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ABSTRACT

Gaussian mixture models (GMMs) is one of the most fundamental methods to
identify and extract latent structure in complex datasets. Unfortunately, well-
known hardness results require that any algorithm for learning a mixture of k
multivariate Gaussian distributions in d-dimensional space requires both runtime
and sample complexity exponential in d, even if the Gaussians are reasonably
separated. To overcome this barrier, we consider settings where algorithms are
augmented with possibly erroneous “advice” to help learn the underlying GMMs.
In particular, we consider a natural predictor that can be easily trained through
machine learning models. Specifically, our predictor outputs a list of 5 possi-
ble labels for each sample from the mixture such that, with probability at least
1 — a, one of the labels in the list is the true label, for a fixed constant o. We
show that to estimate the mixture up to total variation distance O(e), we can use
k- poly (d, log k, %) samples from the GMM, provided that 3 is upper bounded by
any fixed constant. Moreover, our algorithm uses polynomial time, thus breaking
known computational limitations of algorithms that do not have access to such
advice.

1 INTRODUCTION

The problem of learning a model that best fits a collection of observations is a fundamental problem
in machine learning, theoretical computer science, and mathematical statistics. A common assump-
tion is that the input data is generated through independent and identically distributed samples from
an unknown mixture of Gaussians. Formally, a Gaussian mixture model (GMM) is a convex combi-

nation of Gaussian distributions, i.e., a distribution D = Zle w; - N(u;, 3;), where the unknown
weights w; are non-negative and sum to 1 and NV (u;, ;) denotes a d-dimensional multivariate Gaus-
sian distribution with unknown mean y; and covariance matrix ;. Due to their capacity to model
diverse data distributions with a combination of Gaussian components, GMMs have been one of the
most extensively studied latent variable model since its introduction by Pearson in 1894 (Pearson,
1894), with applications in many areas where finite mixture models occur, including biology, ge-
ology, physics, and social sciences (Titterington et al., 1985; Peel & MacLahlan, 2000; McLachlan
etal., 2019).

Dasgupta (1999) initiated the algorithmic problem of learning GMMs by giving an algorithm for
learning the mixture of % identical Gaussians that uses time polynomial in k£ and the ambient dimen-
sion d, under the assumption that the Gaussians are spherical and their centers are well-separated.
Subsequent works (Arora & Kannan, 2001; Vempala & Wang, 2002; Achlioptas & McSherry, 2005;
Brubaker & Vempala, 2008; Kannan et al., 2008; Diakonikolas et al., 2023) focused on efficient
algorithms for learning GMMs under various other assumptions. Additionally, a line of work (Kalai
et al., 2010; Moitra & Valiant, 2010; Belkin & Sinha, 2015; Hardt & Price, 2015) studied efficient
algorithms and impossibility results under minimal information-theoretic conditions.

Unfortunately, Moitra & Valiant (2010) showed that there exist distributions D; and D5 that are
mixtures of k2 4 1 Gaussians with “large” weights and reasonably separated centers, such that 22(*)
samples are needed to distinguish between D; and D,. Moreover, Hardt & Price (2015) showed
that even for the case where d = 1 and the Gaussians have the same variance, (% ~2) samples
are necessary to learn the parameters in the mixture model up to constant additive error, where o2 is
the variance of the univariate Gaussians. These results say that both sample complexity and runtime
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exponential in k is necessary for learning general Gaussian mixture models. Thus, we seek tools and
techniques that enable sample complexity and runtime polynomial in k for learning GMMs without
require distributional assumptions beyond the necessary minimal information theoretic assumptions.

Learning-augmented algorithms. A natural area to draw inspiration for new tools is the recent
advances in the predictive ability of machine learning models. In many applications, auxiliary in-
formation, e.g., previous datasets with potentially similar behavior, is often available and can guide
algorithmic decisions if accurate. On the other hand, machine learning models lack provable guaran-
tees and thus produce heuristics that can be embarrassingly inaccurate when generalizing to unfamil-
iar inputs (Szegedy et al., 2014). Nevertheless, learning-augmented algorithms (Mitzenmacher &
Vassilvitskii, 2020) have been shown to overcome worst-case impossibility barriers for a wide range
of settings, such as more efficient data structures (Kraska et al., 2018; Mitzenmacher, 2018; Lin
et al., 2022), faster runtime algorithms (Dinitz et al., 2021; Chen et al., 2022c; Davies et al., 2023),
more competitive online algorithms (Purohit et al., 2018; Gollapudi & Panigrahi, 2019; Lattanzi
et al., 2020; Wang et al., 2020; Wei & Zhang, 2020; Bamas et al., 2020; Im et al., 2021; Lykouris
& Vassilvitskii, 2021; Aamand et al., 2022; Anand et al., 2022; Azar et al., 2022; Grigorescu et al.,
2022; Khodak et al., 2022; Jiang et al., 2022; Antoniadis et al., 2023; Shin et al., 2023), and more
space-efficient streaming algorithms (Hsu et al., 2019; Indyk et al., 2019; Jiang et al., 2020; Chen
et al., 2022bja; Li et al., 2023). In particular, (Ergun et al., 2022; Nguyen et al., 2023) introduce
algorithms for k-means and k-median clustering that use polynomial runtime and achieve approxi-
mation guarantees beyond NP hardness limits. As clustering has many similar structural properties
as, and in fact is often used as a subroutine for, learning GMMs, it is our hope that we can also use
machine learning advice to overcome the exponential time barriers for learning GMMs (Moitra &
Valiant, 2010; Hardt & Price, 2015).

1.1 OUR CONTRIBUTIONS

In this paper, we study the problem of learning Gaussian mixture models given a natural form of
advice that can be readily offered by machine learning models.

List oracle. We consider learning a mixture D of k& Gaussians given a list oracle, which provides
a list of labels for each samples, i.e., a list of possible indices of the corresponding Gaussian, up to
some error «. Specifically, if  ~ D is drawn from Gaussian G; = (u;, ¥;), then informally, on
query x, the oracle will provide a small list of labels that includes the label i, with probability at
least (1 — «) over the fraction of the input queries. In particular, we only require a certain fraction
of the labels to be incorrect, regardless of the manner they are incorrect. That is, the labels can be
adversarially incorrect, which could potentially obfuscate any signal from a mixture of Gaussians
that are not well-separated.

We remark that a list oracle can be easily acquired through a machine learning model that is trained
on a similar distribution of data. For example, a set of samples can be split into a “training” set and
a “testing” set, but rather than using the training set in the traditional line of supervised learning,
we can instead apply a heuristic such as kmeans++ to cluster the initial data, and use the resulting
centers to form a predictor for the second half of the data. The model may assign different confi-
dences to each label for a point, e.g., an algorithm may declare 55% confidence that an input point
x is labeled 7 and 45% confidence that x should be labeled ;. In this case, it seems reasonable to
assign both 7 and j as possible labels for x. Alternatively, consider the scenario where we have
multiple machine learning models that can be used to predict the label of a sample. We could use
ensemble learning to assimilate the multiple models into a single model, but this could lose valu-
able information, e.g., if half of the models declare that an input point x is labeled ¢ and half of the
models declare that X is labeled 5. In fact, note that it is possible for an ensemble of 10 (and more
generally 5) models to always correctly predict a label despite each of models only have 10% (and
more generally %) accuracy.

