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Abstract

This manuscript studies the unsupervised change point detection problem in time series of1

graphs using a decoder-only latent space model. The proposed framework consists of learn-2

able prior distributions for low-dimensional graph representations and of a decoder that3

bridges the observed graphs and latent representations. The prior distributions of the latent4

spaces are learned from the observed data as empirical Bayes to assist change point detec-5

tion. Specifically, the model parameters are estimated via maximum approximate likelihood,6

with a Group Fused Lasso regularization imposed on the prior parameters. The augmented7

Lagrangian is solved via Alternating Direction Method of Multipliers, and Langevin Dy-8

namics are recruited for posterior inference. Simulation studies show good performance of9

the latent space model in supporting change point detection and real data experiments yield10

change points that align with significant events.11

1 Introduction12

Networks are often used to represent relational phenomena in numerous domains (Dwivedi et al., 2021; He13

et al., 2023; Han et al., 2023) and relational phenomena by nature progress in time. In recent decades,14

a plethora of dynamic network models has been proposed to analyze the interaction between entities over15

time, including Temporal Exponential Random Graph Model (Hanneke et al., 2010; Krivitsky & Handcock,16

2014), Stochastic Actor-Oriented Model (Snijders, 2001; Snijders et al., 2010), and Relational Event Model17

(Butts, 2008; Butts et al., 2023). Although these interpretable models incorporate the temporal aspect for18

network analysis, network evolution is usually time-heterogeneous. Without taking the structural changes19

across dynamic networks into account, learning from the time series may lead to ambiguity, by confounding20

the structural patterns before and after a change happens. Hence, it is practical for social scientists to first21

localize the change points in time series, and then study the networks within intervals, where no substantial22

change dilutes the network effects of interest.23

More recently, considerable attention has been directed toward methodologies for change point detection in24

dynamic networks. Chen et al. (2020a) and Shen et al. (2023) employed embedding methods to detect both25

anomalous graphs and vertices in time series of networks. Park & Sohn (2020) combined the multi-linear26

tensor regression model with a hidden Markov model, detecting changes based on the transition between27

the hidden states. Sulem et al. (2023) learned a graph similarity function using a Siamese graph neural28

network to differentiate the graphs before and after a change point. Zhao et al. (2019) developed a screening29

algorithm that is based on an initial graphon estimation to detect change points. Huang et al. (2020) utilized30

the singular values of the Laplacian matrices as graph embedding to detect the differences across time. Chen31

& Zhang (2015), Chu & Chen (2019), and Song & Chen (2022a) proposed a non-parametric approach to32

delineate the distributional differences over time. Garreau & Arlot (2018) and Song & Chen (2022b) exploited33

the patterns in high dimensions via a kernel-based method. Madrid Padilla et al. (2022) identified change34

points by estimating the latent positions of Random Dot Product Graph (RDPG) models and by using a35

non-parametric version of the CUSUM statistic. Zhang et al. (2024) jointly trained a Variational Graph36

Auto-Encoder and a Gaussian Mixture Model to detect change points. Chen et al. (2024) and Athreya37

et al. (2024) considered network evolution in the Euclidean space and showed that the associated spectral38

estimates can localize the change points in network time series.39
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Inherently, network structures can be complex due to highly dyadic dependency. Acquiring a low-dimensional40

representation of a graph can summarize the enormous individual relations to promote downstream analysis41

(Hoff et al., 2002; Handcock et al., 2007; Gallagher et al., 2021). In particular, Larroca et al. (2021), Marenco42

et al. (2022), Zhu et al. (2023), Chen et al. (2024), and Athreya et al. (2025) studied different latent space43

models for dynamic graphs and focused on using node-level representation to detect changes in dynamic44

graphs. Furthermore, Sharifnia & Saghaei (2022) and Kei et al. (2023b) proposed to detect changes using45

an Exponential Random Graph Model (ERGM), which relies on user-specified network statistics to describe46

the structural patterns a priori. Given the complexity of dynamic network patterns, detecting change points47

in the data space can be challenging. Extending the framework of representation learning and network48

statistics, we aim to infer the graph-level representations that induce the structural changes in the latent49

space to support change point detection.50

In addition, generative frameworks recently showed promising results in myriad applications, such as text51

generation with Large Language Model (Devlin et al., 2018; Lewis et al., 2019) and image generation with52

Diffusion Model (Ho et al., 2020; Rombach et al., 2022). Different from a graph generation task or network53

modeling task, we aim to explore how generative frameworks can assist the change point detection task for54

dynamic graphs. Specifically, Simonovsky & Komodakis (2018) proposed a Graph Variational Auto-Encoder55

(VAE) for graph generation, with a zero-mean Gaussian prior to regularize the latent space of graph-level56

representations. In the VAE framework (Kingma, 2013; Kipf & Welling, 2016; Lee et al., 2017; Bhattacharyya57

et al., 2018), the regularization via Kullback Leibler (KL) divergence arises from the Evidence Lower Bound58

(ELBO) for the marginal likelihood, encouraging the approximate posterior to be close to the fixed zero-59

mean Gaussian prior. Different from the VAE framework which involves an encoder, we focus on learning60

the mean of the Gaussian prior, with a decoder-only latent space model. In particular, we impose a Group61

Fused Lasso (GFL) regularization to the sequential differences of the prior parameters, so that the priors62

learned by minimizing the multivariate total variation can facilitate change point detection.63

To exploit representation learning and generative frameworks for change point detection in dynamic graphs,64

we make the following contributions in this manuscript:65

• We develop a decoder-only architecture to bridge the observed networks and latent variables for our66

change point detection method. We assume the graphs are generated from the latent variables that67

follow Gaussian prior distributions. With the graph decoder, the latent variables are considered as68

the graph-level representations of the observed networks.69

• The parameters of the Gaussian priors for graph-level representations are learned to facilitate change70

point detection. Specifically, we apply Group Fused Lasso (GFL) regularization to promote sparsity71

in the sequential differences of the multivariate prior parameters, effectively smoothing out minor72

fluctuations and highlighting significant change points.73

• We derive an Alternating Direction Method of Multipliers (ADMM) procedure to solve the optimiza-74

tion problem associated with our method. Without an encoder, the model parameters are learned75

by inferring from the posterior via Langevin Dynamics. Experiments show good performance of the76

latent space model in supporting change point detection.77

The rest of the manuscript is organized as follows. Section 2 specifies the proposed framework. Section 378

presents the objective function with Group Fused Lasso regularization and the ADMM procedure to solve79

the optimization problem. Section 4 discusses change points localization and model selection. Section 580

illustrates the proposed method on simulated and real data. Section 6 concludes the work with a discussion81

on the limitation and potential future developments.82

2 Latent Space Model for Change Point Detection83

2.1 Model Specification84

For a node set N = {1, 2, · · · , n}, we use an adjacency matrix y ∈ {0, 1}n×n to represent a graph or network.85

We denote the set of all possible node pairs as Y = N × N . In the adjacency matrix, yij = 1 indicates86
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an edge between nodes i and j, while yij = 0 indicates no edge. The relations can be either undirected or87

directed. The undirected variant has yij = yji for all (i, j) ∈ Y. Denote yt as a network at a discrete time88

point t. The observed data is a sequence of networks y1, . . . , yT .89

For each network yt ∈ {0, 1}n×n, we assume there is a latent variable zt ∈ Rd such that the network yt is
generated from the latent variable with the following graph decoder:

yt ∼ P (yt|zt) =
∏

(i,j)∈Y

Bernoulli(yt
ij ; rij(zt))

where rij(zt) = P (yt
ij = 1|zt) is the Bernoulli parameter for dyad yt

ij and it is elaborated in Section 2.3.
Conditioning on the latent variable zt, we assume the network yt is dyadic independent. We also impose a
learnable Gaussian prior to the latent variable as

zt ∼ P (zt) = N (zt; µt, Id)

where µt ∈ Rd is the mean vector to be learned and Id is an identity matrix. With graph decoder P (yt|zt),90

we consider zt ∈ Rd as a graph-level representation for yt ∈ {0, 1}n×n. In this work, we estimate the prior91

parameters {µt}T
t=1 to facilitate change point detection in {yt}T

t=1.92

2.2 Change Points93

Anchored on the proposed framework, we can specify the change points to be detected, in terms of the prior
parameters µt ∈ Rd for t = 1, . . . , T . Let {Ck}K+1

k=0 ⊂ {1, 2, . . . , T} be a collection of ordered change points
with 1 = C0 < C1 < · · · < CK < CK+1 = T such that

µCk = µCk+1 = · · · = µCk+1−1, k = 0, . . . , K,

µCk ̸= µCk+1 , k = 0, . . . , K − 1, and µCK+1 = µCK .

The associated multiple change point detection problem comprises recovering the collection {Ck}K
k=1 from a94

sequence of observed networks {yt}T
t=1, where the number of change points K is also unknown. In practice,95

change point detection problem is often discussed in an unsupervised manner.96

In this work, to facilitate change point detection for {yt}T
t=1 in the data space, we turn to learn the prior97

parameters {µt}T
t=1 in the latent space. Intuitively, the consecutive prior parameters µt and µt+1 are similar98

when no change occurs, but they are different when a change emerges. For notational simplicity, we denote99

µ ∈ RT ×d as a matrix where the t-th row corresponds to µt ∈ Rd with t = 1, . . . , T .100

2.3 Choice of Graph Decoder101

To facilitate change point detection in dynamic graphs, we choose to use the graph decoder that is standard
and common in the literature (Kipf & Welling, 2016; Hamilton et al., 2017; Pan et al., 2018; Yang et al.,
2019; Chen et al., 2020b; Wang et al., 2021b). Specifically, the graph decoder P (yt|zt) is formulated with a
Bernoulli parameter for dyad yt

ij ∈ {0, 1} as

rij(zt) = P (yt
ij = 1|zt) = gij

(
h(zt)

)
∀ (i, j) ∈ Y.

