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Abstract

Advancements in Large Language Models001
(LLMs) and their increasing use in medical002
question-answering necessitate rigorous evalua-003
tion of their reliability. A critical challenge lies004
in hallucination, where models generate plausi-005
ble yet factually incorrect outputs. In the medi-006
cal domain, this poses serious risks to patient007
safety and clinical decision-making. To address008
this, we introduce MedHallu, the first bench-009
mark specifically designed for medical halluci-010
nation detection. MedHallu comprises 10,000011
high-quality question-answer pairs derived012
from PubMedQA, with hallucinated answers013
systematically generated through a controlled014
pipeline. Our experiments show that state-015
of-the-art LLMs, including GPT-4o, Llama-016
3.1, and the medically fine-tuned UltraMedical,017
struggle with this binary hallucination detection018
task, with the best model achieving an F1 score019
as low as 0.625 for detecting “hard” category020
hallucinations. Using bidirectional entailment021
clustering, we show that harder-to-detect hal-022
lucinations are semantically closer to ground023
truth. Through experiments, we also show in-024
corporating domain-specific knowledge and in-025
troducing a “not sure” category as one of the026
answer categories improves the precision and027
F1 scores by up to 38% relative to baselines.028

1 Introduction029

Recent advances in Large Language Models030
(LLMs) (Achiam et al., 2023) have catalyzed031
their widespread adoption as assistive tools across032
a multitude of domains, including software devel-033
opment (Krishna et al., 2024), healthcare (Singhal034
et al., 2022), weather prediction (Li et al., 2024), and035
financial applications (Nie et al., 2024). However,036
LLMs are prone to hallucination (Bang et al., 2023),037
where they generate plausible but factually incorrect or038
unverifiable information (Ji et al., 2023; Huang et al.,039
2025). Hallucinations can arise from various factors,040
including biased or insufficient training data (Han et al.,041
2024; Zhang et al., 2024c), and inherent architectural042
limitations of LLMs (Leng et al., 2023; Kalai and043
Vempala, 2024). This issue is particularly problematic044

You are tasked with hallucination detection. You will be 

given a question and an answer. The answer can either 

be hallucinated (incorrect) or non-hallucinated 

(correct). Judge whether the answer is hallucinated 

based on your best judgment.

Here is the task:

Question: What is the primary cause of Type 1 Diabetes?

Answer: A viral infection that specifically targets the 

pancreas.

Your Judgment:

No, it is not a hallucinated 

answer. The answer is correct.

The LLM failed because the answer is incorrect. Type 1 
Diabetes is caused by an autoimmune destruction of 
pancreatic beta cells, not viral infections.

Medical Hallucination Detection Task

Example of Unsuccessful Hallucination Detection

Objective: Detect whether a given answer to a question 
contains hallucinations.

The LLM failed ! 

Figure 1: An example of medical hallucination detec-
tion. The detailed prompt used for the hallucination
detection task is presented in Appendix K.

in high-stakes fields such as the medical domains, 045
where the generation of incorrect information can 046
exacerbate health disparities (Singhal et al., 2022). 047

Detecting hallucinations in LLM outputs (Figure 1) 048
is therefore of critical importance. Various methods 049
have been proposed to address this issue, including self- 050
consistency (Wang et al., 2023), sampling-based ap- 051
proaches such as SelfCheckGPTZero (Manakul et al., 052
2023), and intrinsic methods that evaluate token-level 053
uncertainty and entropy (Azaria and Mitchell, 2023; 054
Xiao and Wang, 2021). Existing benchmarks, such 055
as HaluEval (Li et al., 2023a) and Haydes (Liu et al., 056
2022) primarily evaluate hallucination detection capa- 057
bilities on general tasks, including summarization, ques- 058
tion answering, and dialogue systems, with an empha- 059
sis on common-sense knowledge rather than domain 060
specificity. This gap becomes particularly consequen- 061
tial in the medical domains, where specialized termi- 062
nology requires precise handling, as minor lexical de- 063
viations can lead to substantially divergent interpreta- 064
tions (Singhal et al., 2022). While recent efforts such as 065
HaluBench (Ravi et al., 2024), incorporate limited sam- 066
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ples from the medical domains, their domain-agnostic067
generation frameworks lack medical curation. Similarly,068
Med-Halt (Pal et al., 2023) focuses on model bench-069
marking rather than providing a structured evaluation re-070
source. Furthermore, the subtlety of hallucinations (e.g.,071
whether they are hard or easy to detect) remains underex-072
plored in the medical context. Additionally, the perfor-073
mance differences between pre-trained LLMs and fine-074
tuned medical LLMs are sparsely documented (Ravi075
et al., 2024; Li et al., 2023a; Pal et al., 2023).076

To address these gaps, we present the Medical077
Hallucination detection dataset (MedHallu), a compre-078
hensive corpus of 10,000 medical question-answer pairs079
derived from the established PubMedQA dataset. Each080
pair is meticulously annotated to distinguish accurate081
responses from hallucinated content. Furthermore, Med-082
Hallu is stratified into easy, medium, and hard detection083
tiers based on the subtlety of hallucinations, enabling084
granular evaluation of model capabilities. The primary085
contributions of this research are threefold:086

• We introduce MedHallu, one of the first datasets087
specifically designed for medical hallucination de-088
tection tasks. Comprising 10,000 entries derived089
from PubMedQA, MedHallu is systematically090
categorized into three levels of difficulty—easy,091
medium, and hard—based on the subtlety of hallu-092
cination detection.093

• We find that hallucinated answers that are semanti-094
cally closer to the ground truth are more challeng-095
ing to detect. Furthermore, clustered answers using096
bi-directional entailment reveal uniformity, where097
all entries in a cluster are consistently either easy098
or hard to detect.099

• Our evaluation shows that general-purpose LLMs100
outperform fine-tuned medical LLMs in medical101
hallucination detection tasks. Additionally, we find102
that model performance can be enhanced by pro-103
viding relevant knowledge to LLMs. Moreover,104
introducing a “not sure” class alongside the exist-105
ing classes of “hallucinated” and “not-hallucinated”106
leads to improved precision, which is critical in the107
medical domains.108

2 Related Work109

Hallucination Detection Benchmarks. Hallucina-110
tion in LLMs has been extensively documented in a va-111
riety of tasks, including machine translation (Lee et al.,112
2019), dialogue systems (Balakrishnan et al., 2019),113
text summarization (Durmus et al., 2020), and question114
answering (Sellam et al., 2020), as reviewed in recent115
surveys (Ji et al., 2023). Existing benchmarks for hal-116
lucination detection, such as Hades (Liu et al., 2022)117
and HaluEval (Li et al., 2023a), offer robust method-118
ologies for identifying hallucinated content. However,119
they predominantly employ generic techniques that fail120
to account for the nuanced complexities inherent in121

medical contexts. Similarly, while benchmarks such 122
as HaluBench (Ravi et al., 2024) include some medi- 123
cal data samples in their data set, their data generation 124
processes are not specifically tailored for the medical 125
domain. Although Med-HALT (Pal et al., 2023) focuses 126
on medical hallucinations, it mainly serves as a perfor- 127
mance evaluation tool rather than providing a structured 128
dataset. In contrast, our work introduces the first com- 129
prehensive dataset for medical hallucination detection, 130
employing controlled methods to address these domain- 131
specific challenges. 132

Semantic Analysis of Hallucinated Text. Halluci- 133
nated sentences often sound over-confident (Miao et al., 134
2021; Chen et al., 2022) and frequently contain tokens 135
that are statistically improbable within a given context, 136
primarily due to suboptimal decoding strategies. Fine- 137
tuned models have sought to mitigate this issue by ad- 138
justing decoding parameters to enhance factual accuracy, 139
thereby reducing the occurrence of rare or anomalous 140
terms in hallucinated outputs (Huang et al., 2025). De- 141
spite these advancements, previous research has not 142
systematically compared hallucinated sentences with 143
their corresponding ground truth to assess semantic sim- 144
ilarities. Our work fills this gap by uncovering deeper 145
semantic relationships between hallucinated texts and 146
their ground truth counterparts. 147

Improvement Methods in Hallucination Detection. 148
Recent advancements in hallucination detection have 149
focused on integrating external knowledge to en- 150
hance model performance. Retrieval-augmented meth- 151
ods (Lewis et al., 2021; Li et al., 2023b) have mitigate 152
hallucinations via grounding models in general knowl- 153
edge. However, few studies have examined the impact 154
of domain-specific knowledge on hallucination detec- 155
tion tasks. While HaluEval (Li et al., 2023a) evaluates 156
knowledge-augmented detection, it lacks fine-grained, 157
domain-relevant knowledge integration. LLMs often 158
overestimate their competence (Zhang et al., 2023), 159
which underscores the need for structured mechanisms 160
to allow models to abstain from answering when uncer- 161
tain. Prior works have leveraged reinforcement learn- 162
ing (Xu et al., 2024), conformal abstention (Yadkori 163
et al., 2024), or likelihood score and entropy-based 164
metrics (Cole et al., 2023) to guide refusal decisions. 165
However, these methods rely on complex supervision 166
or predefined thresholds. More straightforward ap- 167
proaches, such as refusing to answer out-of-domain 168
questions (Cao, 2024), offer greater practicality but lack 169
adaptability to domain-specific tasks, particularly in 170
complex fields like medicine. Our work addresses these 171
limitations by (1) incorporating task-specific medical 172
knowledge to enhance hallucination detection and (2) 173
introducing a self-supervised “not sure” class, enabling 174
models to autonomously abstain from answering when 175
uncertain, without requiring elaborate supervision. This 176
dual approach remains under-explored in medical NLP, 177
where precision and reliability are paramount. 178
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Candidate Generation
MedHallu: Hallucinated Answer Generation Pipeline

Question: What is the primary cause of Type 1 Diabetes?
Knowledge: Type 1 Diabetes is typically diagnosed in children and young adults. 
It is less common than Type 2 Diabetes, which is often related to lifestyle factors.
Ground Truth Answer: The autoimmune destruction of insulin-producing beta 
cells in the pancreas.