We also remark that a list oracle does not trivialize the problem. For a simple example, consider
a mixture of £k = 2 Gaussians and a list oracle that simply outputs both labels for each point. In
this case, the list oracle provides absolutely no additional information at all! More generally, the list
oracle could produce lists so that all the points in Gaussians ¢ and j are given the same labels, in
which case any signal separating ¢ and j seems to be lost.
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Furthermore, even if the list oracle only contains a single label that is correct with arbitrarily high
accuracy, the probelm is surprisingly not immediate, in the sense that the naive algorithm outputting
the empirical mean-covariance pairs of the labeled samples does not work. In fact, the algorithm can
perform arbitrarily poorly. As a simple example, consider the case where k = 2, so the goal is to
learn a mixture of two Gaussians G; and G5 using n samples, given an oracle with accuracy 1 — %,

so that the error rate o = % is arbitrarily low. Suppose GG has uniform spherical covariance and
is centered at the origin, while G5 has uniform spherical covariance and is centered at the NV - eq,
for the elementary vector e;. With constant probability, the oracle labels all points correctly except
for a single point. Suppose without loss of generality, the oracle mistakenly labels a sample x from
(G1 as having been generated from G5. Since (G7 is centered at the origin, then z has distance
O (N) from N - e, and thus the empirical mean of the cluster of points labeled as being generated
from G has changed additively by O (%) For N > n, the empirical mean of the cluster can be
arbitrarily far from the true mean of G2, despite only a single error by the oracle. Thus even though
the example can be quite easily rectified, it is apparent that blindly outputting the empirical means
and covariances of the induced clustering by the list oracle can give arbitrarily large error, even when
the error is arbitrarily small. We observe that the above example of course does not rule out more
complex algorithms.

We first consider the case where the list oracle always includes the correct label, i.e., o = 0; we
subsequently discuss the case for general . We show that a list oracle with § labels, in addition
to k - poly (d, log k, é) samples from the mixture D of k well-separated Gaussians, can be used to

output a mixture D’ of k Gaussians such that dtv (D, D’) < O (&). Formally, we require bounds on
the precision and recall of the set of labels for each cluster. This is to avoid cases, such as where
two clusters 7 and j are completely obfuscated because all lists that include the label ¢ also include
the label j, and vice versa. We defer the formal description of precision and recall to Definition 2.4.
For the purposes of presentation, we represent our result for uniform mixtures, though we note
that our result extends to non-uniform mixtures, with the appropriate increase in runtime, sample
complexity, and changes in the total variation distance between pairs G; and G; of Gaussians in the
mixture model.

Theorem 1.1. Let D be any d-dimensional uniform mixture of Gaussians G, . . . , G, with — log(1—
drv(Gi, G;)) = Qlog(k/¢e)) for all i # j. Given a B-list oracle, there exists an algorithm that
takes n = poly(dk/e) samples from D, runs in time k-poly(n), and returns k hypothesis Gaussians
Hy, ..., Hy such that with high probability,

dTV %ZG“%ZHZ S@(E)

The algorithm for Theorem 1.1 first looks at the sets P; of points labeled i, for each i € [k]. Under
bounded recall assumptions, we have that the number of false positives in P; is a large constant
multiple of the number of points that were truly sampled from ;. We thus apply a list-decodable
mean and covariance estimation routine to acquire a list 7{; of mean-covariance pairs, i.e., Gaussians,
including a pair that is close in total variation distance to the true Gaussian G;.

Unfortunately, H,; may also include a number of incorrect mean-covariance pairs, or even mean-
covariance pairs corresponding to other Gaussians GG;. A natural approach would be to merge the
similar pairs and then remove the remaining false mean-covariance pairs through a standard tour-
nament, e.g., Daskalakis et al. (2015); De et al. (2015). However, because each index i € [k]
corresponds to a list with a constant size, the number of possible hypotheses is 2(*), which would
require an additional number of samples exponential in &, to determine the correct hypothesis.

We instead recall the insight by Bakshi et al. (2020) that a false mean-covariance pair (u, 3) must be
separated from a true Gaussian G; in parameter distance, i.e., large total variation implies large pa-
rameter distance. In particular, (x4, 3) must be mean-separated, Frobenius-separated, or spectrally-
separated; surprisingly, there are no other cases. See Figure | for an illustration.

We show that under each of the above cases, we can use a maximum likelihood estimator to assign
each sample, resulting in the true mean-covariance pairs having a large number of samples and the
false mean-covariance pairs having a small number of samples. Specifically, we prove a structural
property showing that large parameter distance for Gaussians implies large total variation distance,
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Fig. 1: From left to right: examples of mean-separation, Frobenius-separation, and spectral-
separation.

i.e., the converse of the statement of Bakshi et al. (2020). To that end, we consider casework on
whether a pair of Gaussians G; and G; are mean-separated, Frobenius-separated, or spectrally-
separated. If the Gaussians are mean-separated, we note there exists a vector v that has significant
correlation with the difference p; — j1; between the two means i, p1; of the Gaussians, so that a
sample « can be distinguished as being drawn from G, or G; depending on the values of (x — p;, v)
and (z — pj,v). If the Gaussians are Frobenius-separated, we show that the eigenvalues of the

matrix ¥/ 221-2,_1/ ? can be used to show that Gaussians are separated in total variation distance.
Finally, if the Gaussians are spectrally-separated, we prove that there exists a direction v such that
the projection of  — j1; and x — p; onto v can distinguish whether x was drawn from G; or G; with
high probability. We remark that large parameter distance between two distributions does not imply
large total variation distance between the distribution sin general, e.g., Bakshi et al. (2020) give two
sub-Guassian distributions that have total variation distance 1 — Q(1) but arbitrarily large parameter
distance. Therefore, our proof crucially lies on properties of Gaussians that are absent from general
distributions.

List oracle with errors. We next address the case where the true label may not be among the 3
labels output by the list oracle for each sampled point. We remark that our techniques can be easily
extended to the case where the correctness of the oracle only holds to some sufficiently small but
constant error rate . More specifically, we simply require that for 1 — « fraction of the points, the
correct label is among the § predicted labels for each sample, while for the remaining « fraction of
the points, the 3 predicted labels does not need to include the correct label.

Theorem 1.2. Let D be any d-dimensional uniform mixture of Gaussians G, . . . , Gy, with — log(1—
drv(Gi, G;)) = Qlog(k/e)) for all i # j. Given a B-list oracle with a sufficiently small constant
error rate, there exists an algorithm that takes n = poly(dk/e) samples from D, runs in time
k - poly(n), and returns k hypothesis Gaussians Hy, ..., Hy such that with high probability,

dTV %ZG“%ZHZ S@(E)

Toward Theorem 1.2, the main observation is that the list decoding algorithm is robust to an o €
(0, 1) fraction of corruptions when « is at most a fixed small constant. We provide additional details
in Section 3. Furthermore, we also note that in the case § = 1, so that each query is only given a
single label, there exists a significantly simpler learning-augmented algorithm using the techniques
of Diakonikolas et al. (2020) to prune away notable outliers. We describe this simpler approach in
Appendix B.

Robustness. Thus far, our discussion has centered around algorithmic guarantees that are smooth
with increasingly accurate oracle predictions. However, it also may be the case where the oracle
predictions are completely nonsensical. We remark that because we are studying an offline setting,
robustness follows immediately from running a classical mixture learning algorithm in addition to
our learning-augmented algorithm and choosing the better of the two outputs. In particular, if the
output of the classical mixture learning algorithm is D; and the output of the learning-augmented
algorithm is D5, and these two mixtures have large total variation distance, then it is possible to gen-
erate an additional number of samples and run a standard tournament procedure, e.g., (Daskalakis
etal., 2015; De et al., 2015), to choose the better fit of the two mixtures.
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Empirical evaluations. We complement our theoretical results with a number of experimental
results on learning Gaussian mixture models, comparing the performance of a scaled-down version
of our learning-augmented algorithm with the standard clustering baseline Lloyd’s algorithm. We
generate a number of synthetic datasets from mixture distributions D that are a uniform mixture of k
Gaussians that are not well-separated, as otherwise existing techniques can already efficiently learn
the Gaussians. We compare the number of points that are correctly labeled by both the baseline
algorithm and our learning-augmented algorithm, as well as plot the resulting cluster induced by
both algorithms. Our results demonstrate that our learning-augmented algorithm can both produce
more accurate classification than the standard baseline across various parameter settings, as well
as produce clusterings that are more aligned with mixtures of Gaussians. Overall, our empirical
evaluations indicate that our learning-augmented algorithm performs effectively in practice, further
supporting its theoretical guarantees. We present these results in Section 4.