The h(·) is parameterized by neural networks with h : Rd → Rn×n and g(·) is the element-wise sigmoid102

function with g : Rn×n → [0, 1]n×n. In particular, we use neural networks, transferring the latent variable103

zt ∈ Rd to U t ∈ Rn×k and V t ∈ Rn×k. We let the latent dimensions d and k be smaller than the number104

of nodes n, and the outputs of neural networks are defined as105

h(zt) =
{

U tV t⊤ ∈ Rn×n, for directed network,

U tU t⊤ ∈ Rn×n, for undirected network.
(1)

Comparing to a decoder that directly outputs an n by n matrix, the decoder via matrix multiplication can106

reduce the number of neural network parameters. While this decoder focuses on homophily (the tendency107
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for similar nodes to connect), an extension to consider heterophily (the tendency for dissimilar nodes to108

connect) as in Luan et al. (2022), Zhu et al. (2023), Di Francesco et al. (2024), and Luan et al. (2024) is109

allowed for future development.110

Figure 1 gives an overview of the proposed framework, where graphs are sampled from latent variables in a111

top-down manner. Intuitively, the graph decoder can be helpful for learning graph-level representations in112

a bottom-up manner, compressing the enormous relations in yt to extract the structural patterns through113

node-level representations U t and V t as an intermediary. The graph decoder Pϕ(yt|zt), with neural network114

parameter ϕ, is shared across the time points t = 1, . . . , T . It is also worth pointing out the simplicity of115

our framework, without the need of encoders.116

z1

U1, V 1

y1

N (µ1, Id)

z2

U2, V 2

y2

N (µ2, Id)

z3

U3, V 3

y3

N (µ3, Id)

zT

UT , V T

yT

N (µT , Id)

Pϕ(y1|z1) Pϕ(y2|z2) Pϕ(y3|z3) Pϕ(yT |zT )

. . .

∥µ2 − µ1∥2 ∥µ3 − µ2∥2

Figure 1: An overview of prior distributions and graph decoder for time-series of networks. The Group Fused
Lasso regularization imposed on the sequential differences of prior parameters is elaborated in Section 3.

3 Learning and Inference117

3.1 Learning Priors from Dynamic Graphs118

Inspired by Vert & Bleakley (2010) and Bleakley & Vert (2011), we formulate the change point detection119

problem as a Group Fused Lasso problem (Alaíz et al., 2013). Denote the log-likelihood of the distribution120

for y1, . . . , yT as l(ϕ, µ). We want to solve121

ϕ̂, µ̂ = arg min
ϕ,µ

−l(ϕ, µ) + λ

T −1∑
t=1
∥µt+1 − µt∥2 (2)

where λ > 0 is a tuning parameter for the Group Fused Lasso penalty term.122

The Group Fused Lasso penalty is useful for change point detection because it enforces piecewise constant123

patterns in the learned parameters, by minimizing the multivariate total variation. Specifically, the regular-124

ization term, expressed as the sum of the ℓ2 norms, encourages sparsity of the differences µt+1 − µt ∈ Rd,125

while allowing multiple coordinates across the d dimensional differences to change at the same time t. The126

latter is often referred as a grouping effect that could not be achieved with the ℓ1 penalty of the differences.127

Furthermore, since the regularization is imposed on the prior parameters that relate to the likelihood of the128

data, the learned priors incorporate the structural changes from the observed graphs into the latent space.129

In summary, by penalizing the sum of sequential differences between the prior parameters, the proposed130

framework focuses on capturing meaningful structural changes while smoothing out minor variations.131

Albeit the proposed framework in Section 2 is straightforward, parameter learning is challenging. To solve132

the optimization problem in (2) that involves latent variables, we need to manipulate the objective function133

accordingly. We first introduce a slack variable ν ∈ RT ×d where νt ∈ Rd denotes the t-th row of matrix ν,134
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and we rewrite the original problem as a constrained optimization problem:135

ϕ̂, µ̂ = arg min
ϕ,µ

−l(ϕ, µ) + λ

T −1∑
t=1
∥νt+1 − νt∥2

subject to µ = ν.

(3)

Let w ∈ RT ×d be the scaled dual variable. The augmented Lagrangian can be expressed as136

L(ϕ, µ, ν, w) = −l(ϕ, µ) + λ

T −1∑
t=1
∥νt+1 − νt∥2 + κ

2 ∥µ− ν + w∥2
F −

κ

2 ∥w∥
2
F (4)

where κ > 0 is a penalty parameter for the augmentation term.137

In practice, gradient descent may not work well for an objective function with Group Fused Lasso penalty. To
this end, we introduce two more variables (γ, β) ∈ R1×d ×R(T −1)×d to ease the optimization, by converting
it into a Group Lasso problem (Yuan & Lin, 2006). They are defined as

γ = ν1 and βt,· = νt+1 − νt ∀ t = 1, . . . , T − 1.

Reversely, the slack variable ν ∈ RT ×d can be reconstructed as

ν = 1T,1γ + Xβ

where X is a T × (T − 1) design matrix with Xij = 1 for i > j and 0 otherwise. Substituting the ν in (4)138

with (γ, β), the augmented Lagrangian is updated to139

L(ϕ, µ, γ, β, w) = −l(ϕ, µ) + λ

T −1∑
t=1
∥βt,·∥2 + κ

2 ∥µ− 1T,1γ −Xβ + w∥2
F −

κ

2 ∥w∥
2
F . (5)

Thus, we can derive the following Alternating Direction Method of Multipliers (ADMM) procedure (Boyd
et al., 2011; Zhu, 2017; Wang et al., 2019) to solve the constrained optimization problem in (3):

ϕ(a+1), µ(a+1) = arg min
ϕ,µ

−l(ϕ, µ) + κ

2 ∥µ− ν(a) + w(a)∥2
F , (6)

γ(a+1), β(a+1) = arg min
γ,β

λ

T −1∑
t=1
∥βt,·∥2 + κ

2 ∥µ(a+1) − 1T,1γ −Xβ + w(a)∥2
F , (7)

w(a+1) = µ(a+1) − ν(a+1) + w(a), (8)

where subscript a denotes the current ADMM iteration. We recursively implement the three updates until140

certain convergence criterion is satisfied. Essentially, ADMM decomposes the optimization problem in (5)141

into smaller problems, solving each component with specific method derived in Section 3.2.142

3.2 Parameters Update143

3.2.1 Updating µ and ϕ144

In this section, we derive the updates for the prior and graph decoder parameters. The prior parameters are145

inferred from the observed data as empirical Bayes. Denote the objective function in (6) as L(ϕ, µ). Setting146

the gradients of L(ϕ, µ) with respect to the prior parameter µt ∈ Rd to zeros, we have the following:147

Proposition 1. The solution for µt at an iteration of our proposed ADMM procedure is a weighted sum:148

µt = 1
1 + κ

EP (zt|yt)(zt) + κ

1 + κ
(νt −wt) (9)

between the conditional expectation of the latent variable under the posterior distribution P (zt|yt) and the149

difference between the slack and the scaled dual variables. The term wt ∈ Rd denotes the t-th row of the150

scaled dual variable w ∈ RT ×d. The derivation is provided in Appendix 7.1.151
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Moreover, the gradient of L(ϕ, µ) with respect to the graph decoder parameter ϕ is calculated as152

∇ϕ L(ϕ, µ) = −
T∑

t=1
EP (zt|yt)

(
∇ϕ log P (yt|zt)

)
. (10)

The parameter ϕ can be updated efficiently through back-propagation.153

Notably, calculating the solution in (9) and gradient in (10) requires evaluating the conditional expectation
under the posterior distribution P (zt|yt) ∝ P (yt|zt)× P (zt). We employ Langevin Dynamics, a short-run
MCMC, to sample from the posterior distribution, approximating the conditional expectations (Xie et al.,
2017; 2018; Nijkamp et al., 2020; Pang et al., 2020). In particular, let subscript τ be the time step of the
Langevin Dynamics and let δ be a small step size. Moving toward the gradient of the posterior with respect
to the latent variable, the Langevin Dynamics to draw samples from the posterior distribution is achieved
by iterating the following:

zt
τ+1 = zt

τ + δ
[
∇zt log P (zt|yt)

]
+
√

2δϵ

= zt
τ + δ

[
∇zt log Pϕ(yt|zt)− (zt

τ − µt)
]

+
√

2δϵ (11)

where ϵ ∼ N (0, Id) is a random perturbation to the process. The derivation is provided in Appendix 7.2.154

Different from the VAE framework where latent variables are obtained through an encoder, we sampled the155

latent variables from the posterior distributions via Langevin Dynamics.156

3.2.2 Updating γ and β157

In this section, we derive the update in (7), which is equivalent to solving a Group Lasso problem. The158

grouping effect allows the d dimensional differences to change at the same time t. With ADMM, the updates159

on γ and β do not require the observed network data {yt}T
t=1. By adapting the derivation in Bleakley &160

Vert (2011), we have the following:161

Proposition 2. [Bleakley & Vert, 2011] The Group Lasso problem to update β ∈ R(T −1)×d is solved in162

a block coordinate descent manner, by iteratively applying the following equation to each row t:163

βt,· ←
1

κX⊤
·,tX·,t

(
1− λ

∥bt∥2

)
+

bt (12)

where (·)+ = max(·, 0) and

bt = κX⊤
·,t(µ(a+1) + w(a) − 1T,1γ −X·,−tβ−t,·).

