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ABSTRACT

We study deep fully-connected neural networks with layer normalization using the
mean field formalism, and carry out a non-perturbative analysis of signal propaga-
tion. As a result, we demonstrate that increasing the depth leads to gradient explo-
sion or to another undesirable phenomenon we call representation shrinkage. The
appearance of at least one of these problems is not restricted to a specific initial-
ization scheme or a choice of activation function, but rather is an inherent property
of the fully-connected architecture itself. Additionally, we show that many popu-
lar normalization techniques fail to mitigate these problems. Our method can also
be applied to residual networks to guide the choice of initialization variances.

1 INTRODUCTION

Deep learning is arguably the most successful modern machine learning method when it comes to
modelling complex data. Informally, this is often attributed to hidden representations not being con-
strained by the designer’s knowledge. Empirically, deep neural networks tend to outperform shallow
ones, which is explained by them learning a richer hierarchy of representations. There is a body of
works making precise a number of aspects of this idea, e.g. showing that expressivity (Montufar
et al., 2014) and disentangling ability (Poole et al., 2016) grow with the network’s depth.

Because large depth is often desired, much effort was devoted to networks with many layers. There
are three main groups of techniques to aid their training: normalization, critical initialization and
skip connections. Normalizations ensure the right scale of certain preactivation statistics, for ex-
ample magnitude or batch moments. Critical initialization is based on mean-field analysis of signal
propagation. It aims at picking an initialization scheme that brings the singular values of the input-
output Jacobian close to 1. Skip connections are used in residual blocks, which learn the difference
between the target function and the identity. Such construction guarantees that the network can rep-
resent the identity. A different approach with similar motivation is to use a parameterized activation
functions, which are linear for some value of its parameters, so that not only the identity but every
linear map is guaranteed to be representable. Our results demonstrate a limitation of normalization
methods and critical initialization, and naturally suggest initializing deep networks as linear maps.

A different line of research studied the physics of large networks. It is known that wide but shallow
neural networks at initialization simplify to Gaussian processes (GP) (Neal, 1996), and their training
is shown to be equivalent to kernel methods (Jacot et al., 2018). However, realistic finite networks
outperform their infinite limits (Ghorbani et al., 2020), which is explained by the lack of feature
learning in large networks (Chizat et al., 2019). The situation with deep networks is qualitatively
different – the GP regime breaks down when depth and width are large but comparable. Therefore, a
well-behaved infinite depth and width limit would provide a promising starting point for a theoretical
model capable of capturing feature learning. Suitably scaled infinite residual networks (ResNets)
become diffusion processes; one could hope that by appropriately combining different activation
functions and normalization methods, one could obtain a similar behaviour in MLPs. We hope
that by explaining why this is impossible, our result will help to illuminate most promising future
directions in physics of large networks.

The main advice of our work – that there are limitations to increasing the depth, even at critical
initialization – was also noted in Pennington et al. (2017) and Pennington et al. (2018). This line of
work expresses the input-output Jacobian as a product of random matrices, and uses random matrix
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theory (RMT) to analyse its full spectrum. They find that the maximum and variance of its singular
values grow with depth even if the mean remains O(1).

1.1 RELATED WORK

Normalizations: Rescaling the preactivations to zero mean and unit variance across a mini-batch
was introduced in Ioffe & Szegedy (2015); across all the neurons in single layer was done explicitly
in (Lei Ba et al., 2016) and implicitly in (Klambauer et al., 2017). For an overview see Huang et al.
(2020). Mean-field analysis of batch normalization was carried out in Yang et al. (2019).

Critical initialization: Mean-field formalism, describing signal propagation in wide networks, was
introduced in Poole et al. (2016) based on ideas from Neal (1996). It was applied in Schoenholz et al.
(2017) to characterize Lyapunov exponents for signal and gradient propagation in fully-connected
networks. The impact of activation function on initialization was investigated in Hayou et al. (2019);
this work, as well as Xiao et al. (2019), note polynomially-quick convergence of correlation with
depth at criticality. A form of correlation degeneracy was noted in Daniely et al. (2017). Initialization
of convolutional networks was discussed in Xiao et al. (2018).

Skip connections: Residual blocks were introduced in He et al. (2016). Decreasing the variance of
residual weights with depth was shown to be necessary for a non-trivial kernel (Hayou et al., 2021)
and good signal propagation with a class of activations (Yang & Schoenholz, 2017); its utility was
observed empirically in (Wang et al., 2018). Trainable activations, brought closer to linear at the
initialization, were reported to help in training very deep networks in He et al. (2015).

Limiting behaviour of large nets: Breakdown of GP regime was demonstrated in Hanin & Nica
(2020). Physics of large networks was studied systematically in Roberts et al. (2021). The corre-
spondence between infinitely deep ResNets and diffusion processes was described in Peluchetti &
Favaro (2020), and generalized to doubly infinite ResNets in Peluchetti & Favaro (2021). A different
kind of problems with wide and deep ReLU networks was analysed in Hanin & Rolnick (2018).

1.2 CONTRIBUTION

To the best of our knowledge, we present the first general non-perturbative result on signal prop-
agation in infinitely wide networks. It holds for arbitrary1 activation functions, and they can vary
between layers. Our proof does not rely on the assumption of independence between gradients
and weights. On a high level, our framework explains the origin of “signal distortion” in fully-
connected networks, and explains why they are harder to stack than residual networks. Unlike RMT,
our method can handle pairs of data points with non-infinitesimal differences.

We provide a precise trade-off between having rich hidden representations and well-behaved gradi-
ents in fully-connected and residual networks, making rigorous the intuition of competition between
these two goals. Unlike in previous work, our result is non-asymptotic in depth and avoids formu-
lation “up to a constant”. We hope that improvements to our result will serve as a guidance for
architectural choices.

2 SET-UP

2.1 NOTATION

We denote the inner product and vector norms of u, v ∈ Rd as

u.v =

d∑
i=1

uivi ‖u‖ =
√
u.u

For a matrix M ∈ Rn×m, it will be natural to induce the operator norm by the root-mean-squared
norm

‖M‖op = max
v∈Rm

n−
1
2 ‖Mv‖

m−
1
2 ‖v‖

1Technically activations have to be square-integrable with respect to Gaussian weight
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Gaussian covariance will be denoted as

C[f |ρ] = E
[
f(x)f(y)

∣∣∣∣ (xy
)
∼ N

(
0,

(
1 ρ
ρ 1

))]
.