2 MODEL

In this section, we formally introduce the list model oracle; the reader may wish to consult Ap-
pendix A for additional notation and preliminaries. For a vector 1 € R and a positive-definite
matrix ¥ € R*4, we use N’ (11, X) to denote a Gaussian with mean 4 and covariance 3, which has
the following probability density function.

Definition 2.1 (Multivariate Gaussian). For x € RY, the probability density function p(x) of
N(p, X) is

p(x) = (2m)*/2 det(2) /% exp (—;(:r — ) TS N — u)) .

We recall the following fact about the distribution of the projection of a multivariate Gaussian onto
a unit vector.

Fact 2.2. Given a sample x from Gaussian N (u,%) and a unit vector v € RY, we have that
Proj(x,v) is distributed as N'(v" p, v Yv).

Proof. Letx ~ N(u,Y). Then the projection of 2 onto the subspace given by visv(v'v) " tv Tz =
(vTx)v, so that v "z is a scalar and v " v is the corresponding vector in the direction of v. Note that
this is a linear transformation of a Gaussian, so that v 'z ~ N (v "y, v Sv). O

We recall the following impossibility result for learning a mixture of k-Gaussians by Moitra &
Valiant (2010).

Theorem 2.3. (Moitra & Valiant, 2010) There exist distributions D1 and D4 on R that are mixtures
of k% + 1 Gaussians, such that

2
HDI — DQHI S 11k)€_k /24.
Moreover, the weights of each mixture are at least ﬁ and the centers for each Gaussian are
separated by at least %

Theorem 2.3 implies that 2°(%) samples are needed to distinguish between D; and Dy, even when
the weights of the mixture are relatively large and the centers of the Gaussians are well-separated.
Similarly, Theorem 2.3 shows that at least 2(*) runtime is necessary, which is exponential in k. In
this paper, our goal is to design algorithms that bypass these exponential time and sample complexity
hardness results with the aid of additional possibly erroneous advice.

We consider the following formulation of a list oracle, which outputs a list of possible labels for
each query point.

Definition 2.4 (List oracle). Given a set X of n samples x1, ..., 2z, C R? from a mixture D of k
Gaussians G1, . . ., Gy. For each point x;, a list oracle with 3 labels outputs a list of B labels, which
includes the label j € [k] for which x;, where 8 > 1 is a list-decoding rate for the predictor.

A list oracle can also simply be generated by a machine learning model by asking the model to
output the [ labels for which it has the largest confidence, rather than just the singular label for
which it has the highest confidence. More generally, we say a list oracle has error rate « if the list
only contains the true label across 1 — « fraction of all queries.
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3 LiIST ORACLES

In this section, we give an algorithm that uses a list oracle and learns a mixture of k Gaussians
up to arbitrary total variation distance o (¢) given a polynomial number of additional samples and
runtime. We first require the following definition of parameter distance, which allows us to separate
pairs of Gaussians as being either mean-separated, covariance/Frobenius-separated, or spectrally-
separated, e.g., see Figure 1.

Definition 3.1 (Parameter Distance). Given A > 1, we say that the parameter distance between
mean-covariance pairs (1, %1) and (pa, Xo) is at most A, i.e, dparam (111, X1), (p2, 22)) < A if:

* (Mahalanobis Mean Closeness) For all v € R%, we have (i — pio,v)? < Av' (Z1 + Xo)v

* (Multiplicative Spectral Closeness) For all v € RY, we have %'I}TZQ’U < TS <
A'UTEQU

* (Relative-Frobenius Closeness) “21/22221/2 — IHF <A

We recall the following statement that given any two Gaussian distributions with parameter distance
upper bounded by A, then their total variation distance must also be upper bounded by a fixed
function of A.

Lemma 3.2 (Proposition A.1 in Bakshi et al. (2020), Fact 3.24 in Ivkov & Kothari (2022)).
For A > 1, suppose pi,p2 and Y1,%o satisfy dpaam((pt1,21), (u2,22)) < A.  Then
ry (N (s, £1), M (2, £2)) < 1 - exp(~0 (A2 log A)).

We prove that the converse must also hold, in the sense that two Gaussian distributions with param-
eter distance lower bounded by A must also have their total variation distance lower bounded by a
fixed function of A.

Lemma 3.3. For A > 1, suppose i1, po and X1, 3o satisfy dparam (111, X1), (ft2, 22)) > A. Then
1

dTV(N(,Ula 21)7N(M27Z2)) >1- Poly(A) -

Lemma 3.3 is perhaps the most technical contribution of our paper; we prove Lemma 3.3 in Ap-
pendix C.1 by separately considering Gaussians pairs (11, %1 ) and (ug, o) that are mean-separated,
Frobenius-separated, and spectrally-separated. Specifically, we show in Lemma C.1 that if (uq, 1)
and (e, Xo) are mean-separated, then there exists an explicit vector v that can be used to classify
the sample x, based on (x — p1, v) and (x — s, v). We show in Appendix C.1.2 that if (u1, 1) and

(2, Xo) are Frobenius-separated, then the eigenvalues of the matrix 271/ 221271/ % can be used
lower bound the total variation distance. Finally, we show in Lemma C.7 that if the Gaussians are
spectrally-separated, then there exists a direction v such that the projection of x — p; and x — o
onto v can distinguish whether 2 was drawn from (11, 31) and (u2, X2) with high probability.

To ensure that our Gaussians are well-separated in parameter distance, we first utilize the following
list-decoding algorithm that returns a list of candidate centers.

Theorem 3.4 (Theorem 1.4 in Ivkov & Kothari (2022)). Given ambient dimension d and corruption

—0O(1) . . . .
rate o, let n = d* . Then there exists an algorithm that takes n samples with corruption rate
(1—a) from a dimension d Gaussian distribution with mean . and covariance ¥ and uses nP°"(1/®)

time to output a list H of H(1/a) = 90(1/2°Y) Gaussians such that with probability at least

~

0.99 (over the drawn samples and the randomness of the algorithm), there exists ({i, %) € H with

~ ~

dparam (11, 22), (11, X)) < Z1(1/ @), for some fixed polynomial Z, i.e., drv(N (1, 2), N (i, X)) <
1 —exp(—a~9M),

Given Theorem 3.4, the natural approach would to be procure a large number of samples and then
perform list-decoding on the set of points for each label. However, this could result in a number
of redundancies. For example, consider the case where almost all the points from (y1,31) and
(2, Xo) are both given labels 1 and 2. Then roughly the same Gaussian will be returned by the
list decoding procedure on the points labeled 1 and the points labeled 2. Hence, we require the
subroutine in Algorithm 1 to merge close pairs of Gaussians.

We first observe that the Gaussians in the list £ output by Algorithm 1 are pairwise well-separated
in parameter distance.
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Algorithm 1 Algorithm MERGECLOSEPAIRS(L) to merge close pairs in a list of Gaussians

Input: List £ of Gaussians {(u;, 2;)}, parameter A > 0
Output: Pruned list £ with well-separated Gaussians

1: fori € [|£]] do

2:  Initialize group G; = (p;, ;)

3: end for

4: for i € [|£]] do

5: foralla%bwith (,ui,Ei) € G, ([Lj,zj') € Gy and dparam((ul,z ) (uj, )) < Ado

6: Merge groups G, and G

7:  end for

8: end for

9: Return £

Observation 3.5. [Well-separatedness of L] Let L = {(ui,2i)} be the output of
MERGECLOSEPAIRS. Then for each i # j, we have dparam ((1i, £4), (145, 25)) > A.

