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ABSTRACT

As the field of Multimodal Large Language Models (MLLMs) continues to evolve,
their potential to handle mathematical reasoning tasks is promising, as they can
handle multimodal questions via cross-modal understanding capabilities com-
pared to text-only LLMs. Current mathematical benchmarks predominantly fo-
cus on evaluating MLLMs’ problem-solving ability, yet there is a crucial gap in
addressing more complex scenarios such as error detection, for enhancing rea-
soning capability in complicated settings. To fill this gap, we formally formulate
the new task — multimodal error detection, and introduce ERRORRADAR, the
first benchmark designed to assess MLLMs’ capabilities in such a task. ERROR-
RADAR evaluates two sub-tasks: error step identification and error categoriza-
tion, providing a framework for evaluating MLLMs’ complex mathematical rea-
soning ability. It consists of 2,500 high-quality multimodal K-12 mathematical
problems, collected from real-world student interactions in an educational organi-
zation, with expert-based annotation and metadata such as problem type and error
category. Through extensive experiments, we evaluated both open-source and
closed-source representative MLLMs, benchmarking their performance against
educational expert evaluators. Results indicate challenges still remain, as GPT-4o
with best model performance is still around 10% behind human evaluation.

1 INTRODUCTION

On the path to Artificial General Intelligence, Large Language Models (LLMs) such as GPT-4 (Ope-
nAI, 2023) have emerged as a central focus in both industry and academia (Minaee et al., 2024; Zhao
et al., 2023; Zhu et al., 2023). As the real world is inherently multimodal, the evolution of Multi-
modal Large Language Models (MLLMs) such as the latest GPT-4o (OpenAI, 2024a) and Gemini
1.5 (Reid et al., 2024), has become a rapidly growing area of interest, demonstrating remarkable
effectiveness in diverse applications (Xiao et al., 2024; He et al., 2024a; Yan et al., 2024; Hao et al.,
2024). In particular, multimodal reasoning stands to significantly benefit education scenarios from
the robust capabilities of MLLMs (Wang et al., 2024b; Li et al., 2024a), given its reliance on multi-
modal inputs to comprehensively grasp users’ intentions and needs.

Within the multimodal sphere, mathematical scenarios pose a significant challenge, demanding so-
phisticated reasoning abilities from MLLMs (Lu et al., 2022; Ahn et al., 2024). These scenarios have
attracted considerable research aimed at pushing the boundaries of MLLMs’ reasoning capabilities
(Hu et al., 2024; Jia et al., 2024; Lu et al., 2024c; Shi et al., 2024b; Zhuang et al., 2024). Besides, var-
ious representative benchmarks have been designed to measure MLLMs’ performance in complex
mathematical reasoning tasks, which involve multi-step reasoning and quantitative analysis within
visual contexts (Lu et al., 2024b; Zhang et al., 2024; Qiao et al., 2024; Peng et al., 2024).

Scrutinizing the off-the-shelf mathematical reasoning benchmarks, there is a predominant focus
on evaluating the problem-solving capabilities of MLLMs, prioritizing the accuracy with which
MLLMs can solve mathematical problems (Wang et al., 2024a; Lu et al., 2024b; Zhang et al., 2024),
as depicted in Figure 1 (a). However, in educational contexts, it is even more crucial to consider
user-oriented needs, such as error detection. As indicated in Figure 1 (b), this involves not only
pinpointing the first incorrect step in a student’s step-by-step solution but also categorizing the types
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Figure 1: Comparison of research scope between pre-
vious work and our proposed ERRORRADAR bench-
mark on mathematical reasoning tasks.

Benchmarks Venue Modality Student Ans. Error Det.
TheoremQA (Chen et al., 2023a) EMNLP T - -
MathBench (Liu et al., 2024b) ACL T - -
MR-GSM8K (Zeng et al., 2024) arXiv T - -
SciEval (Sun et al., 2024) AAAI T - -
EIC (Li et al., 2024b) arXiv T - ✓
CMMaTH (Li et al., 2024c) arXiv T, I - -
MathScape (Zhou et al., 2024) arXiv T, I - -
MATH-V (Wang et al., 2024a) arXiv T, I - -
QRData (Liu et al., 2024c) ACL T, I - -
IsoBench (Fu et al., 2024) COLM T, I - -
SciBench (Wang et al., 2024c) ICML T, I - -
MathVista (Lu et al., 2024b) ICLR T, I - -
MathVerse (Zhang et al., 2024) ECCV T, I - -
ERRORRADAR (Ours) - T, I ✓ ✓

Table 1: Comparison between our proposed ERROR-
RADAR benchmark vs. its relevant LLM-based math-
ematical reasoning benchmarks or datasets. Under the
column of Modality, the letters T and I represent text
and image, respectively. The column labeled as Student
Ans. indicates whether the dataset contains real student
data (i.e., students’ incorrect answers); the column la-
beled as Error Det. represents whether evaluation in-
cludes the complex reasoning task of error detection.

of errors made, which is a multifaceted process that requires a deep understanding of both mathe-
matical concepts and cognitive processes (Davies et al., 2021; Rabillas et al., 2023).

Towards this end, addressing the aforementioned research gap, we aim to formulate the new task
of evaluating MLLMs in the context of error detection scenarios, and therefore introduce the corre-
sponding benchmark termed ERRORRADAR. We have designed two sub-tasks to comprehensively
assess the performance: error step identification and error categorization. To construct a rich and
reliable dataset, we initially sourced a collection of multimodal K-12 level math problems from an
educational organization and subsequently refined the dataset through rigorous manual annotation to
ensure quality. In particular, we also collect real students’ answers for each multimodal question for
a relatively robust experimental setting, compared to other relevant benchmarks (as shown in Table
1). Furthermore, we categorized the dataset to better align with diverse needs as follows: Problem
types: plane geometry, solid geometry, diagram, algebra, and mathematical common sense; and
Error categories: visual perception errors, calculation errors, reasoning errors, knowledge errors,
and misinterpretation of the problem. In summary, the ERRORRADAR comprises 2,500 high-quality
instances derived from real-life problem-solving data, providing a foundational dataset to enhance
the complex reasoning capabilities of MLLMs for the research community and industry.

For ERRORRADAR, we carry out an extensive experimental analysis to determine the proficiency
in complex mathematical reasoning of various MLLMs. The evaluation encompasses both the lat-
est open-source MLLMs (e.g., InternVL2 (Chen et al., 2023b), LLaVA-NEXT (Liu et al., 2024a),
CogVLM2 (Wang et al., 2023a)), and closed-source MLLMs (e.g., GPT4-o (OpenAI, 2024a), Gem-
ini Pro 1.5 (Reid et al., 2024), Claude 3.5 (Anthropic, 2024b)). Our focus was on their error de-
tection capabilities, specifically the identification of the erroneous step and the classification of the
error type. To establish a comparative human performance standard, we involved expert human ed-
ucators who possess a graduate-level degree or higher qualifications. The results demonstrate that
ERRORRADAR, covering cutting-edge topics such as MLLMs’ complex reasoning, poses a signifi-
cant challenge, with human evaluation for two error detection tasks achieving less than 70%.

From in-depth evaluation of representative MLLMs, we obtain the following findings: ❶ Closed-
source MLLMs, particularly GPT-4o, consistently outperform open-source MLLMs in both sub-
tasks, and show more balanced accuracy across different error categories; ❷ Weaker MLLMs exhibit
an over-reliance on simpler categories, while stronger models handle complex tasks better; ❸ Both
MLLMs and humans perform better on error step identification compared to error categorization, as
localizing specific errors is inherently simpler than categorizing errors.

Our contributions can be summarized as follows:
❶ We take the first step to formulate the multimodal error detection task, and introduce a mul-

timodal benchmark termed ERRORRADAR for evaluation. This benchmark serves as a standard
operator for assessing the complex mathematical reasoning capabilities of the latest MLLMs.
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❷ We meticulously curate an extensive dataset comprising approximately 2,500 high-quality in-
stances with rigorous annotation and rich metadata derived from real user interactions in an educa-
tional organization. To the best of our knowledge, this is the first attempt to use real-world student
problem-solving data to evaluate MLLMs, providing a protocol for future research on MLLMs’
complex mathematical reasoning.

❸ Our comprehensive experimental evaluation of more than 20 MLLMs, both proprietary and open-
source, highlight the substantial room for improvement (i.e., 7%-15% in accuracy) in the complex
mathematical reasoning capabilities, underscoring the necessity for further research.