To compare activation functions we will be using the Gaussian norm

‖φ‖2N = E
[
φ
(
N (0, 1)

)2]
= C[φ|1]

We linearize functions by truncating their Hermite expansion

φ(x) = φ̂0 + φ̂1x for φ =

∞∑
k=0

φ̂khk

where hk are normalized Hermite polynomials2. Let us note that they satisfy E[hk(x1)hk′(x2)] =
δkk′ρ

k for jointly normal zero-mean x1, x2 of variances 1 and covariance ρ (for a proof, see for
example O’Donnell (2021)).

2.2 SET-UP

We will focus on an untrained fully-connected neural network of depth L and Nl neurons in layer l.
We compose it from pointwise non-linearities, affine transforms and layer normalizations3; formally
the output of the i-th neuron in layer l on data point xα is given by

z
(l)
i (xα) =

√
Nl·y(l)i (xα)

‖y(l)(xα)‖
where y(l)(xα) =

1√
Nl−1

Nl−1∑
j=1

W
(l)
ij φl

(
z
(l−1)
j (xα)

)
+ b

(l)
i (2.1)

where weights W (l)
ij ∈ RNl×Nl−1 and biases b(l)i ∈ RNl have variances σ2

(l),w, σ
2
(l),b respectively,

and φl : R J⊃ is the activation function of l-th layer. We will refer to z(l) as preactivations. At the
first layer, we set φ1(x) = x and regard it as an “embedding”.

An important role in our analysis will be played by correlation or cosine similarity of the preactiva-
tions, defined for two input data points xα, xβ as

ρl =
1
Nl

Nl∑
i=1

z
(l)
i (xα)z

(l)
i (xβ) =

y(l)(xα).y
(l)(xβ)

‖y(l)(xα)‖·‖y(l)(xβ)‖
(2.2)

When the widths are very large Nl → ∞, with xα fixed and the parameters (W
(l)
ij , b

(l)
i ) having

independent entries4 (e.g. distributed according to the Gaussian initialization scheme), one can use
the mean field approximation (Poole et al., 2016) and treat z(l)i (xα) as a normal random variable.
Then, by the law of large numbers applied to equation 2.2, the correlation changes as

ρl = Pl(ρl−1)
def
=

σ2
(l),b+σ

2
(l),wC[φ|ρl−1]

σ2
(l),b

+σ2
(l),w

C[φ|1] (2.3)

Letting φ =
∑∞
k=0 φ̂khk be the expansion of the activation function φ into normalized Hermite

polynomials, we can work out the Gaussian covariance and obtain

P (ρ) =
σ2
b+σ

2
wφ̂

2
0

σ2
b+σ

2
w‖φ‖2N

+
σ2
w

σ2
b+σ

2
w‖φ‖2N

∞∑
k=1

φ̂2kρ
k (2.4)

Observation 1. From expression 2.4 it is apparent that P is a power series with non-negative coef-
ficients. Therefore, it is non-decreasing and convex on [0, 1]. This implies existence and uniqueness
of an attracting (stable) fixed point 5 of P .

2First two are h0(x) = 1, h1(x) = x
3Without centering
4Technically, we also need regularity conditions (e.g. finite fourth moment) to ensure that CLT applies.

These hold in most practical scenarios.
5A solution to P (ρfp) = ρfp, such that Pn(ρ) n→∞−→ ρfp for all ρ in some neighbourhood of ρfp. A sufficient

condition for the latter is P ′(ρfp) < 1.
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This is relevant when σw, σb, φ are the same across layers; then forward propagation affects the
correlation by repeated application of P , and ρl approaches ρfp as l grows. For ρ0 ≈ 1 we have
1− ρl ≈ P ′(1)l(1− ρ0), so the derivative of P at 1 determines whether the fixed point ρ = 1 is
stable or unstable. Depending on the ratio σb

σw
we have three regimes of initialization, analogous to

the phase diagram from Schoenholz et al. (2017):

• Ordered initialization for P ′(1) < 1. Then ρfp = 1 is stable and ρl → 1 exponentially
quickly with l. Preactivation perturbations decay, so hidden representations of all data
become strongly aligned and gradients vanish.

• Critical initialization for P ′(1) = 1. Then ρfp = 1 is stable and ρl → 1 polynomially
quickly with l. Norm of preactivation perturbations changes sub-exponentially quickly so
the gradients are well-behaved.
• Chaotic initialization for P ′(1) > 1. Then, the fixed point ρ = 1 of P is repelling (unstable)

and there exists another fixed point ρfp < 1 which is attracting. In that case P ′(ρfp) < 1,
so ρl → ρfp exponentially quickly with l. Hidden representations of similar data points are
pulled far apart, preactivation perturbations grow and gradients explode.

3 MAIN RESULT

Our main result, theorem 1, quantifies the trade-off between steepness, representation ampleness,
non-linearity and depth.

Theorem 1. Let z(L) be a wide fully-connected network as described in equation 2.1: having L lay-
ers, using layer normalization and employing activation function φl at layer l. In the limit nl →∞
we have the following inequality∥∥∥∥∥∂z(L)∂z(0)

∥∥∥∥∥
2

op

≥ (1−ρmax)
2

8

L∑
l=1

∥∥φl−φl∥∥2

N
‖φ′l‖

2
N

where ∂z(L)

∂z(0)
is the input-output Jacobian,

∥∥φ−φ∥∥2N is the error of linearizing the activation function
φ and the maximal correlation ρmax is defined as

ρmax = max
1≤l≤L

min
xα,xβ

z(l)(xα).z
(l)(xβ)

Nl

We delay the complete proof to appendix A, and in this section just sketch the main ideas. Let us
start with the consequences of theorem 1, and give interpretations for each quantity. Theorem 1 tells
us that at least one of the following undesirable effects will necessarily occur:

1. The Jacobian norm
∥∥∥∂z(L)

∂z(0)

∥∥∥
op

, which measures the steepness of z(L) as a function of z(0),

is large. This means that a small change in the input drastically alters the output and the
network becomes overly sensitive to perturbations of data. In Bayesian interpretation, the
prior hypothesis favours jagged functions. Then the gradients with respect to the first layer
parameters are necessarily large, which means gradient explosion. This happens when
σ(l),b

σ(l),w
are predominantly small, resembling the chaotic phase.