Given Observation 3.5, we can now form a list of well-separated candidate Gaussians. However,
some of these may be false positives induced by erroneous labels. On the other hand, by standard
concentration inequalities, we have rough lower bounds on the true number of points sampled from
each Gaussian. Therefore, if we could approximately match each sample to the candidate Gaussian
that most likely generated the sample, then the resulting false candidate Gaussians would not be
matched with enough samples. Hence, we utilize the following subroutine in Algorithm 2 to partially
cluster the sampled points.

Algorithm 2 Algorithm PARTIALCLUSTER to partition points into well-separated clusters

Input: Input set X, list £ of weighted Gaussians {w;, NV (u;, 2;)}

Output Clustering { P; } of subset of X, i.e., partial clustering of X

K« |L]

P+ 0,P; < Oforall: e [K]

Let p; () be the log-likelihood function of = for N (p;, 3;)

for z € X do
Let j = argmax; ¢ pi(z) >Break ties arbitrarily
Pj — Pj U {.’L’}

end for

Return P

A ol

We observe that each point in the initial sample X is given at most one label among [K] by Algo-
rithm 2.

Observation 3.6. [Partial clustering of X] Let v € X and let P = { Py, ..., Pip|} be the output of
PARTIALCLUSTER(X, L) for any L. Then there exists exactly one index i € [|P|] such that x € P;.

We now give our main algorithm that applies our earlier strategy. We first acquire a large number of
samples and form a list of candidate Gaussians by performing list-decoding on the set of sampled
points with each label. We then partially cluster the samples, removing the candidate Gaussians
without a sufficiently high number of points. The algorithm appears in full in Algorithm 3.

To show correctness of Algorithm 3, we require both soundness and completeness. That is, we must
first show that all false candidate Gaussians do not receive enough samples after the partial clustering
procedure. We then must also show that for each underlying Gaussian, there is a candidate Gaussian
generated by the list-decoding procedure that is close in parameter distance and also receives a
sufficient number of samples after the partial clustering procedure. For these properties, we crucially
use the parameter distance characterization of Gaussian mixtures.

We first require the following property showing “near-transitivity” of Gaussians that are close under
parameter distance.
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Algorithm 3 Learning-augmented algorithm for learning mixture of k-Gaussians, multiple labels

Input: List-decoding rate 3 > 0, set X of k - poly(d/c) samples sy, ..., s, C R from a mixture
Dof k Gauss1ans Gl, .. Gk

Output: D with dry(D,D) < O ()

1: Let( > 1 be a sufficiently large constant >See Lemma 3.7
2y 3

3 L« V), E«+ H(1/8)and A + Z (%) (%k)c, for the functions H and Z; from Theorem 3.4
4: for i € [k] do

5. Let E be the set of points that have label ¢

6: LetH; = {(u;,%;)}, be the output of the list-decoding algorithm on P; with parameter %
7: L+ LUH,;

8: end for

9: L < MERGECLOSEPAIRS(L)
10: Partition £ into groups Gi,Gs, ... such that for all groups G, and G, there does not exist

(yl, 1) € G, and (ug, X2) € Gy with a # b such that dparam (11, X1), (p2, 22) < A

11: P < PARTIALCLUSTER(X, L)

—_
[\

: Delete from P the groups of £ with less than ﬁ fraction of the samples in X
: Let D = {H,};c[) be the output of ROBUSTGAUSSIANS on P with accuracy € >Theorem B.5
: Output D

—_— =
W

Lemma 3.7 (Claim 6.3 in Liu & Moitra (2021)). Let Gy, G, G3 be Gaussians such that G and G»
are C-close and G5 and G5 are C-close in parameter distance. Then G1 and G5 are poly(C)-close
in parameter distance.

We now show soundness of Algorithm 3, i.e., we show that no false candidate Gaussians will receive
enough samples after the partial clustering procedure.

Lemma 3.8. Partition L into groups Gi,Go, ..., such that for all groups G, and Gy, there does
not exist (p1,%1) € Gq and (pg,X2) € Gy with a # b such that dpaam (11, 21), (12, X2) < A.
For each group G; such that there does not exist G; = N(u;,%;) € D and (11, X) € G; with

dparam (G, (11, X)) < Z3 (%) then with high probability, at most ﬁ fraction of the points will
be assigned to G,;.

We then show completeness of Algorithm 3, i.e.,we show that for each underlying Gaussian, there
is a candidate Gaussian generated by the list-decoding procedure that is close in parameter distance
and also receives a sufficient number of samples after the partial clustering procedure. Firstly, the
existence of such a candidate Gaussian in the list output by the list-decoding procedure is given by
Theorem 3.4. Thus it remains to show that it receives enough samples after the partial clustering
procedure. We remark that this property only holds true because of the initial filtering of close pairs
by Algorithm 1. If we do not perform such a filtering, then there could be many close candidate
Gaussians that each cluster the samples generated from the true Gaussian, so that no individual
cluster surpasses the threshold.

Lemma 3.9. Partition L into groups Gi1,Go, ..., such that for all groups G, and Gy, there does
not exist (111,%1) € Gq and (p2,Y2) € Gy with a # b such that dparam (11, 21), (p2, X2) <
A.  For each group G; such that there exists G; = N(u;,%;) € D and (p,X) € G; with
dparam (G, (11, X)) < A, then with high probability:

(1) Atleast 1 — 4g&r fraction of the points drawn from G ; will be assigned to G;.

(2) At least % fraction of the points will be assigned to G;.

Putting together the soundness and completeness claims in Lemma 3.8 and Lemma 3.9, respectively,
we have the following statement:
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Lemma 3.10. Let C; be the set of points that are drawn from G; in D. Let G1,Ga, . .. be the groups
of P. Then with probability 1 — there exists { € 7 such that for Q, = G¢ N C;, we have

|Qel > (1 =) max(|Gel, |Cil)-

As a result of soundness and completeness in Lemma 3.10, we have that with high probability, we
are only left with k candidate Gaussians that surpass the size threshold after the partial clustering
procedure.

Lemma 3.11. With probability 1 —

_ 1
poly(k)’

1 A . y 2
STy () Algorithm 3 outputs k groups G, . .., Gg.

Hence, we obtain our main result in Theorem 1.1.

Finally, we remark that our technique can similarly handle the case where a small but constant «
fraction of the predicted lists of /3 labels for each sample is incorrect, though we require the standard
precision and recall assumption (Nguyen et al., 2023). Namely, we assume that the error rate is
uniform across the clusters, i.e., there exists a sufficiently small error parameter & € (0,1) such
that only an « fraction of all the samples generated from each Gaussian ¢ € [k] are incorrect and
furthermore the number of points that are given label 7 in the predicted list is only a constant multiple
of the true number of samples from .

Observe that the only place the labels are being used are to apply the list-decoding algorithm of
Ivkov & Kothari (2022) on the sets of points given each label i € [k]. However, the statement
of Theorem 3.4 permits a corruption rate (1 — «), which are currently fixing to handle additional
points that are labeled ¢ from other clusters. In fact, Ivkov & Kothari (2022) study a more general
corruption model, where an arbitrary « fraction of the input points may be altered adversarially.
Thus, Theorem 3.4 can still handle the case where an « fraction of the samples generated by each
Gaussian is deleted, which ultimately gives Theorem 1.2. Finally, we mention that there exists a
more efficient algorithm to handle an « fraction of incorrect oracle responses when the list oracle
returns a list of size 5§ = 1. We defer discussion of this algorithm to Appendix B.