The derivation is provided in Appendix 7.3.164

In particular, βt,· ∈ Rd becomes 0 when ∥bt∥2 ≤ λ. Also, the convergence of the procedure can be monitored
by the Karush-Kuhn-Tucker (KKT) conditions:

λ
βt,·

∥βt,·∥2
− κX⊤

·,t(µ(a+1) + w(a) − 1T,1γ −Xβ) = 0 ∀βt,· ̸= 0,

∥−κX⊤
·,t(µ(a+1) + w(a) − 1T,1γ −Xβ)∥2 ≤ λ ∀βt,· = 0.

Lastly, the minimum in γ ∈ R1×d is achieved at

γ = (1/T )11,T · (µ(a+1) + w(a) −Xβ).

The algorithm for the ADMM procedure is provided in Appendix 7.4 and details about the implementation165

are provided in Appendix 7.5.166
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4 Change Point Localization and Model Selection167

4.1 Change Point Localization168

In this section, we provide two effective methods to localize the change points after parameter learning, and
they can be used for different purposes. For the first approach, we resort to the prior distribution where
zt ∼ N (µt, Id). When no change occurs or µt − µt−1 = 0, we have zt − zt−1 ∼ N (0, 2Id) and

ut := 1
2(zt − zt−1)⊤(zt − zt−1) ∼ χ2

d.

Furthermore, the mean of ut over m samples follows a Gamma distribution:

ūt
m ∼ Γ(θ = 2

m
, ξ = md

2 )

where θ and ξ are the respective scale and shape parameters.169

As we capture the structural changes in the latent space, we can draw samples from the learned priors to
reflect the sequential changes. In particular, for a time point t, we sample ẑt− ẑt−1 from N (µ̂t− µ̂t−1, 2Id),
and we perform the same transformation:

vt := 1
2(ẑt − ẑt−1)⊤(ẑt − ẑt−1).

Then we compare the mean of vt over m samples with a quantile:170

P(v̄t
m > qthr) = 1− α

T − 1 (13)

where qthr is the 1 − α/(T − 1) quantile of the Gamma distribution for ūt
m when no change occurs. We171

consider the time point t with v̄t
m > qthr as the detected change point.172

For the second approach, we can directly utilize the localizing method from Kei et al. (2023b), which is more
robust in practice, as compared in the simulation study of Section 5.1. First, we calculate the differences
between consecutive time points in µ̂ ∈ RT ×d as

∆µ̂t = ∥µt − µt−1∥2 ∀ t ∈ [2, T ].

Then we standardize the differences as173

∆ζ̂t = ∆µ̂t −median(∆µ̂)
std(∆µ̂) ∀ t ∈ [2, T ] (14)

and construct a data-driven threshold defined as174

Tthr := mean(∆ζ̂) + Zq × std(∆ζ̂) (15)

where Zq is the q% quantile of the standard Gaussian distribution N (0, 1). We declare a change point Ck175

when ∆ζ̂Ck > Tthr.176

The data-driven threshold in (15) is intuitive, as the standardized differences ∆ζ̂ between two consecutive177

change points are close to zeros, while the differences that are at the change points are substantially greater178

than zeros. When traced in a plot over time t, the ∆ζ̂ can exhibit the magnitude of structural changes,179

and the threshold that deviates from the mean provides a reasonable cut-off value for the standardized180

differences, as demonstrated in Figures 11 and 12. In summary, the localizing method derived from the prior181

distribution has a statistical justification, while the localizing method with the data-driven threshold is more182

robust for different types of network data in practice.183
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4.2 Model Selection184

The optimization problem in (3) involves a tuning parameter that can yield different sets of detected change185

points when it is varied. In this work, we use Cross-Validation to select λ. In particular, we split the original186

time series of graphs into training and testing sets: the training set consists of graphs at odd indexed time187

points and the testing set consists of graphs at even indexed time points. Fixed on a specific λ value, we188

learn the model parameters with the training set, and we evaluate the learned model with the testing set.189

For a list of λ values, we choose the λ giving the maximal log-likelihood on the testing set. Note that the
log-likelihood is approximated by Monte Carlo samples {zt

u}s
u=1 drawn from the prior distribution P (zt) as

T∑
t=1

log P (yt) ≈
T∑

t=1
log

[1
s

s∑
u=1

[ ∏
(i,j)∈Y

Pϕ(yt
ij |zt

u)
]]

.

Further computational details are discussed in Appendix 7.5. With the selected λ value, we learn the model190

parameters again with the full data, resulting the final set of detected change points.191

5 Simulated and Real Data Experiments192

5.1 Simulation Study193

In this section, we implement the proposed method on simulated data. To evaluate the performance of
change point detection, we use three standard metrics in the literature that focus on the number of change
points, the time gap between the true and detected change points, and the coverage over the segmented
time intervals. The first metric is the absolute error |K̂ −K| where K̂ and K are the respective numbers
of the detected and true change points. The second metric described in Madrid Padilla et al. (2021) is the
one-sided Hausdorff distance, which is defined as

d(Ĉ|C) = max
c∈C

min
ĉ∈Ĉ
|ĉ− c|

where Ĉ and C are the respective sets of detected and true change points. Also, we report the reversed
one-sided Hausdorff distance d(C|Ĉ). By convention, when Ĉ = ∅, we let d(Ĉ|C) = ∞ and d(C|Ĉ) = −∞.
The last metric described in van den Burg & Williams (2020) is the coverage of a partition G by another
partition G′, which is defined as

C(G,G′) = 1
T

∑
A∈G
|A| · max

A′∈G′

|A ∩ A′|
|A ∪ A′|

with A,A′ ⊆ [1, T ]. The G and G′ are collections of intervals between consecutive change points for the194

respective ground truth and detected results.195

We simulate dynamic graphs from three scenarios to compare the performance of the proposed and competitor196

methods: Separable Temporal Exponential Random Graph Model, Stochastic Block Model, and Recurrent197

Neural Networks. For each scenario with different numbers of nodes n ∈ {50, 100}, we simulate 10 Monte198

Carlo trials of directed networks with time span T = 100. The true change points are located at t =199

{26, 51, 76}, so the number of change points K = 3. Moreover, the K + 1 = 4 intervals in the partition G are200

A1 = {1, . . . , 25}, A2 = {26, . . . , 50}, A3 = {51, . . . , 75}, and A4 = {76, . . . , 100}. In each specification, we201

report the means and standard deviations over 10 Monte Carlo trials for the evaluation metrics. CPDlatentN202

denotes our proposed approach with the data-driven threshold in (15), using 90% quantile from standard203

Normal distribution. We let the latent dimensions d = 10 and k = 5 for the graph decoder. CPDlatentG204

denotes our proposed approach with the localizing method in (13), using α = 0.01 from Gamma distribution.205

We let the latent dimensions d = n/10 and k = 10 for the graph decoder. The number of samples drawn206

from the Gamma distribution is m = 1000 when d = 5 and m = 500 when d = 10.207

Five competitors, gSeg (Chen & Zhang, 2015), kerSeg (Song & Chen, 2022b), CPDrdpg (Madrid Padilla et al.,208

2022), CPDnbs (Wang et al., 2021a), and CPDstergm (Kei et al., 2023b), are provided for comparison. The209
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gSeg method utilizes a graph-based scan statistics and the kerSeg method employs a kernel-based framework210

to test the partition before and after a potential change point. The CPDrdpg method detects change points211

by estimating the latent positions from a RDPG model and by constructing a non-parametric CUSUM212

statistic that allows for temporal dependence. The CPDnbs method detects change points by combining213

sample splitting with wild binary segmentation (WBS) and by maximizing the inner product of two CUSUM214

statistics computed from the samples. The CPDstergm method fits a STERGM with user-specified network215

statistics to detect change points based on the total variation of estimated parameters.216

For CPDstergm, we first use two network statistics, edge count and mutuality, in both formation and217

dissolution models to let p = 4. We then add one more network statistic, number of triangles, to let p = 6218

as another specification. For CPDrdpg, we let the number of intervals for WBS be W = 50, and we let219

the number of leading singular values of an adjacency matrix in the scaled PCA algorithm be d = 5. For220

CPDnbs, we let the number of intervals for WBS be W = 15 and we set the threshold to the order of221

n log2(T ). For kerSeg, we use the approximated p-value of fGKCP1, and we set α = 0.001. For gSeg, we222

use the minimum spanning tree to construct the similarity graph, with the approximated p-value of the223

original edge count scan statistic, and we set α = 0.05. Moreover, as gSeg and kerSeg are general methods224

for change point detection, we use networks (nets.) and network statistics (stats.) as two types of input225

data. Throughout the paper, we choose these settings because they produce good performance on average226

for the competitors. Changing these settings can enhance their performance on some specifications, while227

severely jeopardizing their performance on other specifications.228

Scenario 1: Separable Temporal Exponential Random Graph Model229

In this scenario, we apply time-homogeneous Separable Temporal Exponential Random Graph Model
(STERGM) between change points to simulate sequences of dynamic networks (Krivitsky & Handcock,
2014). We use three network statistics, edge count, mutuality, and number of triangles, in both formation
(F) and dissolution (D) models. The p = 6 parameters for each time point t are

θt
F , θt

D =
{
−2, 2, −2, −1, 2, 1, t ∈ A1 ∪ A3 \ 1,

−1.5, 1, −1, 2, 1, 1.5, t ∈ A2 ∪ A4.

