 2 · P · R
P + R

.

H.2 TRIVIAL CHANGEPOINTS

The F1-score as defined in Van den Burg and Williams [2020] and Appendix H.1 adds the trivial changepoint t = 1 to
all annotations, as well as to all predictions. While necessary to prevent the F1-score from being undefined in case no
changepoints are found or annotated, the F1-score behaves strangely when no changepoints are detected by the algorithm.
Due to the trivial changepoint, the precision of the ZERO method is always 1, and in cases where not many changepoints are
annotated this will lead to unreasonably high F1-scores.



Example Consider a dataset where three annotators provide the changepoints T = {[45], [50]}, making T ∗ = {45, 50}.
Assuming the annotators are experts, it is reasonable to assume there is some unknown true changepoint around t = 45 to
t = 50.

Now consider a ZERO method, which always gives X = ∅ as a prediction. In order to compute the F1-score, we add the
trivial changepoint 1 to both the predictions and all annotations, so we have the annotations {[1, 45], [1, 50]}, which makes
T ∗ = {1, 45, 50}, and X = {1}.

Computing the precision then leads to

P =
|{1}|
|{1}|

= 1,

R =
1

2

K∑
k=1

|{1}|
|{1, 45}|

+
|{1}|
|{1, 50}|

=
1

2
(
1

2
+

1

2
) =

1

2
,

F1 = 2 · P · R
P + R

= 2 · 1/2
3/2

=
2

3
≈ 0.67.

It is easy to see from this example that the inclusion of the trivial changepoints means that the ZERO method will always
get a precision of 1 without finding any changepoint. Furthermore, without agreeing with any of the annotators, the ZERO
method gets an F1-score of 0.67. Thus, although it is necessary to include the trivial changepoint to prevent the precision
and recall from being undefined, the subsequent results are arguably unreasonable.

In our synthetic data experiment, the tested methods did mostly manage to perform differently from the ZERO method. If
the annotators provide enough unique changepoints (in this case, there were three ground truth changepoints), the recall
will be somewhat lower — though we still think it is unreasonably high — and the tested methods are actually capable of
performing differently from the ZERO method.

H.3 FALSE POSITIVE AND FALSE NEGATIVE RATE

In order to compute the true and false positives (TP and FP, respectively) and the true and false negatives (TN and FN,
respectively), we use a similar method as in Appendix H.1, except that X now contains all performed hypothesis tests. We
denote a hypothesis test by h(t), which tests some location t and returns

h(t) =

{
H0, if the null hypothesis cannot be rejected
H1, otherwise.

A true positive is then a situation where the tested location t is within the margin of the true changepoint, and the test
indicates H1,

TP(X , T ∗) = {∀t ∈ X ,∀τ ∈ T ∗ : |t− τ | ≤M ∧ h(t) = H1},

whereas a false positive is when the tested location t is outside the margin of the true changepoint, and the test indicates H0,

FP(X , T ∗) = {∀t ∈ X ,∀τ ∈ T ∗ : |t− τ | > M ∧ h(t) = H1}.

In contrast, a true negative is a situation where the tested location is outside the margin around the changepoint, and the test
indicates H0,

TN(X , T ∗) = {∀t ∈ X ,∀τ ∈ T ∗ : |t− τ | > M ∧ h(t) = H0},



and a false negative is a situation where the tested location x is inside the margin around the changepoint, and the test
indicates H0,

FN(X , T ∗) = {∀x ∈ X ,∀τ ∈ T ∗ : |t− τ | > M ∧ h(t) = H0}.

The FNR and FPR, as used in Section 5 of the main paper, are computed as

FPR =
FP

FP + TN
,

and

FNR =
FN

FN + TP
.
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