Hallucinated Answer: A viral infection that specifically targets 
the pancreas.

Grading & Filtering

Pass Fail
Refining Failed 

Generation

Regeneration

Fallback After 4 Regeneration Attempts
If the LLM cannot produce a valid hallucinated answer after 5 tries, it will:
• Choose the response that’s most similar to the ground truth answer.
• Label this answer as EASY 

Grading & Filtering

Pass Fail

→ 

Question: What is the primary cause of Type 1 Diabetes?
Answer 1: A viral infection that specifically targets the pancreas. (Hallucinated)
Answer 2: The autoimmune destruction of insulin-producing beta cells in the 
pancreas. (Ground Truth)
Which one is correct?

No model got fooled
 Fail

One model got fooled
 Pass as EASY

Two models got fooled
 Pass as MEDIUM

All models got fooled
 Pass as HARD

Step 1: Quality Check

Grading & Filtering

Step 2: Correctness Check

If (Ground Truth Answer entails Hallucinated Answer) AND 
(Hallucinated Answer entails Ground Truth Answer)  

They have same meaning. ->  Fail  

“ You are a Hallucinated Answer generator.
Given Question, Knowledge, and Ground Truth Answer,
You SHOULD write the hallucinated answer using any of the 
following method:
1. Misinterpretation of Question
2. Incomplete Information
3. Mechanism and Pathway Misattribution
4. Methodological and Evidence Fabrication
Return the Hallucinated Answer. ”

Refining Failed Generation

Failed Hallucinated Answer Improved Answer
Pass (1) quality and (2) correctness check?

Pass (1) quality and (2) correctness check?

Figure 2: MedHallu medical hallucinated answer generation pipeline. Each question-answer pair from the
PubMedQA dataset undergoes the following steps to generate a hallucinated answer: (1) Candidate Generation:
Given a question, relevant knowledge, and ground truth answer, the LLM is prompted to generate a hallucinated
answer adhering to one of four hallucination types. (2) Grading & Filtering: Generated answers undergo quality
and correctness checks, being labeled as hard, medium, easy, or failed based on filtering results. (3) Refining
Failed Generation: Failed answers are optimized using TextGrad (Yuksekgonul et al., 2024) and re-filtered. If
they fail again, the LLM is re-prompted to generate new answers (Regeneration). (4) Fallback: If no qualified
answers emerge after four regeneration attempts, the answer most similar to the ground truth is selected as an easy
hallucinated example. The detailed prompt used for hallucination generation task is presented in the Appendix K.

3 MedHallu Benchmark179

We create this dataset by proposing a simple yet effec-180
tive pipeline with minimal human intervention, making181
it easy to scale the data generation. Figure 2 describes182
our complete generation and filtration pipeline, while183
Algorithm 1 provides a detailed approach for the same.184
We draw inspiration from the definitions of hallucinated185
answers provided by the KnowHalu paper (Zhang et al.,186
2024a), but modify them by adding and removing cer-187
tain categories to better adapt to the medical domain.188
By defining the medical domain-specific hallucination189
categories, as presented in Table 1, we ensure that the190
generated dataset reflects potential hallucination in the191
medical domains. We present the distribution of sam-192
ples by hallucination categories and levels of difficulty193
(Figure 3) for the MedHallu dataset, which consists of194
10,000 samples in total. The difficulty distribution of195
hallucinated answers is relatively even, with the “hard”196
type being slightly more common than the “easy” and197
“medium” types. The distribution of hallucination cate-198
gories by definition is more concentrated. Misinterpre-199
tation of the question is the most common hallucination200
category in MedHallu, accounting for 76% of the en-201
tire dataset, while evidence fabrication represents the202
smallest portion (0.5%).203

Mechanism
Misattribution

Incomplete
Information

Question
Misinterpretation

Evidence
Fabrication

0

0.2

0.4

0.6

Total: 1129 Total: 1222 Total: 7600 Total: 49

0.33

0.26

0.33 0.330.33 0.33 0.32 0.31
0.34

0.41

0.35 0.37

%
of
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m
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cu
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Easy Medium Hard

Figure 3: Statistics of the MedHallu dataset categorized
by four categories of hallucinations (see Table 1 for de-
tailed definitions) and levels of difficulty (easy, medium,
hard).

Dataset Generation Pipeline 204

The proposed methodological framework comprises a 205
three-phase pipeline architected for robust hallucinated 206
sample generation (Figure 2). The pipeline follows 207
a sequential approach: (1) stochastic sampling of po- 208
tential hallucinated responses based on in-context ex- 209
amples and precise definitions, (2) LLM-based quality 210
filtering mechanisms, (3) correctness checking using 211
bidirectional entailment and LLM prompting. (4) Se- 212
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Hallucination
Category Description Example

Misinterpretation of
Question

Misunderstanding the question, lead-
ing to an irrelevant response.

#Question#: Does high-dose vitamin C therapy improve
survival rates in patients with sepsis?
#Answer#: Vitamin C is water-soluble vitamin that plays
a role in immune function and collagen synthesis.

Incomplete
Information

Stays on-topic but omits the essential
details needed to fully answer the ques-
tion.

#Question#: How does penicillin treat strep throat?
#Answer#: Penicillin kills bacteria.

Mechanism and
Pathway

Misattribution

False attribution of biological mecha-
nisms, molecular pathways, or disease
processes that contradicts established
medical knowledge.

#Question#: What is the primary mechanism of action of
aspirin in reducing inflammation?
#Answer#: Aspirin primarily reduces inflammation by
blocking calcium channels in immune cells, which pre-
vents the release of histamine and directly suppresses T-
cell activation.

Methodological and
Evidence Fabrication

Inventing false research methods, sta-
tistical data, or specific clinical out-
comes.

#Question#: What is the success rate of ACL reconstruc-
tion surgery?
#Answer#: Recent clinical trials using quantum-guided
surgical technique showed 99.7% success rate across
10,543 patients with zero complications when using gold-
infused synthetic grafts.

Table 1: Categories of medical hallucinations used to generate the MedHalu dataset. Adapted from the KnowHallu
benchmark (Zhang et al., 2024a) with revised categories tailored to the medical domain (Appendix D).

quential Improvement via TextGrad. Finally, inspired213
by (Li et al., 2023a), we select the most similar sample214
generated, using semantic similarity in cases where a215
high-quality sample is not identified. This approach216
enables comprehensive identification and evaluation of217
linguistic hallucinations while minimizing false posi-218
tives through multi-layered verification protocols.219

1) Diverse Hallucinated Answer Sampling. Using a220
carefully crafted prompting strategy shown in Figure 2,221
we generate multiple possible hallucinated answers with222
diverse temperature settings, we describe the prompt in223
Table 6. Through experiments, we find that allowing224
the model to choose the category of hallucination to225
apply to a given medical question performs better than226
manually forcing a specific hallucination category. For227
this generation Hi = LMi(Qi, GTi, Ci), we provide228
the LLM with precise definitions of each category, along229
with examples, question Qi, and ground truth answers230
GTi. The LLM is tasked with generating an answer231
that is semantically similar to ground truth yet incorrect.232
Additionally, we provide the ground truth context Ci,233
which contains precise knowledge required to answer234
the question. This includes intricate details necessary235
for crafting a strong hallucinated answer.236

2) Quality checking - LLM-based Discriminative Fil-237
tering. The second phase of our pipeline implements238
a comprehensive quality filtering protocol leveraging239
an ensemble of LLMs to minimize individual model bi-240
ases. For each generated sample Hi, we employ a com-241
parative assessment framework where multiple LLMs242
independently evaluate two candidate responses: the po-243
tentially hallucinated answer and the established ground244
truth. The quality assessment task is formulated as a bi-245

nary classification problem, where models are prompted 246
to identify which response appears more factually ac- 247
curate given the question without access to the ground 248
truth context. To mitigate potential biases from any sin- 249
gle model, we implement a majority voting mechanism 250
across different LLM architectures (including Gemma2, 251
GPT-4o-mini, and Qwen2.5). A generated sample Hi 252
is preserved only when at least a majority of models in 253
the ensemble incorrectly identify it as the more accurate 254
response compared to the ground truth. The difficulty 255
categorization of generated samples is determined by 256
the voting patterns across the LLM ensemble. Specif- 257
ically, we classify Hi as “hard” when all LLMs in the 258
ensemble incorrectly identify it as accurate response, 259
“medium” when multiple but not all LLMs are deceived, 260
and “easy” when only a single LLM fails to identify 261
the hallucination. This multi-model consensus approach 262
helps ensure that preserved hallucinated samples are 263
sufficiently convincing while reducing the impact of 264
model-specific quirks or biases in the filtering process. 265