2 RELATED WORK
Benchmarks for Mathematical Reasoning. Recent advancements in mathematical reasoning
benchmarks have led to the development of both pure text and multimodal assessments (Lu et al.,
2022; Wang et al., 2024a; Zheng et al., 2024; Huo et al., 2024). While datasets like GSM8K (Cobbe
et al., 2021), MATH (Hendrycks et al., 2021), SuperCLUE-Math (Xu et al., 2024), and MathBench
(Liu et al., 2024b) focus on text-based problems, the field has expanded to include multimodal
benchmarks that introduce visual elements, pushing the boundaries of AI’s mathematical under-
standing. For instance, MathVista (Lu et al., 2024b) evaluates AI’s performance on visual math
QA tasks; MATH-V (Wang et al., 2024a) focuses on multimodal mathematical understanding with
competition-derived questions; MathVerse (Zhang et al., 2024) assesses visual diagram compre-
hension using CoT strategies; CMMU (He et al., 2024b) tests multi-disciplinary, multimodal math
understanding with a broad range of Chinese-language questions; MathScape (Zhou et al., 2024)
further advances the field by presenting longer, more complex, and open-ended multimodal prob-
lems; and MMMU(Yue et al., 2024) covers college-level knowledge including interleaved mathe-
matical questions. The aforementioned benchmarks assess the mathematical reasoning capabilities
of MLLMs by evaluating their problem-solving levels, but they overlook tasks based on the student’s
perspective, such as error detection, and thus fail to comprehensively evaluate the more complex role
of current MLLMs. Therefore, we propose the ERRORRADAR benchmark, which is entirely based
on real student response data to evaluate the proficiency of MLLMs in error detection tasks.

Multimodal Large Language Models. Generative foundation models such as GPT-4 (OpenAI,
2023), Claude (Anthropic, 2024b), and Gemini (Pal & Sankarasubbu, 2024) have significantly ad-
vanced various task solutions without fine-tuning (Cui et al., 2024; Yan & Lee, 2024; Zou et al.,
2025; Zhong et al., 2024). Similarly, current open-source MLLMs, built on top of powerful LLMs,
have also demonstrated promising potential in multimodal tasks such as image captioning (Yang
et al., 2024) and visual question answering (Fan et al., 2024). For instance, LLaVA-NEXT (Liu
et al., 2024a) proposed projecting visual embeddings, extracted by a pretrained vision encoder, into
the word space through a single MLP layer, where LLMs like LLaMA, Vicuna, and Mistral are fine-
tuned to understand these post-projection tokens. In a similar fashion, Phi3 (Abdin et al., 2024),
DeepSeek-VL (Lu et al., 2024a), MiniCPM-V (Yao et al., 2024), ChatGLM (GLM et al., 2024),
CogVLM (Wang et al., 2023a), Intern-VL (Chen et al., 2023b), Qwen-VL (Bai et al., 2023) and
Yi-VL (Young et al., 2024) also utilize a projector (or adapter, shared compression layer, etc.) to
align the visual embeddings extracted from a vision encoder with text embeddings, which are then
concatenated and fed into LLM. Therefore, we propose ERRORRADAR, a comprehensive bench-
mark on a fine-grained evaluation of MLLMs’ ability to detect errors based on students’ answers
and reasoning steps, thereby advancing the development of complex multimodal system.

3 THE ERRORRADAR DATASET

3.1 TASK FORMULATION

Basic Setting. In this task, we assess the model’s ability to detect errors in mathematical problem-
solving processes across multiple samples. Let N denote the total number of samples in the evalua-
tion set. For each sample i ∈ {1, 2, . . . , N}, the input set Ii is defined as:

Ii = {Qtext,i, Qimage,i, Acorrect,i, Aincorrect,i, {Sk,i}ni

k=1},
where:

• Qtext,i: the textual statement of the i-th problem.
• Qimage,i: the image representation of the i-th problem.
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Figure 2: Example of our annotated multimodal mathematical reasoning dataset ERRORRADAR, and perfor-
mance comparison on error categorization and error step localization tasks among representative MLLMs. It
is evident that even simple math problems can be mishandled by the currently superior MLLMs in one or both
tasks, highlighting the challenging nature of our proposed multimodal error detection setting.

• Acorrect,i: the correct solution for the i-th problem.
• Aincorrect,i: the incorrect student solution for the i-th problem.
• {Sk,i}ni

k=1: the sequence of ni steps in the i-th problem-solving process, with each Sk,i represent-
ing a distinct step.

Subtask 1: Error Step Identification. The task is to identify the index x of the first incorrect step
in the sequence {Sk,i}ni

k=1. The function fstep,i maps the input Ii to the index of the erroneous step:

fstep,i : Ii → xi, where xi = argmin
k

{Sk,i is incorrect}.

Subtask 2: Error Categorization. The task is to classify the type of error for the i-th problem
into one of the following categories: {VIS,CAL,REAS,KNOW,MIS}. The error categorization
function ferror,i maps the input Ii to the error category Cerror,i:

ferror,i : Ii → Cerror,i.

More concrete examples can be seen in Figure 2 and Appendix A. The discrepancies within the five
error categories are delineated as follows:

✯ Visual Perception Errors (VIS): These errors arise when there is a failure to accurately interpret
the information contained within images or diagrams presented in the question due to visual issues.

✯ Calculation Error (CAL): These errors manifest during the calculation process, which may in-
clude arithmetic mistakes such as incorrect addition, subtraction, multiplication, or division, errors
in unit conversion, or mistakes in the numerical signs between multiple steps.

✯ Reasoning Error (REAS): These errors occur during the problem-solving process when improper
reasoning is applied, leading to incorrect application of logical relationships or conclusions. In

✯ Knowledge Error (KNOW): These errors result from incomplete or incorrect understanding of
the knowledge base, leading to mistakes when applying relevant knowledge points.

✯ Misinterpretation of the Question (MIS): These errors occur when there is a failure to correctly
understand the requirements of the question or a misinterpretation of the question’s intent, leading
to responses that are irrelevant to the question’s demands. For instance, if the question asks for a
letter and a number is provided, or vice versa.
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Statistic Number

Total multimodal questions 2,500

Problem Type
- Plane Geometry 1559 (62.4%)
- Solid Geometry 191 (7.6%)
- Diagram 233 (9.3%)
- Algebra 288 (11.5%)
- Math Commonsense 229 (9.2%)

Error Category
- Visual Perception Error 395 (15.8%)
- Calculation Error 912 (36.5%)
- Reasoning Error 951 (38.0%)
- Knowledge Error 119 (4.8%)
- Misinterpretation of the Qns 123 (4.9%)

Average Reasoning Step 7.6
Maximum Reasoning Step 20
Minimum Reasoning Step 3
Average Question Length 168
Maximum Question Length 719
Minimum Question Length 13

Table 2: Key statistics of ERRORRADAR.

Figure 3: Roadmap of ERRORRADAR dataset collec-
tion, annotation, and consistent update.

Figure 4: Dataset distribution of ERRORRADAR with
respect to problem type and error category.

Performance Metric. The evaluation of both subtasks is conducted separately. The model’s perfor-
mance is evaluated using accuracy metrics for both subtasks:

• Error Step Identification Accuracy. Let Gstep,i be the ground truth index of the first incorrect
step for the i-th sample. The accuracy for this subtask is:

Accstep =
1

N

N∑
i=1

I(xi = Gstep,i),

where I(·) is indicator function, returning 1 if prediction matches ground truth, and 0 otherwise.
• Error Categorization Accuracy. Let Gerror,i be the ground truth error category for the i-th sam-

ple. The accuracy for this subtask is:

Acccate =
1

N

N∑
i=1

I(Cerror,i = Gerror,i).

3.2 DATA SOURCE & ANNOTATION

Following the roadmap shown in Figure 3, this section includes how we collect and annotate ER-
RORRADAR dataset to ensure the overall data quality. Different from the conventional benchmarks
that rely on public datasets or modified textbook collections (Lu et al., 2024b; Zhou et al., 2024),
ERRORRADAR dataset is uniquely sourced from the question bank of a global educational organi-
zation. This repository encompasses a vast array of mathematical problems in K-12 levels, totaling
over a million entries. Initially, we curated approximately 180,000 math problems that feature a
single image-based question stem, aligning with our goal to target a multimodal assessment setup.
Subsequently, we refined our selection by evaluating the universality and articulation of the prob-
lem content. For each problem, we identified multiple incorrect answers. To ensure the dataset’s
relevance for error detection tasks, we selected the most frequently given incorrect answer as the
student’s response. Additionally, we scrutinized cases where the most common incorrect answer
was due to system input errors despite the answer being correct. In such instances, we amended the
dataset by incorporating the next most frequently incorrect answer.
Furthermore, since error detection tasks necessitate a step-by-step reasoning process, we enriched
our dataset with new content through manual annotation. Specifically, we provided professional
annotators with the original multimodal QA data, student’s incorrect answers, and the pedagogical
team’s analysis of correct answer process. Based on this initial data, annotators delineated the
erroneous steps leading to the incorrect answers (More details in Appendix B.1 and B.2).
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Our team of annotators, consisting of around ten educational experts with domain expertise, con-
ducted two rounds of cross-checking to ensure the reliability of the annotations. In cases of incon-
sistency, the contentious question and related data were presented to the annotation lead for final
adjudication. The annotators’ results were subject to review and quality control by the educational
organization from which the data originated, ensuring security, reliability, and consistent updates.

3.3 DATASET DETAILS

As illustrated in Table 2, ERRORRADAR dataset comprises a substantial collection of 2,500 multi-
modal math questions designed for error detection tasks. It predominantly includes plane geometry
problems, with solid geometry, diagram, algebra, and math commonsense questions making up the
remainder, highlighting its focus on diverse mathematical problems. it also categorizes errors into
visual perception, calculation, reasoning, knowledge, and question misinterpretation. Key statistics
indicate a diverse dataset with an average reasoning step of 7.6, a variety of question lengths, and
a wide range of reasoning steps (up to 38). Detailed distribution of ERRORRADAR, problem type
definition, and error category formulation can be seen in Figure 4, Appendix B.3 and B.4.