Figure 2 exhibits examples of simulated networks. Visually, STERGM produces adjacency matrices that are230

sparse, which is often the case in real world social networks.231

Table 1 displays the means and standard deviations of the evaluation metrics for comparison. Since the232

dynamic networks are directly sampled from STERGM, the CPDstergm method with correctly specified233

network statistics (p = 6) achieves the best performance, in terms of greater converge of time intervals.234

However, when the network statistics are mis-specified with p = 4, the performance of CPDstergm is sub-235

stantially worsened, with greater time gaps between the true and detected change points. The deteriorating236

performance of CPDstergm emphasizes the importance of graph-level features in change point detection.237

Similarly, while the CPDrdpg method detects the correct numbers of change points on average, the time238

gaps between the true and detected change points are large. Similarly, the detected change points from the239

CPDnbs method also have greater time gaps. Moreover, using either networks (nets.) or network statistics240

(stats.) cannot improve the performance of gSeg and kerSeg methods. The binary segmentation approach241

tends to detect excessive numbers of change points, capturing noises from the data. In this scenario, although242

the CPDstergm method with p = 6 achieves the best performance, the true network statistics are usually not243

known to the modeler a priori. Our CPDlatent method, without the need of specifying network statistics,244

can achieve good performance on average.245

Scenario 2: Stochastic Block Model246

In this scenario, we use Stochastic Block Model (SBM) to simulate sequences of dynamic networks, and
we impose a time-dependent mechanism in the simulation process as in Madrid Padilla et al. (2022). Two

9



Under review as submission to TMLR

1 34 67 100

1
34

67
10

0

1 34 67 100

1
34

67
10

0

1 34 67 100

1
34

67
10

0

1 34 67 100

1
34

67
10

0

1 34 67 100

1
34

67
10

0

1 34 67 100

1
34

67
10

0

Figure 2: Examples of networks simulated from STERGM with number of nodes n = 100. The edge density
is approximately 15% for each network. In the first row, from left to right, each plot corresponds to the
network at t = 25, 50, 75 respectively. In the second row, from left to right, each plot corresponds to the
network at t = 26, 51, 76 respectively (the change points).

Table 1: Means (standard deviations) of evaluation metrics for dynamic graphs simulated from STERGM.
The best coverage metric is bolded.

n Method |K̂ −K| ↓ d(Ĉ|C) ↓ d(C|Ĉ) ↓ C(G,G′) ↑

50

CPDlatentN 0.1 (0.3) 4.3 (5.7) 2.6 (1.3) 90.87%
CPDlatentG 0.4 (0.6) 4.2 (6.9) 3.4 (3.4) 90.97%
CPDrdpg 0.9 (1.6) 8.7 (9.5) 8.5 (6.0) 76.27%
CPDnbs 1.2 (0.6) 4.6 (3.9) 11.0 (0.9) 75.80%
CPDstergmp=4 1.5 (0.8) 11.7 (7.5) 10.5 (2.3) 67.68%
CPDstergmp=6 0.2 (0.4) 1.6 (1.2) 3 (3.5) 91.54%
gSeg (nets.) 12.3 (0.5) 0 (0.0) 19 (0.0) 27.90%
gSeg (stats.) 15.8 (0.7) 1.5 (0.5) 20.1 (0.3) 24.55%
kerSeg (nets.) 9.7 (0.9) 1.4 (0.9) 17.9 (1.2) 37.62%
kerSeg (stats.) 9.4 (0.7) 3.9 (1.3) 18 (1.8) 35.86%

100

CPDlatentN 0 (0.0) 3.9 (1.3) 3.9 (1.3) 91.33%
CPDlatentG 0.7 (1.3) 3.1 (1.3) 6.0 (4.0) 88.55%
CPDrdpg 0.8 (1.0) 4.5 (2.0) 8.2 (4.7) 80.54%
CPDnbs 1.4 (0.5) 4.9 (3.7) 11.0 (0.9) 72.99%
CPDstergmp=4 0.7 (0.6) 21.9 (10.3) 7.6 (4.3) 67.21%
CPDstergmp=6 0 (0.0) 1.1 (0.3) 1.1 (0.3) 94.01%
gSeg (nets.) 12 (0.0) 0 (0.0) 19 (0.0) 28.00%
gSeg (stats.) 14.5 (2.3) 3.3 (3.6) 20.2 (0.4) 26.13%
kerSeg (nets.) 9.3 (0.8) 1 (0.0) 17.7 (0.6) 37.62%
kerSeg (stats.) 8.5 (0.8) 4.5 (1.4) 17.3 (1.7) 36.92%
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probability matrices P , Q ∈ [0, 1]n×n are constructed and they are defined as

Pij =
{

0.5, i, j ∈ Bl, l ∈ [3],
0.3, otherwise,

and Qij =
{

0.45, i, j ∈ Bl, l ∈ [3],
0.2, otherwise,

where B1,B2,B3 are evenly sized clusters that form a partition of {1, . . . , n}. Then a sequence of matrices
Et ∈ [0, 1]n×n are arranged for t = 1, . . . , T such that

Et
ij =

{
Pij , t ∈ A1 ∪ A3,

Qij , t ∈ A2 ∪ A4.

Lastly, the networks are simulated with ρ = 0.5 as the time-dependent mechanism. For t = 1, . . . , T − 1, we
let y1

ij ∼ Bernoulli(E1
ij) and

yt+1
ij ∼

{
Bernoulli

(
ρ(1−Et+1

ij ) + Et+1
ij

)
, yt

ij = 1,

Bernoulli
(
(1− ρ)Et+1

ij

)
, yt

ij = 0.

With ρ > 0, the probability to form an edge for i, j becomes greater at time t + 1 when there exists an edge247

at time t, and the probability becomes smaller when there does not exist an edge at time t. Figure 3 exhibits248

examples of simulated networks. Visually, SBM produces adjacency matrices with block structures, where249

mutuality serves as an important pattern for the homophily within communities.250
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Figure 3: Examples of networks simulated from SBM with number of nodes n = 100. The edge density
is approximately 30% for each network. In the first row, from left to right, each plot corresponds to the
network at t = 25, 50, 75 respectively. In the second row, from left to right, each plot corresponds to the
network at t = 26, 51, 76 respectively (the change points).

Table 2 displays the means and standard deviations of the evaluation metrics for comparison. As expected,251

both CPDstergm methods with p = 4 and p = 6 that utilize mutuality as a network statistic for detection252

achieve good performance, in terms of greater converge of time intervals. The CPDrdpg method also produce253

relatively good performance, but the time gaps between the true and detected change points are large.254

Similarly, the CPDnbs method also produces change points that have greater time gaps from the ground255

truth. Furthermore, using network statistics (stats.) with mutuality included for both gSeg and kerSeg256

methods improve their performance substantially, comparing to using networks (nets.) as input for detection.257
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This again emphasizes the significance of using graph-level representation in change point detection for258

dynamic networks. Lastly, our CPDlatent method, which infers the features in the latent space that induce259

the structural changes, achieves the best performance in this scenario.260

Table 2: Means (standard deviations) of evaluation metrics for dynamic networks simulated from SBM. The
best coverage metric is bolded.

n Method |K̂ −K| ↓ d(Ĉ|C) ↓ d(C|Ĉ) ↓ C(G,G′) ↑

50

CPDlatentN 0 (0.0) 0.1 (0.3) 0.1 (0.3) 99.80%
CPDlatentG 0.3 (0.6) 0.1 (0.3) 3.1 (6.2) 96.70%
CPDrdpg 1.4 (1.8) 2.2 (1.2) 8.2 (6.0) 81.01%
CPDnbs 1.6 (0.5) 3.8 (3.6) 11.4 (1.2) 73.13%
CPDstergmp=4 0.1 (0.3) 1 (0.0) 2.4 (4.2) 97.04%
CPDstergmp=6 0.3 (0.5) 1 (0.0) 4.6 (5.6) 94.74%
gSeg (nets.) 12.9 (1.8) 0 (0.0) 19.4 (0.8) 27.20%
gSeg (stats.) 2.2 (0.7) Inf (na) −Inf (na) 49.21%
kerSeg (nets.) 6.4 (1.4) 0 (0.0) 16.6 (2.0) 45.50%
kerSeg (stats.) 0.9 (1.2) 0 (0.0) 5.6 (6.8) 93.50%

100

CPDlatentN 0.1 (0.3) 0.1 (0.3) 1.3 (3.6) 98.60%
CPDlatentG 0.5 (0.7) 0.2 (0.4) 5.1 (6.1) 94.81%
CPDrdpg 0.3 (0.6) 1.5 (0.5) 2.5 (2.0) 91.05%
CPDnbs 1.8 (0.6) 3.5 (3.3) 12.3 (1.3) 72.04%
CPDstergmp=4 0 (0.0) 1 (0.0) 1 (0.0) 98.04%
CPDstergmp=6 0 (0.0) 1 (0.0) 1 (0.0) 98.04%
gSeg (nets.) 12.3 (0.9) 0 (0.0) 19 (0.0) 27.80%
gSeg (stats.) 2 (0.4) Inf (na) −Inf (na) 55.75%
kerSeg (nets.) 6 (0.8) 0 (0.0) 15.2 (2.0) 47.00%
kerSeg (stats.) 0.9 (0.7) 0 (0.0) 9.6 (7.6) 93.40%

Scenario 3: Recurrent Neural Networks261

In this scenario, we use Recurrent Neural Networks (RNNs) to simulate sequences of dynamic networks.
Specifically, we sample latent variables zt from pre-defined priors, and we randomly initialize the RNNs with
uniform weights. The graphs are then generated by the matrix multiplication defined by Equation (1), using
the outputs U t and V t from RNNs. The parameters for the pre-defined priors are

zt ∼

{
N (−1, 0.1Id), t ∈ A1 ∪ A3,

N (5, 0.1Id), t ∈ A2 ∪ A4.