3) Correctness Checking via Entailment. We im-
plement a two-stage correctness verification protocol to
ensure that the generated hallucinations are semantically
distinct from the ground truth while maintaining coher-
ence. First, we employ bidirectional entailment check-
ing using a fine-tuned RoBERTa-large-MNLI model to
quantify the semantic divergence between the halluci-
nated sample Hi and ground truth GTi. The bidirec-
tional entailment score E is computed as:

E(Hi, GTi) = min(NLI(Hi → GTi),NLI(GTi → Hi))

where NLI(x → y) represents the natural language 266
inference score indicating whether x entails y. We estab- 267
lish a stringent threshold τ and only retain samples that 268
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Algorithm 1: Hallucination Generation Pipeline
Input: Question Q, Knowledge Context K, Ground

truth G, Number of attempts N , Generator model
Mgen, Discriminator models {D1, D2, ..., Dk},
TextGrad (TG) model Mtg , fooled checks both
quality and correctness

Output: Best hallucinated response H∗

Initialize:
H ← {} ▷ Initialize candidate set
success← False
Phase 1: Generation and Evaluation
for i← 1 to N do

Hi ←Mgen(Q,K) ▷ Generate initial answer
for j ← 1 to k do

fooledj ← Dj(Q,Hi, G) ▷ Check
discriminator j

if fooledj = True then
H∗ ← Hi

success← True
break Phase 1

if ¬success then
Himproved ←Mtg(Hi, Q,K) ▷ TG

improvement
H ′

i ←Mgen(Q,K,Himproved)
for j ← 1 to k do

fooledj ← Dj(Q,H ′
i, G)

if fooledj = True then
H∗ ← H ′

i

success← True
break Phase 1

H ← H∪ {Hi, H
′
i} ▷ Store both attempts

Phase 2: Fallback Selection
if ¬success then

H∗ ← argmaxH∈H(CosineSimilarity(H,G))

return H∗

satisfy: E(Hi, GTi) < τ . This ensures the hallucinated269
samples maintain sufficient semantic distance from the270
ground truth, minimizing false positives while requiring271
minimal human intervention.272

4) Sequential Improvement via TextGrad. Our273
framework implements an iterative optimization step274
to enhance the quality of generated hallucinations that275
fail initial quality or correctness checks. When a gen-276
erated sample Hi fails to meet the established qual-277
ity tests described in Section 3, we employ TextGrad278
optimization to refine subsequent generations through279
a feedback loop. The optimization process is formal-280
ized as: Hi+1 = TextGrad(Hi, F (Hi)) where F (Hi)281
represents feedback from the TextGrad optimizer, ini-282
tialized with GPT-4o-mini. This refinement process283
(detailed in Section 3) iterates up to five times, termi-284
nating either upon reaching a quality-compliant sam-285
ple or exhausting the iteration limit. For each failed286
generation, TextGrad analyzes LLM feedback to iden-287
tify hallucination indicators that make Hi easily de-288
tectable. The feedback mechanism specifically focuses289
on two aspects: (1) linguistic patterns that signal arti-290
ficial content and (2) structural elements that could be291

refined to enhance the naturalness. This feedback is 292
then incorporated into subsequent prompt refinement, 293
systematically improving both the content plausibility 294
and stylistic cohesion. If no sample passes the quality 295
filter after maximum iterations, we implement a fallback 296
strategy based on semantic dissimilarity. Specifically, 297
we select the candidate H∗ that maximizes the cosine 298
similarity from the ground truth embedding: H∗ = 299
argmaxHi

(cos(embed(Hi), embed(GTi))). This en- 300
sures that even in challenging cases, our pipeline pro- 301
duces outputs with maximum semantic similarity while 302
preserving response coherence. 303

4 Implementation Details 304

MedHallu Dataset Generation Settings. We gener- 305
ate hallucinated responses using Qwen2.5B-14B (Qwen, 306
2025). The ground truth question-answer pairs are 307
sourced from the pqa_labeled split of PubMedQA (Jin 308
et al., 2019), which contains 1,000 expert-annotated 309
samples, supplemented with 9,000 instances randomly 310
selected from the pqa_artificial split. To achieve 311
high-quality generation with adequate diversity, we uti- 312
lize regulated sampling settings. The temperature 313
is varied between 0.3 and 0.7, while the nucleus 314
sampling threshold (top-p) is fixed at 0.95. These 315
settings balance cohesion and variability. The maximum 316
response length is capped at 512 tokens to ensure com- 317
pleteness while mitigating computational costs. Each 318
hallucinated answer is limited to within ±10% of its 319
corresponding ground truth answer’s length, ensuring 320
uniform information density. 321

▷ Quality & correctness check. For quality check, 322
We employ three LLMs: GPT-4o mini (Ope- 323
nAI, 2024), Gemma2-9B (DeepMind, 2024), and 324
Qwen2.5-7B (Qwen, 2025). A response is retained 325
only if it deceives at least one of these models (see 326
Section 3). For correctness check, we employ the 327
microsoft/deberta-large-mnli model (He et al., 328
2021), applying bidirectional entailment with a con- 329
fidence threshold of 0.75. 330

▷ TextGrad & Fallback. We integrate TextGrad (Yuk- 331
sekgonul et al., 2024) with GPT-4o mini as the backend 332
model to generate feedback for samples that fail either 333
the quality or correctness checks. Each sample under- 334
goes a maximum of five generation attempts. If no valid 335
response is produced within these iterations, we adopt 336
a fallback strategy, selecting the most semantically 337
similar generated answer to the ground truth response. 338

Discriminator Model Settings. We evaluate a 339
diverse set of model architectures under two distinct 340
settings: (1) zero-shot (without additional knowledge) 341
and (2) context-aware (with ground truth context 342
provision). The detection prompt is described in 343
Figure 7. This dual-setting approach allows us to assess 344
both the baseline detection capabilities and the models’ 345
ability to leverage contextual information for improved 346
discrimination. We examine both general-purpose 347
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Model Without Knowledge With Knowledge ∆ Knowledge

General LLMs Overall F1 Overall P Easy F1 Med F1 Hard F1 Overall F1 Overall P Easy F1 Med F1 Hard F1 (∆ F1)

GPT-4o∗ 0.737 0.723 0.844 0.758 0.625 0.877 0.882 0.947 0.880 0.811 0.140
GPT-4o mini 0.607 0.772 0.783 0.603 0.446 0.841 0.820 0.914 0.854 0.761 0.234
Qwen2.5-14B-Instruct 0.619 0.691 0.773 0.611 0.483 0.852 0.857 0.935 0.856 0.769 0.233
Gemma-2-9b-Instruct 0.515 0.740 0.693 0.512 0.347 0.838 0.809 0.918 0.848 0.758 0.323
Llama-3.1-8B-Instruct 0.522 0.791 0.679 0.515 0.372 0.797 0.775 0.880 0.796 0.722 0.275
DeepSeek-R1-Distill-Llama-8B 0.514 0.570 0.589 0.515 0.444 0.812 0.864 0.895 0.794 0.751 0.298
Qwen2.5-7B-Instruct 0.553 0.745 0.733 0.528 0.402 0.839 0.866 0.923 0.832 0.770 0.286
Qwen2.5-3B-Instruct 0.606 0.495 0.667 0.602 0.556 0.676 0.514 0.693 0.677 0.661 0.070
Llama-3.2-3B-Instruct 0.499 0.696 0.651 0.467 0.384 0.734 0.775 0.822 0.723 0.664 0.235
Gemma-2-2b-Instruct 0.553 0.620 0.680 0.524 0.457 0.715 0.786 0.812 0.705 0.631 0.162

Medical Fine-Tuned LLMs Overall F1 Overall P Easy F1 Med F1 Hard F1 Overall F1 Overall P Easy F1 Med F1 Hard F1 (∆ F1)

OpenBioLLM-Llama3-8B 0.484 0.490 0.494 0.474 0.483 0.424 0.567 0.438 0.412 0.423 -0.060
BioMistral-7B 0.570 0.518 0.627 0.563 0.525 0.648 0.516 0.652 0.660 0.634 0.078
Llama-3.1-8B-UltraMedical 0.619 0.657 0.747 0.596 0.524 0.773 0.679 0.832 0.777 0.718 0.153
Llama3-Med42-8B 0.416 0.829 0.600 0.379 0.264 0.797 0.856 0.898 0.794 0.707 0.381

Average (General LLMs, w/o GPT-4o) 0.533 0.686 0.674 0.517 0.412 0.784 0.789 0.864 0.781 0.716 0.251
Average (Medical Fine-Tuned LLMs) 0.522 0.623 0.617 0.503 0.449 0.660 0.654 0.705 0.660 0.620 0.138