4 EXPERIMENTS AND ANALYSIS

4.1 EVALUATION PROTOCOLS

In ERRORRADAR benchmark, we propose an evaluation strategy using template matching rules.
The evaluation process consists of three stages: response generation, answer extraction, and perfor-
mance calculation. Initially, the MLLMs generate responses given the inputs, which incorporates the
multimodal mathematical question, wrong answer, and its step-by-step reasoning, using the template
from Appendix C.2. Subsequently, the short answer text can be extracted from the detailed response.
Finally, the model performance is based on the detailed score calculation as shown in Section 3.1.
The final score will be calculated by averaging the scores from three rounds of assessment.

4.2 EXPERIMENTAL SETUP

In our experimental setup, we meticulously categorized and evaluated a diverse array of MLLMs
into three distinct groups to assess their capabilities across error detection tasks. (i) The Open-
Source MLLMs category encompassed models such as InternVL-2 (Chen et al., 2023b), Phi-3-
vision (Abdin et al., 2024), Yi-VL (Young et al., 2024), DeepSeek-VL (Lu et al., 2024a), LLaVA-
v1.6-Vicuna (Liu et al., 2024a), MiniCPM-LLaMA3-V2.5 (Yao et al., 2024), MiniCPM-V2.6 (Yao
et al., 2024), Qwen-VL (Bai et al., 2023), GLM-4v (GLM et al., 2024), and LLaVA-NEXT (Liu
et al., 2024a), each demonstrating their unique strengths and capabilities in handling different types
of errors. (ii) The Closed-Source MLLMs featured proprietary models like Qwen-VL-Max (Bai
et al., 2023), Claude-3-Haiku (Anthropic, 2024a), Claude-3.5-Sonnet (Anthropic, 2024b), Gemini-
Pro-1.5 (Reid et al., 2024), GPT-4o-mini (OpenAI, 2024b), and GPT-4o (OpenAI, 2024a), providing
a comparison point for the performance of models that are not publicly accessible. (iii) Lastly, the
Human Performance category served as a benchmark for natural intelligence, allowing us to gauge
how closely MLLMs can emulate human cognitive functions across tasks such as visual perception
(More details in Appendix C.1). We provide the prompts for MLLMs and sources of MLLMs in
Appendix C.2 and C.3, respectively.

4.3 EXPERIMENTAL RESULTS

4.3.1 MAIN RESULTS

Finding #1: Closed-source MLLMs generally outperform open-source MLLMs in both error
detection tasks, with GPT-4o demonstrating the strongest performance. Table 3 shows that
closed-source MLLMs generally outperform open-source MLLMs in both STEP and CATE tasks,
and they also exhibit relatively more balanced performance across the five error categories. This
superiority can likely be attributed to the proprietary datasets and advanced training resources avail-
able to closed-source models, which allow for more robust fine-tuning (Shi et al., 2023; Yu et al.,
2024; Wang et al., 2023b). Notably, GPT-4o stands out as the best model, achieving the highest
scores not only in STEP and CATE tasks, but also in the VIS, REAS, and MIS categories, demon-
strating its overall versatility and strength. Given the current performance gap between open-source
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Multimodal Large Language Models Parameters LLM STEP CATE VIS CAL REAS KNOW MIS
Open-Source MLLMs

InternVL2 (Chen et al., 2023b) 2B InternLM-2 9.8 25.1 32.2 38.8 12.2 0.0 24.4
Phi-3-vision (Abdin et al., 2024) 4B Phi-3 37.5 40.7 9.6 99.6 6.6 3.4 4.1

Yi-VL (Young et al., 2024) 6B Yi 15.7 32.1 9.1 77.1 4.9 14.3 0.0
DeepSeek-VL (Lu et al., 2024a) 7B DeepSeek 16.2 35.7 4.6 90.9 0.4 28.6 6.5

LLaVA-v1.6-Vicuna (Liu et al., 2024a) 7B Vicuna-v1.5 30.3 17.7 40.3 14.9 8.3 0.0 55.3
InternVL-2 (Chen et al., 2023b) 8B InternLM-2.5 44.2 44.1 12.4 99.6 13.6 10.9 2.4

MiniCPM-LLaMA3-V2.5 (Yao et al., 2024) 8B LLaMA3 37.4 38.0 4.1 100.0 2.1 2.5 0.0
MiniCPM-V2.6 (Yao et al., 2024) 8B Qwen2 17.0 39.8 11.4 87.8 12.1 10.1 17.9

Qwen-VL (Bai et al., 2023) 9B Qwen 23.8 38.9 8.6 99.1 3.5 0.0 0.8
GLM-4v (GLM et al., 2024) 13B GLM-4 44.6 44.1 2.5 92.9 25.8 0.0 0.0

LLaVA-v1.6-Vicuna (Liu et al., 2024a) 13B Vicuna-v1.5 36.9 47.8 0.0 74.5 53.7 0.8 2.4
CogVLM2-LLaMA3 (Wang et al., 2023a) 19B LLaMA3 15.0 20.1 43.3 33.8 0.7 13.4 0.0

InternVL2 (Chen et al., 2023b) 26B InternLM-2 50.4 51.2 39.2 84.6 35.6 0.8 10.6
LLaVA-NEXT (Liu et al., 2024a) 72B Qwen1.5 51.8 45.0 7.1 86.0 32.0 7.6 0.8
InternVL2 (Chen et al., 2023b) 76B Hermes-2 Theta 54.4 49.5 33.4 92.4 25.1 10.9 8.1

Closed-Source MLLMs

Qwen-VL-Max (Bai et al., 2023) - - 48.7 52.9 15.2 78.9 50.5 14.3 36.6
Claude-3-Haiku (Anthropic, 2024a) - - 45.6 48.0 10.4 77.4 46.8 4.2 1.6

Claude-3.5-Sonnet (Anthropic, 2024b) - - 50.2 49.5 35.7 48.4 64.8 21.0 11.4
Gemini-Pro-1.5 (Reid et al., 2024) - - 55.0 52.7 43.5 55.7 63.1 18.5 13.0

GPT-4o-mini (OpenAI, 2024b) - - 52.0 44.5 9.1 46.8 62.7 31.9 13.0
GPT-4o (OpenAI, 2024a) - - 55.1 53.1 46.3 50.4 64.9 9.2 46.3

Human

Human performance - - 69.8 60.7 66.8 75.9 47.6 35.3 53.7

Table 3: Comparison of open-source and closed-source MLLM performance (accuracy in percentage) across
error detection tasks. We denote STEP and CATE for the performance of error step identification task (i.e.,
Accstep) and error categorization task (i.e., Acccate), respectively. We also denote VIS, CAL, REAS, KNOW,
and MIS for visual perception error, calculation error, reasoning error, knowledge error, and misinterpretation
of the question. The highest and second highest scores (except for exceptional values) among MLLMs in each
column are highlighted in red and blue , respectively. Exceptional values in CAL column are highlighted in
grey , as more than 70% categories predicted by the MLLM are CAL (More analysis on Sec 4.3.1 Finding #2).

and closed-source MLLMs, open-source MLLMs can further enhance themselves by distilling the
error detection capabilities of closed-source ones (Hsieh et al., 2023).

Figure 5: The proportion of CAL predictions of closed-
source and open-source MLLMs with top-5 CAL accuracy.

Finding #2: Weak open-source MLLMs
tend to predict CAL category, leading
to unusually high performance. Table
3 indicates that MLLMs with relatively
low performance in the CATE task tend
to exhibit unusually high performance in
the CAL category. Specifically, open-
source models like MiniCPM-LLaMA3-
v2.5 even achieve a 100% accuracy in
CAL, while Phi-3-vision and InternVL-2-
8B reach 99.6%. Upon analyzing the cat-
egory prediction proportions of CAL from
Figure 5 (See details of all MLLMs in Ap-
pendix C.4), it becomes clear that open-
source MLLMs with the top five CAL ac-
curacy predict over 80% of instances as
CAL category, suggesting an over-reliance on this category. In contrast, closed-source MLLMs
with top-five CAL accuracy do not exhibit this extreme trend of prediction bias. This phenomenon
likely arises from weaker MLLMs attempting to overfit on the CAL category, a relatively simpler
classification, to compensate for their inability to handle more complex scenarios (Tirumala et al.,
2022; Xu et al., 2021). Models exhibiting this phenomenon can assign different weights to samples
of different categories during training to reduce the model’s preference for a particular category.
This can be achieved by adjusting the weight parameters in the loss function (e.g., Focal Loss &
AdaFocal) (Li et al., 2022; Ghosh et al., 2022).

Finding #3: MLLMs with strong overall performance tend to handle STEP easier than CATE.
From Table 3, the best open-source MLLMs, such as InternVL2-76B, and the best closed-source
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Figure 6: The error category dis-
tribution of misjudged VIS cases
of GPT-4o.