4 EMPIRICAL EVALUATIONS

To complement our theoretical guarantees, we implement a number of empirical evaluations on
synthetic datasets to compare the performance of our learning-augmented algorithm with standard
benchmarks.

Experimental setup. To generate our datasets, we define a mixture distribution D that consists
of k Gaussians, each with weight % Although the exact value of the k Gaussians differ across
our experiments, it is important that these Gaussians are overlapping, since otherwise the resulting
datasets are well-separated and can be easily solved by existing algorithms for learning mixtures of
Gaussians. In fact, even existing algorithms for k-clustering problems can easily handle these cases.
We then draw n samples from the mixture distribution as the input to the Gaussian mixture model
learning algorithms.

As a baseline, we run the popular Lloyd’s algorithm for clustering (Lloyd, 1982). Lloyd’s algorithm
initializes k centroids, which defines a partition on the input dataset, according to which of the k
centroids is closest to each point of the dataset. It then repeatedly computes the centroid of the points
in each partition and then partitions the input dataset on these new centroids. finds the centroid of
each set in the partition and then re-partitions the input. We first run Lloyd’s algorithm for a small
number of iterations to serve as our predictor. We then continue to run Lloyd’s algorithm for a large
number of iterations to server as the baseline.

For each point in the dataset, the list oracle outputs the two centroids of the predictor closest to
the point. Due to the intricacies of the list-decoding algorithm of Ivkov & Kothari (2022), we
run a scaled-down version of our algorithm. Furthermore, as the list decoding procedure identi-
fies Frobenius-separated components, we focus on identifying mixtures of Gaussians that are either
pairwise mean-separated or spectrally-separated. To that end, we use the list of centroids from the
predictor to directly perform the partial clustering. That is, we first perform pruning to separate the
clusters that are mean-separated. To handle the cluster that are spectrally-separated, we generate
a random unit vector v and an orthogonal unit vector v and cluster the remaining points based on
whether they are more aligned with u or v. We then plot the resulting cluster induced by both the
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Clustering by Lloyd's Algorithm Clustering by our Algorithm

-10 -5 0 5 10 15 -10 -5 ) 5 10 15
X X

(a) Clustering by Lloyd’s algorithm (b) Clustering by our algorithm

Fig. 2: Clustering of n = 10,000 points generated from the Gaussian mixture model by Lloyd’s
algorithm (Figure 2a) and our learning-augmented algorithm (Figure 2b).

Dataset size: 5,000 [ 10,000 | 15000 | 20,000 | 25,00
Lloyd’s algorithm 3606.51 | 7224.32 | 10832.35 | 14435.54 | 18032.83
Learning-augmented algorithm | 4370.31 | 8740.69 | 13117.25 | 17485.38 | 21841.03
| Tmprovement (%) [ 12018 | 12099 | 121.09 | 121.13 | 12012 |

Table 1: Comparison of number of correctly classified points by Lloyd’s algorithm and by our
learning-augmented algorithm across various dataset sizes.

baseline algorithm and our learning-augmented algorithm. We also compare the number of points
that are correctly labeled by both the baseline algorithm and our learning-augmented algorithm.

Our experiments were implemented using Python 3.12.6 on a Dell Precision 3620 workstation run-
ning Windows 10 on an Intel Core i7-6700 3.4GHz 4 Core Processor with 64GB DDR4 Memory
and 512GB SSD.

Results and discussion. Our experimental results are aligned with our theoretical guarantees.
Lloyd’s algorithm repeatedly partitions the input space into a number of Voronoi cells, which is
inherently well-suited for k-means clustering, but may not capture the more complex structural
properties of mixtures of Gaussians, e.g., the individual Gaussians may be overlapping. Indeed,
the classifications by Lloyd’s algorithm results in linearly separated clusters as in Figure 2a. On
the other hand, our learning-augmented algorithm produces clusters that capture the Gaussians in
their key directions, c.f., Figure 2b. Specifically, our learning-augmented algorithm consistently cor-
rectly classifies a higher number of point than the learning-augmented algorithm, across the various
parameters for the dataset size n € {5000, 10000, 15000, 20000, 25000}. The classification rate of
learning-augmented algorithm demonstrated an average improvement of roughly 120% over Lloyd’s
algorithm across 100 iterations for each value of n. We summarize these results in Table 1.

CONCLUSION

In this paper, we initiate the study of learning-augmented learning mixture models. Although well-
known impossibility results state that any algorithm for learning a mixture of k£ multivariate Gaus-
sian distributions in d-dimensional space requires both runtime and sample complexity exponential
in k, even if the Gaussians are somewhat well-separated, we show that with a reasonable (possi-
bly erroneous) list oracle, we can estimate the mixture up to total variation distance O(e) using
k - poly (d, log k, %) samples from the GMM, i.e., only a polynomial number of samples, thereby
breaking the computational limitations of traditional algorithms that are unable to incorporate ma-
chine learning advice. It is our hope that our work is an important step towards a greater understand-
ing of learning theory that incorporates possibly erroneous input into better provable guarantees.

10
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A PRELIMINARIES

We write [n] := {1,2,...,n} for a positive integer n > 1. We use poly(n) to denote a fixed
polynomial in n that can be determined by adjusting constants appropriately. We say that an event
occurs with high probability if it occurs with probability 1 — m for the relevant variable n, e.g.,
if a union bound over k clusters is necessary, then we say an event occurs with high probability if it
occurs with probability 1 — m

Definition A.1 (Total variation distance). For probability density functions p(x) and q(x) over a
space §), we write the total variation distance between p and q as dvv(p,q) = Ip(x) —

2 JseQ
q(z)| dz.

For the purposes of concentration inequalities, we recall the following standard multiplicative form
of Chernoff bounds.

Theorem A.2 (Chernoff bounds). Let X1,..., X, be independent binary random variables, i.e.,
X; €{0,1} foralli € [n]. Let X = X1 + ...+ X,, and u = E [X]. Then for any ¢ € (0,1),

Pr{|X — | > 6p) < 2exp (—6°u/3) .

B LABEL ORACLES

In this section, we consider learning a mixture D of k£ Gaussians given a label oracle, which provides
a label for each sample, i.e., the index of the corresponding Gaussian, up to some error «. Specifi-
cally, if z ~ D is drawn from Gaussian G; = (u;, 2;), then informally, the oracle will provide the
label i on query = with probability at least (1 — «). More formally, the error of the oracle needs to
respect precision and recall of each cluster as follows:

Definition B.1 (Label oracle). Given a set X of n samples x1,...,x, C R from a mixture D of
k Gaussians G, ...,Gy, let Cy,...,Cy be the partition of X such that x; € Cj if x; is drawn
from G; and let m; = |G;|. Then a label oracle with error rate « partitions the points into clusters
Py,...,Pg such that for Q; = P; N Cj, we have |Q;| > (1 — ) max(|P}l, |C;|) for all j € [k],
where a<i 5 is an error rate for the predtctor

We remark that a label oracle is a simple heuristic to generate. Consider some clustering of a
previous set of samples from the dataset. The clustering can be used to train a model that will
provide a label corresponding to one of the clusters, for each query point. In the case the data
is well-separated, such a clustering will generally provide good accuracy over samples from the
mixture and thus serve as a good label oracle.

We also emphasize that only a certain fraction of the labels are required to be correct, and the
remaining labels can be arbitrarily incorrect. In particular, the incorrect labels can be adversarially
incorrect. We show that learning a mixture of k& Gaussians up to arbitrary total variation distance
O (&) can be achieved in polynomial runtime and sample complexity, with the aid of a label oracle.
As a warm-up, we first show in Appendix B.I that a label oracle with error rate o < ¢, in addition
to k - poly (d7 log k, %) samples from the mixture D of k& Gaussians, can be used to output a mixture

D’ of k Gaussians such that drv(D,D’) < O (¢).

