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ABSTRACT

Discrete-action reinforcement learning algorithms often falter in tasks with high-
dimensional discrete action spaces due to the vast number of possible actions. A
recent advancement leverages value-decomposition, a concept from multi-agent
reinforcement learning, to tackle this challenge. This study delves deep into
the effects of this value-decomposition, revealing that whilst it curtails the over-
estimation bias inherent to Q-learning algorithms, it amplifies target variance.
To counteract this, we present an ensemble of critics to mitigate target variance.
Moreover, we introduce a regularisation loss that helps to mitigate the effects that
exploratory actions in one dimension can have on the value of optimal actions in
other dimensions. Our novel algorithm, REValueD, tested on discretised versions
of the DeepMind Control Suite tasks, showcases superior performance, especially
in the challenging humanoid and dog tasks. We further dissect the factors influ-
encing REValueD’s performance, evaluating the significance of the regularisation
loss and the scalability of REValueD with increasing sub-actions per dimension.

1 INTRODUCTION

Deep reinforcement learning (DRL) has emerged as a powerful framework that combines the
strengths of deep learning and reinforcement learning (RL) to tackle complex decision-making
problems in a wide range of domains. By leveraging deep neural networks to approximate value
functions and policies, DRL has driven significant breakthroughs in numerous areas, from robotics
(Gu et al., 2017; Kalashnikov et al., 2018; Andrychowicz et al., 2020) to game playing (Mnih et al.,
2013; Silver et al., 2016; Vinyals et al., 2017) and autonomous systems (Dosovitskiy et al., 2017;
Chen et al., 2017b; Kiran et al., 2021). In particular, the use of deep neural networks as function
approximators has allowed existing reinforcement learning algorithms to scale to tasks with contin-
uous states and/or action spaces. Nonetheless, problems featuring high-dimensional, discrete action
spaces remains relatively unexplored. In these problems, the action space can be thought of as a
Cartesian product of discrete sets, i.e. A = A; X ... Xx Ay. In this context, 4; represents the ith sub-
action space, containing n; discrete (sub-)actions. For convenience, we henceforth refer to a Markov
Decision Process (Bellman, 1957, MDP) with such a factorisable action space as a factorisable MDP
(FMDP).

Traditional DRL algorithms can quickly become ineffective in high dimensional FMDPs, as these
algorithms only recognise atomic actions. In this context, an atomic action is defined as any unique
combination of sub-actions, each treated as a singular entity; in an FMDP there are Hf\il n; atomic
actions. Due to the combinatorial explosion of atomic actions that must be accounted for, standard
algorithms such as Q-learning (Watkins and Dayan, 1992; Mnih et al., 2013) fail to learn in these
settings as a result of computational impracticalities.

To address these issues, recent approaches have been proposed that emphasise learning about each
sub-action space individually (Tavakoli et al., 2018; Seyde et al., 2022). In particular, the DecQN
algorithm proposed by Seyde et al. (2022) utilises a strategy known as value-decomposition to learn
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utility values for sub-actions. In their methodology, the utility of each selected sub-action is com-
puted independently of others but learnt in such a way that their mean estimates the Q-value for
the global action. This approach is inspired by the centralised training with decentralised execu-
tion paradigm in multi-agent reinforcement learning (MARL) (Kraemer and Banerjee, 2016), where
learning the utility of sub-actions is analogous to learning the value of actions from distinct actors.
Using this value-decomposition strategy, the sth utility function only needs to learn values for the ac-
tions in .4;. Consequently, the total number of actions for which a utility value needs to be learned is

just sz\; n;. This makes the task significantly more manageable, enabling traditional value-based
methods like Deep Q-learning (Mnih et al., 2013; Hessel et al., 2018) to solve FMDPs. Section 3
provides further details on DecQN.

In this paper, we present two primary methodological contributions. First, we build upon DecQN
through a theoretical analysis of the value-decomposition when coupled with function approxi-
mation. It is well established that Q-learning with function approximation suffers from an over-
estimation bias in the target (Thrun and Schwartz, 1993; Hasselt, 2010). Consequently, we explore
how the value-decomposition impacts this bias. We demonstrate that, whilst the DecQN decompo-
sition reduces the over-estimation bias in the target Q-values, it inadvertently increases the variance.
We further establish that the use of an ensemble of critics can effectively mitigate this increase in
variance, resulting in significantly improved performance.

Second, we introduce a regularisation loss that we aim to minimise alongside the DecQN loss. The
loss is motivated by the credit assignment issue common in MARL (WeiB3, 1995; Wolpert and Tumer,
1999; Zhou et al., 2020; Gronauer and Diepold, 2022), where an exploratory action of one agent can
have a negative influence on the value of the optimal action of another agent. Given the similari-
ties with MARL, this credit assignment issue is also an issue when using value-decomposition in
FMDPs. By minimising the regularisation loss we help mitigate the impact that exploratory sub-
actions can have on the utility values of optimal sub-actions post-update by discouraging substantial
changes in individual utility estimates. We achieve this by minimising the Huber loss between the
selected sub-action utilities and their corresponding values under the target network.