Figure 7: The error category dis-
tribution of misjudged VIS cases
of CogVLM2-LLaMA3.

Figure 8: The error step distribu-
tion (in percentage) of error cate-
gories in ERRORRADAR.

MLLMs, like GPT-4o, exhibit a tendency where their STEP performance surpasses that of CATE.
This trend holds even for human performance, where accuracy on STEP is higher (69.8%) compared
to CATE (60.7%). The reason for this disparity is likely that identifying the error step is inherently
easier, as it involves localizing a specific point of failure. On the other hand, categorizing the error
requires more complex reasoning and contextual understanding to classify the nature of the error,
which adds difficulty. This mirrors the settings in object detection, where localization (i.e., pre-
dicting where an object is) is relatively simpler than classification (i.e., predicting what an object
is) (Zou et al., 2023; Jiao et al., 2021). To improve the performance of error categorization tasks,
MLLMs need to better understand the relationship between the problem itself and the steps where
errors occur. Thus, modeling this part of the relationship can be a focus in the design of training
data (Ling et al., 2023; Shi et al., 2024a).

Finding #4: CAL is the easiest category for MLLMs, while KNOW is the most difficult. CAL
is the category with the highest performance among most MLLMs (excluding those with excep-
tional values), which could be attributed to the structured and deterministic nature of calculations,
where errors often result in clear, quantifiable deviations from expected outcomes, making them
more straightforward to detect (Lewkowycz et al., 2022; Kojima et al., 2022). Conversely, KNOW
stands out as the most challenging category, suggesting that MLLMs struggle significantly with
tasks requiring deep factual understanding and contextual reasoning. The complexity of knowledge
errors likely stems from the need for comprehensive domain expertise, which current MLLMs may
not fully encapsulate yet. Even human performance reflects this trend, with knowledge error scoring
notably lower than other categories, albeit with higher accuracy than MLLMs, highlighting the in-
herent difficulty of this task for both humans and AI (Kandpal et al., 2023; Feng et al., 2023). Thus,
adding domain-specific knowledge to the dataset of MLLM is a direct solution (Ling et al., 2023).

Finding #5: MLLMs still have a gap to close to reach human-level intelligence in error detec-
tion. Human performance significantly outperforms the best MLLMs in both the STEP and CATE
tasks, with accuracy scores of 69.8% and 60.7% respectively, compared to the highest MLLM scores
of 55.1% and 53.1%. Notably, the detection of VIS by humans is markedly superior to the best
MLLMs, with a difference of nearly 20%. This substantial lead may be attributed to the sophisti-
cated pattern recognition inherent to human visual processing (Doerig et al., 2022), which MLLMs,
despite their advancements, have yet to fully emulate. Besides, it is interesting to note that human
performance in REAS detection is lower than all closed-source MLLMs but higher than almost
all open-source MLLMs. This may suggest that closed-source MLLMs benefit from proprietary
datasets and algorithms that better capture the nuances of logical reasoning (Wang et al., 2024d). To
achieve human-level performance in error detection tasks, we can further introduce a reinforcement
learning from human feedback (RLHF) approach, enabling the model to align with human thinking
mechanisms in understanding error causes (Liu et al., 2023).

4.3.2 VISUAL PERCEPTION ANALYSIS

Finding #1: Closed-source MLLMs are most likely to misjudge VIS as REAS in error catego-
rization task. Taking the best-performing GPT-4o model as an example, as shown in the Figure 6,
48% of VIS are misclassified as REAS, followed by 30% being misjudged as MIS. In multimodal
mathematical scenarios, where the MLLM needs to handle information involving both visual and
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linguistic elements simultaneously, particularly in problems related to plane and solid geometry, the
complexity of the diagrams makes it difficult for the model to accurately extract certain features,
leading to the frequent misclassification of VIS as REAS. For instance, if an erroneous response to a
mathematical query originates from VIS (e.g., misinterpreting a diagram), MLLM may mistakenly
attribute this to a flaw in logical reasoning that occurs subsequent to initial visual misinterpretation.

Finding #2: Open-source MLLMs are more likely to misclassify VIS as CAL. Taking the open-
source model CogVLM2-LLaMA3, which performs best in identifying VIS, as an example, CAL
accounts for 64% of misclassified category, as illustrated in the Figure 7. When handling complex
visual information, especially in geometry problems, the MLLM often struggles to accurately ex-
tract key features. Due to the open-source MLLM’s weaker multimodal integration capabilities, it
simplifies visual issues into numerical calculation problems. The lack of sufficient training and data
for visual-related errors is also a key reason behind this phenomenon (Wichmann & Geirhos, 2023).
More analysis on misclassification for each category can be seen in Appendix C.5.

4.3.3 RELATION BETWEEN ERROR CATEGORY AND ERROR STEP

Finding #1: There is a close relationship between different error category and their distribu-
tion in the reasoning steps. As shown in Figure 8, VIS tends to occur in the earlier to mid-stages,
accounting for a median proportion of 0.5 of total steps. In contrast, MIS, REAS, CAL, and KNOW
are more likely to arise in the later stages, with their median proportions ranging from 0.7 to 0.9.
More analysis of this relationship across MLLMs can be seen in Appendix C.6.

Finding #2: VIS occurs in the earlier stages of problem-solving reasoning. This finding could be
closely linked to the sequence in which students approach the task (Binz & Schulz, 2023; Kennedy
& Romig, 2024). Since image content often serves as a key reference early on, any misinterpre-
tation of this visual information directly impacts the subsequent problem-solving steps. Students
typically first examine the image, and then integrate the information before proceeding to reasoning
or calculation. As a result, visual perception errors arise earlier compared to other types of errors.

Finding #3: Other error categories are primarily in later stages of problem-solving reasoning.
This may be linked to the increasing cognitive load students encounter during problem-solving.
Cognitive Load Theory posits that information complexity ranges from low to high interactivity
(Paas et al., 2010; Binz & Schulz, 2023). While low-interactivity information can be understood
independently, high-interactivity information requires simultaneous processing of related elements,
thus increasing cognitive load (Kennedy & Romig, 2024; Abbad-Andaloussi et al., 2023). In later
stages, students must integrate complex information from multiple sources. For instance, calculating
the distance between two points needs increasing interactivity heightens cognitive load, leading to
errors like forgetting to take the square root or miscalculating differences. Consequently, as cognitive
load rises, the frequency of errors in later steps also increases.
4.3.4 SCALING ANALYSIS

Figure 9: The accuracy of STEP and
CATE of two representative MLLM series:
LLaVA-NEXT and InternVL2. We denote
Tiny, Small, Middle, Large as the 2B, 8B,
26B, 76B for InternVL2 and None, 7B, 13B,
72B for LLaVA-NEXT, respectively.

Finding #1: The performance of MLLMs on STEP
task increases with the scale of parameters. We ob-
serve a phenomenon similar to the scaling law (Kaplan
et al., 2020) in our experiments. As shown in Figure
9, when the size of the InternVL2 model increases from
Tiny to Huge, the accuracy of STEP task rises from 9.8%
to 54.4%, showing an improvement of 44.6%. Similarly,
as the size of LLaVA-NEXT increases from Small to
Large, its accuracy of STEP also improves from 30.3% to
51.8%, demonstrating that larger MLLMs exhibit greater
reasoning ability in localizing erroneous steps.

Finding #2: CATE task is relatively more difficult to
improve through scaling. While the accuracy of CATE
shows a trend of improvement for both the InternVL2 and
LLaVA-NEXT models as their size increases from Tiny
(Small) to Middle, a slight decrease is also observed when
the model size reaches Large. We presume that this is because CATE is a more challenging task
compared to STEP, and merely increasing the model size without fine-tuning is insufficient for
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Figure 10: Bad cases where GPT-4o predicts visual perception errors incorrectly. Only distance and shape
perception cases are shown here due to the page limit. More cases can be seen in Appendix C.7.

sustained improvement and may even introduce bias (Aghajanyan et al., 2023; Muennighoff et al.,
2024). This phenomenon can also be seen in Table 3, consistent with Section 4.3.1 Finding #2.

4.3.5 VISUAL PERCEPTION CASE STUDY

Visual perception errors are critical in multimodal error detection tasks, as they impact the accurate
comprehension of mathematical problems presented with both text and diagrams. As illustrated in
Figure 10 and Appendix C.7, the five primary categories of visual errors observed in GPT-4o (the
MLLM with best overall and VIS performance) include distance perception, diagram percep-
tion, spatial perception, flip/fold perception, and shape perception. These categories differ in
their cognitive demands: distance perception focuses on point identification; diagram perception on
quantitative estimation; spatial perception on geometric visualization; flip/fold perception on mental
rotation; and shape perception on object classification (Lu et al., 2024b; Zhang et al., 2024). Detect-
ing such errors is challenging because they often require both intricate visual processing and precise
interpretation of mathematical relations, which can be difficult to encode in current MLLMs. To
overcome these challenges, future MLLMs should incorporate more advanced visual reasoning ca-
pabilities, possibly through enhanced alignment between vision and language modalities, enabling
better detection and correction of complex perception errors (Song et al., 2023). This could signifi-
cantly improve the robustness of MLLMs in mathematical and other perception-heavy tasks.