2. The maximal correlation is close to one ρmax ≈ 1. This means that at some layer l, the hid-
den representation z(l)(x) of any possible input data point x lies in the cone v.z(l)(x)

Nl
> ρmax

for some vector v. We call this scenario representation shrinkage. It may lead to a range
of problems. First, the representations do not utilize the whole available space but rather
are confined to a small region. Second, a rich representation may be necessary for some
problems. In this case getting rid of the shrinkage may be a prerequisite for learning. How-
ever, it costs time. We have observed that the alignment of preactivations tends to disappear
layer-by-layer rather than at all the layers simultaneously, suggesting that deeper networks
require more optimization steps. Third, if the angle between preactivations becomes com-
parable to the machine precision, then in practice gradient descent may run into numerical
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issues. Fourth, suppose that z(l)(x) ≈ v for any data point x. If the following block
z(l+k) ◦ · · · ◦ z(l+1) of k layers is reasonably smooth, then for any input it ever encounters,
the block will we well approximated by its linearization at v. Therefore, z(l+k)◦· · ·◦z(l+1)

does little processing, but requires the full computational budget to implement. This sce-
nario happens when σ(l),b

σ(l),w
tend to be large (ordered-phase-like behavour).

3. The linearization error ‖φl−φl‖N is small. This restricts the choice of activation functions
we can use to ones that are close to linear. The layers need to be close to linear maps, so
informally they will not “process the data too much”. This forces us to make the MLP into
something resembling a ResNet. At zero error the network is completely linear, so forward
propagation perfectly preserves norms, covariances and correlations of preactivations. With
no correlation distortion the gradient-shrinkage trade-off disappears, which is reflected by
theorem 1 becoming vacuous.

4. The depth L upper-bounded. Sum of many lower-bounded terms cannot stay upper-
bounded, so we cannot stack as many layers as we want.

Sketch of proof. We examine the cosine similarity of output preactivations ρL as a function of cosine
similarity of inputs ρ0. This functional relationship in an example network is illustrated on figure 1.
For infinitely wide networks, this functional dependence is exactly described by

ρL = PL ◦ · · · ◦ P1(ρ0)

where Pl are taken from equation 2.3. By observation 1, each Pl is convex. By adding layers
we compose more and more P ’s, and we can show that the convexity “accumulates”. Then, the
“flatness near 0” and the “steepness near 1” become more pronounced and the transition between
them becomes sharper6. Therefore, the infimum7 of PL ◦ · · · ◦ P1 is close to 1, or its derivative at
1 is large. In the former case every possible pair of output preactivations is strongly aligned and
ρmax ≈ 1; in the latter the Jacobian norm and thus gradients are large.

(a) L = 8 (b) L = 16 (c) L = 128

Figure 1: Output correlation ρL as a function of input correlation ρ0, for the erf activation. Empirical
(Nl = 1024) in red, infinite-width in black. Blue is an upper bound on PL ◦ · · · ◦ P1 – for details
see remark 2 in appendix A.1.

The underlying phenomenon is the pathological behaviour of ρL as a function of ρ0. Every z(L)
has correlation 1 with itself, so ρL(ρ0 = 1) = 1. However, we can find an upper-bound (blue on
figure 1) that tends to PL ◦ · · · ◦ P1(0) pointwise on [0, 1) as L grows. �
Remark 1. One might ask where does gradient vanishing fit in this framework. In fact, it is a
special case of representation shrinkage. This is best illustrated on the simplified example with
σ(l),W , σ(l),b, φl independent of l. Gradient vanishing happens at the ordered initialization, when
representation shrinking “proceeds exponentially quickly” with the number of layers, i.e. 1− ρl =
O(e−λl). One way to think about theorem 1 is that criticality is not sufficient to have a well-behaved
network: even though it avoids gradient explosion and vanishing, representation shrinkage still
happens “at a polynomial rate” (theorem 1allows to deduce the rate at least 1− ρl = O(l−

1
2 )).

Now let us apply our technique to residual networks. We consider residual blocks con-
sisting of an affine transform, normalization, pointwise activation and a linear map. Af-
ter adding the residual we normalize the signal. Formally, it is described by the equations

6Pictorially, this resembles the behaviour of the graph of the function y = a+ (1− a)xα as α gets large.
When a ≈ 1 these functions have infimum close to 1, otherwise their slope (derivative) at 1 is big.

7By observation 1, the infimum on [0, 1] is attained at ρ = 0

5



Under review as a conference paper at ICLR 2022

Y (l) = U (l)z(l−1)

y(l) = z(l−1) + 1√
ml
V (l)φl

( √
ml

‖Y (l)‖Y
(l)
)

z(l) =
√
n

‖Z(l)‖Z
(l)

φ

z(l−1)

U (l)

Y (l)

1√
ml
V (l)

y(l)
z(l)

Where z(0) = x ∈ Rn is the input. The parameters are U (l) ∈ Rml×n, V (l) ∈ Rn×ml ; we assume
their entries are independent with variances 1 and σ2

(l) respectively.

Theorem 2. For such residual network in the limit n,ml →∞ we have∥∥∥∂z(L)

∂z(0)

∥∥∥2
op
≥ (1−ρmax)

2

8

L∑
l=1

σ2
(l)‖φl−φl‖

2
N

1+σ2
(l)
‖φ′l‖

2
N

where as before

ρmax = max
1≤l≤L

min
xα,xβ

z(l)(xα).z
(l)(xβ)

Nl

In addition to the four undesired phenomena of the fully-connected variant 1, theorem 2 about
ResNets permits another alternative: initialization variances σ(l) of weights V (l) being small. This
situation is not problematic; in the extreme case σ(l) = 0 the network is initialized as the identity.

4 EXPERIMENTS

4.1 APPLICATIONS OF THEOREM 1

We show the trade-off between non-linearity and representation shrinkage on the example of criti-
cally initialized leaky ReLU networks. For a leaky ReLU network with negative slope a and σb = 0,
the inequality 1 predicts

1− ρmax ≤
√

16π
π−2 ·

1√
L
·
√
1+a2

1−a (4.1)

For detailed derivation of the constants see appendix B. We see that adding layers with constant
a < 1 (figure 2a) and decreasing a at constant depth (figure 2b) decrease 1 − ρmax, i.e. cause
representation shrinkage at some layer. To avoid this effect, we either need to make L bounded and
the network shallow or a ≈ 1 and keep LReLUa close to linear.

