
Analog Computing for AI Sometimes Needs
Correction by Digital Computing: Why and When

Changdae Kim, Daegun Yoon, Taehoon Kim, Yeonjeong Jeong,
Kangho Kim, Kwangwon Koh, Eunji Pak

Electronics and Telecommunications Research Institute (ETRI)
cdkim, kljp, taehoon.kim, yjjeong, khk, kwangwon.koh, pakeunji@etri.re.kr

Abstract

Analog computing is a compute-in-memory technology that allows multiple dot-
product operations to be performed in parallel, and can extremely accelerate
matrix-vector multiplications in AI. However, computation in analog computing
devices is imperfect due to its non-idealities. This can severely degrade its accu-
racy, and prevents analog computing from being widely used.
In this paper, we propose a correction-based approach to mitigate these non-
idealities of analog computing. The proposed method exploits the confidence
score calculated from analog computing, and leverages digital computing to cor-
rect the result if the confidence is low. We propose two algorithms that efficiently
improve accuracy without requiring offline profiling or training. First, the digital
rate based correction algorithm optimizes the accuracy within the target digital
computing usage rate. Second, the confidence threshold based correction algo-
rithm balances the digital computing usage rate and the accuracy by finding the
appropriate threshold from online profiling. We use several image recognition
models to show that the proposed algorithms improve the accuracy of AI in ana-
log computing by efficiently utilizing digital computing.

1 Introduction

Analog computing is a compute-in-memory technology based on the law of physics. An analog
computing device has crossbars of memory cells like other memory devices. If voltages are applied
to one side, the results of dot-products between these voltages and the conductance stored in the cells
are derived using Ohm’s and Kirchhoff’s laws. This phenomenon allows Matrix-Vector Multiplica-
tion (MVM), a key operation in AI models, to be performed in O(1) time complexity. In addition,
since the matrix elements reside in the crossbars as the conductance during computation, the mem-
ory bandwidth requirements for MVM operations are significantly reduced. These advantages make
analog computing a promising solution to extremely improve the performance and energy efficiency
of AI, compared to digital computing devices, like GPUs or NPUs.

However, analog computing introduces computational noise due to its non-idealities, resulting in
imperfect results and limiting its adoption. There are many sources of computational noises. First,
noise can be introduced when converting input value to voltage level. Second, the matrix elements
need to be programmed as the conductance level of the memory cells, but it is difficult to fine-tune
the conductance level. Moreover, the conductance can leak over time. Third, the dot-product result
is derived as the current level, which can be affected by electrical interference or wire capacity
limitations. Fourth, converting the current level to digital output is prone to errors, and its resolution
may be limited.

To mitigate these non-idealities, several approaches have been proposed. Some works exploit re-
dundancy when storing or processing data to improve computational accuracy [1, 6]. Several archi-

Second Workshop on Machine Learning with New Compute Paradigms at NeurIPS 2024(MLNCP 2024).



tectural studies have been conducted [24, 4]. For example, a large shared analog-to-digital converter
(ADC) enhances bit resolution without overhead [24]. Some works optimize AI models for ana-
log devices, such as analog-aware training to mitigate the conductance leakage effect [21, 26] and
tailored stochastic gradient descent (SGD) algorithm [27]. In addition, hybrid analog-digital archi-
tectures have been proposed [9, 13, 15, 17, 18]. In these architectures, digital computing handles
the accuracy-sensitive parts while analog computing handles the rest to increase energy efficiency.

In this paper, we propose a correction-based approach to overcome the non-ideality of analog com-
puting. In our approach, we first use analog computing devices to perform AI models and check
the confidence of the result. Then, if the result is not confident enough, we correct it with digital
computing. To determine confidence, we use the difference between the maximum and the second
maximum softmax value [23]. We propose two algorithms for the correction. The first algorithm
improves the accuracy of the AI model while maintaining the target digital computing device us-
age rate. The second algorithm determines the appropriate confidence threshold from the profiling
phase. Then, in the running phase, the threshold is used to determine whether the result should be
corrected. The proposed algorithms do not require any offline profiling or training.