5 CONCLUSION

In conclusion, this work introduces ERRORRADAR, the first multimodal benchmark designed specif-
ically for evaluating MLLMs’s reasoning in mathematical error detection scenarios. By focusing on
both error step identification and error categorization, ERRORRADAR bridges a critical research
gap in assessing MLLMs’ capabilities in complex mathematical reasoning. The dataset’s construc-
tion, based on real-world student interactions, ensures a robust evaluation framework that reflects
genuine user needs. Our extensive experimental analysis, comparing leading open-source and pro-
prietary MLLMs, reveals significant challenges in error detection, highlighting the need for con-
tinued advancements in this domain. As MLLMs continue to evolve, ERRORRADAR serves as an
essential benchmark for driving improvements in the effectiveness of multimodal reasoning systems
in real-world applications, on the path to Artificial General Intelligence.
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Richard Tanburn, Peter Battaglia, Charles Blundell, András Juhász, et al. Advancing mathematics
by guiding human intuition with ai. Nature, 600(7887):70–74, 2021.

Adrien Doerig, Tim C Kietzmann, Emily Allen, Yihan Wu, Thomas Naselaris, Kendrick Kay, and
Ian Charest. Visual representations in the human brain are aligned with large language models.
arXiv preprint arXiv:2209.11737, 2022.

Yue Fan, Jing Gu, Kaiwen Zhou, Qianqi Yan, Shan Jiang, Ching-Chen Kuo, Yang Zhao, Xinze
Guan, and Xin Wang. Muffin or chihuahua? challenging multimodal large language models with
multipanel vqa. In Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 6845–6863, 2024.

11

https://www.anthropic.com/news/claude-3-haiku
https://www.anthropic.com/news/claude-3-haiku
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Zhangyin Feng, Weitao Ma, Weijiang Yu, Lei Huang, Haotian Wang, Qianglong Chen, Weihua
Peng, Xiaocheng Feng, Bing Qin, et al. Trends in integration of knowledge and large language
models: A survey and taxonomy of methods, benchmarks, and applications. arXiv preprint
arXiv:2311.05876, 2023.

Deqing Fu, Ghazal Khalighinejad, Ollie Liu, Bhuwan Dhingra, Dani Yogatama, Robin Jia, and
Willie Neiswanger. Isobench: Benchmarking multimodal foundation models on isomorphic rep-
resentations. arXiv preprint arXiv:2404.01266, 2024.

Arindam Ghosh, Thomas Schaaf, and Matthew Gormley. Adafocal: Calibration-aware adaptive
focal loss. Advances in Neural Information Processing Systems, 35:1583–1595, 2022.

Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chenhui Zhang, Da Yin, Diego Rojas, Guanyu
Feng, Hanlin Zhao, Hanyu Lai, et al. Chatglm: A family of large language models from glm-130b
to glm-4 all tools. arXiv preprint arXiv:2406.12793, 2024.

Xixuan Hao, Wei Chen, Yibo Yan, Siru Zhong, Kun Wang, Qingsong Wen, and Yuxuan Liang.
Urbanvlp: A multi-granularity vision-language pre-trained foundation model for urban indicator
prediction. arXiv preprint arXiv:2403.16831, 2024.

Jinlong He, Pengfei Li, Gang Liu, Zixu Zhao, and Shenjun Zhong. Pefomed: Parameter efficient
fine-tuning on multimodal large language models for medical visual question answering. arXiv
preprint arXiv:2401.02797, 2024a.

Zheqi He, Xinya Wu, Pengfei Zhou, Richeng Xuan, Guang Liu, Xi Yang, Qiannan Zhu, and Hua
Huang. Cmmu: A benchmark for chinese multi-modal multi-type question understanding and
reasoning. arXiv preprint arXiv:2401.14011, 2024b.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Cheng-Yu Hsieh, Chun-Liang Li, Chih-Kuan Yeh, Hootan Nakhost, Yasuhisa Fujii, Alexander Rat-
ner, Ranjay Krishna, Chen-Yu Lee, and Tomas Pfister. Distilling step-by-step! outperform-
ing larger language models with less training data and smaller model sizes. arXiv preprint
arXiv:2305.02301, 2023.

Yushi Hu, Weijia Shi, Xingyu Fu, Dan Roth, Mari Ostendorf, Luke Zettlemoyer, Noah A Smith,
and Ranjay Krishna. Visual sketchpad: Sketching as a visual chain of thought for multimodal
language models. arXiv preprint arXiv:2406.09403, 2024.

Jiahao Huo, Yibo Yan, Boren Hu, Yutao Yue, and Xuming Hu. Mmneuron: Discovering
neuron-level domain-specific interpretation in multimodal large language model. arXiv preprint
arXiv:2406.11193, 2024.

Mengzhao Jia, Zhihan Zhang, Wenhao Yu, Fangkai Jiao, and Meng Jiang. Describe-then-reason:
Improving multimodal mathematical reasoning through visual comprehension training. arXiv
preprint arXiv:2404.14604, 2024.

Licheng Jiao, Ruohan Zhang, Fang Liu, Shuyuan Yang, Biao Hou, Lingling Li, and Xu Tang. New
generation deep learning for video object detection: A survey. IEEE Transactions on Neural
Networks and Learning Systems, 33(8):3195–3215, 2021.

Nikhil Kandpal, Haikang Deng, Adam Roberts, Eric Wallace, and Colin Raffel. Large language
models struggle to learn long-tail knowledge. In International Conference on Machine Learning,
pp. 15696–15707. PMLR, 2023.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Michael J Kennedy and John Elwood Romig. Cognitive load theory: An applied reintroduction for
special and general educators. TEACHING Exceptional Children, 56(6):440–451, 2024.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems,
35:22199–22213, 2022.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
reasoning problems with language models. Advances in Neural Information Processing Systems,
35:3843–3857, 2022.

Hang Li, Tianlong Xu, Chaoli Zhang, Eason Chen, Jing Liang, Xing Fan, Haoyang Li, Jiliang Tang,
and Qingsong Wen. Bringing generative ai to adaptive learning in education. arXiv preprint
arXiv:2402.14601, 2024a.

Xiang Li, Chengqi Lv, Wenhai Wang, Gang Li, Lingfeng Yang, and Jian Yang. Generalized focal
loss: Towards efficient representation learning for dense object detection. IEEE transactions on
pattern analysis and machine intelligence, 45(3):3139–3153, 2022.

Xiaoyuan Li, Wenjie Wang, Moxin Li, Junrong Guo, Yang Zhang, and Fuli Feng. Evaluating mathe-
matical reasoning of large language models: A focus on error identification and correction. arXiv
preprint arXiv:2406.00755, 2024b.

Zhong-Zhi Li, Ming-Liang Zhang, Fei Yin, Zhi-Long Ji, Jin-Feng Bai, Zhen-Ru Pan, Fan-Hu Zeng,
Jian Xu, Jia-Xin Zhang, and Cheng-Lin Liu. Cmmath: A chinese multi-modal math skill evalua-
tion benchmark for foundation models. arXiv preprint arXiv:2407.12023, 2024c.

Chen Ling, Xujiang Zhao, Jiaying Lu, Chengyuan Deng, Can Zheng, Junxiang Wang, Tanmoy
Chowdhury, Yun Li, Hejie Cui, Xuchao Zhang, et al. Domain specialization as the key to make
large language models disruptive: A comprehensive survey. arXiv preprint arXiv:2305.18703,
2023.

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
Llava-next: Improved reasoning, ocr, and world knowledge, January 2024a. URL https://
llava-vl.github.io/blog/2024-01-30-llava-next/.

Hongwei Liu, Zilong Zheng, Yuxuan Qiao, Haodong Duan, Zhiwei Fei, Fengzhe Zhou, Wen-
wei Zhang, Songyang Zhang, Dahua Lin, and Kai Chen. Mathbench: Evaluating the theory
and application proficiency of llms with a hierarchical mathematics benchmark. arXiv preprint
arXiv:2405.12209, 2024b.

Wenhao Liu, Xiaohua Wang, Muling Wu, Tianlong Li, Changze Lv, Zixuan Ling, Jianhao Zhu,
Cenyuan Zhang, Xiaoqing Zheng, and Xuanjing Huang. Aligning large language models with
human preferences through representation engineering. arXiv preprint arXiv:2312.15997, 2023.

Xiao Liu, Zirui Wu, Xueqing Wu, Pan Lu, Kai-Wei Chang, and Yansong Feng. Are llms capable of
data-based statistical and causal reasoning? benchmarking advanced quantitative reasoning with
data. arXiv preprint arXiv:2402.17644, 2024c.

Haoyu Lu, Wen Liu, Bo Zhang, Bingxuan Wang, Kai Dong, Bo Liu, Jingxiang Sun, Tongzheng Ren,
Zhuoshu Li, Yaofeng Sun, et al. Deepseek-vl: towards real-world vision-language understanding.
arXiv preprint arXiv:2403.05525, 2024a.

Pan Lu, Liang Qiu, Wenhao Yu, Sean Welleck, and Kai-Wei Chang. A survey of deep learning for
mathematical reasoning. arXiv preprint arXiv:2212.10535, 2022.

Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai-
Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical reasoning of
foundation models in visual contexts. arXiv preprint arXiv:2310.02255, 2024b.

Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-Wei Chang, Ying Nian Wu, Song-Chun Zhu,
and Jianfeng Gao. Chameleon: Plug-and-play compositional reasoning with large language mod-
els. Advances in Neural Information Processing Systems, 36, 2024c.

13

https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Shervin Minaee, Tomas Mikolov, Narjes Nikzad, Meysam Chenaghlu, Richard Socher, Xavier Am-
atriain, and Jianfeng Gao. Large language models: A survey. arXiv preprint arXiv:2402.06196,
2024.

Niklas Muennighoff, Alexander Rush, Boaz Barak, Teven Le Scao, Nouamane Tazi, Aleksandra
Piktus, Sampo Pyysalo, Thomas Wolf, and Colin A Raffel. Scaling data-constrained language
models. Advances in Neural Information Processing Systems, 36, 2024.

OpenAI. GPT-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

OpenAI. GPT-4V(ision) system card, 2024a. URL https://openai.com/index/
gpt-4o-system-card/.

OpenAI. Gpt-4o mini: advancing cost-efficient intelligence, 2024b. URL https://openai.
com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/.

Fred Paas, Alexander Renkl, and John Sweller. Cognitive load theory and instructional design:
Recent developments. Educational Psychologist, 2010.

Ankit Pal and Malaikannan Sankarasubbu. Gemini goes to med school: exploring the capabilities
of multimodal large language models on medical challenge problems & hallucinations. arXiv
preprint arXiv:2402.07023, 2024.

Shuai Peng, Di Fu, Liangcai Gao, Xiuqin Zhong, Hongguang Fu, and Zhi Tang. Multi-
math: Bridging visual and mathematical reasoning for large language models. arXiv preprint
arXiv:2409.00147, 2024.

Runqi Qiao, Qiuna Tan, Guanting Dong, Minhui Wu, Chong Sun, Xiaoshuai Song, Zhuoma
GongQue, Shanglin Lei, Zhe Wei, Miaoxuan Zhang, et al. We-math: Does your large multi-
modal model achieve human-like mathematical reasoning? arXiv preprint arXiv:2407.01284,
2024.
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A MORE MULTIMODAL QUESTION EXAMPLES

Figure 11: Multimodal mathematical example one (type: counting) from ERRORRADAR dataset.
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Figure 12: Multimodal mathematical example two (type: plane geometry) from ERRORRADAR dataset.
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Figure 13: Multimodal mathematical example three (type: plane geometry) from ERRORRADAR dataset.
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Figure 14: Multimodal mathematical example four (type: counting) from ERRORRADAR dataset.
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Figure 15: Multimodal mathematical example five (type: plane geometry) from ERRORRADAR dataset.
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B ADDITIONAL DATASET DETAILS

B.1 ANNOTATION DETAILS

To ensure the quality and relevance of the ERRORRADAR dataset for error detection tasks, we em-
ployed a rigorous manual annotation process, involving professional educational experts as anno-
tators. This section outlines the details of the annotation procedure, focusing on how the data was
enriched with step-by-step reasoning processes, identification of erroneous steps, and error catego-
rization.

Annotator Selection and Training. Given the complexity of the task, we recruited a group of ten
annotators with specialized knowledge in educational theory and mathematics, particularly in K-12
pedagogy. These annotators were trained extensively to familiarize themselves with the structure
and expectations of the task. The training covered the specifics of multimodal problem-solving in
mathematics, typical student error patterns, and the need for precise identification of reasoning steps
that led to incorrect answers. The annotators were also briefed on using the provided tools and the
quality assurance process.

Annotation Process. Each mathematical problem in the dataset was annotated with a step-by-step
reasoning process, capturing both correct and incorrect approaches to problem-solving. Annotators
were provided with:

1. The original question stem (comprising both text and image components).
2. The student’s most frequent incorrect answer.
3. The correct answer to the question.
4. The pedagogical analysis of the correct reasoning process, prepared by educational experts.

Based on these inputs, annotators were tasked with:

1. Step-by-Step Reasoning Annotation: For each problem, annotators mapped out the log-
ical steps that students should ideally follow to arrive at the correct answer. This involved
identifying key stages in the problem-solving process, such as formula application, arith-
metic operations, or logical deductions.

2. Error Step Identification: For problems where students provided incorrect answers, an-
notators identified the exact steps where the reasoning went wrong. These error steps were
explicitly marked and linked to the incorrect responses, ensuring that they could be traced
back to specific problem-solving mistakes.

3. Error Categorization: Once the erroneous step was identified, annotators assigned an ap-
propriate error category based on a predefined schema. These categories included common
types of errors such as misinterpretation of the question (More details can be seen in Sec-
tion 3.1). The categorization was designed to align with known student error patterns in
mathematical learning.

Quality Control and Cross-Validation. To ensure annotation accuracy and consistency, each prob-
lem underwent two rounds of cross-checking:

1. First Round of Cross-Validation: After the initial annotation, another annotator indepen-
dently reviewed the annotations. Any discrepancies between the first and second annotators
were flagged for further analysis.

2. Second Round of Cross-Validation: In the second round, if the errors or discrepancies
persisted, the problem was escalated to a senior educational expert who acted as the anno-
tation lead. The annotation lead adjudicated these contentious cases, ensuring that the final
decision was both pedagogically sound and aligned with the dataset’s goals.

Dataset Refinement. Throughout the annotation process, we worked closely with the educational
organization from which the dataset originated. This collaboration ensured that the annotations were
not only reliable but also adhered to the standards of the organization’s question bank. Addition-
ally, ongoing feedback and updates from the organization helped refine the dataset, making it more
accurate and relevant for multimodal error detection tasks.
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Annotation Duration and Effort. The annotation process for the ERRORRADAR dataset spanned
over a period of at least two months. During this time, the annotators, comprised of both profes-
sional educational experts and domain specialists, worked meticulously through several stages of
preparation, annotation, and validation. Each annotator dedicated significant time to understanding
the dataset, reviewing the provided pedagogical analyses, and applying their domain knowledge to
identify and categorize errors. The first phase, involving step-by-step reasoning annotation, took ap-
proximately six weeks, while the subsequent cross-validation and quality control efforts accounted
for the remaining two weeks. Given the complexity of the tasks and the necessity for high precision,
the team’s sustained efforts ensured that the final dataset was of the highest quality.

By incorporating these annotations, ERRORRADAR provides a robust foundation for studying stu-
dent errors in mathematical reasoning and enables the development of advanced models for error
detection and correction.

B.2 DETAILS OF HANDLING INCONSISTENT ANNOTATIONS

To ensure the quality and reliability of our dataset for the multimodal mathematical error detection
task, we established a systematic approach to resolve annotation inconsistencies. This process bal-
ances annotator independence with rigorous quality control, ensuring that the dataset is both accurate
and representative.

B.2.1 ANNOTATION AGREEMENT PRINCIPLES

1. Guided Consensus: Annotations must align with clear, predefined guidelines covering the
five error categories. Annotators are trained extensively to reduce subjective biases.

2. Cross-Checking and Agreement Threshold: Each instance is annotated by at least three
annotators. Disagreements are flagged for further review.

3. Systematic Review Process: For inconsistent cases, a multi-step resolution process is ap-
plied:

(a) Initial Review: Annotators discuss disagreements, referencing annotation guidelines
and the specific problem context.

(b) Expert Arbitration: For unresolved cases, a domain expert (e.g., an educational pro-
fessional) reviews and finalizes the annotation.

(c) Consensus-Driven Decisions: When possible, annotations are harmonized based on
majority opinion or shared agreement after discussions.

B.2.2 CASE RESOLUTION FRAMEWORK

Case Example 1: Visual Perception vs. Reasoning Error

• Example: A problem presents a bar chart requiring students to determine the highest value.
A student misidentifies the tallest bar and selects the wrong answer.

– Annotator A labels this as a Visual Perception Error, arguing the mistake stems from
misreading the chart.

– Annotator B classifies it as a Reasoning Error, interpreting the mistake as a failure to
compare values logically.

• Resolution: Annotators revisit the problem:

– If evidence shows the student misunderstood the chart format (e.g., interpreting height
as quantity but misjudging due to poor visualization), it is classified as a Visual Per-
ception Error.

– If the student correctly interprets the chart but misapplies logical comparisons (e.g.,
failing to compare values explicitly), it is categorized as a Reasoning Error.

For persistent disagreement, an expert examines the student’s work, including any notes or
intermediate steps, to determine the correct annotation.
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Case Example 2: Knowledge vs. Misinterpretation of the Question

• Example: A problem asks for the perimeter of a rectangle, but the student calculates the
area instead.

– Annotator A identifies this as a Knowledge Error, attributing the mistake to a lack of
understanding of perimeter concepts.

– Annotator B labels it as a Misinterpretation of the Question, asserting that the student
misunderstood what was being asked.