Table 2: Performance comparison of different LLMs with and without knowledge on MedHallu (10,000 samples).
General LLMs perform better than medically fine-tuned LLMs in the task of Medical Hallucination across most
metrics. “Overall P” denotes precision, and “∆ Knowledge” is the performance change in overall F1 when
knowledge is provided. ∗We exclude GPT-4o while calculating the average to have a fair comparison of model sizes
for general vs. fine-tuned LLMs. Additional experimental details can be found in Appendix E.

and specialized medical models. The general models348
include Gemma-2 (2B, 9B) Instruct (DeepMind,349
2024), Llama-3.1 (3B, 8B) Instruct (Meta,350
2024), Qwen-2.5 (3B, 7B, 14B) (Qwen, 2025),351
DeepSeek-R1-Llama 8B (DeepSeek-AI, 2025),352
GPT-4o, and GPT-4o mini (OpenAI, 2024). Ad-353
ditionally, we evaluate four fine-tuned medi-354
cal LLMs such as OpenBioLLM-8B (Ankit Pal,355
2024), Llama3-Med42-8B (Christophe et al.,356
2024b), BioMistral-7B (Labrak et al., 2024),357
and UltraMedical (Zhang et al., 2024b) to compare358
domain-specific adaptations against general-purpose359
models. In this discriminative task, we maintain a360
temperature of approximately 0.2-0.3 for all models.361
For OpenAI models, we use the official API, while for362
open-weight models like Llama, Gemma, and Qwen,363
we utilize the Hugging Face Pipeline to ensure a364
consistent inference framework across all models.365

5 Results and Analysis366

5.1 Which language model performs the best at367
medical hallucination detection task?368

Our experimental results reveal significant variations in369
hallucination detection performance across model archi-370
tectures in the zero-shot setting (without relevant knowl-371
edge provided). As presented in Table 2, ➊ the size of a372
model is not necessarily linked to its detection capabili-373
ties. For instance, Qwen2.5-3B achieves a high baseline374
overall F1 score (0.606), outperforming larger models375
such as Gemma-9B (0.515), Llama-3.1-8B-Instruct376
(0.522), and even the Qwen2.5-7B model (0.533). ➋ All377
models exhibit notable performance degradation on378
“hard” samples, with even the best-performing models,379
such as GPT-4o, showing a significant F1 score drop and380

achieving only 0.625 in these challenging cases. ➌ An 381
intriguing observation is that, overall, general LLMs 382
outperform medical fine-tuned LLMs in terms of preci- 383
sion and F1 scores in the easy and medium categories 384
when no additional knowledge is provided. 385

5.2 How does providing knowledge impact 386
detection performance? 387

Providing knowledge to the LLMs in this hallucina- 388
tion detection task, yields substantial and consistent 389
improvements in hallucination detection across all eval- 390
uated LLM architectures. As shown in Table 2, ➊ every 391
model benefits from the inclusion of knowledge. In 392
general LLMs, the average overall F1 score increases 393
from 0.533 (without knowledge) to 0.784 (with knowl- 394
edge), corresponding to a gain of +0.251. In contrast, 395
medically fine-tuned LLMs exhibit a much smaller im- 396
provement—from an average overall F1 of 0.522 to 397
0.660 (+0.138), likely because these models already in- 398
corporate specialized domain knowledge during training. 399
Moreover, the scale of the model is pivotal for its per- 400
formance. ➋ Larger structures, such as Qwen2.5-14B, 401
reach an impressive overall F1 score of 0.852 when 402
supplemented with domain knowledge, indicating that 403
their increased capacity supports better text comprehen- 404
sion and integration of knowledge. In contrast, smaller 405
models like Qwen2.5-3B experience just slight enhance- 406
ment (+0.07 F1, from 0.606 to 0.676), underscoring 407
the variability in how different model sizes effectively 408
use additional information. Remarkably, Gemma-2-9B 409
showed the most significant benefit from knowledge, 410
with its overall F1 score rising from 0.515 to 0.838 411
(+0.323). Overall, these findings affirm the hypothe- 412
sis that domain knowledge access improves an LLM’s 413
hallucination detection ability, while also emphasizing 414
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Metric Mean Mean P-value
(fooled) (not fooled)

Cosine similarity 0.715 0.696 0.004
Euclidean distance 0.714 0.750 0.002
Rouge1-F1 0.358 0.319 0.002

Table 3: The average similarity between the clusters
generated in Section 5.3 and the ground truth samples.
Clusters containing samples that fool detection LLMs
(i.e., hallucinations that are more challenging to detect)
are notably closer to the ground truth.

that both model scale and whether the model has been415
fine-tuned on medical data are critical to the extent of416
performance improvements.417

5.3 Semantic analysis of hallucinated and ground418
truth sentences.419

To analyze semantic patterns in hallucinated responses,420
we conduct a comprehensive clustering analysis on an421
expanded set of generations. Specifically, we generate422
50 candidate hallucinated responses for each question423
from our sampling phase, as described in Section 3. We424
retain all 50 candidate hallucinated responses, includ-425
ing those that fail the quality or correctness checks, to426
capture the semantic distribution across both successful427
and unsuccessful hallucinated answers. Using bidirec-428
tional entailment with a threshold of 0.75, we cluster429
these 50 candidate hallucinated responses along with the430
ground truth response, forming distinct semantic clus-431
ters that represent different conceptual approaches to the432
same question. This clustering methodology, adapted433
from (Farquhar et al., 2024), allows us to analyze the434
semantic structure of hallucinated responses relative to435
the ground truth, yielding three significant findings:436

Cluster-level Detection Patterns. Our analysis un-437
covers a binary discrimination effect within seman-438
tic clusters. ➊ Specifically, hallucinated responses in439
the same cluster tend to exhibit near-uniform perfor-440
mance—either consistently passing LLM detection (be-441
ing favored over the ground truth) or being uniformly442
flagged as hallucinations. This finding strongly indicates443
that semantic content, rather than merely surface-level444
linguistic features, plays a pivotal role in shaping the445
LLM’s discrimination behavior.446

Cluster Proximity Analysis. ➋ We find that clusters447
containing samples that reliably fool detection LLMs448
(hallucinations that are harder to detect) are notably449
closer to the ground truth answer in semantic vector450
space. This closeness is quantified via Euclidean dis-451
tance, with additional support from cosine similarity452
and ROUGE scores (Table 3). Such proximity suggests453
that well-crafted hallucinated responses strike a balance,454
they remain semantically similar enough to the ground455
truth while incorporating meaningful deviations.456

Ground Truth Isolation. A particularly significant 457
finding is the distinct semantic isolation of ground truth 458
responses from clusters of hallucinated outputs. Empiri- 459
cal evidence demonstrates that ground truth responses 460
rarely, if ever, align within the semantic clusters formed 461
by hallucinations. This clear separation validates the 462
robustness of our generation pipeline, ensuring that hal- 463
lucinated responses retain semantic distinctness from 464
factual content while upholding contextual relevance.

Model F1NS PNS F1R PR Response%

GPT-4o-mini 66.6 66.8 60.7 77.2 98.4
Gemma-2-2b-it 57.1 59.9 55.3 54.1 82.7
Llama-3.2-3B-Instruct 58.1 68.7 49.9 63.3 85.9
Qwen2.5-3B-Instruct 65.2 67.2 60.6 50.2 65.7
BioMistral-7B 56.5 50.5 57.0 51.3 99.2
Qwen2.5-7B-Instruct 69.3 94.6 55.3 73.7 47.5
OpenBioLLM-Llama3-8B 48.8 48.4 48.4 56.3 99.7
Llama-3.1-8B-UltraMedical 58.5 49.1 61.9 56.4 69.7
DeepSeek-R1-Llama-8B 66.0 56.9 51.4 61.7 98.1
Llama-3.1-8B-Instruct 51.7 90.4 52.2 86.0 98.2
Gemma-2-9b-it 61.4 85.5 51.5 71.5 37.6
Qwen2.5-14B-Instruct 76.2 82.9 61.9 76.5 27.9
GPT-4o 79.5 79.6 73.7 72.4 33.9

Table 4: F1NS and PNS (Precision) represent perfor-
mance with the “Not Sure” option, while F1R and PR
(Precision) represent performance when required to an-
swer. Response% represents the percentage of questions
answered with “Yes” or “No” even when the “Not Sure”
option is available.

465
5.4 Analysis of models’ ability to decline to answer 466

We introduce a “not sure” category alongside the ex- 467
isting “hallucinated” and “not hallucinated” categories 468
in our detection prompt (Figure 7), allowing LLMs to 469
decline to answer if they lack full confidence in their 470
responses. Results shown in Table 4, reveal that ➊ many 471
models demonstrate an improved F1 score and precision 472
when they can opt for “not sure.” However, the enhance- 473
ment varies with model size: smaller models gain a mod- 474
erate improvement of 3-5%, whereas larger models see 475
a significant boost of around 10-15%. General LLMs 476
outperform fine-tuned medical models, with some like 477
GPT-4o achieving up to 79.5% in performance, and 478
Qwen2.5-14B performing closely at 76.2%. ➋ In terms 479
of the percentage of questions answered with definite 480
“yes” or “no” (Response Rate), general LLMs respond 481
to fewer questions, with Qwen2.5-14B responding to as 482
little as 27.9%, reflecting their tendency to skip uncer- 483
tain questions. Conversely, fine-tuned medical models 484
attempt to answer nearly all questions, rarely selecting 485
the “Not Sure” option. This approach sometimes leads 486
to a minor reduction in performance. For instance, Ul- 487
traMedical’s model has the lowest response rate among 488
medical models at 69.7% , while OpenBioLLM reaches 489
as high as 99.7%. Finally, ➌ when comparing the im- 490
pact of adding the “not sure” choice with knowledge- 491
sharing enhancements, shown in Table 5 versus Table 492
4, there is a marked increase in the percentage of ques- 493
tions attempted by General LLMs, suggesting improved 494
confidence in task execution, along with an increase in 495
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Figure 4: Detection accuracy of different hallu-
cination categories on MedHallu, evaluated using
Qwen2-7B-Instruct as the discriminator.