Theorem B.2. Given a label oracle with error rate o < ¢, there exists an algorithm that takes
n = k - poly (d7 log k, %) samples from any d-dimensional mixture of Gaussians Zie[k] w; G for
all i € [k], runs in time k - poly(n), and returns k hypothesis Gaussians Hy, ..., Hy, and weights
U1, ..., u such that with high probability,

sz L,ZUH (7) (e).

i€ k] i€ [k]

We remark that the naive algorithm of simply outputting the empirical mean and covariances of the
clusters induced by the label oracle cannot give the guarantees of Theorem B.2, even as the error
rate becomes arbitrarily small.
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Nevertheless, we can achieve Theorem B.2 through the following simple observation. Because the
fraction of corrupted labels is rather small, they can only substantially affect the empirical mean
and covariances of the set of points with each label if they are quite “far” from the true distribution.
For example, the points that are falsely labeled ¢ must be quite far in the likelihood function from
the “normal” distribution of the Gaussian G; = (u;, %;) for the empirical mean and covariance of
the points labeled 7 to have large total variation distance from G;. In this case, we can observe that
these samples are far from the other samples labeled i and prune them away before computing the
empirical mean and covariance of the remaining points. It is also possible for the corrupted labels
to be close to GG; in the likelihood function, but then the empirical mean and covariance are only
perturbed by a small amount.

Note that the above argument crucially relies on the label oracle having error rate o < €, where
¢ is the target total variation distance between the output mixture distribution and the true mixture
distribution. Surprisingly, we then show in Section B.2 that the target total variation distance can be
obtained even when the error rate of the oracle is a small constant error rate o = (1), independent
of the target total variation distance accuracy parameter €.

Theorem B.3. Given an a-error oracle for a sufficiently small constant o« = O (1), there exists
an algorithm that takes n = poly(dk/e) samples from any d-dimensional mixture of Gaussians
Zie[k] w; G foralli € [k], runs in time k-poly(n), and returns k hypothesis Gaussians Hy, . . ., Hy,
and weights uy, . .., uy such that with high probability,

dTV Z wiGi, Z ’U,ZHl S @ (E) .

i€ k] i€ (k]

Theorem B.3 uses an observation by Diakonikolas et al. (2020) that it suffices to recover a large con-
stant fraction of the samples for each cluster. Then using an additional set of poly(dk/e) samples,
we can obtain a mixture distribution D’ close to true mixture distribution D.

B.1 WARM-UP: SMALL ERROR LABEL ORACLES

We first describe a simple algorithm that uses a label oracle with error rate o < ¢ and polynomial
runtime and number of samples to learning a mixture of k£ Gaussians up to arbitrary total variation
distance O (¢). The main component of the algorithm is the following subroutine by Diakonikolas
et al. (2020) that takes a samples from a mixture of Gaussians and corrupts an ¢ fraction of the
samples to any adversarial set of points.

Theorem B.4 (Theorem 1.2 in Diakonikolas et al. (2020)). For every wmin, there are functions
F(wmin), f(wWmin) such that there is an algorithm PRUNEERR that takes n = dF(wmi“)/ poly(e)
e-corrupted samples from any d-dimensional mixture of Gaussians Zig[k] w; G with w; > Wmin

foralli € [k], runs in time nF(Wmin) " and returns k hypothesis Gaussians H1, . .., Hy, and weights
ut, ..., uk such that with high probability, there exists a permutation w : [k] — [k] for which
max; drv(Gi, Hr()) < O(e) and 32, [wi — uny| < O(e), provided € < f(wmin) and

min;z; drv(Gi, Gj) > 1 — f(wWmin)-
Here, e-corrupted simply means that ¢ fraction of the samples may be adversarially generated.

The challenge is that Theorem B.4 uses runtime and sample complexity exponential in the inverse
weight of the Gaussians. Thus even in a uniform mixture, the runtime and sample complexity is
exponential in k.

Nevertheless, our algorithm for learning the mixture of Gaussians is simple. We sample a polyno-
mial number of points and partition the points by the labels given from the oracle. For each i € [k],
we then run the robust Gaussian recovery algorithm each set of points labeled ¢, thus bypassing the
hard case of Theorem B.4 since there is only one true Gaussian GG; that generates the majority of the
points. We give the full algorithm in Algorithm 4.

We justify the full guarantees of Algorithm 4.

Theorem B.2. Given a label oracle with error rate a < ¢, there exists an algorithm that takes
n = k- poly (d, log k, %) samples from any d-dimensional mixture of Gaussians Zie[k] w; G; for
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Algorithm 4 Learning-augmented algorithm for learning mixture of k-Gaussians, small corruption
rate

Input: Corruption parameter @ > 0, set X of klog k - poly(d/e) samples sy, ..., s, C R? from a
mixture D of k£ Gaussians G, ..., Gy
Output D with drv(D, D) < O (e )
:fori=1tot=kdo
Let P; be the set of points labeled ¢
W; — |P |
Let H; be the output of PRUNEERR on P; with corruption o and wy,;, =1 >Theorem B.4
end for _
Output D = {(us, H;) }icir]

AN S

all i € [k], runs in time k - poly(n), and returns k hypothesis Gaussians Hy, ..., Hy, and weights
U1, ..., u such that with high probability,

sz uzuv i S@(i)

i€ (k] 1€[k]

Proof. Without loss of generality, suppose G; corresponds to P; and hence H; for each i € [k]. We
first claim that for any ¢ € [k], we have |u; —w;| < O (). Note that for each sample, the probability
that is is drawn from G; is w;. Thus by linearity of expectation, the expected number of samples
that are drawn from G; across n samples is w;n. Then for n = klogk - poly(d/e), we have that the
total number of samples drawn from G is at most O (g) - w;n away from its expectation with high
probability. Since an additional o < ¢ fraction of these samples are corrupted, then it follows that
|Ui — wl| < 0(6)

Moreover, each set P; is a set of e-corrupted samples from a d-dimensional Gaussian. Thus by
Theorem B.4, for the output H; of PRUNEERR on P; with corruption o and wy,;, = 1, we have
that dvv(G;, H;) < O () with high probability. By a union bound, we have |u; — w;| < O (¢) and
drv(Gi, Hy) < ) (¢) for all ¢ € [k]. Therefore, we have that

v D wiG Y wH | <O ().

i€[k] i1€[k]

B.2 CONSTANT ERROR LABEL ORACLES

We describe how to learn a GMM to a target total variation distance parameter ¢ if the label oracle
has error rate independent of €. Note that the framework in Appendix B.1 cannot be applied because
even restricted to only the samples labeled some fixed ¢ € [k], at least a constant fraction of the
samples may be corrupted. Fortunately, there exists an algorithm that can recover the true Gaussians,
given a constant fraction of corruptions.

Theorem B.5 (Proposition 8.3 and Proposition 8.4 in (Diakonikolas et al., 2020)). Let X =
Yicy WiGi be a mixture of k Gaussians with —log(1 — drv(Gi, G;) = Q(log(k/<)) for all
i # j. Let X' be an e-corrupted version of X and n = poly(dk/e). Let S be a set of n
random samples from X' and let Ty,..., Ty, C S be sets of samples so that for some suffi-
ciently small constant v > 0, if S; is the set of samples in S that were drawn from G;, then
|T; N S;| > (1 — ) min( i|) for all i € [k]. There exists an algorithm ROBUSTGAUSSIANS
that takes input S, T, . . . , Ty, and an additional set of n independent samples from X' and outputs
a set of weights uy, . . ., uy such that Zle |u; —w;| = O (¢) and a list of Gaussians Hy, . .., Hy
so that Zze[k widrv(H;, G;) <O (5 log %) The algorithm uses poly(n) runtime.