• Resolution:
– Did the student’s work demonstrate understanding of the concept but apply it incor-

rectly (Misinterpretation of the Question)?
– Did the mistake reveal a fundamental gap in knowledge about perimeter (Knowledge

Error)?
If disagreement persists, the annotators consult the expert, who may analyze additional
context (e.g., previous responses or annotations).

B.2.3 HANDLING IRRECONCILABLE DISAGREEMENTS

If discrepancies persist despite review and arbitration, the affected data points are excluded from the
dataset. This strict policy prioritizes the overall quality and consistency of the dataset, ensuring that
retained samples maintain high reliability.

B.2.4 MONITORING AND FEEDBACK

Periodic feedback sessions are conducted to recalibrate annotators and refine guidelines based on
observed patterns of disagreement. This iterative approach minimizes future inconsistencies and
enhances annotator alignment over time.
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B.3 DEFINITION OF PROBLEM TYPE CATEGORY

The ERRORRADAR dataset distinguishes five primary types of multimodal mathematical problems,
each characterized by unique features:

✯ Plane Geometry Problems: These involve two-dimensional shapes and figures, requiring knowl-
edge of properties such as angles, lines, and polygons. Solving these problems often depends on
understanding basic geometric principles and theorems about plane figures.

✯ Solid Geometry Problems: In contrast to plane geometry, solid geometry involves three-
dimensional objects, such as cubes, cylinders, and spheres. These problems require spatial vi-
sualization and understanding of volume, surface area, and the relationships between different
three-dimensional shapes.

✯ Diagram-Based Problems: These require analysis of provided visual information, such as
graphs, charts, or diagrams, to solve mathematical queries. Interpreting visual data correctly is
crucial, as these problems test the ability to extract and analyze quantitative information from
visual aids.

✯ Algebra Problems: Algebra problems focus on abstract symbols and variables to represent num-
bers and relationships. These include tasks like solving equations, manipulating algebraic ex-
pressions, and understanding functions. The problem-solving process typically involves logical
reasoning and manipulation of mathematical symbols.

✯ Math Commonsense Questions: These encompass a variety of problem types, including time
judgment, direction judgment, counting, and pattern recognition. Unlike the other categories,
math commonsense challenges rely on everyday mathematical reasoning and problem-solving
strategies that do not necessarily require formal mathematical knowledge, testing intuitive under-
standing rather than procedural skills.

These problem types highlight the ERRORRADAR dataset’s diverse nature, with each category pre-
senting distinct challenges and requiring specific reasoning abilities.
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B.4 DEVELOPMENT AND VALIDATION PROCESS OF ERROR CATEGORY

1. CROSS-TEAM COLLABORATION TO ALIGN TASK NEEDS

The process began with close collaboration between the research team and the education team to
ensure that the error categories aligned with the unique requirements of the multimodal math error
detection task. The research team provided insights into the task’s technical objectives, focusing
on precision and comprehensive error coverage. Simultaneously, the education team contributed
their understanding of real-world educational scenarios, emphasizing the practical relevance and
applicability of the error taxonomy to students’ and teachers’ needs.

Key Outcomes:

• Initial consensus that the categories must address both multimodal challenges and real-life
classroom scenarios.

• Recognition of the need to balance academic rigor with user-friendly categorization.

2. BENCHMARK SURVEY AND FOCUS ANALYSIS

The research team conducted an extensive survey of representative benchmarks, focusing on error
analysis frameworks in existing datasets. Examples included studies on problem-solving steps in
educational AI and cognitive error modeling in multimodal tasks. The aim was to identify gaps in
current frameworks and understand how existing taxonomies handle errors specific to visual, textual,
and logical reasoning elements.

Key Outcomes:

• Identification of inadequacies in current benchmarks, particularly in addressing multimodal
interactions like visual misinterpretations and reasoning errors tied to diagram-based tasks.

• Validation of the necessity for distinct categories to capture errors unique to multimodal
math problems.

3. COLLECTION OF FEEDBACK FROM STUDENTS AND TEACHERS

The education team collected qualitative and quantitative feedback from students and teachers to
ensure that the proposed error categories were grounded in real-world educational needs. Focus
groups, surveys, and interviews were used to gather perspectives on common error patterns encoun-
tered during classroom activities and assessments.

Key Insights:

• Teachers highlighted frequent calculation errors (CAL) and reasoning errors (REAS) as
significant roadblocks to effective problem-solving.

• Students often reported confusion stemming from visual misinterpretations (VIS) and mis-
understanding the question intent (MIS).

• Feedback emphasized the importance of separating reasoning-based errors from
knowledge-based errors (KNOW) for better diagnostic support.

4. SECOND ROUND OF DISCUSSION AND ALIGNMENT

Following the feedback collection, the research and education teams reconvened to refine and align
the error taxonomy. This phase involved iterative discussions to ensure that each category was
distinct, comprehensive, and intuitive for annotators and end-users.

Adjustments Made:

• Clarified the scope of Reasoning Errors (REAS) to focus on improper logical application
rather than factual knowledge gaps.

• Strengthened the definition of Visual Perception Errors (VIS) to address multimodal-
specific challenges, such as interpreting diagrams or image-based data.

• Enhanced examples for each category to support annotation clarity.
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5. INITIAL FINALIZATION AND FEEDBACK FROM EDUCATIONAL ORGANIZATION

The refined error categories were presented to a partner educational organization for feedback. This
organization, which specializes in global education assessments, conducted an independent review
and provided expert input.

Key Outcomes:

• Positive validation of the categories’ relevance and comprehensiveness.
• Minor recommendations, such as specifying units and signs in the Calculation Errors

(CAL) category, were integrated.

6. FINAL VALIDATION AND ALIGNMENT WITH ANNOTATION TEAM

After incorporating feedback, the final set of error categories was finalized. The annotation team,
comprising educational experts, received detailed guidelines and training to ensure consistent appli-
cation of the taxonomy during the annotation process. Mock annotations were conducted to test the
clarity and usability of the categories.

Final Adjustments:

• Annotators highlighted the need for clearer boundaries between Reasoning Errors
(REAS) and Knowledge Errors (KNOW), leading to additional examples and decision
rules in the annotation guidelines.

• Alignment meetings ensured that all discrepancies and ambiguities were resolved before
the dataset’s official annotation began.

The aforementioned development process ensured that the five categories are comprehensive, robust,
and applicable to both multimodal tasks and real-world educational scenarios.
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C ADDITIONAL EXPERIMENTAL DETAILS

C.1 HUMAN PERFORMANCE EVALUATION

In the Human Performance section, the evaluation involved three educational expert evaluators, each
independently performing the two subtasks — error step identification and error categorization —
on a set of multimodal math problems. To ensure the validity of their assessments, a rigorous cross-
checking procedure was implemented. After the initial independent evaluations, the results from all
three experts were compared for both the identification of error steps and the categorization of those
errors. When discrepancies arose, particularly in cases where the experts disagreed on which step
contained an error or how an error should be classified, a structured conflict resolution process was
followed.

The cross-check process began with identifying areas of disagreement between the evaluators. These
conflicts were discussed in a series of consensus meetings, where the evaluators would review
the conflicting steps or categorizations in detail. Each expert provided their rationale, referenc-
ing the mathematical principles involved as well as the multimodal representations of the problems.
Through open dialogue, the evaluators aimed to reach a consensus on the correct interpretation of
the error.

In cases where consensus could not be easily achieved, a majority-vote system was employed. How-
ever, for particularly complex or ambiguous cases, an additional adjudicator — who did not par-
ticipate in the initial evaluations but had equivalent expertise — was consulted to provide a final
judgment. This adjudicator reviewed the contentious cases along with the evaluators’ justifications,
ensuring an unbiased final decision. The outcome of this process was the creation of a refined
ground truth dataset that balanced expert knowledge with the goal of consistent and reliable error
identification and categorization.
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C.2 PROMPT FOR MLLM EVALUATION

Task Definition: You are an education expert proficient in K-12 mathematics. Your task
is to identify the first step where the mistake occurred in the incorrect answer reasoning
steps based on the following mathematical question (including the textual and visual parts),
reference answer, and incorrect answer.

Output format:
Error Step: Step X

Below is the reference content you need to identify the error step:
Question Image: {image}
Question text: {content}
Correct Answer: {answer}
Incorrect Answer: {user answer}
Incorrect Answer Reasoning Steps:{user answer steps}

Instruction: Please provide the corresponding error step identification in the format ”Error
Step: Step X”, without any additional content.

Figure 16: Prompt for error step identification task.
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Task Definition: You are an education expert proficient in K-12 mathematics. Your task
is to identify the category of error for the incorrect answer based on the following question
(including the textual and visual parts), reference answer, and incorrect answer. The error
should belong to one of the following categories: Visual Perception Error, Reasoning Error,
Knowledge Error, Calculation Error, or Misinterpretation of the Question.

Output format:
Error Category: Clearly indicate which error category it belongs to.