(a) a = 0 (standard ReLU), 1 ≤ L ≤ 512 (b) L = 256, 0 ≤ a ≤ 1

Figure 2: 1−ρL as function of depth L (fig 2a) and negative slope a (fig 2b). Empirical correlations
for sample data pairs in red; infinite-width predictions in black; smallest correlation (largest 1− ρl)
found by gradient descent on data (with network parameters fixed) in green; bounds obtained by
rearranging inequality 4.1 in blue. Lower means smaller 1− ρ, i.e. stronger shrinkage.

We illustrate the relationships between gradient explosion and representation shrinkage on the ex-
ample of erf8 activation. With critical initialization, the operator norm of the network Jacobian (3c)

8Smooth increasing function R� [−1, 1] defined as erf(x) = 2√
π

∫ x
0
e−y

2

dy
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does not grow with depth, and thus gradients (3e) are well-behaved; however, the whole input space
gets progressively more squeezed at deeper layers (3a). Theorem 1 predicts that this happens at the
rate at least

1− ρmax ≤ 4√(
arctan 2√

5
− 2

3

)√
5

· 1√
L

(4.2)

The compression of the preactivation range does not happen in chaotic initialization. As shown on
figure 3b, the correlation of preactivations on any pair of different inputs approaches ρfp < 1, i.e. the
fixed point of the function P defined in 2.3. With the approximation ρmax ≈ ρfp, theorem 1 predicts∥∥∥∥∂zL∂z0

∥∥∥∥
op

≥

√(
arctan 2√

5
− 2

3

)√
5

4 ·
(
1− ρfp

)
·
√
L (4.3)

As shown in 3d, norm of the Jacobian indeed grows, causing large gradients in low layers (figure 3f).

(a) Shrinkage, critical (b) (No) shrinkage, chaotic

(c) Jacobian, critical (d) Jacobian, chaotic

(e) Gradients, critical (f) Gradients, chaotic

Figure 3: Representation shrinkage, singular values of the Jacobian and gradient propagation in deep
erf networks. Bounds in figures 3a and 3f are the predictions of inequalities 4.2 and 4.3 respectively.

4.2 REMOVING REDUNDANT LAYERS

Here we compare the training of a full deep network, and a “skimmed” network obtained by replac-
ing a block of middle layers with a single linear transformation. We hypothesize that since all inputs
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to the middle block lie in a small region, it can be replaced with its linearization without significantly
affecting the network outputs.

Figure 4 compares training of full and skimmed networks on MNIST. Full networks has 82 critically-
initialized layers, alternating between ReLU and erf; “skimmed” one has 67 layers (a block of 16
is linearized). At initialization, preactivations entering the middle block have correlation at least
≈ 0.97, on any possible pair of inputs; as shown on figure 4a, this does not change significantly
after training. Figure 4c shows that their performance improves at similar rates, suggesting that the
full and skimmed models follow similar trajectories. We show Pearson correlation between total
displacements of the parameters in each layer on figure 4b. It is large (up to 0.8) further from
the linearized block, suggesting that these layers learn similar features; this is smaller (≈ 0.1) but
positive in layers closer to the linearized block, suggesting some but not complete overlap.

5 DISCUSSION

5.1 THEORETICAL AND PRACTICAL IMPLICATIONS

We have demonstrated a problem with increasing the depth of infinitely wide fully-connected net-
works. It holds quite generally and appears to be a universal property of the fully-connected ar-
chitecture rather than a particular class of activation functions or initialization schemes. It also
demonstrates that critical initialization alone does not eliminate all the problems with signal propa-
gation.

Our result demonstrates that vanilla MLPs are not the right model for networks of large-but-
comparable depth and width. If L and Nl grow simultaneously, then the first block of logL layers
is already problematic and the function ρlogL(ρ0) (as in figure 1) becomes pathological. We cannot
avert it by using critical initialization or mixing different layer hyperparameters. This also hints that
“weakly nonlinear networks” might make more sensible models in this setting.

Theorem 2 suggests that for ResNet initialization, breaking the symmetry between parameters is
more important than specifying a good prior. From the theory side, we can deduce that well-be-
havedness of deep ResNets requires scaling the weight variance as L−1, agreeing with Hayou et al.
(2021). From the practical side, our result suggests choosing the variance below the threshold at

which theorem 2 becomes equality for acceptable values of
∥∥∥∂z(L)

∂z(0)

∥∥∥
op

and ρmax.

In our derivation we assumed that all affine layers are followed by layer normalization. This sim-
plifies the final result but does not restrict generality – in a network in which pointwise nonlinearity
follows an affine map, we can insert layer normalization between them and rescale the activation
function by the average norm of preactivations. This construction requires knowing preactivation
norm in a network without layer normalization, which was studied e.g. in Poole et al. (2016).

One can note that O(L−
1
2 ) rate of decay of 1−ρL in equations 4.1 and 4.2 is worse than asymptotic

O(L−2) for ReLU and O(L−1) for erf. Moreover, the right-hand side of inequality 1 is additive
and not multiplicative. This raises the suspicion that our result can be improved. We leave the
investigation of sharper bounds for future work.

5.2 REMEDYING STRATEGIES

The proof of theorem 1 shows that to avoid representation shrinkage we somehow need to break the
convexity of P -functions. Mixing activation functions cannot completely cancel out each other’s un-
desirable behaviour, because each one only “adds convexity”. It also highlights a problem common
to layer normalization and self-normalizing networks – those methods only normalize the diago-
nal of the covariance matrix of a data batch. This ensures O(1)-scaling of preactivations, but off-
diagonal behaviour may still cause representation shrinkage or gradient explosion. It was showed
in Yang et al. (2019) that batch normalization is not a complete solution either – it necessarily leads
to gradient explosion (which is slowest with linear activations).
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Our result demonstrates limitations of normalization methods and critical initialization in improving
the trainability of deep networks, and suggests using trainable nonlinearities, initialized as linear
functions at the start of the training (similarly to the idea from He et al. (2015)).