We show the feasibility of the proposed mechanisms with an analog computing device emulator [22].
With four image classification AI models, we achieve near digital accuracy, with only 22%-62% sup-
port of digital computing. The proposed mechanisms are independent of the hardware architecture
and can be used with any AI model that ends with a softmax model, including LLMs. In future
work, we will apply the proposed mechanisms to other AI models including LLMs, and analyze the
latency and power consumption with the detailed hardware simulation.

2 Background and Related Work

2.1 Analog Computing and Its Non-Idealities

𝐼! =#
"#!

$

𝐺!" × 𝑉"

WL

BL

Vn

I1

V2

V1

I2 Im

G11 G21 Gm1

G12

G1n

...

...

In
pu
t

Output

D
ig
ita
l-
to
-A
na
lo
g

Analog-to-Digital

Figure 1: Analog computing

The operating principle of analog computing is shown in Figure 1.
Here’s how it works: if we program the conductance of each mem-
ory cell as Gi,j , and then apply a voltage Vi to each row, then
according to Ohm’s law and Kirchhoff’s law, the current flowing
through the j-th column is equivalent to

∑
i Gji · Vi. Based on this

principle, matrix-vector multiplications can be implemented in a
fully parallel fashion, in a single time step.

As mentioned above, analog computing offers great efficiency
through highly parallelized, in-situ computations. It has fast com-
putation speed and high energy efficiency. In addition, it allevi-
ates the memory bandwidth bottleneck by performing computations
where the data resides.

However, analog computing is inherently vulnerable thus it is dif-
ficult to achieve the same level of computational accuracy as digital computing. Analog devices
in nature have programming noise, read noise, temporal resistance drift, limited bit-level precision,
analog-digital conversion loss, etc [3, 4, 11, 19, 24, 26]. These non-ideal factors might degrade
computational accuracy. Therefore, for practical use, it is important to maintain a certain level of
accuracy in AI computation under these non-idealities of analog computation.

2.2 Related Works to Overcome Non-Idealities

To alleviate the accuracy degradation of AI computation caused by non-ideality, many previous
works have been proposed. [4, 24, 26] proposed novel architectural designs that can minimize the
impact of conversion loss bit-level precision limitation and analog-digital conversion loss. [1, 6]
presented a bit-level divide-and-merge mechanism to recover from the bit-level precision limit. [16]
proposed a time-domain conversion technique and buffer for storing intermediate analog values to
minimize losses in analog-digital conversion. [21, 26] proposed a new AI training algorithm that
is robust to temporal conductance drift. Some work [12, 19] aimed to minimize the stuck-at faults
using redundant arrays and re-mapping weights. Tiki-Taka [27] addressed the inefficiency and high
error rates of stochastic gradient descent (SGD) on analog devices using an auxiliary array.

2



0

10

20

30

40

[0
.0

, 0
.1

)
[0

.1
, 0

.2
)

[0
.2

, 0
.3

)
[0

.3
, 0

.4
)

[0
.4

, 0
.5

)
[0

.5
, 0

.6
)

[0
.6

, 0
.7

)
[0

.7
, 0

.8
)

[0
.8

, 0
.9

)
[0

.9
, 1

.0
]

Confidence 

Wrong Cases

0
20
40
60
80

100

[0
.0

, 0
.1

)
[0

.1
, 0

.2
)

[0
.2

, 0
.3

)
[0

.3
, 0

.4
)

[0
.4

, 0
.5

)
[0

.5
, 0

.6
)

[0
.6

, 0
.7

)
[0

.7
, 0

.8
)

[0
.8

, 0
.9

)
[0

.9
, 1

.0
]In

pu
t d

at
a 

(%
)

Confidence 

Correct Cases

Inception-v4 ResNet-18 ViT-Base ViT-Large

0
15
30
45
60
75

[0
.0

, 0
.1

)
[0

.1
, 0

.2
)

[0
.2

, 0
.3

)
[0

.3
, 0

.4
)

[0
.4

, 0
.5

)
[0

.5
, 0

.6
)

[0
.6

, 0
.7

)
[0

.7
, 0

.8
)

[0
.8

, 0
.9

)
[0

.9
, 1

.0
]

Confidence 

Correct Cases

(a) Digital computing (b) Analog computing

0

15

30

45

60

[0
.0

, 0
.1

)
[0

.1
, 0

.2
)

[0
.2

, 0
.3

)
[0

.3
, 0

.4
)