The definitions of the error categories are as follows:
✯Visual Perception Error: Failure to accurately obtain information from the images or charts
in the question due to visual issues, leading to errors.
✯Reasoning Error: Improper reasoning during the problem-solving process, failure to cor-
rectly apply logical relationships or draw conclusions, leading to errors
✯Knowledge Error: Errors occur when applying relevant knowledge points due to incom-
plete or incorrect understanding of knowledge.
✯Calculation Error: Errors occur in the calculation process, such as addition, subtraction,
multiplication, division mistakes, or unit conversion errors, or errors in numerical symbols
between multiple steps.
✯Misinterpretation of the Question: Failure to correctly understand the requirements of the
question or misinterpreting the meaning of the question stem, leading to an irrelevant an-
swer, such as answering with numbers when letters are required, and vice versa.

Below is the reference content you need to identify the error step:
Question Image: {image}
Question text: {content}
Correct Answer: {answer}
Incorrect Answer: {user answer}
Incorrect Answer Reasoning Steps:{user answer steps}

Instruction: Please provide the corresponding error category in the format ”Error Category:
X”, without any additional content.

Figure 17: Prompt for error categorization task.
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C.3 MODEL SOURCES

Table 4 details specific sources for the various MLLMs we evaluated. The hyperparameters for the
experiments are set to their default values unless specified otherwise.

MLLMs Source URL

InternVL2-2B local checkpoint https://huggingface.co/
OpenGVLab/InternVL2-2B

InternVL2-8B local checkpoint https://huggingface.co/
OpenGVLab/InternVL2-8B

InternVL2-26B local checkpoint https://huggingface.co/
OpenGVLab/InternVL2-26B

InternVL2-76B local checkpoint https://huggingface.
co/OpenGVLab/
InternVL2-Llama3-76B

Phi-3-vision-4B local checkpoint https://huggingface.
co/microsoft/
Phi-3-vision-128k-instruct

Yi-VL-6B local checkpoint https://huggingface.co/01-ai/
Yi-VL-6B

DeepSeek-VL-7B local checkpoint https://huggingface.
co/deepseek-ai/
deepseek-vl-7b-chat

LLaVA-v1.6-
Vicuna-7B

local checkpoint https://huggingface.
co/llava-hf/llava-v1.
6-vicuna-7b-hf

LLaVA-v1.6-
Vicuna-13B

local checkpoint https://huggingface.
co/llava-hf/llava-v1.
6-vicuna-13b-hf

LLaVA-NEXT-72B local checkpoint https://huggingface.co/
llava-hf/llava-next-72b-hf

MiniCPM-V2.5-8B local checkpoint https://huggingface.co/
openbmb/MiniCPM-Llama3-V-2_5

MiniCPM-V2.6-8B local checkpoint https://huggingface.co/
openbmb/MiniCPM-V-2_6

Qwen-VL-9B local checkpoint https://huggingface.co/Qwen/
Qwen-VL-Chat

GLM-4v-13B local checkpoint https://huggingface.co/THUDM/
glm-4v-9b

CogVLM2-19B local checkpoint https://huggingface.co/THUDM/
cogvlm2-llama3-chat-19B

Qwen-VL-Max qwen-vl-max-0809 https://modelscope.cn/
studios/qwen/Qwen-VL-Max

Claude-3-Haiku claude-3-haiku https://www.anthropic.com/api

Claude-3.5-Sonnet claude-3-5-sonnet https://www.anthropic.com/api

Gemini-Pro-1.5 gemini-1.5-pro-latest https://deepmind.google/
technologies/gemini/pro/

GPT-4o-mini gpt-4o-mini-2024-07-18 https://platform.openai.com/
docs/models/gpt-4o-mini

GPT-4o gpt-4o-2024-08-06 https://platform.openai.com/
docs/models/gpt-4o

Table 4: Sources of our evaluated MLLMs.
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C.4 CAL AND NON-CAL DISTRIBUTION OF MLLMS

In this section, we indicate the distribution of CAL and non-CAL category predictions of 21 MLLMs
we evaluate, as shown in Figure 18. It can be seen that there is a bias towards CAL category among
most open-source MLLMs, while closed-source ones except for Claude-3-Haiku and Qwen-VL-
Max do not have such a bias for error categorization task.
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Figure 18: Distribution of CAL and non-CAL category predictions of all MLLMs we evaluate.
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C.5 ANALYSIS OF CONFUSION MATRIX FOR CATE TASK

Figures 19 and 20 present the confusion matrices for InternVL2-76B and GPT-4o, two MLLMs
evaluated on five error categories. The matrices show the count of predictions for each category,
with diagonal entries representing correct predictions and off-diagonal entries indicating misclassi-
fications. These visualizations provide insights into each model’s strengths and weaknesses.

InternVL2-76B shows strong performance in detecting CAL, with 843 correct predictions, indicat-
ing its robust numerical reasoning capability. However, the model struggles to distinguish between
REAS and CAL, misclassifying 626 REAS instances as CAL. This confusion suggests an over-
reliance on numerical features and an inability to separate logical reasoning tasks from computa-
tional ones. Additionally, there is significant misclassification of VIS into CAL, with 244 cases,
highlighting a potential weakness in integrating visual and textual modalities. These trends may
stem from InternVL2-76B’s limited domain-specific reasoning ability.

GPT-4o, on the other hand, demonstrates relatively good performance in VIS, with 183 correct pre-
dictions, significantly outperforming InternVL2-76B. Its capability in REAS is also notable, with
617 correct predictions, suggesting a more balanced reasoning ability. However, GPT-4o struggles
more with CAL, achieving only 460 correct predictions, and shows significant confusion between
CAL and REAS, with 299 CAL instances misclassified as REAS. Furthermore, the model has diffi-
culty with MIS, misclassifying 45 MIS cases as REAS, pointing to challenges in identifying nuanced
interpretational issues. These trends suggest that GPT-4o’s emphasis on multimodal alignment and
contextual understanding contributes to its strengths in VIS and REAS but comes at the expense of
CAL performance.

Comparing the two models reveals distinct strengths and weaknesses. GPT-4o significantly outper-
forms InternVL2-76B in VIS, likely due to superior multimodal visual-text alignment capabilities.
Both models exhibit confusion between REAS and CAL, but GPT-4o shows a more balanced clas-
sification ability in REAS. MIS remains a challenging category for both models, though GPT-4o
struggles slightly more in distinguishing it from REAS. These differences may arise from varia-
tions in model architecture and training objectives. This analysis underscores the complementary
strengths of these models: InternVL2-76B excels in numerical reasoning, while GPT-4o performs
better in visual perception and logical reasoning. Future research could explore ways to integrate
their strengths for a more robust multimodal error detection system.
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Figure 19: The confusion matrix of five error categories predicted by InternVL2-76B, the open-source MLLM
with the best overall performance on error detection.

Figure 20: The confusion matrix of five error categories predicted by GPT-4o, the closed-source MLLM with
the best overall performance on error detection.
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C.6 COGNITIVE LOAD ANALYSIS ACROSS MLLMS

In analyzing the error step distribution for the multimodal error detection task using InternVL2-
76B (see Figure 21) and GPT-4o (see Figure 22), we observe a consistency in the pattern of error
category distribution across both MLLM’s predictions and those in ERRORRADAR (see Figure 8). In
particular, VIS tends to occur in the earlier stages of problem-solving for both MLLMs, which aligns
with the sequence in which students typically approach tasks. Since visual content often serves
as a key reference at the outset, any misinterpretation of this information can significantly impact
subsequent steps. Students generally examine the image first and then integrate the information
before proceeding to reasoning or calculation, leading to visual perception errors arising earlier
compared to other types of errors.

Other error categories, such as REAS, CAL, MIS, and KNOW, are more likely to emerge in the later
stages of problem-solving. This pattern is linked to the increasing cognitive load students encounter
as they progress. According to Cognitive Load Theory, information complexity ranges from low
to high interactivity. Low-interactivity information can be understood independently, whereas high-
interactivity information requires the simultaneous processing of related elements, thereby increas-
ing cognitive load. In the later stages, students must integrate complex information from multiple
sources, which can lead to errors like forgetting to take the square root or miscalculating differ-
ences when calculating distances, for example. Consequently, the frequency of errors in later steps
increases with the rising cognitive load.

Despite the overall pattern being consistent, there may be subtle differences between InternVL2-
76B and GPT-4o in terms of error step distribution, especially for MIS category. These differences
could be attributed to the models’ distinct architectures and training data, which might influence
their approaches to error detection. As an open-source MLLM, InternVL2-76B might not have
been optimized for specific types of questions or educational contexts, which could lead to a higher
variability in MIS.

Figure 21: The error step distribution (in percent-
age) of error categories predicted by InternVL2-
76B, the open-source MLLM with the best overall
performance on error detection.

Figure 22: The error step distribution (in percent-
age) of error categories predicted by GPT-4o, the
closed-source MLLM with the best overall perfor-
mance on error detection.
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C.7 VISUAL BAD CASES PREDICTED BY GPT-4O

Figures 23, 24 and 25 show bad cases where GPT-4o predicts visual perception errors incorrectly, in
terms of diagram, spatial and flip & fold perception.

Figure 23: Diagram bad case where GPT-4o predicts visual perception errors incorrectly.

Figure 24: Spatial bad case where GPT-4o predicts visual perception errors incorrectly.

Figure 25: Flip & fold bad case where GPT-4o predicts visual perception errors incorrectly.
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