(a) Shrinkage in the full model before and after training. Empirical in red, infinite-width
prediction in black

(b) Alignment of parameter displacement

(c) Training curves

Figure 4: Full and “skimmed” network on MNIST
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A PROOF DETAILS

A.1 PROOF OF THEOREM 1

We will analyse the propagation of preactivations for two arbitrary data points xα, xβ . Following

equation 2.2, denote the cosine similarity of preactivations at l-th layer as ρl =
z(l)(xα).z

(l)(xβ)
Nl

. Let
Pl describe the effect of l-th layer on correlation, as defined in equation 2.3. Then for layers k < l
we have

ρl = Pl ◦ Pl−1 ◦ · · · ◦ Pk+2 ◦ Pk+1(ρk)

Here we use a “physical” argument to relate Pl with the Jacobian. For mathematically rigorous
discussion see section A.1.1. If we let one input approach the other xβ → xα, then

lim sup
xβ→xα

N
− 1

2
L ‖z(L)(xα)−z(L)(xβ)‖

N
− 1

2
0 ‖xα−xβ‖

=
∥∥∥∂z(L)

∂z(0)
(xα)

∥∥∥
op

On the other hand, this scenario is equivalent to ρ0 → 1, and

N−1
L ‖z

(L)(xα)−z(L)(xβ)‖2

N−1
0 ‖xα−xβ‖2

= 2−2ρL
2−2ρ0 = 1−PL◦···◦P1(ρ0)

1−ρ0
ρ0→1−→

(
PL ◦ · · · ◦ P1

)′
(1)

Therefore the Jacobian has norm at least∥∥∥∂z(L)

∂z(0)

∥∥∥2
op
≥
(
PL ◦ · · · ◦ P1

)′
(1) (A.1)

Maximal correlation can be expressed using Pl as

ρmax = max
1≤l≤L

min
ρ∈[−1,1]

Pl ◦ . . . P1(ρ)

Let us replace this quantity with something more convenient. Define ρ̃l = Pl ◦ · · · ◦ P1(0) and
ρ̃max = max1≤l≤L ρ̃l. By observation 1, Pl are power series with all coefficients non-negative, so
for ρ ∈ [0, 1] we have

Pl ◦ · · · ◦ P1(ρ) ≥ Pl ◦ · · · ◦ P1(0) = ρ̃l

Pl ◦ · · · ◦ P1(−ρ) ≥ 2Pl ◦ · · · ◦ P1(0)− Pl ◦ · · · ◦ P0(ρ) ≥ 2ρ̃l − 1

Therefore ρl ≥ 2ρ̃l − 1, and 1− ρmax ≤ 2(1− ρ̃max).

If we restrict our attention to ρ ∈ [0, 1], then Pl ◦ · · · ◦P1 takes values in [ρ̃l, 1], so Pl+1 “encounters
values only from this inverval”. Therefore, let us “crop” all the P ’s to functions P̃ : [0, 1] J⊃ by
defining

P̃l(t)
def
= Pl(ρ̃l−1+(1−ρ̃l−1)t)−ρ̃l

1−ρ̃l so that Pl
(
ρ̃l−1 + (1− ρ̃l−1)t

)
= ρ̃l + (1− ρ̃l)P̃l(t)

Then the Pl, P̃l are related by affine transforms, domain and codomain of P̃l is [0, 1] and it satisfies
P̃l(0) = 0, P̃l(1) = 1. Then we have

Pl ◦ · · · ◦ Pk+1

(
ρ̃k + (1− ρ̃k)t

)
= ρ̃l + (1− ρ̃l) · P̃l ◦ · · · ◦ P̃k+1(t) (A.2)

and as a consequence (
PL ◦ · · · ◦ P1

)′
(1) = (1− ρ̃L)

(
P̃L ◦ · · · ◦ P̃1

)′
(1) (A.3)
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When we substitute the formula 2.3, we see that P̃l is exactly a “cropped” Gaussian covariance of
the activation function, i.e.

P̃l(t) =
C[φl|ρ̃l−1+(1−ρ̃l−1)t]−C[φl|ρ̃l−1]

C[φl|1]−C[φl|ρ̃l−1]

We will now make use of the excess convexity e. It is a functional that takes convex functions on
[0, 1] and returns real numbers. Its definition and all the necessary proofs are in appendix A.3. All
we need to know in this proof is that it satisfies inequalities A.4, A.5 and A.6, which follow directly
from its properties 4, 5 and 7.

The steepness estimate (property 4) states(
P̃L ◦ · · · ◦ P̃1

)′
(1) ≥ 1 + e

(
P̃L ◦ · · · ◦ P̃1

)
(A.4)

The superadditivity with respect to composition (property 5) states

e
(
P̃L ◦ . . . P̃1

)
≥

L∑
l=1

e(P̃l) (A.5)

Finally, applying the “cropping” property 7 yields

e(P̃l) ≥ (1−ρ̃l−1)‖φl−φl‖
2
N

2‖φ′l‖
2
N

(A.6)

This is all we need from e to complete the proof. Combining inequalities A.4, A.5 and A.6 gives

(
P̃L ◦ · · · ◦ P̃1

)′
(1) ≥ e

(
P̃L ◦ · · · ◦ P̃1

)
≥ 1−ρ̃max

2

L∑
l=1

‖φl−φl‖
2
N

‖φ′l‖
2
N

Reexpressing LHS in terms of the Jacobian norm from equation A.1 and remembering 1 − ρ̃max ≥
1−ρmax

2 and equation A.3 we arrive at the desired inequality.

Remark 2. So presented proof omits some details needed to construct the upper bound on PL ◦
· · · ◦ P1 presented on figure 1 (blue line). This bound can be derived by combining equations A.5
and A.6, and unpacking the definition of e(P̃L ◦ · · · ◦ P̃1) as follows.

We have “cropped” the function PL ◦ · · · ◦ P1 according to equation A.2

PL ◦ · · · ◦ P1(t) = ρ̃L + (1− ρ̃L)P̃L ◦ · · · ◦ P̃1(t)

such that P̃L ◦ · · · ◦ P̃1(0) = 0. Then it is enough to take care of P̃L ◦ · · · ◦ P̃1. Equations A.5
and A.6 provide a bound on the excess convexity of P̃L ◦ · · · ◦ P̃1

e
(
P̃L ◦ · · · ◦ P̃1

)
≥ 1−ρ̃max

2

L∑
l=1

‖φl−φl‖
2
N

‖φ′l‖
2
N

Using the property 1of excess convexity we can bound P̃L ◦ · · · ◦ P̃1 from above by a piecewise lin-
ear function (this gives exactly the bound on figure 1). The proof of this property and an intuitive
interpretation is presented in appendix A.3.