Similar to the previous two scenarios, the simulation using RNNs also imposes a time-dependent mechanism262

across the dynamic networks. Figure 4 exhibits examples of simulated networks. Visually, RNNs produce263

adjacency matrices that are dense, and no discernible pattern can be noticed.264

Table 3 displays the means and standard deviations of the evaluation metrics for comparison. Because no265

significant structural pattern or suitable network statistics can be determined a priori, neither CPDstergm266

method with p = 4 nor with p = 6 can detect the change points accurately. Likewise, both gSeg and kerSeg267

methods that utilize the mis-specified network statistics (stats.) cannot produce satisfactory performance.268

The CPDrdpg method that focuses on node-level representation also does not perform well for networks with269

complex structures. Notably, the kerSeg method that exploits the features in high dimension with networks270

(nets.) as input data can produce good performance. The CPDnbs method that assumes the networks271

are generated from inhomogeneous Bernoulli models and uses weighted averages of adjacency matrices also272
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Figure 4: Examples of networks generated from RNNs with number of nodes n = 100. The edge density
is approximately 50% for each network. In the first row, from left to right, each plot corresponds to the
network at t = 25, 50, 75 respectively. In the second row, from left to right, each plot corresponds to the
network at t = 26, 51, 76 respectively (the change points).

achieve good performance. Lastly, our CPDlatent method that first infers the graph-level representations273

from the networks and then utilizes them to detect change points yields the best performance in this scenario.274

5.2 Degree Distributions and Shared Partner Distributions Comparison275

Besides the ability to detect change points, our proposed framework includes a decoder that can sample276

graphs from latent variables. Consider the originally simulated networks as ground truth. To evaluate the277

model’s goodness of fit, we compare the degree distributions and shared partner distributions (Hunter &278

Handcock, 2006) between the generated graphs and ground truth, as in Hunter et al. (2008a), Hunter et al.279

(2008b), Kolaczyk & Csárdi (2014) and Handcock et al. (2022). Specifically, we first estimate the model280

parameters using the simulated data that excludes the graphs at time t ∈ {10, 20, . . . , 100}. Then we sample281

zt−1 from the estimated priors N (µ̂t−1, Id) to generate ŷt−1 with the learned decoder, as out-of-sample282

forecasts for the networks at t ∈ {10, 20, . . . , 100}. For each time point, we generate s = 200 networks and283

we visualize the degree and shared partners distributions. If the corresponding distributions are similar, it284

indicates that the graph decoder effectively captures the underlying structures, and the generated graphs285

closely resemble the originally simulated graphs. Figures 5, 6, and 7 display the degree distributions and286

Figures 8, 9, and 10 display the shared partner distributions of the generated graphs predicted from the287

learned decoder for Scenarios 1, 2, and 3 respectively.288

Since the networks simulated from STERGM are sparse, the node degrees for both simulated and generated289

graphs are low in Figure 5. The sparsity challenges the decoder to capture the structural patterns, which ex-290

plain why some peaks in the degree distributions are not fully covered by the generated graphs. Nevertheless,291

for nodes with low degrees on the left tails, the trends are well captured by the decoder. Similarly, due to the292

sparsity, the majority of edges has fewer shared partners in Figure 8. Though the generated networks tends293

to over-estimate the numbers of edges with particular numbers of shared partners, the decreasing trends are294

captured by the decoder.295

Next, the networks simulated from SBM have strong inter-block interactions and the networks simulated296

from RNNs are dense, resulting in higher node degrees for the simulated and generated graphs in Figures 6297

and 7. For these two scenarios, both the tails and peaks of the degree distributions are fully covered by the298
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Table 3: Means (standard deviations) of evaluation metrics for dynamic networks simulated from RNNs.
The best coverage metric is bolded.

n Method |K̂ −K| ↓ d(Ĉ|C) ↓ d(C|Ĉ) ↓ C(G,G′) ↑

50

CPDlatentN 0 (0.0) 1.8 (0.7) 1.8 (0.7) 94.77%
CPDlatentG 0.3 (0.6) 1.7 (0.6) 3.2 (3.0) 93.04%
CPDrdpg 2.4 (1.6) 12.7 (7.5) 11.2 (5.3) 58.07%
CPDnbs 0.1 (0.3) 3.5 (6.8) 1.2 (0.4) 93.87%
CPDstergmp=4 2.0 (1.7) 6.0 (7.7) 15.2 (4.9) 72.10%
CPDstergmp=6 1.0 (0.4) 18.5 (9.4) 14.3 (2.9) 60.25%
gSeg (nets.) 2.3 (0.6) Inf (na) −Inf (na) 29.42%
gSeg (stats.) 2.9 (0.3) Inf (na) −Inf (na) 2.47%
kerSeg (nets.) 1.5 (0.9) 1.4 (0.7) 5.3 (3.3) 89.25%
kerSeg (stats.) 2.8 (0.4) Inf (na) −Inf (na) 9.89%

100

CPDlatentN 0 (0.0) 2.5 (0.7) 2.5 (0.7) 91.96%
CPDlatentG 0.2 (0.6) 2.1 (0.7) 2.8 (1.8) 92.34%
CPDrdpg 1.5 (1.0) 12.3 (8.2) 10.4 (3.7) 60.15%
CPDnbs 0.1 (0.3) 2.5 (2.5) 3.3 (3.4) 90.74%
CPDstergmp=4 2.0 (1.4) 10.6 (8.0) 14.1 (3.1) 60.37%
CPDstergmp=6 1.2 (1.3) 20.6 (12.6) 15.2 (5.9) 53.21%
gSeg (nets.) 3 (0.0) Inf (na) −Inf (na) 0%
gSeg (stats.) 2.9 (0.3) Inf (na) −Inf (na) 4.27%
kerSeg (nets.) 1.4 (0.7) 1.9 (0.7) 5.4 (1.9) 88.95%
kerSeg (stats.) 3 (0.0) Inf (na) −Inf (na) 0%

generated graphs. Similarly, the numbers of shared partners for edges have wider ranges in Figures 9 and 10,299

and the overall trends are well captured by the decoder. For all three scenarios, the slight discrepancy in the300

alignment may be due to the decoder being shared across the time points, balancing the structural variation301

over time. In summary, the overall trends of the corresponding distributions for the generated graphs align302

with those for the simulated graphs, suggesting the generated graphs are similar to the ground truth and303

the learned decoders have captured the underlying graph structures.304

5.3 Real Data Experiments305

In this section, we apply the proposed method to two real data, and we align the detected change points306

with significant events for interpretation. In practice, the number and location of change points for real data307

are typically unknown, so there is no widely accepted ground truth for either the change points or their308

corresponding events in this unsupervised learning problem. Besides validating the detected change points309

with significant events as in the literature, we attempt a heuristic approach to compare the results across310

different detection methods as a supplementary evaluation. Specifically, we fit Degree Corrected Stochastic311

Block Models (DCSBM) (Karrer & Newman, 2011; Zhao et al., 2012) to the networks between consecutive312

detected change points, and we evaluate the log-likelihood of out-of-sample networks that were excluded313

during model fitting. We choose DCSBM, a generalization of Stochastic Block Model (SBM), because SBM314

is a well known approximation of graphons, which are among the most general network model in the literature315

(Airoldi et al., 2013; Olhede & Wolfe, 2014; Gao et al., 2015). Moreover, DCSBM does not favor either the316

proposed or competitor methods in terms of fitting the model. Intuitively, a higher log-likelihood suggests317

that the detected change points segment the time series in a way that better capture the unchanged patterns318

within each interval. Additional details on this evaluation procedure are provided in Appendix 7.6.319
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Figure 5: Degree distributions for the generated graphs predicted from decoder at different time points for
the number of nodes n = 100 and sample size s = 200. The red lines correspond to the degree distributions
of graphs simulated from STERGM.
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Figure 6: Degree distributions for the generated graphs predicted from decoder at different time points for
the number of nodes n = 100 and sample size s = 200. The red lines correspond to the degree distributions
of graphs simulated from SBM.