[0
.4

, 0
.5

)
[0

.5
, 0

.6
)

[0
.6

, 0
.7

)
[0

.7
, 0

.8
)

[0
.8

, 0
.9

)
[0

.9
, 1

.0
]

Confidence 

Wrong Cases

Figure 2: Confidence score and actual correctness

On the other hand, several works introduced hybrid designs that combines analog computing with
highly accurate digital computing to compensate for non-ideality. Rashed et al. [9] proposed an ar-
chitecture that compute the most significant bits (MSBs) on digital logic and the least significant bits
(LSBs) on analog crossbars. Nandakumar et al. [18] presented a design where high-precision digi-
tal computing accumulates the partial sum of the results calculated in an analog computing device
and updates the precise weights in the analog computing device. ReHy [13] delegated feed-forward
propagation to analog computing, while backward propagation, which requires precise computation,
is handled by digital computing for CNN training. 3D-ReG [15] is a heterogeneous architecture that
vertically integrates ReRAM-based analog device and GPU to improve DNN training efficiency.
HARDSEA [17] aimed to implement self-attention in transformer models using a hybrid design
that offloads dense relevance predictions to analog computing devices and handles sparse, precise
computations with digital computing.

3 Design

In this paper, we propose analog-digital hybrid AI computation that, only when the AI computation
in analog computing devices seems to be wrong, digital device steps and corrects the answer. This
approach takes advantage of both the high efficiency of analog computing and the high accuracy of
digital computing.

The problems we propose to solve in our approach are: (1) How do we know that an analog AI
computation is wrong? In the real world, the correct answer is unknown. (2) How does digital com-
puting decide whether to intervene? We need a strategy that balances analog computing’s efficiency
and digital computing’s correctness. In this section, we discuss the answers to both questions.

3.1 Confidence and Correctness in AI Models

To predict the correctness of analog computation, we use the confidence score of the AI model.
There are several ways to define a confidence score [23], and we choose the difference between the
top two softmax values from the last layer. The softmax values from the last layer represent the
likelihood of each item or class being selected as the output, so the difference between the top two
softmax values represents the confidence of the best answer compared to the second best answer.

The principle behind our approach is that when the difference between the top two softmax values
is sufficiently large, there is little chance that their order will be reversed due to analog calculation
errors. Figure 2(a) presents the relationship between confidence score and actual correctness of four
AI models run on a digital device. It has two plots: the left with data from accurate predictions, and
the right from incorrect ones. The x-axis is the confidence score range, and the y-axis indicates the
number of cases that their data have the confidence score belonging to the range in the x-axis. These
plots demonstrate a clear trend: accurate predictions are likely to have higher confidence score, and
wrong predictions usually have lower confidence score. Figure 2(b) shows results when using analog
computing, emulated through IBM AIHWKIT [22], with further details provided in Section 4. In
analog computing, the trend between confidence and accuracy remains consistent.

To address computational errors in analog computing devices, our solution involves initially per-
forming the computations on the analog device. If confidence is sufficiently high, we accept the
result; otherwise, the result is corrected by the digital accelerators. Obtaining confidence score is
straightforward: the AI model first identifies the maximum softmax value, and during this process,

3



the second highest softmax value is naturally obtained with little extra effort. To offload the com-
putation, we can take advantage of the hybrid approach by transferring only the input data, which is
likely to reside in the host memory, to the digital accelerators.

We propose two mechanisms for determining a confidence threshold for triggering digital device
intervention. The threshold is determined based on either (1) the target utilization rate of digital
computation, or (2) continuous online profiling. Both mechanisms are based on online profiling, not
requiring offline profiling. This enables immediate adaptation without pre-processing AI model on
both analog and digital computing devices to collect data in advance.

3.2 Digital-Rate based Correction Mechanism

In this method, the system administrator determines the target utilization rate of digital computa-
tion, α%, taking into account the available resources and power conditions. The AI model initially
processes incoming data on an analog device first, generating a confidence score and a result. In
case the confidence score ranks within the lowest α%, the computation is transferred to a digital
accelerator, which reprocesses the input and updates the result accordingly. This approach primarily
uses analog computing, engaging digital computing only for the least confident α% cases.