F1 score and precision.496

5.5 Analysis: Hallucination category and MeSH497

Which hallucination category is hardest to detect?498

Our analysis reveals distinct patterns in detection diffi-499
culty across hallucination categories, as shown in Fig-500
ure 4. Incomplete Information (II) emerges as the501
most challenging category, with 41% of total samples be-502
ing “hard” cases (Figure 3) and the lowest detection ra-503
tio (54%), indicating models struggle significantly with504
validating partial information. Mechanism/Pathway505
Misattribution (MPM) and Question Misinterpreta-506
tion (MQ) show notable patterns: MPM has a signifi-507
cant number of hard cases, with a 68% detection accu-508
racy, while MQ having higher number of hard cases but509
stronger detection performance (68.8%). Methodologi-510
cal and Evidence Fabrication (MEF), despite being511
the smallest category (37% are hard), demonstrates the512
highest detection success rate (76.6%).513

These findings highlight a crucial insight: subtle ma-514
nipulation of existing medical information, particularly515
through incomplete presentation, is harder to detect than516
outright fabrication. This is evident from II’s high diffi-517
culty scores compared to MEF’s better detection rates.518
The distribution across difficulty levels (easy, medium,519
hard) further supports this, with II showing the highest520
concentration in the “hard” category. This suggests that521
while models excel at identifying completely fabricated522
information, they struggle with partially accurate yet523
incomplete medical claims, highlighting critical areas524
of improvement in hallucination detection systems.525

Which medical category (MeSH term) hallucination526
is the hardest to detect?527

To understand which medical domains are more sus-528
ceptible to hallucination, we examine the MedHallu529
dataset with the MeSH categories within the Pub-530
MedQA dataset, identifying the top five principal cat-531
egories shown in Figure 5. These categories include532
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Figure 5: Detection accuracy across Mesh
categories proposed in PubMedQA. We use
Qwen2.5-7B-Instruct as a discriminator for the
1k samples of MedHallu generated on pqa_labeled split.

Diseases (comprising 25.9% of the samples), Analytical 533
Procedures (20.1%), Chemical/Drug Queries (15.8%), 534
Healthcare Management (9.7%), and Psychiatric Condi- 535
tions (6.7%). Detection performance among these cate- 536
gories varies considerably: Disease-related instances ex- 537
hibit a respectable detection accuracy of 57.1%, despite 538
the abundance of related medical literature in the cor- 539
pus. Conversely, Chemical/Drug queries demonstrate 540
the highest detection rate at 67.7%. In contrast, Psychi- 541
atry ranks lowest among the top five categories with a 542
detection rate of just 53.7%, highlighting the need for 543
further incorporation of this data in the training corpus. 544

6 Conclusion 545

We introduce MedHallu, a comprehensive benchmark 546
comprising 10,000 rigorously curated medical question- 547
answer pairs with hallucinated answers. MedHallu in- 548
tegrates fine-grained categorization of medical halluci- 549
nation types, a hallucination generation framework that 550
balances difficulty levels while mitigating single-LLM 551
bias through multi-model majority voting, and system- 552
atically evaluates diverse LLM configurations’ hallu- 553
cination detection capabilities. Our evaluation reveals 554
that existing LLMs exhibit significant limitations in de- 555
tecting medical hallucinations, particularly struggling 556
with "hard" hallucination answers, which are closer 557
in distance to the ground truth. We also provide in- 558
sights into enhancing LLMs’ hallucination detection: 559
when knowledge is provided, general-purpose LLMs 560
can outperform medical fine-tuned models, and allow- 561
ing models to decline to answer by providing a "not 562
sure" option improves precision in critical applications. 563
As the largest open medical hallucination benchmark to 564
date, MedHallu serves as a valuable resource for eval- 565
uating LLMs’ medical hallucination detection abilities 566
and offers insights into the cautious use of LLMs in 567
high-stakes medical domains. 568
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7 Limitations569

Our study faces three primary constraints. First, due to570
resource constraints, we could not employ the most ad-571
vanced reasoning models (e.g., OpenAI o1, Gemini 2.0,572
DeepSeek-R1) for benchmark generation. While our573
pipeline incorporates multi-stage LLM quality checks574
and regeneration steps, using state-of-the-art models575
would incur prohibitive computational costs. Sec-576
ond, our evaluation of LLMs was restricted to input-577
output prompting (zero-shot, with/without knowledge578
provision); resource limitations precluded exploration579
of advanced techniques like chain-of-thought or self-580
consistency, which might better elicit model capabili-581
ties. Third, our hallucination generation pipeline relied582
on the PubMedQA corpus to ensure contextual fidelity.583
While this ensures biomedical relevance, future work584
should incorporate diverse high-quality corpora to im-585
prove scalability and domain coverage.586

8 Ethics Statement587

This research adheres to rigorous ethical standards in588
dataset creation and evaluation. The MedHallu bench-589
mark utilizes publicly available PubMedQA data un-590
der MIT licenses, ensuring proper attribution and com-591
pliance with source terms of use. Patient privacy is592
preserved through the exclusive use of de-identified593
biomedical literature. While our work aims to improve594
AI safety in healthcare, we acknowledge potential dual-595
use risks and advocate for responsible deployment of596
medical LLMs with human oversight. The benchmark’s597
stratification enables targeted mitigation of dangerous598
“hard” hallucinations that most closely resemble factual599
content. All artifacts will be released with detailed doc-600
umentation to promote transparency and reproducibility601
in medical AI safety research.602
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Appendices866

A Additional Related Work867

General LLMs vs Fine-tuned LLMs in Hallucination868
Detection. Extensive research has investigated hallu-869
cination in texts generated by pre-trained and domain-870
specific fine-tuned LLMs. Studies have revealed that871
fine-tuned LLMs exhibit reduced hallucination in text872
generation compared to their general-purpose counter-873
parts (Azaria and Mitchell, 2023; Xiong et al., 2024;874
Arteaga et al., 2024). However, despite these advance-875
ments, there remains a notable gap that no prior work876
has systematically evaluated the performance of domain-877
specific fine-tuned LLMs on hallucination detection878
tasks. Lynx (Ravi et al., 2024), a model specifically de-879
signed for hallucination detection, has demonstrated su-880
perior performance over general-purpose LLMs across881
diverse datasets. Nevertheless, this study did not extend882
its evaluation to include LLMs fine-tuned for special-883
ized domains, such as medicine or finance. To address884
this limitation, our work conducts a comparative analy-885
sis of several fine-tuned medical LLMs in the context886
of medical hallucination detection.887

Evaluation of Hallucinations and Faithfulness The888
hallucination phenomenon in LLMs manifests as the889
production of content that lacks proper substantiation890
through contextual evidence or verified knowledge891
bases. This can be categorized into two distinct forms:892
factuality hallucination, which involves deviations from893
established real-world facts, and faithfulness hallucina-894
tion, which occurs when the model’s generated content895
diverges from the provided input context or prompt896
(Huang et al., 2025). These dual manifestations repre-897
sent significant challenges in ensuring the reliability and898
accuracy of LLM-generated outputs. There have been899
recent works in detecting the faithfulness of an LLM900
with the use of context (Ming et al., 2024) or even check-901
ing the faithfulness of LLMs in the absence of context902
(Roller et al., 2020; Min et al., 2023; Chern et al., 2023;903
Wei et al., 2024). Contrary to faithfulness, hallucina-904
tions are detected mainly focusing on the output of the905
LLMs rather than the context (Li et al., 2023a; Liu et al.,906
2022; Hu et al., 2024).907

B Incorporating Knowledge into the908

Analysis of Models’ Denial Capabilities909

We evaluate the setting where the model is given a910
choice of answering “not sure” when it lacks confi-911
dent to answer (Table 4). We also provide the relevant912
knowledge in the prompt (Appendix K). The results913
in Table 5 clearly indicate the improvement in models’914
capability to answer the questions compared to the pre-915
vious knowledge-disabled setting. Here Qwen2.4-14B916
surpasses all other models in terms of F1 and even pre-917
cision. The results indicate that even though models’918