5.3.1 MIT Cellphone Data320

The Massachusetts Institute of Technology (MIT) cellphone data (Eagle & Pentland, 2006) depicts human321

interactions via phone call activities among n = 96 participants spanning T = 232 days. In the constructed322

undirected networks, an edge yt
ij = 1 indicates that participant i and participant j had made phone calls on323
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Figure 7: Degree distributions for the generated graphs predicted from decoder at different time points for
the number of nodes n = 100 and sample size s = 200. The red lines correspond to the degree distributions
of graphs simulated from RNNs.
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Figure 8: Edge-wise shared partner distributions for the generated graphs predicted from decoder at different
time points for the number of nodes n = 100 and sample size s = 200. The red lines correspond to the
edge-wise shared partner distributions of graphs simulated from STERGM.

day t, and yt
ij = 0 otherwise. The data ranges from 2004-09-15 to 2005-05-04, covering the winter break in324

the MIT academic calendar.325

We apply our proposed method to detect change points using the data-driven threshold, and we use network326

statistics as input data to the gSeg, kerSeg, and CPDstergm methods. Specifically, we use the number of327

edges, isolates, and triangles to capture the frequency of connections, the sparsity of social interaction, and328
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Figure 9: Edge-wise shared partner distributions for the generated graphs predicted from decoder at different
time points for the number of nodes n = 100 and sample size s = 200. The red lines correspond to the
edge-wise shared partner distributions of graphs simulated from SBM.
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Figure 10: Edge-wise shared partner distributions for the generated graphs predicted from decoder at dif-
ferent time points for the number of nodes n = 100 and sample size s = 200. The red lines correspond to
the edge-wise shared partner distributions of graphs simulated from RNNs.

the transitive association among participants, respectively. Moreover, the CPDrdpg and CPDnbs methods329

directly utilize networks as input data. Figure 11 displays the magnitude of Equation (14) and the change330

points detected by the proposed and competitor methods. Table 4 provides a list of potential events, aligning331

with the detected change points from our method. In general, the magnitude in Figure 11 reflects the scale332

of structural changes from the observed networks.333
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Figure 11: Detected change points from the proposed and competitor (blue) methods on the MIT Cellphone
Data. The threshold (red horizontal line) is calculated by (15) with Z0.9. The dates of the detected change
points for the competitor methods are displayed in Appendix 7.6.

Without specifying the structural patterns in advance to search for change points, our method can punc-334

tually detect the beginning of the winter break, which is the major event that alters the interaction among335

participants. As the largest spike in our results of Figure 11, the beginning of the winter break is also de-336

tected by the competitor methods effectively. Moreover, our method detects a change point on 2004-10-23,337

corresponding to the annual sponsor meeting that occurred on 2004-10-21. More than two-thirds of the338

participants have attended the meeting, focusing on achieving project goals throughout the week (Eagle &339

Pentland, 2006). However, the CPDstergm and CPDrdpg methods struggle to detect this change point.340

Furthermore, the proposed and competitor methods detect change points related to the spring break, while341

our method detects two additional change points associated to federal holidays.342

Table 4: Potential nearby events aligned with the detected change points from our proposed method on the
MIT cellphone data.

Detected change points Potential nearby events

2004-10-23 2004-10-21 Sponsor meeting
2004-12-17 2004-12-18 to 2005-01-02 Winter break
2005-01-18 2005-01-17 Martin Luther King Day
2005-02-22 2005-02-21 Presidents Day
2005-04-02 2005-03-21 to 2005-03-25 Spring break

The primary discrepancies between the results in Figure 11 are the two federal holidays on 2005-01-17 and343

2005-02-21, which are overlooked by some of the competitor methods. In particular, the gSeg, kerSeg, and344

CPDrdpg methods identify change points slightly earlier than 2005-01-18, while the CPDstergm method345

does not detect a change point around that period. These discrepancies may be affected by the overlap346

between the winter break and other holidays around the end of 2004. The detected change points in January347

2005 by the competitor methods also suggest that the Martin Luther King day detected by our method is348

a reasonable change point after the winter break. Moreover, the CPDstergm method detects a clustering349

of change points during the sponsor meeting around 2004-10-23, which is an indication of overfitting. The350

result may absorb the excessive noise during that period, such that a clear and single change point cannot351
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be determined. In summary, our result overlaps with the combined results from the competitors, validating352

the effectiveness of the proposed methods.353

Finally, Table 5 presents a comparison of the log-likelihood values for out-of-sample graphs evaluated using354

the fitted DCSBM. Although this evaluation procedure is heuristic, the log-likelihood can potentially indicate355

how well the detected change points capture the unchanged patterns within each segmented interval. To356

assess robustness and sensitivity, we also compare the results by selectively removing graphs at different357

time gaps, specifically ∆t = {15, 20, 25, 30} for T = 232. The higher log-likelihood values associated with358

change points detected by our method suggest that it identifies more meaningful segmentation compared to359

competitor methods.360

Table 5: Log-likelihood values of the out-of-sample graphs evaluated using the fitted DCSBM corresponding
to their respective intervals in the MIT cellphone data.

∆t CPDlatent CPDnbs CPDrdpg CPDstergm kerSeg gSeg

15 −3593.38 −3595.74 −3968.61 −3718.24 −4026.17 −3891.61
20 −2441.86 −2617.12 −2612.46 −2760.73 −2592.96 −2604.36
25 −1903.14 −2056.03 −2067.39 −2172.59 −2005.87 −2123.85
30 −1869.47 −1901.00 −1956.27 −1906.28 −1991.85 −1914.86

5.3.2 Enron Email Data361

The Enron email data, analyzed by Priebe et al. (2005), Park et al. (2012), and Peel & Clauset (2015),362

portrays the communication patterns among employees before the collapse of a giant energy company. The363

data of our focus consists of T = 100 weekly undirected networks, ranging from 2000-06-05 to 2002-05-06364

for n = 100 employees. We use the same configuration as described in Section 5.3.1 for the proposed and365

competitor methods to detect change points. Figure 12 displays the magnitude of Equation (14) and the366

detected change points from the proposed and competitor methods. Furthermore, Table 6 provides a list of367

potential events, aligning with the detected change points from our method. In general, the magnitude in368

Figure 12 reflects the scale of structural changes from the observed networks.369
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Figure 12: Detected change points from the proposed and competitor (blue) methods on the Enron email
data. The threshold (red horizontal line) is calculated by (15) with Z0.9. The dates of the detected change
points for the competitor methods are displayed in Appendix 7.6.
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Table 6: Potential nearby events aligned with the detected change points from our proposed method on the
Enron email data.

Detected change points Potential nearby events

2000-10-16 2000-11-01 FERC exonerated Enron
2001-06-11 2001-06-21 CEO publicly confronted
2001-09-24 2001-09-26 Internal employee meeting
2001-12-03 2001-12-02 Enron filed for bankruptcy

In 2001, Enron underwent a multitude of major and overlapping incidents, making it difficult to associate370

the detected change points with specific real events. Despite the turmoil, our method detects four signifi-371

cant change points that closely align with pivotal moments in Enron’s timeline. Throughout 2000, Enron372

orchestrated rolling blackouts, causing staggering surges in electricity prices that peaked at twenty times373

the standard rate. Thence, the first change point, detected on 2000-10-16 by our method, aligns with the374

Federal Energy Regulatory Commission (FERC) exonerating Enron of wrongdoing on 2000-11-01. As a375

major event with chain reaction throughout 2000, this change point is also detected by the gSeg, kerSeg,376

CPDrdpg, and CPDnbs methods. Subsequently, a second change point, detected on 2001-06-11, aligns with377

the CEO confronted by an activist on 2001-06-21 in protesting against Enron’s role in the energy crisis.378

This public incident is also detected by the kerSeg, CPDrdpg, and CPDnbs methods while overlooked by379

the other competitor methods.380

The next two change points are associated with more pronounced shifts in network patterns, indicated by381

the two substantially large spikes in Figure 12. Specifically, the third change point, detected on 2001-09-24,382

coincides with an internal employee meeting on 2001-09-26, during which the CEO reassured employees that383

Enron’s stock was a good buy and the company’s accounting methods were legal and appropriate. Following384

this meeting, Enron’s stock saw a final surge before continuing its sharp decline. Finally, our method detects385

a change point on 2001-12-03, aligning with Enron filing for bankruptcy on 2001-12-02, marking the collapse386

of the largest energy company in the U.S.387

Based on the results in Figure 12, the primary discrepancies between the proposed and competitor methods388

are observed at the endpoint of the time span. In particular, four competitor methods have detected change389

points in February 2002, corresponding to events after Enron filed for bankruptcy in December 2001. While390

the magnitude exhibits two small spikes on the right in Figure 12, they do not exceed the threshold in red to391

be declared as change points by our method. The scale of the changes toward the communication patterns392

among employees may be smaller for the events in February 2002, comparing to the scale of changes toward393

communication patterns during bankruptcy.394

This discrepancy suggests a potential extension to the proposed framework. We could specify the priors for395

the graph representations as zt ∼ N (µt, Σt) and incorporate the covariance Σt into the regularization term396

of the objective function (2) to adaptively detect the changes at different scales. Additionally, the ADMM397

procedure would require an update for Σt, and the quadratic form for the localization method would need to398

be modified as (zt−zt−1)⊤(Σt +Σt−1)−1(zt−zt−1) ∼ χ2
d when µt−µt−1 = 0. We consider this refinement399

as a direction for future development.400

The result for gSeg and kerSeg methods can be affected by the choices of network statistics, which may not401

be representative enough to capture the structural changes. For CPDstergm, the absence of change points402

in 2000 and the clustering of four change points in late 2001 indicate the detection is sensitive to the noise403

where network structures shift rapidly during bankruptcy, rendering the detected change points unreliable404

as the model is overfitted. In summary, the overlap between the proposed and competitor methods validates405

the effectiveness of the proposed methods.406

Finally, Table 7 compares the log-likelihood with the fitted DCSBM across different methods. Although this407

is a heuristic evaluation approach, the log-likelihood values provide information into how well the detected408

change points maintain structural coherence within each interval. To assess robustness and sensitivity, we409
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examine the results by selectively removing graphs at varying time gaps, specifically ∆t = {3, 6, 9, 12} for410

T = 100. The log-likelihood values based on the change points detected by our method are higher most411

of the time, suggesting that our approach identifies more reasonable change points compared to competitor412

methods heuristically.413

Table 7: Log-likelihood values of the out-of-sample graphs evaluated using the fitted DCSBM corresponding
to their respective intervals in the Enron email data.