Algorithm 1 Digital-Rate based Correction Algorithm
1: Compute the AI model with analog computing device
2: idx← round down(confidence score/Histogram.interval)
3: Histogram.bin[idx ]← Histogram.bin[idx ] + 1
4: Histogram.total ← Histogram.total + 1

5: rank ←
(∑idx−1

i=0 Histogram.bin[i ]
)
+ randint(0,Histogram.bin[idx ])

6: if rank/Histogram.total < digital rate then
7: Correct the result with digital computing device
8: end if

Algorithm 1 describes the overall procedure. An online histogram tracks the distribution of confi-
dence, from which the rank of a specific confidence is determined. Assuming the confidence falls
into bin index idx, then its rank is

∑idx−1
i=0 count of bin(idx) + randint(0, count of bin(k))

From the calculated rank, we can get the percentile of the confidence. When the percentile is lower
than α, we re-run the AI model in a digital accelerator with same input and update the result.

3.3 Confidence Threshold based Correction Mechanism

This mechanism is designed to determine the optimal confidence threshold through online profiling.
It is intended to meet scenarios in that administrators do not need to set a digital computing usage
rate or prefer the system to manage settings autonomously.

Algorithm 2 Confidence Threshold base Correction Algorithm
1: data id ← data id + 1
2: if data id%phase len < prof rate × phase len then ▷ Profiling phase
3: Compute the AI model with analog and digital computing devices in parallel
4: if Resultanalog ̸= Resultdigital then
5: profile.append(confidence score from analog computing)
6: end if
7: else
8: if data id%phase len == prof rate × phase len then ▷ Start of execution phase
9: threshold ′ = δ%th percentile of profiled confidence scores

10: threshold ← threshold × β + threshold ′ × (1− β)
11: end if
12: Compute the AI model with analog computing device
13: if confidence score ≤ threshold then
14: Correct the result with digital computing device
15: end if
16: end if

4



0

20

40

60

80

[0
.0

, 0
.1

)
[0

.1
, 0

.2
)

[0
.2

, 0
.3

)
[0

.3
, 0

.4
)

[0
.4

, 0
.5

)
[0

.5
, 0

.6
)

[0
.6

, 0
.7

)
[0

.7
, 0

.8
)

[0
.8

, 0
.9

)
[0

.9
, 1

.0
]In

pu
t d

at
a 

(%
)

Confidence 

Same Prediction Cases

Inception-v4 ResNet-18 ViT-Base ViT-Large

0

15

30

45

60

[0
.0

, 0
.1

)
[0

.1
, 0

.2
)

[0
.2

, 0
.3

)
[0

.3
, 0

.4
)

[0
.4

, 0
.5

)
[0

.5
, 0

.6
)

[0
.6

, 0
.7

)
[0

.7
, 0

.8
)

[0
.8

, 0
.9

)
[0

.9
, 1

.0
]

Confidence 

Different Prediction Cases

0

20

40

60

80

100

Inception-v4 ResNet18 ViT-Base ViT-Large

Ac
cu

ra
cy

(%
)

Digital Analog(all) Analog(same) Analog(diff)

(a) Accuracy (b) Confidence Score

Figure 3: Accuracy and confidence score when the prediction results from digital and analog com-
putings are same or different

Algorithm 2 describes the entire procedure, which consists of two phases: profiling and execution.
In the profiling phase, input data is simultaneously processed by both analog and digital computing
devices to collect the distribution of confidence. At the end of the profiling phase, a threshold is
established. In the execution phase, the AI model is executed on analog computing devices and the
results are adjusted by digital computing if the confidence is less than or equal to the threshold value.

The key here is to determine the appropriate threshold. If the threshold is set too low, digital com-
puting may be unable to calibrate the results, potentially degrading the accuracy of AI results. Con-
versely, if the threshold is set too high, excessive digital computing will be employed, which could
undermine the efficiency of analog computing.