Model F1NS PNS F1R PR Response %

GPT-4o-mini 83.6 77.7 84.1 82.0 100.0
Gemma-2-2b-it 75.5 67.2 71.5 67.4 89.2
Llama-3.2-3B-Instruct 76.8 67.9 73.4 55.5 90.8
Qwen2.5-3B-Instruct 69.2 47.0 67.6 49.8 94.2
BioMistral-7B 67.2 53.2 64.8 54.5 98.7
Qwen2.5-7B-Instruct 88.6 91.6 83.9 85.0 74.6
OpenBioLLM-Llama3-8B 40.2 58.9 42.4 55.5 99.4
Llama-3.1-8B-UltraMedical 72.9 56.1 77.3 73.4 95.1
DeepSeek-R1-Llama-8B 68.9 85.4 81.2 83.4 95.2
Llama-3.1-8B-Instruct 77.7 92.7 80.0 88.6 99.7
Gemma-2-9b-it 84.7 83.4 83.8 78.6 90.3
Qwen2.5-14B-Instruct 88.8 92.5 85.2 84.3 87.0
GPT-4o 84.9 78.3 87.7 88.3 95.2

Table 5: F1NS and PNS (Precision) represent perfor-
mance with the “Not Sure” option, while F1R and PR
represent performance when required to answer. Re-
sponse% represents the percentage of questions an-
swered with “Yes” or “No” even when the “Not Sure”
option is available.

performance in terms of F1 increases slightly or even 919
remains nearly similar, the precision of these models is 920
generally improved. 921

C Additional Data Correctness Check 922

In addition to the existing correctness check proposed 923
in Section 3, we leverage Llama-3.1 to perform a 924
lightweight semantic comparison between Hi and GTi. 925
Through carefully crafted prompts, the model assesses 926
whether the hallucinated response differs meaningfully 927
in semantic content from the ground truth. This addi- 928
tional verification layer provides a cost-effective mecha- 929
nism to filter out subtly similar generations that might 930
have passed the initial entailment check. 931

D Selecting Medical Hallucination 932

Categories for MedHallu 933

We adapted hallucination categories from KnowHallu 934
(Zhang et al., 2024a) to categorize generated outputs 935
(Table 4). KnowHallu includes categories such as Vague, 936
Parroting, and Overgeneralization, which are more 937
suited for hallucination detection rather than generation. 938
These categories pose challenges in a generative setting 939
because crafting high-quality examples that convinc- 940
ingly exhibit extreme parroting or subtle overgeneraliza- 941
tion in a way that can reliably mislead a discriminator 942
is inherently difficult. Moreover, such cases may not 943
be as informative for evaluating generative models, as 944
they focus on stylistic nuances rather than substantive 945
factual inconsistencies. To ensure a more effective clas- 946
sification for generation, we examined various medical 947
research papers and carefully designed a set of halluci- 948
nation categories that best capture the types of errors 949
relevant to medical text generation. This approach al- 950
lows for a more meaningful evaluation of generative 951
models while maintaining both diversity and practical 952
relevance in the generated outputs. 953
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Computational Budget and Infrastructure De-
tails while generating MedHallu

Primary Model: Qwen2.5-14B (14B parameters)

Computation Time: 26.5 hours

GPU Hardware: 4 x NVIDIA RTX A6000
(48,685 MiB RAM each)
Additional Models: Gemma2-9B (9B parame-
ters), Qwen2.5-7B (7B parameters), GPT4omini
(used for correctness check)
Dataset Size: 10,000 samples

Table 6: Computational Budget and Infrastructure De-
tails while generating MedHallu Dataset, not includes
the discriminator models used in benchmarking.

Pre-trained Models and huggingface names
m42-health/Llama3-Med42-8B
OpenMeditron/Meditron3-8B
aaditya/OpenBioLLM-Llama3-8B
BioMistral/BioMistral-7B
TsinghuaC3I/Llama-3.1-8B-UltraMedical
deepseek-ai/DeepSeek-R1-Distill-Llama-8B
Qwen/Qwen2.5-14B-Instruct
google/gemma-2-2b-it
google/gemma-2-9b-it
meta-llama/Llama-3.1-8B-Instruct
meta-llama/Llama-3.2-3B-Instruct
Qwen/Qwen2.5-7B-Instruct
Qwen/Qwen2.5-3B-Instruct

Table 7: List of pre-trained models with their hugging-
face names used in our experiments.

E MedHallu Creation Using Other954

Open-weights LLMs955

We construct the MedHallu dataset using open-weights956
LLMs, including Qwen2.5-14B and Gemma2-9B. Ini-957
tially, we generate 1,000 samples based on the high-958
quality, human-annotated pqa_labeled_split from959
PubMedQA. To ensure quality, we employ smaller960
LLMs, including GPT-4o mini, Gemma2-2B, and961
Llama-3.2-3B variants, for verification. Subsequently,962
we evaluate various LLMs, including both general-963
purpose and fine-tuned medical models, on these964
datasets. The results for the Gemma2-9B-IT model are965
presented in Table 8, while those for the Qwen2.5-14B966
model are reported in Table 9. We conduct three inde-967
pendent runs for dataset generation and report the mean968
and standard deviation of the results. During our analy-969
sis, we observed that the Qwen model exhibited faster970
generation speeds and consistent generation quality with971
fewer cases that fail quality checks on average, thus sav-972
ing up more on time and computing budget, so we de-973
cided to generate the entire dataset using Qwen2.5-14B.974
Consequently, we selected the Qwen2.5-14B to generate975

an expanded dataset comprising 10,000 samples. We 976
see that the results in the Tables 8 and 9 are also in align- 977
ment with the observations we presented in Section 5 of 978
the paper, thereby bolstering our claim and contribution. 979

F Example Data from the MedHallu 980

Dataset 981

In Table 10, we present several randomly selected ex- 982
amples from our MedHallu Dataset to illustrate specific 983
hallucination categories. Each example is accompa- 984
nied by its corresponding hallucination category and 985
assigned difficulty level, providing a concise overview 986
of the dataset’s diversity. 987

G Hardware Resources and 988

Computational Costs 989

We provide detailed information on our computational 990
budget and infrastructure (see Table 6). During the 991
dataset generation process, we primarily used the 992
Qwen2.5-14B model, running it for 24 hours on an 993
NVIDIA RTX A6000 GPU with 48,685 MiB of RAM. 994
Additionally, we employed models such as Gemma2-9B, 995
Qwen2.5-7B, and GPT-4o mini as verifiers, generating 996
a total of 10,000 samples for our dataset. To enhance 997
the efficiency and speed of our code execution, we uti- 998
lized software tools like vLLM and implemented batch- 999
ing strategies. These optimizations were critical for 1000
managing the computational load and ensuring timely 1001
processing of our experiments. 1002

H LLMs Used in Discriminative Tasks 1003

GPT-4o and GPT-4o mini. GPT-4o and GPT-4o 1004
mini (OpenAI, 2024) are a series of commercial LLMs 1005
developed by OpenAI. Renowned for their state-of-the- 1006
art performance, these models have been extensively 1007
utilized in tasks such as medical hallucination detection. 1008
Our study employs the official API provided by the 1009
OpenAI platform to access these models. For all other 1010
models below, we implement them through Hugging 1011
Face package. 1012

Llama-3.1 and Llama-3.2. Llama-3.1 and Llama- 1013
3.2 (Meta, 2024) are part of Meta’s open-source mul- 1014
tilingual LLMs, Llama 3.1 (July 2024) includes 8B, 1015
70B, and 405B parameter models optimized for multi- 1016
lingual dialogue. Llama 3.2 (September 2024) offers 1017
1B, 3B, 11B, and 90B models with enhanced accuracy 1018
and speed. 1019

Qwen2.5. Qwen2.5 (Qwen, 2025) is an advanced LLM 1020
designed to handle complex language tasks efficiently. It 1021
has been applied in various domains, including medical 1022
hallucination detection. We use the 3B, 7B and 14B 1023
variants in our work. 1024

Gemma2. Gemma2 (DeepMind, 2024) is a LLM 1025
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Model Without Knowledge With Knowledge ∆ F1

Overall F1 Overall P Easy F1 Med F1 Hard F1 Overall F1 Overall P Easy F1 Med F1 Hard F1

General LLMs

deepseek-ai/DeepSeek-R1-Distill-Llama-8B 0.603± 0.028 0.479± 0.027 0.773± 0.186 0.635± 0.024 0.564± 0.037 0.682± 0.002 0.537± 0.005 0.831± 0.178 0.696± 0.049 0.671± 0.007 0.078± 0.025

Qwen/Qwen2.5-14B-Instruct 0.646± 0.004 0.781± 0.007 0.820± 0.031 0.681± 0.012 0.526± 0.011 0.835± 0.017 0.846± 0.010 0.924± 0.022 0.879± 0.017 0.781± 0.021 0.189± 0.013

Qwen/Qwen2.5-3B-Instruct 0.609± 0.014 0.489± 0.011 0.701± 0.009 0.627± 0.016 0.560± 0.016 0.686± 0.010 0.526± 0.013 0.692± 0.009 0.699± 0.046 0.676± 0.007 0.077± 0.025

google/gemma-2-2b-it 0.408± 0.004 0.551± 0.013 0.567± 0.015 0.347± 0.086 0.302± 0.031 0.607± 0.004 0.684± 0.011 0.710± 0.012 0.623± 0.027 0.545± 0.016 0.199± 0.008

meta-llama/Llama-3.1-8B-Instruct 0.484± 0.005 0.768± 0.061 0.674± 0.046 0.579± 0.027 0.269± 0.050 0.741± 0.000 0.873± 0.000 0.903± 0.007 0.843± 0.068 0.712± 0.120 0.310± 0.070

meta-llama/Llama-3.2-3B-Instruct 0.410± 0.050 0.593± 0.083 0.527± 0.091 0.394± 0.143 0.369± 0.032 0.645± 0.001 0.584± 0.007 0.776± 0.068 0.731± 0.102 0.636± 0.053 0.235± 0.049