∆t CPDlatent CPDnbs CPDrdgp CPDstergm kerSeg gSeg

3 −9863.13 −10340.97 −10485.42 −11681.16 −9936.28 −11697.72
6 −5068.16 −4944.41 −4821.88 −5558.92 −5025.10 −4967.78
9 −2994.83 −3315.66 −3238.66 −3190.70 −3217.85 −3274.96
12 −2482.73 −2507.28 −2570.34 −2518.89 −2540.31 −2592.20

6 Discussion414

This paper proposes to detect change points in time series of graphs using a decoder-only latent space415

model. Intrinsically, dynamic network structures can be complex due to dyadic and temporal dependencies,416

making inference for dynamic graphs a challenging task. Learning low-dimensional graph representations can417

extract useful features to facilitate change point detection in time series of graphs. Specifically, we assume418

each observed network is generated from a latent variable through a graph decoder. We also impose prior419

distributions to the graph-level representations, and the priors are learned from the data as empirical Bayes.420

The optimization problem with Group Fused Lasso penalty on the prior parameters is solved via ADMM,421

and experiment results demonstrate that generative model is useful for change point detection.422

Several extensions to our proposed framework are possible for future development. Besides binary networks,423

relations by nature have degree of strength, which are denoted by generic values. Moreover, nodal and dyadic424

attributes are important components in network data. Hence, models that can generate weighted edges, as425

well as nodal and dyadic attributes, can capture more information about the network dynamics (Fellows &426

Handcock, 2012; Krivitsky, 2012; Kei et al., 2023a). Furthermore, the number of nodes and their attributes427

are subjected to change over time. Extending the framework to allow varying network size and to detect428

node-level anomalies can provide granular insights of network changes (Simonovsky & Komodakis, 2018;429

Shen et al., 2023). Also, improving the scalability and computational efficiency for representation learning is430

crucial (Killick et al., 2012; Gallagher et al., 2021), especially for handling large and weighted graphs. While431

our framework demonstrates the ability in change point detection, the development of more sophisticated432

neural network architectures can enhance the model’s capacity on other meaningful tasks (Handcock et al.,433

2007; Kolar et al., 2010; Yu et al., 2021; Madrid Padilla et al., 2023).434
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7 Appendix636

7.1 Updating µ and ϕ637

In this section, we derive the updates for prior parameter µ ∈ RT ×d and graph decoder parameter ϕ. Denote
the objective function in Equation (6) as L(ϕ, µ) and denote the set of parameters {ϕ, µ} as θ. We first
calculate the gradient of log-likelihood l(θ) in L(ϕ, µ) with respect to θ:

∇θ l(θ) = ∇θ

T∑
t=1

log P (yt)

=
T∑

t=1

1
P (yt)∇θP (yt)

=
T∑

t=1

1
P (yt)∇θ

∫
P (yt, zt)dzt

=
T∑

t=1

1
P (yt)

∫
P (yt, zt)

[
∇θ log P (yt, zt)

]
dzt

=
T∑

t=1

∫
P (yt, zt)

P (yt)

[
∇θ log P (yt, zt)

]
dzt

=
T∑

t=1

∫
P (zt|yt)

[
∇θ log P (yt, zt)

]
dzt

=
T∑

t=1
EP (zt|yt)

(
∇θ log

[
P (yt|zt)P (zt)

])
=

T∑
t=1

EP (zt|yt)

(
∇θ log P (yt|zt)

)
+

T∑
t=1

EP (zt|yt)

(
∇θ log P (zt)

)
.

Note that the expectation in the gradient is now with respect to the posterior distribution P (zt|yt) ∝
P (yt|zt) × P (zt). Furthermore, the gradient of L(ϕ, µ) with respect to the prior parameter µt ∈ Rd at a
specific time point t is

∇µt L(ϕ, µ) = −EP (zt|yt)

(
∇µt log P (zt)

)
+ κ(µt − νt + wt)

= −EP (zt|yt)(zt − µt) + κ(µt − νt + wt).

Setting the gradient ∇µt L(ϕ, µ) to zeros and solve for µt, we have

0 = −EP (zt|yt)(zt) + (1 + κ)µt − κ(νt −wt)
(1 + κ)µt = EP (zt|yt)(zt) + κ(νt −wt)

µt = 1
1 + κ

EP (zt|yt)(zt) + κ

1 + κ
(νt −wt).

Evidently, the gradient of L(ϕ, µ) with respect to the graph decoder parameter ϕ is

∇ϕ L(ϕ, µ) = −
T∑

t=1
EP (zt|yt)

(
∇ϕ log P (yt|zt)

)
.

The parameter ϕ can be updated efficiently through back-propagation.638
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7.2 Langevin Dynamics639

Calculating the solution in (9) and the gradient in (10) requires evaluating the conditional expectations under
the posterior distribution P (zt|yt) ∝ P (yt|zt) × P (zt). In this section, we discuss the Langevin Dynamics
to sample zt ∈ Rd from the posterior distribution P (zt|yt) that is conditional on the observed network
yt ∈ {0, 1}n×n. The Langevin Dynamics, a short run MCMC, is achieved by iterating the following:

zt
τ+1 = zt

τ + δ
[
∇zt log P (zt|yt)

]
+
√

2δϵ

= zt
τ + δ

[
∇zt log P (yt|zt) +∇zt log P (zt)−∇zt log P (yt)

]
+
√

2δϵ

= zt
τ + δ

[
∇zt log P (yt|zt)− (zt

τ − µt)
]

+
√

2δϵ

where τ is the time step and δ is the step size of the Langevin Dynamics. The error term ϵ ∼ N (0, Id) serves640

as a random perturbation to the sampling process. The gradient of the graph decoder P (yt|zt) with respect641

to the latent variable zt can be calculated efficiently through back-propagation. Essentially, we use MCMC642

samples to approximate the conditional expectation EP (zt|yt)(·) in the solution (9) and the gradient (10).643

7.3 Group Lasso for Updating β644

In this section, we present the derivation to update β in Proposition 2, which is equivalent to solving a
Group Lasso problem (Yuan & Lin, 2006). We adapt the derivation from Bleakley & Vert (2011) for our
proposed ADMM algorithm. Denote the objective function in (7) as L(γ, β). When βt,· ̸= 0, the gradient
of L(γ, β) with respect to βt,· is

∇βt,·L(γ, β) = λ
βt,·

∥βt,·∥2
− κX⊤

·,t(µ(a+1) + w(a) − 1T,1γ −X·,tβt,· −X·,−tβ−t,·)

where X·,t ∈ RT ×1 is the t-th column of matrix X ∈ RT ×(T −1) and βt,· ∈ R1×d is the t-th row of matrix645

β ∈ R(T −1)×d. Moreover, we denote β−t,· ∈ R(T −1)×p as the matrix obtained by replacing the t-th row of646

matrix β with a zero vector, and X·,−t ∈ RT ×(T −1) is denoted similarly.647

Setting the above gradient to zeros, we have648

βt,· =
(

κX⊤
·,tX·,t + λ

∥βt,·∥ 2

)−1
bt (16)

where
bt = κX⊤

·,t(µ(a+1) + w(a) − 1T,1γ −X·,−tβ−t,·) ∈ R1×d.

Calculating the Euclidean norm of (16) on both sides and rearrange the terms, we have

∥βt,·∥2 = (κX⊤
·,tX·,t)−1(∥bt∥2 − λ).

Plugging ∥βt,·∥2 into (16) for substitution, the solution of βt,· is arrived at

βt,· = 1
κX⊤

·,tX·,t

(
1− λ

∥bt∥2

)
bt.