To determine the threshold, we specifically profile cases where the analog and digital computing
results differ. As digital computation guarantees the correctness, its accuracy is the upper limit for
a given model. Thus, the discrepancy between the two results indicates that the analog result is
likely to be wrong. Figure 3 (a) shows the accuracy of digital computing, analog computing, and
analog computing when the prediction results are the same or different with digital computing. This
indicates that the different prediction cases are the main cause of low accuracy of analog computing.
Note that the same prediction cases have larger confidence scores. They are easier to pick the right
answer. In addition, Figure 3 (b) shows that confidence score distribution is highly skewed for the
same and different prediction cases. Therefore, we profile different prediction cases to determine the
range of the ‘confidence score that needs to be corrected’. We set the threshold with two different
options, the 70-th and 90-th percentile of these profiled confidence scores. In the algorithm, δ
represents the percentile value. Profiling is conducted periodically, and the threshold is updated
using a weighted moving average, with a weight of 0.5. β in the algorithm denotes this weight.

It is possible that no cases are found in which the results of analog and digital computing differ.
In such a case, we set the confidence threshold for profiling to 0. This is a reasonable assumption
because it is highly probable that the results of analog and digital computing will be identical.

4 Initial Results

4.1 Experimental Methodology

In this paper, we focus on evaluating the accuracy of AI computation and the usage of digital com-
puting. Accuracy is the key target metric, and digital computing usage can indicate the achievable
energy efficiency and performance improvements of the proposed mechanisms. We leave a detailed
analysis of latency and power consumption as future work.

To emulate computational noises on analog computing devices, we utilize the IBM AIHWKIT [22].
We mostly use default configurations: PCM-like memory cells, 512×512 crossbar arrays, 8-bit
DAC, and 8-bit ADC. Note that our mechanism is orthogonal to the characteristics of analog com-
puting devices, and evaluation with various device configurations is our on-going work.

To evaluate the accuracy of analog computing devices, we choose the image classification tasks as
it is easy to verify the correctness with labeled dataset. We use four image classification models,
ResNet-18 [10], Inception-v4 [25], ViT-Base, and ViT-Large [8]. For the dataset, we use ImageNet
data [7] since it has a large number of classes. In addition, it has 50,000 images with labels for
validation. We use the validation set as input data for evaluation.

5



50

55

60

65

70

75

0 10 20 30 40 50 60 70 80 90 10
0

Ac
cu

ra
cy

 (%
)

Digital comp. usage (%) 

Naïve Ideal Hist(10) Hist(20) Hist(50)

40

50

60

70

80

0 10 20 30 40 50 60 70 80 90 10
0

Digital comp. usage (%) 

76
77
78
79
80
81
82

0 10 20 30 40 50 60 70 80 90 10
0

Digital comp. usage (%) 

81

82

83

84

85

0 10 20 30 40 50 60 70 80 90 10
0

Digital comp. usage (%) 

(a) Inception-v4 (b) ResNet-18 (c) ViT-Base (d) ViT-Large

Figure 4: Accuracy and digital computing usage with digital-rate based correction

4.2 Results with Digital-Rate based Correction

Figure 4 shows the results with digital-rate based correction algorithm. The x-axis represents the
target digital computing usage rate, where 0% means all computation is performed on analog com-
puting devices, and 100% indicates only digital computing is used. The y-axis shows the accuracy
of the image classification task.

For comparison, we define Naı̈ve algorithm, which randomly selects input data to correct its result
with digital computing. Ideal algorithm uses knowledge of all future input data. Finally, Hist(k)
algorithms refer to the instance of Algorithm 1, with k indicating the number of histogram bins.

The four graphs with different models show similar trends, despite varying accuracy on analog and
digital computing devices. Naı̈ve shows a linear improvement in accuracy as the digital computing
rate increases, while Ideal shows a super-linear improvement. This confirms that the confidence
score based correction mechanism effectively identifies potentially erroneous inputs in analog com-
puting. Furthermore, there is almost no gap between Ideal and Hist(k), indicating that the histogram
based online profiling accurately predicts the confidence rank of the result. We also verified that
actual digital computing usage is close to the target rate, but the graph is omitted due to space limits.

4.3 Results with Confidence Threshold based Correction

Figure 5 presents the evaluation results of confidence threshold based correction algorithm. The
x-axis is the different comparisons. For reference, we present the result of Analog-only and Digital-
only computation. The Ideal is the case where the threshold is determined with the complete knowl-
edge of all results for the entire dataset. Profile(ρ%) are the instances of Algorithm 2 where ρ is the
profiling rate. Each epoch consists of 1,000 inputs; for a 10% profiling rate, 100 images are used
for profiling, followed by 900 in the execution phase. In the Figure, the lines represent the accuracy
(y-axis on the left side) and the bars show the digital computing usage rate (y-axis on the right side).
The green line and bars represent results when we determine the threshold as the 70th percentile of
profiled confidence scores. The blue line and blue bars use the 90th percentile.