Average (General) 0.526 0.610 0.677 0.544 0.432 0.699 0.675 0.806 0.745 0.670 0.181

Medical Fine-Tuned LLMs

m42-health/Llama3-Med42-8B 0.296± 0.008 0.633± 0.031 0.500± 0.026 0.325± 0.023 0.184± 0.022 0.722± 0.008 0.786± 0.010 0.805± 0.014 0.788± 0.004 0.654± 0.004 0.425± 0.000

OpenMeditron/Meditron3-8B 0.273± 0.043 0.835± 0.026 0.473± 0.029 0.285± 0.078 0.160± 0.039 0.685± 0.009 0.879± 0.006 0.827± 0.004 0.700± 0.002 0.611± 0.022 0.412± 0.052

aaditya/OpenBioLLM-Llama3-8B 0.546± 0.039 0.571± 0.057 0.556± 0.001 0.555± 0.082 0.536± 0.037 0.566± 0.028 0.555± 0.021 0.578± 0.042 0.555± 0.055 0.565± 0.009 0.019± 0.011

BioMistral/BioMistral-7B 0.617± 0.007 0.540± 0.006 0.760± 0.000 0.663± 0.044 0.577± 0.016 0.651± 0.013 0.522± 0.015 0.832± 0.137 0.683± 0.009 0.607± 0.001 0.001± 0.066

TsinghuaC3I/Llama-3.1-8B-UltraMedical 0.611± 0.026 0.649± 0.037 0.776± 0.037 0.668± 0.010 0.501± 0.042 0.704± 0.013 0.571± 0.019 0.760± 0.024 0.714± 0.033 0.672± 0.002 0.093± 0.013

Average (Medical) 0.469 0.646 0.613 0.499 0.392 0.666 0.663 0.760 0.688 0.622 0.190

Table 8: Medhallu data generated by Gemma2-9B-it (1,000 samples of pqa_labeled). Mean ± standard deviation of
performance metrics (Overall F1, Overall Precision, Easy/Medium/Hard F1) for various LLMs under two conditions:
without and with external knowledge. The final column (∆ F1) shows the difference in F1 scores (with knowledge
minus without knowledge).

Model Without Knowledge With Knowledge ∆ F1

Overall F1 Overall P Easy F1 Med F1 Hard F1 Overall F1 Overall P Easy F1 Med F1 Hard F1

General LLMs

Qwen/Qwen2.5-14B-Instruct 0.623± 0.005 0.721± 0.043 0.803± 0.042 0.620± 0.014 0.495± 0.018 0.841± 0.015 0.843± 0.020 0.924± 0.016 0.874± 0.026 0.764± 0.007 0.218± 0.021

google/gemma-2-2b-it 0.482± 0.100 0.596± 0.033 0.631± 0.069 0.454± 0.099 0.398± 0.083 0.654± 0.086 0.736± 0.071 0.777± 0.050 0.668± 0.052 0.566± 0.093 0.172± 0.014

deepseek-ai/DeepSeek-R1-Distill-Llama-8B 0.641± 0.010 0.510± 0.010 0.711± 0.022 0.687± 0.011 0.580± 0.007 0.679± 0.001 0.522± 0.003 0.692± 0.008 0.686± 0.006 0.670± 0.000 0.038± 0.011

meta-llama/Llama-3.1-8B-Instruct 0.501± 0.029 0.813± 0.030 0.691± 0.017 0.536± 0.030 0.334± 0.054 0.763± 0.048 0.815± 0.057 0.866± 0.019 0.804± 0.010 0.670± 0.073 0.262± 0.018

meta-llama/Llama-3.2-3B-Instruct 0.455± 0.061 0.646± 0.070 0.616± 0.050 0.445± 0.031 0.354± 0.042 0.685± 0.070 0.670± 0.148 0.759± 0.090 0.704± 0.027 0.622± 0.058 0.230± 0.009

Qwen/Qwen2.5-3B-Instruct 0.606± 0.000 0.495± 0.000 0.875± 0.000 0.602± 0.000 0.556± 0.000 0.676± 0.000 0.514± 0.000 0.693± 0.000 0.677± 0.000 0.661± 0.000 0.070± 0.000

Average (General) 0.554 0.641 0.724 0.566 0.450 0.728 0.691 0.796 0.748 0.672 0.175

Medical Fine-Tuned LLMs

m42-health/Llama3-Med42-8B 0.354± 0.088 0.733± 0.136 0.547± 0.075 0.311± 0.096 0.236± 0.040 0.768± 0.040 0.831± 0.036 0.874± 0.035 0.782± 0.016 0.688± 0.028 0.414± 0.048

OpenMeditron/Meditron3-8B 0.280± 0.000 0.856± 0.000 0.476± 0.000 0.338± 0.000 0.164± 0.000 0.651± 0.000 0.840± 0.000 0.790± 0.000 0.690± 0.000 0.557± 0.000 0.372± 0.000

aaditya/OpenBioLLM-Llama3-8B 0.505± 0.031 0.523± 0.046 0.519± 0.035 0.499± 0.035 0.502± 0.028 0.489± 0.093 0.550± 0.024 0.500± 0.087 0.483± 0.101 0.556± 0.006 −0.016± 0.062

BioMistral/BioMistral-7B 0.584± 0.019 0.520± 0.003 0.615± 0.018 0.611± 0.067 0.545± 0.028 0.652± 0.006 0.519± 0.004 0.652± 0.000 0.676± 0.024 0.637± 0.005 0.068± 0.013

TsinghuaC3I/Llama-3.1-8B-UltraMedical 0.619± 0.001 0.662± 0.006 0.775± 0.040 0.611± 0.021 0.520± 0.005 0.725± 0.068 0.609± 0.099 0.783± 0.069 0.875± 0.025 0.682± 0.051 0.106± 0.066

Average (Medical) 0.468 0.659 0.586 0.474 0.393 0.657 0.670 0.720 0.701 0.624 0.189

Table 9: Medhallu data generated by Qwen2.5-14B (1,000 samples of pqa_labeled). Mean ± standard deviation of
performance metrics (Overall F1, Overall Precision, Easy/Medium/Hard F1) for various LLMs under two conditions:
without and with external knowledge. The final column (∆ F1) shows the difference in F1 scores (with knowledge
minus without knowledge).

known for its robust performance in discriminative tasks.1026
There are various model sizes available, we use the 2B1027
and the 9B variants.1028

DeepSeek-R1-Distill-Llama-8B. DeepSeek-R1-Distill-1029
Llama-8B (DeepSeek-AI, 2025) is a fine-tuned model1030
based on Llama 3.1-8B, developed by DeepSeek AI.1031
This model is trained using samples generated by1032
DeepSeek-R1, with slight modifications to its configura-1033
tion and tokenizer to enhance performance in reasoning1034
tasks.1035

OpenBioLLM-Llama3-8B. OpenBioLLM-Llama3-1036
8B (Ankit Pal, 2024) is a specialized LLM tailored for1037
biomedical applications. It is fine-tuned from the Llama1038
3 architecture to understand and process biomedical1039
texts effectively.1040

BioMistral-7B. BioMistral-7B (Labrak et al., 2024)1041
is an LLM designed specifically for biomedical tasks.1042
With 7 billion parameters, it offers a balance between1043
performance and computational efficiency.1044

Llama-3.1-8B-UltraMedical. Llama-3.1-8B-1045
UltraMedical (Zhang et al., 2024b) is a variant of1046
Meta’s Llama 3.1-8B model, fine-tuned for medical1047

applications. It is optimized to handle medical 1048
terminologies and contexts. 1049

Llama3-Med42-8B. Llama3-Med42-8B (Christophe 1050
et al., 2024a) is a specialized version of the Llama 3 1051
series, fine-tuned on medical datasets to enhance its 1052
performance in medical-related tasks. 1053

I Additional Implementation Details 1054

Our experiments were conducted using PyTorch 2.4.0 1055
with CUDA 12.2, ensuring state-of-the-art GPU acceler- 1056
ation and performance. For data and model access, we 1057
relied on Hugging Face resources, specifically using the 1058
qiaojin/PubMedQA dataset. In addition, we employed 1059
vLLM 0.6.3.post1 with a tensor_parallel_size of 1060
4 and maintained a gpu_memory_utilization of 0.80, 1061
which was instrumental in optimizing our inference pro- 1062
cess. The list of pre-trained models’ huggingface names 1063
used in our experiments is provided in Table 7. 1064
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Table 10: Examples from the MedHallu Dataset.

Question Category of
Hallucination

Ground Truth Hallucinated Example Difficulty

Do mitochondria play a
role in remodelling lace
plant leaves during pro-
grammed cell death?