Moreover, when βt,· = 0, the subgradient v of ∥βt,·∥2 needs to satisfy that ∥v∥2 ≤ 1. Because

0 ∈ λv − κX⊤
·,t(µ(a+1) + w(a) − 1T,1γ −X·,−tβ−t,·),

we obtain the condition that βt,· becomes 0 when ∥bt∥2 ≤ λ. Therefore, we can iteratively apply the
following to update βt,· for each block t = 1, . . . , T − 1:

βt,· ←
1

κX⊤
·,tX·,t

(
1− λ

∥bt∥2

)
+

bt

where (·)+ = max(·, 0).649
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7.4 ADMM Procedure650

The procedure to solve the problem in (3) via ADMM is presented in Algorithm 1. The steps to transform651

between ν and (γ, β) within an ADMM iteration are omitted for succinctness. The complexity of the652

proposed algorithm is at least of order O
(
A(Tsld + BTnk + DT )

)
with additional gradient calculation653

for neural networks in sub-routines. Specifically, for each of A iterations of ADMM, we update the prior654

parameter µt ∈ Rd for all T time points, and each update involves l steps of MCMC for s samples. Then we655

calculate the gradients of neural networks for all T time points and run B iterations of Adam optimizer. The656

output of neural networks has dimensions n by k. Lastly, we run D iterations of block coordinate descent657

for the sequential differences. Essentially, ADMM decomposes a complex optimization problem into smaller658

problems, targeting individual component one at a time.659

Algorithm 1 Latent Space Group Fused Lasso
1: Input: learning iterations A, B, D, tuning parameter λ, penalty parameter κ, learning rates η, observed

data {yt}T
t=1, initialization {ϕ(1), µ(1), γ(1), β(1), w(1)}

2: for a = 1, · · · , A do
3: for t = 1, · · · , T do
4: draw s samples zt

1, . . . , zt
s from P (zt|yt) according to (11)

5: µt
(a+1) = 1

1+κ (s−1 ∑s
i=1 zt

i) + κ
1+κ (νt −wt)

6: end for
7: for b = 1, . . . , B do
8: ϕ(b+1) = ϕ(b) − η ×∇ϕ L(ϕ, µ)
9: end for

10: Set γ̃(1) = γ(a) and β̃(1) = β(a)
11: for d = 1, . . . , D do
12: Let β̃

(d+1)
t,· be updated according to (12) for t = 1, . . . , T − 1

13: γ̃(d+1) = (1/T )11,T · (µ(a+1) + w(a) −Xβ̃(d+1))
14: end for
15: Set γ(a+1) = γ̃(d+1) and β(a+1) = β̃(d+1)

16: w(a+1) = µ(a+1) − ν(a+1) + w(a)
17: end for
18: µ̂← µ(a+1)
19: Output: learned prior parameters µ̂

7.5 Practical Guidelines660

7.5.1 ADMM Implementation661

In this section, we provide practical guidelines for the proposed framework and ADMM algorithm. For662

Langevin Dynamic sampling, we set δ = 0.5, and we draw s = 200 samples for each time point t. To detect663

change points using the data-driven threshold in (15), we let the tuning parameter λ = {10, 20, 50, 100}.664

To detect change points using the localizing method with Gamma distribution in (13), we let the tuning665

parameter λ = {5, 10, 20, 50}. For each λ, we run A = 50 iterations of ADMM. Within each ADMM666

iteration, we run B = 20 iterations of gradient descent with Adam optimizer for the graph decoder and667

D = 20 iterations of block coordinate descent for Group Lasso. We run our experiment with Tesla T4668

GPU. The running time for the simulated study is about two hours for a scenario with all sequences and669

cross-validation on the tuning parameter λ. The running time for the real data experiment is approximately670

twenty to thirty minutes including cross-validation on the tuning parameter λ.671

Since the proposed generative model is a probability distribution for the observed network data, in this work672

we stop ADMM learning with the following stopping criteria:673 ∣∣∣∣ l(ϕ(a+1), µ(a+1))− l(ϕ(a), µ(a))
l(ϕ(a), µ(a))

∣∣∣∣ ≤ ϵtol. (17)
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The log-likelihood l(ϕ, µ) is approximated by sampling from the prior distribution p(zt), as described in674

Section 4.2. Hence, we stop the ADMM procedure until the above criteria is satisfied for a′ consecutive675

iterations. In Section 5, we set ϵtol = 10−5 and a′ = 5.676

Here we also elaborate on the computational aspect of the approximation of the log-likelihood. To calculate
the product of edge probabilities for the conditional distribution P (yt|zt), we have the following:

T∑
t=1

log P (yt) =
T∑

t=1
log

∫
P (yt|zt)P (zt)dzt

=
T∑

t=1
logEP (zt)[

∏
(i,j)∈Y

P (yt
ij |zt)]

≈
T∑

t=1
log

[1
s

s∑
u=1

[
∏

(i,j)∈Y

P (yt
ij |zt

u)]
]

=
T∑

t=1
log

[1
s

s∑
u=1

exp{
∑

(i,j)∈Y

log[P (yt
ij |zt

u)]}
]

=
T∑

t=1

{
− log s + log

[
exp Ct

s∑
u=1

exp{
∑

(i,j)∈Y

log[P (yt
ij |zt

u)]− Ct}
]}

=
T∑

t=1

{
Ct + log

[ s∑
u=1

exp{
∑

(i,j)∈Y

log[P (yt
ij |zt

u)]− Ct}
]}
− T log s

where Ct ∈ R is the maximum value of
∑

(i,j)∈Y log[P (yt
ij |zt

u)] over m samples but within a time point t.677

We also update the penalty parameter κ to improve convergence and to reduce reliance on its initialization.
In particular, after the a-th ADMM iteration, we calculate the respective primal and dual residuals:

r
(a)
primal =

√√√√ 1
T × d

T∑
t=1
∥µt

(a) − νt
(a)∥

2
2 and r

(a)
dual =

√√√√ 1
T × d

T∑
t=1
∥νt

(a) − νt
(a−1)∥

2
2.

Throughout, we initialize the penalty parameter κ = 10. We jointly update the penalty parameter κ and
the scaled dual variable w as in Boyd et al. (2011) with the following conditions:

κ(a+1) = 2κ(a), w(a+1) = 1
2w(a), if r

(a)
primal > 10× r

(a)
dual,

κ(a+1) = 1
2κ(a), w(a+1) = 2w(a), if r

(a)
dual > 10× r

(a)
primal.

7.5.2 Post-Processing678

Since neural networks may be over-fitted for a statistical model in change point detection, we track the
following Coefficient of Variation as a signal-to-noise ratio when we learn the model parameter with the full
time series data:

Coefficient of Variation = mean(∆µ̂)
sd(∆µ̂) .

We choose the learned parameter µ̂ with the largest Coefficient of Variation as final output.679

By convention, we also implement two post-processing steps to finalize the detected change points. When680

the gap between two consecutive change points is small or Ĉk−Ĉk−1 < ϵspc, we preserve the detected change681

point with greater ∆ζ̂ value to prevent clusters of nearby change points. Moreover, as the endpoints of a682

time span are usually not of interest, we remove the Ĉk smaller than a threshold ϵend and the Ĉk greater683

than T − ϵend. In Section 5, we set ϵspc = 5 and ϵend = 5.684
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7.6 Real Data Experiments685

Besides aligning the detected change points with significant real events for interpretation, we can heuristically686

compare the change points identified by our method and competitor approaches using Degree-Corrected687

Stochastic Block Models (DCSBM). Specifically, we first remove a subset of graphs from the time series and688

fit a DCSBM to the remaining graphs within each interval defined by two consecutive detected change points.689

For each removed graph, we compute its log-likelihood value under the fitted DCSBM corresponding to its690

assigned interval. Heuristically, a higher log-likelihood indicates that the removed graph is more structurally691

stable within its interval, thereby supporting the validity of the detected change points.692

In particular, we use the nett package (Amini et al., 2013) to fit the DCSBM. For two consecutive change693

points Ĉk and Ĉk+1, we consider the time series between the two change points and we exclude the time694

points in a pre-specified removal set. The remaining graphs in the interval are used to compute the average695

adjacency matrix and fitted to the DCSBM. We let the number of community be K = {2, 3, 4, 5} and we696

use the lowest BIC to choose the optimal number of community for that interval. Finally, we calculate the697

log-likelihood of the removed graphs with the node labels estimated by the DCSBM. Although this is an698

heuristic approach, the log-likelihood values provide information on how well the detected change points699

have segmented the entire time span into intervals where the network patterns are relatively stable.700

In Section 5.3, we apply the evaluation procedure to real data. For the MIT cellphone data with T = 232,701

we remove the graphs at time t equals to multiples of ∆t = {15, 20, 25, 30} respectively. For the Enron Email702

data with T = 100, we remove the graphs at time t equals to multiples of ∆t = {3, 6, 9, 12} respectively.703

For completeness, Table 8 provides the dates of detected change points from the competitor methods on the704

respective MIT cellphone data and Enron email data.705

Table 8: Dates of detected change points from the competitor methods.
Data Method Dates of Detected Change Points

MIT
cellphone
data

CPDnbs 2004-10-30, 2004-12-17, 2005-01-18, 2005-02-19, 2005-03-11, 2005-03-31
CPDrdpg 2004-12-17, 2005-01-06, 2005-03-11
CPDstergm 2004-10-13, 2004-10-24, 2004-11-02, 2004-11-16, 2004-12-17, 2005-03-24
kerSeg 2004-10-18, 2004-12-17, 2005-01-05, 2005-04-02
gSeg 2004-11-01, 2004-12-11, 2004-12-18, 2005-01-10, 2005-03-11

Enron
email
data

CPDnbs 2000-09-04, 2001-02-05, 2001-06-11, 2001-09-03, 2001-11-26
CPDrdpg 2000-10-09, 2001-01-08, 2001-05-21, 2001-08-13, 2001-09-17, 2001-12-10, 2002-02-04
CPDstergm 2001-08-20, 2001-10-15, 2001-12-10, 2002-02-04
kerSeg 2000-07-10, 2000-10-23, 2001-05-21, 2002-02-11, 2002-03-25
gSeg 2000-07-10, 2000-10-16, 2001-12-31, 2002-02-11, 2002-03-25
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