Four graphs show similar trends. The proposed algorithm achieves accuracy close to that of digital-
only computation while increasing the usage of analog computing to 38-78%, thereby enhancing
computing efficiency. The profiling-based threshold setting algorithm performs comparably to the
ideal case, suggesting that online profiling is sufficient, even with just a 5% profiling rate. Increasing
the profiling rate may have better results, however, it is less efficient since both analog and digital
computations are required during profiling. Comparing the green and blue graphs, a trade-off be-
tween accuracy and efficiency is observed when setting the threshold at the 70th and 90th percentile,
with the 90th percentile providing more achievable results.

0

20

40

60

80

100

50

55

60

65

70

75

Ac
cu

ra
cy

 (%
)

70%ile (Usage) 90%ile (Usage) 70%ile (Acc.) 90%ile (Acc.)

0

20

40

60

80

100

45
50
55
60
65
70
75

0

20

40

60

80

100

75

77

79

81

83

85

0

20

40

60

80

100

81

82

83

84

85

86

D
ig

ita
l c

om
p.

 u
sa

ge
 (%

)

(a) Inception-v4 (b) ResNet-18 (c) ViT-Base (d) ViT-Large
Figure 5: Accuracy and digital computing usage with confident threshold based correction

6



5 Discussion and Conclusion

In this paper, we propose a correction-based approach to overcome analog computing’s non-ideality.
We find that the confidence from the result of the AI model can be a good indicator of its correctness,
and improve the overall accuracy while minimizing digital computing usage. Our early experimental
results show that the proposed algorithms based on confidence score efficiently optimize the digital
computing usage to achieve accuracy close to digital computing.

One important advantage of the proposed mechanism is that it is both hardware and model inde-
pendent. Although our initial focus has been on analog computing devices with crossbar arrays,
this mechanism can be applied to any hardware experiencing inherent computational noises, e.g.,
photonic computing [5]. Furthermore, it can be applied to any AI model that makes a selection in
the final layer. This includes most recognition models, which select one class at the last layer, and
most generative models, which choose the next token or the color of the next pixel at the last layer.

Our future work is as follows. First, detailed hardware simulation is required to prove the efficiency
of the proposed algorithms. Especially, the latency and energy efficiency are affected by hardware
configurations of analog computing. We will evaluate our mechanisms with various analog comput-
ing devices using the detailed analog hardware simulator, e.g., DNN+NeuroSim [14, 20].

Second, we can apply the proposed methods to other AI models, including Large Language Models
(LLMs). Since the confidence based mechanisms have been used for LLMs [2, 23], we believe that
our approach is easily adopted for LLMs. If the capacity of the analog computing device is limited,
analog computing can be applied to only the initial layers or the distillation models.

Third, we will analyze the combined effect of other methods designed to overcome the non-idealities
of analog computing. For instance, hardware-aware training [21, 26] can enhance the computation
accuracy of analog computing and reduce the digital computing requirements when combined with
the proposed mechanism.

Acknowledgments and Disclosure of Funding

This work was supported by Institute of Information & communications Technology Planning &
Evaluation (IITP) grant funded by the Korea government(MSIT) (No.RS-2023-00216370, Research
on High-efficiency Analog AI Computing for Large-scale DNN Model).

References
[1] Tanner Andrulis, Joel S. Emer, and Vivienne Sze. RAELLA: Reforming the Arithmetic for Ef-

ficient, Low-Resolution, and Low-Loss Analog PIM: No Retraining Required! In Proceedings
of International Symposium on Computer Architecture (ISCA), 2023.

[2] Sangmin Bae, Jongwoo Ko, Hwanjun Song, and Se-Young Yun. Fast and Robust Early-Exiting
Framework for Autoregressive Language Models with Synchronized Parallel Decoding. In
Proceedings of Conference on Empirical Methods in Natural Language Processing (EMNLP),
pages 5910–5924, 2023.