Mechanism and
Pathway Misat-
tribution

This is the first report of mitochondria
and chloroplasts moving on transvac-
uolar strands to form a ring structure
surrounding the nucleus during develop-
mental PCD. Also, for the first time, we
have shown the feasibility for the use of
CsA in a whole plant system. Overall,
our findings implicate the mitochondria
as playing a critical and early role in de-
velopmentally regulated PCD in the lace
plant.

Mitochondria regulate
the formation of perfora-
tions in lace plant leaves
through the modulation
of calcium channels and
by activating specific
proteases that degrade
cellular structures, facil-
itating the PCD process.

Medium

Differentiation of nonal-
coholic from alcoholic
steatohepatitis: are rou-
tine laboratory markers
useful?

Misinterpretation
of #Question#

Higher MCVs and AST/ALT ratios in
ASH reflect the severity of underly-
ing liver disease and do not differen-
tiate NASH from ASH. Instead, these
biomarkers might prove useful in guid-
ing selection of patients for liver biopsy
and in targeting therapy.

Routine laboratory
markers, particularly
mean corpuscular
volume (MCV) and
AST/ALT ratios,
significantly aid in
differentiating various
types of nonalcoholic
steatohepatitis (NASH).

Hard

Amblyopia: is visual
loss permanent?

Incomplete In-
formation

Older people with a history of ambly-
opia who develop visual loss in the previ-
ously normal eye can experience recov-
ery of visual function in the amblyopic
eye over a period of time. This recovery
in visual function occurs in the wake of
visual loss in the fellow eye and the im-
provement appears to be sustained.

Visual loss due to
amblyopia is permanent
unless treated with early
intervention during
childhood.

Hard

J PubMedQA1065

PubMedQA (Jin et al., 2019) is a biomedical research1066
QA dataset under the MIT license. It contains 1,0001067
expert-annotated questions (pqa_labeled_split) and1068
211K machine-labeled questions from PubMed ab-1069
stracts (the most widely used biomedical literature re-1070
source). PubMedQA also provides relevant context1071
(relevant knowledge) for each question-answer pair. We1072
utilize this relevant knowledge to help generate the hallu-1073
cinated answers (Figure 6). This relevant knowledge is1074
also used in our hallucination detection task (Figure 7).1075

K System Prompts for Hallucination1076

Generation and Detection1077

Figure 6 shows the system prompt utilized to gener-1078
ate the MedHallu dataset, while Figure 7 illustrates the1079
system prompt designed for the hallucination detection1080
task. These prompts were critical in guiding the model’s1081
behavior for both tasks. We incorporated the “knowl-1082
edge” into various experiments, where it serves as the1083
“context” provided in the original PubMedQA dataset.1084

L The Clusters Formed for a Question1085

Using Bidirectional Entailment.1086

Following the methodology proposed in Section 5.3, we1087
create clusters. Table 11 presents an example of some1088

clusters formed for a specific question using bidirec- 1089
tional entailment, which clearly shows sentences in the 1090
same cluster are identical in meaning (semantically) but 1091
different in syntax. The table also shows an example 1092
(Cluster 2) showing examples for sentences that fail to 1093
fool a discriminator. 1094
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Table 11: An example of clusters formed for a question using bidirectional entailment, as discussed in Section 5.3.
Only three of the many clusters are shown.

Question:
Prognosis of well differentiated small hepatocellular carcinoma–is well differentiated hepatocellular carcinoma
clinically early cancer?

Ground Truth Answer:
W-d HCCs were clinically demonstrated not to be early cancer, because there was no significant difference in
disease free survival between the patients with w-d and l-d HCCs.

Cluster 1 (Fooling)

1. W-d HCCs are indeed clinically early cancer, due to their smaller size and lower incidence of fibrous capsule
formation.

2. W-d HCCs were clinically demonstrated to be early cancer due to their smaller tumor size and lower incidence
of fibrous capsule formation.

3. Well-differentiated small hepatocellular carcinoma is indeed early cancer, due to its slow growth rate.

4. Well-differentiated hepatocellular carcinoma is clinically early cancer due to its low aggressive nature.

5. Well differentiated hepatocellular carcinoma appears to be clinically early cancer due to its low aggressiveness.

Cluster 2 (That didn’t fool)

1. Well-differentiated hepatocellular carcinoma (HCC) is clinically early cancer due to its high histological grade.

2. Due to its high histological grade, well-differentiated hepatocellular carcinoma (HCC) is considered clinically
early cancer.

Cluster 3 (Fooling)

1. Well-differentiated hepatocellular carcinoma is indeed an early cancer, as it often lacks fibrous capsule
formation.

2. Well-differentiated hepatocellular carcinomas (HCCs) are clinically early cancers due to their low incidence of
fibrous capsule formation.
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System Prompt for Generation
I want you to act as a confident and subtle hallucination answer generator. Your objective is to create a hallucinated answer and 
its justification that blend seamlessly with real facts, making them sound plausible but factually incorrect.

Given a question, the right answer, and related knowledge, you should:

1. Justify the factually incorrect answer using detailed, nuanced, and technical language that aligns with real medical research and 
terminology.

2. Combine multiple hallucination techniques in a single response, such as citing a non-existent study while also referring to a fabricated 
expert opinion.

3. Use realistic-sounding journal names, dates, and author names to add credibility.

4. Ensure consistency between the hallucinated answer, its justification, and the related knowledge provided.

5. Avoid overly bold or outlandish claims; subtle inaccuracies are harder to detect.

6. Internally review the hallucinated answer and justification for plausibility before finalizing the response.

Make sure to output using the format `#Hallucinated Answer#: <hallucinated answer>` and `#Justification of 
Hallucinated answer#: <justification>`.

Here is an example of a question, the right answer, and related knowledge and its hallucinated answer and 
justification:

 Question: What is the primary cause of Type 1 Diabetes
 Knowledge: Type 1 Diabetes is typically diagnosed in children and young adults. It is less common than Type 2 Diabetes, which is often 

related to lifestyle factors
 Ground Truth Answer: The primary cause of Type 1 Diabetes is the autoimmune destruction of insulin-producing beta cells in the 

pancreas
 Hallucinated Answer: The primary cause of Type 1 Diabetes is a viral infection that specifically targets the pancreas
 Justification of Hallucinated answer: According to a study published in the Journal of Pancreatic Research in 2018, researchers found 

a strong correlation between the Coxsackievirus B4 and the onset of Type 1 Diabetes. The study suggested that the virus directly 
infects the pancreatic beta cells, leading to their destruction. This viral theory has gained traction in recent years, with several experts 
in the field, such as Dr. Emily Hartman from the University of Medical Sciences, advocating for further investigation into viral causes of 
Type 1 Diabetes.

You SHOULD write the hallucinated answer using any of the following method:

Type: Misinterpretation of Question, description: Misunderstanding the question, lead- ing to an irrelevant response.

(Example
 Question: ..
 Knowledge: ...
 Ground Truth Answer: .....
 Hallucinated Answer: .....
 Justification of Hallucinated answer: ......

Type: Incomplete Information: Pointing out what is not true without providing correct information.

(Example
 Question: ..
 Knowledge: ...
 Ground Truth Answer: .....
 Hallucinated Answer: .....
 Justification of Hallucinated answer: ......


.............

(More options)



You should try your best to make the answer become hallucinated using any type which seems appropriate for the question. 
#Hallucinated Answer# can only have about 5 more words than #Ground truth answer#

Justification should not be more than 2 times longer than the hallucinated answer and should have citations or references that bolster 
the factually incorrect answer.

Nowhere in the hallucinated answer or the justification you should have any mention that the answer is hallucinated or incorrect.




Figure 6: System prompt used to generate MedHallu dataset. The “knowledge” refers to the relevant context of a
specific question pair. The PubMedQA dataset provides this “knowledge”.
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 Prompt for Detection
You are an AI assistant with extensive knowledge in the field of medicine. I want you act as an answer judge. Given a question and an 
answer, your objective is to determine if the

provided answer contains non-factual or hallucinated information. You SHOULD give your judgement based

on the following hallucination types and the world knowledge.



You are trying to determine if there is a factual contradiction between the answer and the world knowledge.

Some information in the answer might be fabricated. Answer '0' if the answer is factual and '1' if the answer is hallucinated.

You can categorize the answer as hallucinated if it falls in either of the category:



Type: Misinterpretation of #Question#: These are hallucinated answers that misunderstands the question, leading to an off-topic or 
irrelevant response.

Type: Incomplete Information: These are hallucinated answers that Point out what is not true without providing correct information.

Type: Mechanism and Pathway Misattribution - These are hallucinated answer that falsely attribution of biological mechanisms, 
molecular pathways, or disease processes that contradicts established medical knowledge

Type: Methodological and Evidence Fabrication - Inventing false research methods, statistical data, or specific clinical outcomes



Do not return anything else, just the answer.

Return just an integer value, '0' if the answer is factual and '1' if the answer is hallucinated. No letter or word, just the integer value.

 World Knowledge: {knowledge}

Question: {question}

Answer: {option1}



Return just an integer value, '0' if the answer is factual and '1' if the answer is hallucinated. No letter or word, just the integer value.



Your Judgment:

System Prompt:

User Prompt:

Figure 7: System prompt used for the hallucination detection task. The “knowledge” refers to the relevant context
of a specific question pair. The PubMedQA dataset provides this “knowledge”.
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