Remark 3. Having arrived at equation A.3, we could have rewritten it using chain rule and bound
each P̃ ′l (1) straight away. There are two reasons for using the excess convexity. First, it describes
PL ◦· · ·◦P1 on the whole of [0, 1] and not only in the neighbourhood of 1. Knowing that e(P̃L ◦· · ·◦
P̃1) is large allows us to produce the blue upper bound on figure 1, and thus explain why ρL is nearly
constant for large range of ρ0, and rapidly jumps to 1 when the data points are very close. Second,
it rules out the situation where the pathological behaviour of PL ◦ · · · ◦ P1 would be restricted to
some (1− ε, 1) with ε→ 0 as L grows.
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A.1.1 JUSTIFICATION FOR EQUATION A.1

To arrive at equation A.1 we the swapped the order of limits limnl→∞ and lim supxβ→xα . Here we
give a rigorous treatment without this exchange. This will require some understanding of the excess
convexity e.

DenoteE = 1−ρmax
4

∑L
l=1

‖φl−φl‖
2
N

‖φ′l‖
2
N

, and pick 0 < τ ≤ 1
2+E . Equations A.5 and A.6 together imply

that e(P̃L ◦ · · · ◦ P̃1) ≥ E. From property 1 of excess convexity e it follows that

P̃L ◦ · · · ◦ P̃1(1− τ) ≤ (1 + E)(1− τ)− E =

= 1− (1 + E)τ

plugging the relation between P̃l and Pl from equation A.2 gives

PL ◦ · · · ◦ P1(1− τ) ≤ ρ̃max +
(
1− ρ̃max

)(
1− (1 + E)τ

)
=

= 1− (1− ρ̃max)(1 + E)τ (A.7)

Now, take any xα, xβ satisfying ‖xα‖2 = ‖xβ‖2 = n0, xα.xβn0
= 1− τ . Consider

n−1
L ‖z

(L)(xα)−z(L)(xβ)‖2

n−1
0 ‖xα−xβ‖2

=
1−

z(L)(xα).z(L)(xβ)

nL

1−
xα.xβ
n0

As n1, . . . , nL →∞, this converges to

1−PL◦···◦P1

(
xα.xβ
n0

)
1−

xα.xβ
n0

= 1−PL◦···◦P1(1−τ)
τ

Convergence in probability was proved in Hanin (2021), while almost sure convergence for sig-
moidal9 or ReLU activations can be deduced from Daniely et al. (2017). Remembering equation A.7,
this quantity is at least

1−PL◦···◦P1(1−τ)
τ ≥ (1− ρ̃max)(1 + E)

Therefore as n1, . . . , nL →∞ we have

n−1
L ‖z

(L)(xα)−z(L)(xβ)‖2

n−1
0 ‖xα−xβ‖2

≥ (1− ρ̃max)E (A.8)

By mean value theorem, there exists a point xγ on the line segment joining xα, xβ satisfying∥∥∥∂z(L)

∂z(0)
(xγ)

∥∥∥
op
≥ n

− 1
2

L ‖z(L)(xα)−z(L)(xβ)‖

n
− 1

2
0 ‖xα−xβ‖

Combining this with the estimate A.8 yields∥∥∥∂z(L)

∂z(0)
(xγ)

∥∥∥2
op
≥ 1−ρmax

2 E = (1−ρmax)
2

8

L∑
l=1

‖φl−φl‖
2
N

‖φ′l‖
2
N

(A.9)

Let us summarize the precise formulation. We have actually demonstrated two very similar state-
ments that differ by the exact interpretation of convergence. Using the result of Hanin (2021), we
obtain: on every line segment joining xα, xβ (that satisfy ‖xα‖2 = ‖xβ‖2 = n0 and 1 >

xα.xβ
n0
≥

1+E
2+E ), with probability tending to 1 as n1, . . . , nL → ∞, we can find a point xγ satisfying the
inequality A.9. Employing the result of Daniely et al. (2017), the precise statement becomes: with
sigmoidal9 or ReLU activation, on every line segment joining xα, xβ (that satisfy ‖xα‖2 = ‖xβ‖2 =

n0 and 1 >
xα.xβ
n0
≥ 1+E

2+E ), almost surely, for sufficiently large n1, . . . , nL, we can find a point xγ
satisfying the inequality A.9.

9Satisfying ‖φl‖∞, ‖φ′l‖∞, ‖φ′′l ‖∞ < C‖φl‖N for a (common) constant C
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Remark 4. The proof is simpler if in the statement of theorem 1 we replace the square of Jacobian
norm on the LHS by its infinite-width analogue

lim sup
xβ→xα

KL(xα,xα)+KL(xβ ,xβ)−2KL(xα,xβ)
K0(xα,xα)+K0(xβ ,xβ)−2K0(xα,xβ)

where Kl is the NNGP kernel (de G. Matthews et al., 2018)

Kl(xα, xβ) = lim
n1,...,nl→∞

1
nl

nl∑
i=1

z
(l)
i (xα)z

(l)
i (xβ)

A.2 PROOF OF RESNET VARIANT 2

The proof follows the same strategy as in the fully-connected case: we write down Pl, “crop” it and
recenter to [0, 1]2, and apply the excess convexity functional.

We can work out the covariances
Y (l)(xα).Y

(l)(xβ)

‖Y (l)(xα)‖·‖Y (l)(xβ)‖
= ρl−1

y(l)(xα).y
(l)
i (xβ)

n = ρl−1 + σ2
(l)C[φl|ρl−1]

ρl = Pl(ρl−1) =
z(l)(xα).z

(l)(xβ)
n =

ρl−1+σ
2
(l)C[φl|ρl−1]

1+σ2
(l)
‖φl‖2N

(A.10)

Where Pl in equation A.10 again governs the change of correlation after l-th layer. Introduce ρ̃l =
Pl ◦ · · · ◦ P1(0) and P̃l(t) = Pl(ρ̃l−1+(1−ρ̃l−1)t)−ρ̃l

1−ρ̃l . Similarly as in the fully-connected case, we
have ∥∥∥∥∂z(L)∂z(0)

∥∥∥∥2
op

= (1− ρ̃L)
(
P̃L ◦ · · · ◦ P̃1

)′
(1) (A.11)

Using properties 4 and 5 of excess convexity e from appendix A.3 we can get the bound(
P̃L ◦ · · · ◦ P̃1

)′
(1) ≥ e

(
P̃L ◦ · · · ◦ P̃1

)
≥

L∑
l=1

e
(
P̃l
)

(A.12)

Now we only need a bound on e(P̃l). Substituting the equation A.10 to the definition of P̃l yields