We again note that running Theorem B.5 alone on the input dataset does not suffice, as it would result
in runtime and sample complexity that is exponential in k. The label oracle is implicitly performing
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heavy work in reducing the input from a mixture of k Gaussians to k instances of a mixture of a
single Gaussian and a number of corrupted samples. We give the full algorithm in Algorithm 5.

Algorithm 5 Learning-augmented algorithm for learning mixture of k-Gaussians, constant corrup-
tion rate

Input: Corruption parameter o > 0, set X of k - poly(d/e) samples sq,...,s, C R? from a
mixture D of k Gaussians Gy, ..., G
Output D with drv(D,D) < O (e )
P10
fori =1toi=Fkdo
Let P; be the set of points labeled ¢
P+~ PUPF
end for
Let D = {(us, Hi)}icx) be the output of ROBUSTGAUSSIANS on P with accuracy &
>Theorem B.5
7: Output D

A A

We now give the full guarantees of Algorithm 5.

Proof of Theorem B.3:  Consider Algorithm 5 and for each ¢ € [k], let P; be the set of points
labeled 7. Moreover, for each i € [k], let X; be the set of points in the sample set X that are drawn
from G;. Note that for a sufficiently small constant o < -y, we have

|P; 0 X > (1 — ) max(| P, | X;),

thus satisfying the conditions of Theorem B.5. Hence by Theorem B.5, the output D =
{(ui7 Hi)}ie[k] satisfies

Zwl “Zu’ i O(e).

i€ (k] i€[k]

C MISSING PROOFS FROM SECTION 3
In this section, we supply the proofs missing from Section 3.

C.1 PARAMETER DISTANCE SEPARATION TO TVD SEPARATION

In this section, we show Lemma 3.3, which states that two Gaussian distributions with parameter
distance lower bounded by A must also have their total variation distance lower bounded by a fixed
function of A. We prove Lemma 3.3 by performing casework, separately considering Gaussians
pairs (u1,%1) and (pe, X2) that are mean-separated, Frobenius-separated, and spectrally-separated.

C.1.1 MEAN-SEPARATION

The proof lower bounding the total variation distance of two Gaussians that are mean-separated is
simple. It follows quite naturally from the definition of mean-separation as follows.

Lemma C.1. Suppose there exists v € R?, such that (jui; — pg,v)? > Av'(X; + Xo)v. Then
drv(N (1, 21), N (2, 22)) > 1 — exp(—0 (A/log A)).

Proof. Letx ~ N (u1,%1), so that (z,v) ~ N ({u1,v),v" X1v). Note that

— A
<M1 5 M2,11> >3 0T (21 4+ Xo)v.

Thus,

Pr [(w — ) > <‘“ . e v>] < exp(—0 (A?)).
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By similar reasoning, we have that for y ~ N (2, 32),

Pr [<yuz,v> > <“1 5 ot v>] < exp(—0 (A?)).

Therefore, we certainly have drv (N (p1, X1), N (12, 22)) > 1 — exp(—O (A/ log A)). O

C.1.2 FROBENIUS-SEPARATION

The analysis for the total variation distance of two Gaussians that are Frobenius-separated is more
challenging. For two probability distributions p and ¢, we use V' (p, ¢) = [ min(dp, dq) to denote the

overlap of the distributions, so that dtv(p, q) = 1 —V(p, ¢). We define h(p, q) = — log (f \/dpdq).
Then we have the following statement relating the overlap of the distributions with h(p, q).

Lemma C.2. V(p,q) < exp(—h(p,q))

Proof. By definition of V (p, ¢) and h(p, ¢), we have

q) = / min(dp, dq) < / Vdpdq = exp(—h(p,q)).

For weighted Gaussians G1 = wy - N (1, 21) and Go = ws - N (2, X2), we define
hz(Gl, Gg) = h(N(O, 21),/\/(0, 22))

Then we have:
Lemma C.3. For weighted Gaussians G1 = wy - N'(u1,21) and Go = wo - N' (2, Xo), we have

h(G1,G2) > hs(G1,G2).

Next, we recall the following statement from Diakonikolas et al. (2017) that relates hx(G1, G2) to
the eigenvalues of 251/221 251/2.

Lemma C.4 (Lemma B.4 in (Diakonikolas et al., 2017)). For weighted Gaussians G1 = w; -
N(p1,X1) and Go = wy - N'(uz, Xo), let M1, . .., Mg be the eigenvalues ongl/QElZgl/Q. Then

b (G, Ga) = (me [1og(V)], 1og (V)| >>.

The following statement is shown in both the proof of Lemma B.4 in (Diakonikolas et al., 2017) and
the proof of Lemma 3.6 in (Diakonikolas et al., 2020).

Lemma C.5. (Diakonikolas et al., 2017; 2020) Let G1 = w1 - N(u1,%1) and Go = wy -
~1/2 ~1/22
E2 E122 HF 2

N (2, 39) be weighted Gaussians that are Frobenius-separated, i.e.,
Q (%) but are not mean-separated or spectral separated. Let \1, . .., \q be the eigenvalues

of $5 21552 Then

1
5 minllog(V)l, g >zﬂ<log€).

Putting these statements together, we have:

Corollary C.6. Let G1 = w1 - N(p1,31) and Go = wy - N'(uz, X2) be weighted Gaussians that
are C-Frobenius-separated. Then dvy(G1,G2) > 1 — 2-0(C/log C)
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C.1.3 SPECTRAL-SEPARATION

Finally, we analyze the total variation distance of two Gaussians that are spectrally-separated.

Lemma C.7. Suppose the mean-covariance pair (i1, %1) and (ps, Xo) satisfies Mahalanobis mean
closeness, i.e., for all v € R<, we have (uy — ,ug,v>2 < A’UT(El + X9 )v. Moreover suppose are
spectrally-separated, i.e., there exists v € R%, such that ivTng < v 3w > AvTSyv. Then

drv(N (1, £1), N (2, £2)) > 1 — A=OD),

Proof. Let V; = v S0 and V; = 07 $;v and suppose without loss of generality that V; < V.
Consider x ~ N (p;,%;). By Fact 2.2, we have that the distribution of Proj(z — pu;,v) is the
distribution A"(0, v " ¥;v). Then

Pr (|| Proi(z — i 0)|[* > VA -0 Si0] < exp(~0 (8)).

On the other hand, for y ~ AN(u;,%;), we have that the distribution of Proj(y — f;,v) is the
distribution A/(0, v " %;v). Thus,
Pr [| Proj(y — pj,v)||* < L ~UT§:;U:| < ATOM)
VA
Thus we have drv (N (1, 1), NV (2, 82)) > 1 — A=CW), O

C.1.4 PUTTING THINGS TOGETHER

By the definition of parameter distance, a large parameter distance between a pair of Gaussians
implies that they are mean-separated, Frobenius-separated, or spectrally-separated. Thus, putting
together the separate results from Lemma C.1, Corollary C.6, Lemma C.7, we have:

Lemma 3.3. For A > 1, suppose 141, ,u2 and 31, Yo satisfy dparam ((p1, 21), (12, X2)) > A. Then
drv(N (p1, 21), N (p2,X2)) > poly(A)

Proof. Recall that the definition of parameter distance separation implying that the mean-covariance
pairs are either mean-separated, Frobenius-separated, or spectrally-separated. If the mean-
covariance pairs are mean-separated, then Lemma C.1 shows they are also TVD-separated. If the
mean-covariance pairs are spectrally-separated but not mean-separated, then Lemma C.7 shows they
are also TVD-separated. Finally, if the mean-covariance pairs are Frobenius-separated, then Corol-
lary C.6 shows they are also TVD-separated. O

C.2 REMAINING MISSING PROOFS FROM SECTION 3

Observation 3.5. [Well-separatedness of L] Let L = {(ui, %)} be the output of
MERGECLOSEPAIRS. Then for each i # j, we have dparam ((1ti, £4), (15, 25)) >

Proof. Note that if dparam ((£i, 25), (115, 2;)) < A, then either (u;,X;) or (¢j,%;) would have
been deleted from £ by algorithm MERGECLOSEPAIRS. O

Observation 3.6. [Partial clustering of X] Letx € X andlet’P = {P\, ..., Pp|} be the output of
PARTIALCLUSTER(X, L) for any L. Then there exists exactly one index i € [|P|] such that x € P;.