[3] Majed Valad Beigi and Gokhan Memik. Thermal-aware Optimizations of ReRAM-based Neu-
romorphic Computing Systems. In Proceedings of Design Automation Conference (DAC),
2018.

[4] Ping Chi, Shuangchen Li, Cong Xu, Tao Zhang, Jishen Zhao, Yongpan Liu, Yu Wang, and Yuan
Xie. PRIME: A Novel Processing-in-Memory Architecture for Neural Network Computation
in ReRAM-Based Main Memory. In Proceedings of International Symposium on Computer
Architecture (ISCA), pages 27–39, 2016.

[5] Seou Choi, Yannick Salamin, Charles Roques-Carmes, Rumen Dangovski, Di Luo, Zhuo
Chen, Michael Horodynski, Jamison Sloan, Shiekh Zia Uddin, and Marin Soljacic. Pho-
tonic Probabilistic Machine Learning using Quantum Vacuum Noise. Nature Communications,
2024.

7



[6] Teyuh Chou, Wei Tang, Jacob Botimer, and Zhengya Zhang. CASCADE: Connecting RRAMs
to Extend Analog Dataflow In An End-To-End In-Memory Processing Paradigm. In Proceed-
ings of International Symposium on Microarchitecture (MICRO), page 114–125, 2019.

[7] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A Large-
scale Hierarchical Image Database. In Proceedings of Conference on Computer Vision and
Pattern Recognition (CVPR), pages 248–255, 2009.

[8] Alexey Dosovitskiy. An Image is Worth 16x16 Words: Transformers for Image Recognition
at Scale. arXiv preprint arXiv:2010.11929, 2020.

[9] Muhammad Rashedul Haq Rashed, Sumit Kumar Jha, and Rickard Ewetz. Hybrid Analog-
Digital In-Memory Computing. In Proceedings of International Conference On Computer
Aided Design (ICCAD), pages 1–9, 2021.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for im-
age recognition. In Proceedings of Conference on Computer Vision and Pattern Recognition
(CVPR), pages 770–778, 2016.

[11] Miao Hu, John Paul Strachan, Zhiyong Li, Emmanuelle M. Grafals, Noraica Davila, Catherine
Graves, Sity Lam, Ning Ge, Jianhua Joshua Yang, and R. Stanley Williams. Dot-product
Engine for Neuromorphic Computing: Programming 1T1M Crossbar to Accelerate Matrix-
Vector Multiplication. In Proceedings of Design Automation Conference (DAC), 2016.

[12] Wenqin Huangfu, Lixue Xia, Ming Cheng, Xiling Yin, Tianqi Tang, Boxun Li, Krishnendu
Chakrabarty, Yuan Xie, Yu Wang, and Huazhong Yang. Computation-oriented Fault-tolerance
Schemes for RRAM Computing Systems. In Proceedings of Asia and South Pacific Design
Automation Conference (ASP-DAC), pages 794–799, 2017.

[13] Hai Jin, Cong Liu, Haikun Liu, Ruikun Luo, Jiahong Xu, Fubing Mao, and Xiaofei Liao.
ReHy: A ReRAM-Based Digital/Analog Hybrid PIM Architecture for Accelerating CNN
Training. IEEE Transactions on Parallel and Distributed Systems, 33(11):2872–2884, 2022.

[14] Junmo Lee, Anni Lu, Wantong Li, and Shimeng Yu. NeuroSim V1.4: Extending Technology
Support for Digital Compute-in-Memory Toward 1nm Node. IEEE Transactions on Circuits
and Systems I: Regular Papers, 71(4):1733–1744, 2024.

[15] Bing Li, Janardhan Rao Doppa, Partha Pratim Pande, Krishnendu Chakrabarty, Joe X. Qiu,
and Hai (Helen) Li. 3D-ReG: A 3D ReRAM-based Heterogeneous Architecture for Training
Deep Neural Networks. ACM Journal on Emerging Technologies in Computing Systems, 16(2),
2020.

[16] Weitao Li, Pengfei Xu, Yang Zhao, Haitong Li, Yuan Xie, and Yingyan Lin. TIMELY: Pushing
Data Movements and Interfaces in PIM Accelerators Towards Local and in Time Domain. In
Proceedings of International Symposium on Computer Architecture (ISCA), page 832–845,
2020.