P̃l(t) =
1−ρ̃l−1

1−ρ̃l−1+σ2
(l)
A
t+

σ2
(l)A

1−ρ̃l−1+σ2
(l)
A
g(t)

where

A = ‖φl‖2N − C[φl|ρ̃l−1]

g(t) = C[φl|ρ̃l−1+(1−ρ̃l−1)t]−C[φl|ρ̃l−1]
A

Now we bound the excess convexity of P̃l. From property 8 we can deduce

e
(
P̃l
)
≥ σ2

(l)A·e(g)
1−ρ̃l−1+σ2

(l)
A

And property 7 states
e(g) ≥ (1−ρ̃l−1)

2‖φl−φl‖
2
N

2A

Which gives

e
(
P̃l
)
≥ σ2

(l)(1−ρ̃l−1)
2‖φl−φl‖

2
N

2
(
1−ρ̃l−1+σ2

(l)
A
)

Finally we use A ≤ (1− ρ̃l−1)‖φ′l‖2N to obtain

e
(
P̃l
)
≥ σ2

(l)(1−ρ̃l−1)‖φl−φl‖2N
2(1+σ2

(l)
‖φ′l‖

2
N )

Combining this with equations A.11, A.12 and 1− ρmax ≤ 2(1− ρ̃max) we get∥∥∥∂z(L)

∂z(0)

∥∥∥2
op
≥ (1−ρmax)

2

8

L∑
l=1

σ2
(l)‖φl−φl‖

2
N

1+σ2
(l)
‖φ′l‖

2
N
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A.3 EXCESS CONVEXITY

Here we define the excess convexity functional and prove its properties. We will be working with
non-decreasing convex functions g : [0, 1] J⊃ satisfying g(0) = 0, g(1) = 1. Note that these condi-
tions imply continuity.

Each g satisfying these conditions must have an argument t ∈ (0, 1) for which
g(1− t) = t. This follows from Darboux property of g(1− x)− x; pictorially,
the graph of g must intersect the line x + y = 1. We then define the excess
convexity of g as

e(g) = 1
t − 2

g

0 1−t 1
0

t

1

It turns out that despite a seemingly arbitrary definition, excess convexity possesses a number of
nice properties:

Property 1 (Bounding). If e(g) ≥ C, then g(t) ≤

{
1

1+C t if t ≤ 1− 1
2+C

(1 + C)t− C if t ≥ 1− 1
2+C

Proof. The condition e(g) ≥ C means that the point 1
2+C

(
1 + C

1

)
lies above the graph of g.

Therefore the line segments joining it with 0 and
(
1
1

)
lie entirely above the graph of g.

Property 2 (Non-negativity). e(g) ≥ 0, with equality only for g = id[0,1]

Proof. By convexity g
(
1
2

)
≤ 1

2

(
g(0)+g(1)

)
= 1

2 . Since g(t)+ t is increasing, we must have t ≤ 1
2

and hence 1
t − 2 ≥ 0. Strict inequality for g 6= id[0,1] follows from property 3 below.

Property 3 (Coerciveness). We have the inequality ‖g − id[0,1]‖∞ ≤ e(g)
1+e(g)

Proof. Essentially, this proof boils down to the graph of g lying in the shaded area.

If x ≥ 1− t then convexity applied to arguments 0, 1− t, x gives

t = g(1− t) ≤ x−1+t
x g(0) + 1−t

x g(x) ⇒ g(x) ≥ t
1−t · x

So |x− g(x)| ≤ 1− t
1−t =

1−2t
1−t . Similarly, for x ≤ 1− t we apply convexity

to arguments x, 1− t, 1 and obtain

x ≥ g(x) ≥ max
{
0, 2t−1+(1−t)x

t

} 1−2t
1−t

t
1−t(

1−t
t

)

so again |x− g(x)| ≤ 1−2t
1−t for x ∈ [0, 1− t]. This means that

|x− g(x)| ≤ 1−2t
1−t = e(g)

1+e(g) for all x ∈ [0, 1]

Property 4 (Steepness estimate). If g is differentiable then g′(1) ≥ 1 + e(g)

Proof. By mean value theorem, there exists s ∈ (1− t, 1) satisfying

g′(s) =
g(1)− g(1− t)
1− (1− t)

=
1− t
t

= 1 + e(g)

Since g is convex, its derivative is non-decreasing so g′(1) ≥ g′(s).

Property 5 (Superadditivity with respect to composition). For any two functions g1, g2 satisfying
the conditions of this subsection we have e(g2 ◦ g1) ≥ e(g2) + e(g1)
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Let us first present the pictorial idea behind the proof. We know we can find ti
with gi(1− ti) = ti. We examine the points

P1 =

(
1− t1
g2(t1)

)
P2 =

(
g−11 (1− t2)

t2

)
By construction, they lie on the graph of g2◦g1. We intersect the segment P1P2

with the line x + y = 1 to get Q. Since g2 ◦ g1 is convex, Q lies above the
graph of g2 ◦ g1 and hence gives a lower bound on e(g2 ◦ g1).

P1

P2

Q

Proof. Now we will make this hand-wavy proof rigorous. We start by a statement about the location
of P1. By convexity of g2 we have

g2 ◦ g1(1− t1) = g2(t1) ≤ t1
1−t2 · g2(1− t2) +

1−t1−t2
1−t2 · g2(0) = t1t2

1−t2 (A.13)

ti <
1
2 , so the weights are non-negative. We can get an analogous inequality for P2: using concavity

of g−11 we get

g−11 ◦ g
−1
2 (t2) = g−11 (1− t2) ≥ t2

1−t1 · g
−1
1 (t1) +

1−t1−t2
1−t1 · g−11 (1) = 1− t1t2

1−t1

g2 ◦ g1
(
1− t1t2

1−t1

)
≤ t2 (A.14)

It is straightforward, if somewhat tedious, to check that the right (i.e. giving rise to something of the
form g2 ◦ g1(1− t) ≤ t) weights to combine inequalities A.13, A.14 are given by

w1 = (1−2t1)t2(1−t2)
(1−t1−t2)(t1+t2−2t1t2) w2 = t1(1−t1)(1−2t2)

(1−t1−t2)(t1+t2−2t1t2) (A.15)

Adding inequalities A.13 with weight w1 and A.14 with weight w2 yields

g2 ◦ g1
(
1− w1t1 − w2

t1t2
1−t1

)
≤ w1 · g2 ◦ g1(1− t1) + w2 · g2 ◦ g1

(
1− t1t2

1−t1

)
≤ w1

t1t2
1−t2 + w2t2

After substituting the weights from A.15 this simplifies to

g2 ◦ g1
(
1− t1t2

t1+t2−2t1t2

)
≤ t1t2

t1+t2−2t1t2

Therefore
e(g2 ◦ g1) ≥

(
t1t2

t1+t2−2t1t2

)−1
− 2 = 1

t1
+ 1

t2
− 4 = e(g1) + e(g2)

Property 6 (Cropping a power series). Take a power series g(x) =
∑∞
k=0 ckx

k with all coefficients
non-negative ck ≥ 0. Let us “crop” it to the rectangle [a, b]× [g(a), g(b)] and “recentre”; formally,
define

g̃(s) = g(a+(b−a)s)−g(a)
g(b)−g(a) so that g(a+ (b− a)s) = g(a) +

(
g(b)− g(a)

)
· g̃(s)

then e(g̃)(2+e(g̃))
1+e(g̃) ≥ (b−a)2

g(b)−g(a)
∑∞
k=2 ckb

k−2.