Proof. Observe that for each z € X, PARTIALCLUSTER computes j = argmax;c ) p;(), break-
ing possible ties arbitrarily and adds x only to P;. O

To show that high variation distance implies the success of the maximum likelihood estimator, we
use the following observation from Diakonikolas et al. (2020), e.g., inherently in the proof of Propo-
sition 8.3.

Lemma C.8. Diakonikolas et al. (2020) Suppose G1 and G2 be two Gaussian distributions such
that dvv(G1,G2) > 1 — . Then the maximum likelihood estimator for determining will fail to
correctly classify a sample x ~ G; for i € {1,2} with probability O (¢).
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Lemma 3.8. Partition L into groups Gi1,Go, ..., such that for all groups G, and Gy, there does
not exist (p1,%1) € Go and (2, %2) € Gy with a # b such that dpagam((pt1, X1), (12, 22) < A.
For each group G; such that there does not exist G; = N(u;,%;) € D and (11, X) € G; with

dparam (G, (1, X)) < Z3 (%), then with high probability, at most ﬁ fraction of the points will
be assigned to G;.

¢+1
Proof. We have two cases. Either G; has parameter distance at least 2 <Z1 (%) (%) > from
G. for all ¢ € [k] or there exists ¢ € [k] and (u,¥) € G; such that dparam(Ge, (11, X)) =
C+1
(] <21 ( E) <£k) ) Consider the first case, so that G; has parameter distance at least

Q (21 (f) (5’“) ) from G, for all ¢ € [k]. On the other hand, each point is drawn from

some distribution that has parameter distance at most poly (Zl (%)) from some (u, ) € G;. By

Lemma 3.2, Lemma 3.3, and Lemma C.8, each point drawn from the mixture will be assigned to G;
¢+1

with probability at most poly (—21 (%) (%) ) Thus, the total fraction of points assigned to

G; will be at most with high probability.

200§k

In the second case, let ¢ € [k] be fixed so that there exists (u,X) € G; such that
¢+1
dparam (G, (1, 2 < (%) (%) > By assumption, that there does not exist (u/,>’) €
<

gz with dParam( ( ))
¢

ting of A = 73 ( ) (5k) for a sufficiently high constant ¢, we have that G, and G; must be

( ) Then by the contrapositive of Lemma 3.7 and the set-

3
D-separated, for D = Z; ( ) (gk) Moreover, there exists G; such that there exists (&, ) €g;

with dparam (G, (I, E)) < 7Zi (7> Thus by Lemma 3.2 and LLemma 3.3, each point drawn z ~ G,
we have that the maximum likelihood function a351gns x to G; with probability at most 4005 We

have that each point is drawn from G, with probability + + and so with high probability, at most
fraction of the points will be drawn from G and assigned to G;.

3005k

It thus remains to consider the points drawn from other clusters that are assigned to G;. For
each point z ~ G with ¢ # ¢/, we have that x is assigned to G; with probability at most

¢+1
poly (—Z1 <l> <@> ), by again applying Lemma 3.2 and Lemma 3.3. Therefore, the total

fraction of points assigned to G; will be at most % With high probability. [

2005

Lemma 3.9. Partition L into groups Gi1,Go, ..., such that for all groups G, and Gy, there does
not exist (11,%1) € Gq and (p2,Y2) € Gy with a # b such that dparam (11, 21), (2, X2) <
A.  For each group G; such that there exists G; = N(u;,%;) € D and (u,X) € G; with
dparam (G, (11, X)) < A, then with high probability:

(1) Atleast 1 — 45 fraction of the points drawn from G ; will be assigned to G;.

(2) At least 7 fraction of the points will be assigned to G;.

Proof. Observe that there exists (1, ¥) € G; with dparam (G, (1, X)) < Z1 (7) On the other hand,

dparam (11, X), (', X)) > A for any (u/, %) € G, with a # i, where A = Z; (E) (%) . Then

for each point drawn x ~ G, we have that the maximum likelihood function assigns x to G, with
probability at most W. Then by a union bound over at most £k groups, the maximum likelihood
function assigns = to G; with probability at least 1 — ;5.
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We have that each point is drawn from G; with probability % and so with high probability, at least
2—1k fraction of the points will be drawn from G'; and assigned to G;. O

Lemma 3.10. Let C; be the set of points that are drawn from G; in D. Let G1,Gs, . . . be the groups
of P. Then with probability 1 — there exists { € 7 such that for Qy = Gy N C;, we have

|Qe| > (1 =) max(|G], |Cy).

1
poly(k)’

Proof. By Lemma 3.9, at least 1 —
some Gy. By Lemma 3.8, at most

assigned to Gy.

fraction of the points drawn from G; will be assigned to
fraction of the point drawn from G; with j # ¢ will be

40k
2006k

Let n > 100k log(kd) be the total number of samples. Then for a uniform mixture, with high
probability, the number of pomts drawn from G; is at least 2% and the number of points drawn from

other Gaussians is at most n, in Wthh case at most 2306 + points from other Gaussians are assigned

to Gy. Thus with probability 1 — W(k)’ there exists £ € 7Z such that for Q, = G, N C;, we have
Qe > (1 — ) max(|Gel, |Cil). O

Lemma 3.11. With probability 1 — m, Algorithm 3 outputs k groups G, . . ., Gg.

Proof. Note that each group that does not have at least 5 fractlon of the points is deleted. On the

other hand, by Lemma 3.9, we have that with probablhty 1- W() at most gt fraction of the

points will not be assigned to the corresponding group. Hence, the total number of these points is at
most 3. Thus all of the groups that do not correspond to one of the true Gaussians is deleted, and
so there are at most k groups, with high probability. O

Theorem 1.1. Let D be any d-dimensional uniform mixture of Gaussians G, . . . , Gy, with — log(1—
dtv(Gi, G;)) = Qlog(k/e)) for all i # j. Given a [3-list oracle, there exists an algorithm that
takes n = poly(dk/e) samples from D, runs in time k- poly(n), and returns k hypothesis Gaussians
Hy, ..., Hy such that with high probability,

dTV %ZG“%ZHZ S@(E)

Proof. Consider Algorithm 3. Let X be the set of n random samples from D. For all i € [k], let C;

be the set of samples in .S that were drawn from G;. Let G, Go, . . . be the groups of P. Let £ be the
event such that:

(1) There are at most k groups G, . . ., Gk.
(2) For each i € [k], there exists a corresponding group G, such that for @, = G, N C;, we
have |Q¢| > (1 — ) max(|Gel, |Cil)-

Observe that the first property holds With probability 1 — by Lemma 3.11 and the second

p01Y(k)

property holds with probability 1 — m by Lemma 3.10. Thus by a union bound, we have that
1

Pr [g] 2 1-— W(k).

Conditioned on &, the sets Gy, ..., Gy each correspond to C1, ..., C} up to some permutation 7 :

[k] — [k] and moreover |G(;) N Cs| > (1 — ) max(|Gr(;)|, |Ci]), thus satisfying the conditions of
Theorem B.5. Hence by Theorem B.5, the output D = { H; };¢[x) satisfies

ZG“ > Hi | <O

ze[k] ze[k
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