[17] Shiwei Liu, Chen Mu, Hao Jiang, Yunzhengmao Wang, Jinshan Zhang, Feng Lin, Keji Zhou,
Qi Liu, and Chixiao Chen. HARDSEA: Hybrid Analog-ReRAM Clustering and Digital-
SRAM In-Memory Computing Accelerator for Dynamic Sparse Self-Attention in Transformer.
IEEE Transactions on Very Large Scale Integration Systems, 32(2):269–282, 2024.

[18] S. R. Nandakumar, Manuel Le Gallo, Irem Boybat, Bipin Rajendran, Abu Sebastian, and Evan-
gelos Eleftheriou. Mixed-precision Architecture based on Computational Memory for Training
Deep Neural Networks. In Proceedings of International Symposium on Circuits and Systems
(ISCAS), pages 1–5, 2018.

[19] Thai-Hoang Nguyen, Muhammad Imran, Jaehyuk Choi, and Joon-Sung Yang. CRAFT:
Criticality-Aware Fault-Tolerance Enhancement Techniques for Emerging Memories-Based
Deep Neural Networks. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 42(10):3289–3300, 2023.

8



[20] Xiaochen Peng, Shanshi Huang, Yandong Luo, Xiaoyu Sun, and Shimeng Yu.
DNN+NeuroSim: An End-to-End Benchmarking Framework for Compute-in-Memory Accel-
erators with Versatile Device Technologies. In Proceedings of International Electron Devices
Meeting (IEDM), pages 32.5.1–32.5.4, 2019.

[21] Malte J. Rasch, Charles Mackin, Manuel Le Gallo, An Chen, Andrea Fasoli, Frédéric Oder-
matt, Ning Li, S. R. Nandakumar, Pritish Narayanan, Hsinyu Tsai, Geoffrey W. Burr, Abu
Sebastian, and Vijay Narayanan. Hardware-aware Training for Large-scale and Diverse Deep
Learning Inference Workloads using In-memory Computing-based Accelerators. Nature Com-
munications, 14, 2023.

[22] Malte J. Rasch, Diego Moreda, Tayfun Gokmen, Manuel Le Gallo, Fabio Carta, Cindy Gold-
berg, Kaoutar El Maghraoui, Abu Sebastian, and Vijay Narayanan. A Flexible and Fast Py-
Torch Toolkit for Simulating Training and Inference on Analog Crossbar Arrays. In Proceed-
ings of International Conference on Artificial Intelligence Circuits and Systems (AICAS), pages
1–4, 2021.

[23] Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani, Dara Bahri, Vinh Tran, Yi Tay, and
Donald Metzler. Confident Adaptive Language Modeling. In Proceedings of Conference on
Neural Information Processing Systems (NeurIPS), volume 35, pages 17456–17472, 2022.

[24] Ali Shafiee, Anirban Nag, Naveen Muralimanohar, Rajeev Balasubramonian, John Paul Stra-
chan, Miao Hu, R. Stanley Williams, and Vivek Srikumar. ISAAC: A Convolutional Neural
Network Accelerator with In-Situ Analog Arithmetic in Crossbars. In Proceedings of Interna-
tional Symposium on Computer Architecture (ISCA), pages 14–26, 2016.

[25] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander Alemi. Inception-v4,
Inception-resnet and the Impact of Residual Connections on Learning. In Proceedings of AAAI
Conference on Artificial Intelligence (AAAI), 2017.

[26] Weier Wan, Rajkumar Kubendran, Clemens Schaefer, Sukru Burc Eryilmaz, Wenqiang Zhang,
Dabin Wu, Stephen Deiss, Priyanka Raina, He Qian, Bin Gao, Siddharth Joshi, Huaqiang Wu,
H.-S. Philip Wong, and Gert Cauwenberghs. A Compute-In-Memory Chip based on Resistive
Random-Access Memory. Nature, 608(7923), 2022.

[27] Zhaoxian Wu, Tayfun Gokmen, Malte J. Rasch, and Tianyi Chen. Towards Exact Gradient-
based Training on Analog In-memory Computing. arXiv preprint arXiv:2406.12774, 2024.

9