Proof. Let t = 1
2+e(g̃) so that g̃(1− t) = t. By the definition of g̃

tg(a) + (1− t)g(b)− g
(
ta+ (1− t)b

)
=
(
g(b)− g(a)

)(
1− t− g̃(1− t)

)
=

=
(
g(b)− g(a)

)
(1− 2t) =

=
(
g(b)− g(a)

) e(g̃)
2+e(g̃) (A.16)

On the other hand, expanding g yields

tg(a) + (1− t)g(b)− g
(
ta+ (1− t)b

)
=

∞∑
k=0

ck

[
tak + (1− t)bk −

(
ta+ (1− t)b

)k]
=

=

∞∑
k=2

ckb
k

[
t
(
a
b

)k
+(1−t)−

(
t · ab+1−t

)k]
(A.17)
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where the constant k = 0 and linear k = 1 terms cancel. Now, consider the function k 7→ sxk −
(sx+1− s)k for some s, x ∈ [0, 1]. We will prove that it is non-decreasing on [1,∞). Its derivative
with respect to k is

−sxk log 1
x + (sx+ 1− s)k log 1

sx+1−s ≥

≥ −sx(sx+ 1− s)k−1 log 1
x + (sx+ 1− s)k log 1

sx+1−s =

= (sx+ 1− s)k−1
[
s · x log x+ (1− s) · 1 log 1− (sx+ 1− s) log(sx+ 1− s)

]
which is non-negative by Jensen’s inequality for x log x. This allows to replace all brackets in A.17
with their values at k = 2, giving
∞∑
k=2

ckb
k
[
t
(
a
b

)k
+ (1−t)−

(
t · ab + 1−t

)k] ≥ ∞∑
k=2

ckb
k
[
t
(
a
b

)2
+ (1−t)−

(
t · ab + 1−t

)2]
=

= t(1− t)
(
1− a

b

)2 ∞∑
k=2

ckb
k

Substituting t = 1
2+e(g̃) and comparing to equation A.16 yields

(
g(b)− g(a)

) e(g̃)
2+e(g̃) ≥

1+e(g̃)
(2+e(g̃))2 (b− a)

2
∞∑
k=2

ckb
k−2

which is equivalent to the desired inequality.

Property 7 (Cropping a Gaussian covariance). Suppose we “crop” a Gaussian covariance C[f |•]
to [r, 1] by defining

g̃(t) = C[f |r+(1−r)t]−C[f |r]
C[f |1]−C[f |r]

Then the excess convexity of g̃ is at least

e(g̃) ≥ (1−r)2‖f−f‖2N
2(‖f‖2N−C[f |r])

≥ (1−r)‖f−f‖2N
2‖f ′‖2N

Proof. Applying property 6 with a = r, b = 1 gives

2e(g̃) ≥ e(g̃)(2+e(g̃))
1+e(g̃) ≥ (1−r)2

C[f |1]−C[f |r]

∞∑
k=2

f̂2k

Where f =
∑∞
k=0 f̂khk is the Hermite expansion of f . Notice that the sum is simply

∑∞
k=2 f̂

2
k =

‖f − f‖2N , which completes the proof of the first inequality.

To get the second one we only need to bound the denominator. Convexity of C[f |•] implies that

C[f |1]− C[f |r] ≤ (1− r) · ∂C[f |ρ]∂ρ

∣∣∣
ρ=1

From Stein’s lemma we can deduce ∂
∂ρC

[
f
∣∣ρ] = C

[
f ′
∣∣ρ], so ∂C[f |ρ]

∂ρ

∣∣∣
ρ=1

= ‖f ′‖2N .

Property 8 (Combining with identity). For p, q ≥ 0, p+ q = 1 and a function g we have

e
(
p · id[0,1] + q · g

)
≥ qe(g)

1+pe(g)

Proof. Set g(1− s) = s, p(1− t) + qg(1− t) = t. Write

g(1− t)− t = p
q (2t− 1) ≤ 0 = g(1− s)− s

and since g(1−x)−x is decreasing, we must have 1−t ≤ 1−s. This allows deduce from convexity
of g that g(1− t) ≤ 1−t

1−sg(1− s) +
t−s
1−sg(0) =

s(1−t)
1−s . Therefore

t− p+ pt = qg(1− t) ≤ q · s(1−t)1−s

18
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Substituting s
1−s = 1

1+e(g) and rearranging yields

t ≤ 1+pe(g)
2+e(g)+pe(g)

which is equivalent to
e
(
p · id[0,1] + q · g

)
= 1

t − 2 ≥ qe(g)
1+pe(g)

B HERMITE EXPANSIONS OF COMMON ACTIVATION FUNCTIONS

Leaky rectified linear unit with negative slope a is defined as LReLUa(x) = ax+(1−a) ·ReLU(x),
and has the following

C[LReLUa|ρ] = aρ+ (1− a)2
√

1−ρ2+ρ(π−arccos ρ)
2π

LReLU(x) = 1−a√
2π

+ 1+a
2 x

Therefore ∥∥LReLUa − LReLUa
∥∥2
N = π−2

4π (1− a)2∥∥LReLU′a
∥∥2
N = 1+a2

2

And the critical initialization requires σb = 0.

The error function is defined as erf(x) = 2√
π

∫ x
0
e−y

2

dy. It induces

C[erf|ρ] = 2
π arctan 2ρ√

9−4ρ2

erf(x) = 2√
3π
x

Therefore

‖erf− erf‖2N = 2
π

(
arctan 2√

5
− 2

3

)
‖erf′‖2N = 4

π
√
5

And critical initialization happens when
(
σb
σw

)2
= 2

π

(
2√
5
− arctan 2√

5

)
.
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