Our work culminates in an approach we call REValueD: Regularised Ensemble Value
Decomposition. We benchmark REValueD against DecQN and Branching Dueling Q-Networks
(BDQ) (Tavakoli et al., 2018), utilising the discretised variants of DeepMind control suite tasks
(Tunyasuvunakool et al., 2020) used by Seyde et al. (2022) for comparison. The experimental out-
comes show that REValueD consistently surpasses DecQN and BDQ across a majority of tasks.
Of significant note is the marked outperformance of REValueD in the humanoid and dog tasks,
where the number of sub-action spaces is exceedingly high (/N = 21 and 38, respectively). Further,
we perform several ablations on the distinct components of REValueD to evaluate their individual
contributions. These include analysing how performance evolves with increasing n; (i.e. the size
of |.4;]) and examining the impact of the regularisation loss in enhancing the overall performance
of REValueD. These extensive experiments underscore the effectiveness and robustness of our ap-
proach in handling high-dimensional, discrete action spaces.

2 RELATED WORK

Single-agent approaches to FMDPs: Several research endeavors have been devoted to exploring
the application of reinforcement learning algorithms in environments characterised by large, dis-
crete action spaces (Dulac-Arnold et al., 2015; Van de Wiele et al., 2020). However, these strategies
are primarily designed to handle large action spaces consisting of numerous atomic actions, and
they do not directly address the challenges associated with FMDPs. More recently, efforts specif-
ically aimed at addressing the challenges posed by FMDPs have been proposed. These works aim
to reason about each individual sub-action independently, leveraging either value-based (Sharma
et al., 2017; Tavakoli et al., 2018; 2020; Seyde et al., 2022) or policy-gradient methods (Tang and
Agrawal, 2020; Seyde et al., 2021). Some researchers have endeavored to decompose the selection
of a global action into a sequence prediction problem, where the global action is viewed as a se-
quence of sub-actions (Metz et al., 2017; Pierrot et al., 2021). However, these methods necessitate
defining the sequence ahead of time, which can be challenging without prior information. Tang
et al. (2022) analyse a similar value-decomposition, taking the sum of utilities as opposed to the
mean. Their analysis looks at fundamental properties of the decomposition of the Q-value, whereas
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in this work we analyse the bias/variance of the learning target when using function-approximation
in conjunction with value-decomposition. In Appendix B we analyse the sum value-decomposition
theoretically and experimentally as a supplement to the analysis of the DecQN decomposition.

Multi-agent value-decomposition: A strong connection exists between FMDPs and MARL, es-
pecially with respect to single-agent methods utilising value-decomposition (Tavakoli et al., 2018;
2020; Seyde et al., 2022). Owing to the paradigm of centralised training with decentralised ex-
ecution (Kraemer and Banerjee, 2016), value-decomposition has gained significant popularity in
MARL. This paradigm permits agents to learn in a centralised fashion whilst operating in a de-
centralised manner, resulting in a lot of success in MARL (Sunehag et al., 2017; Rashid et al.,
2018; 2020; Du et al., 2022). Our proposed method, REValueD, acts as a regulariser for value-
decomposition rather than a standalone algorithm.

Multi-agent value regularisation: Some researchers have sought to regularise Q-values in MARL
through hysteresis (Matignon et al., 2007; Omidshafiei et al., 2017) and leniency (Panait et al., 2006;
Palmer et al., 2017). However, these techniques are primarily designed for independent learners
(Tan, 1993; Claus and Boutilier, 1998), where each agent is treated as an individual entity and the
impact of other agents is considered as environmental uncertainty. Conversely, REValueD offers a
more flexible approach that can be applied to various value-decomposition methods, extending its
applicability beyond independent learners.

Ensembles: The use of function approximators in Q-learning-based reinforcement learning algo-
rithms is well known to result in problems due to the maximisation bias introduced by the max
operator used in the target (Thrun and Schwartz, 1993). To mitigate the effects of this maximisation
bias, various studies have proposed the use of ensemble methods (Van Hasselt et al., 2016; Lan et al.,
2020; Wang et al., 2021). Moreover, ensembles have been suggested as a means to enhance explo-
ration (Osband et al., 2016; Chen et al., 2017a; Lee et al., 2021; Schéfer et al., 2023) or to reduce
variance (Anschel et al., 2017; Chen et al., 2021; Liang et al., 2022). In this work we demonstrate
that using an ensemble with the DecQN value-decomposition provably reduces the target variance
whilst leaving the over-estimation bias unaffected.

3 BACKGROUND

MARKOV DECISION PROCESSES AND FACTORISABLE MARKOV DECISION PROCESSES

We consider a Markov Decision Process (MDP) as a tuple (S, A, T, 7,7, po) where S and A are the
state and action spaces, respectively, 7 : S x A — S the transition function,  : § x A — R the
reward function,  the discount factor and pg the initial state distribution. The objective is to find
a policy m : § — [0, 1], a state-conditioned distribution over actions, that maximises the expected
(discounted) returns, B (po ) [Dreo 77 (¢, ar)], where 7 = (so, a1, ..., ar—1, s7) is a trajectory
generated by the initial state distribution py, the transition function 7 and the policy .

We define a factorisable MDP (FMDP) as an MDP where the action space can be factorised as
A= A; x ... x Ay, where A, is a set of discrete (sub-)actions. We refer to a = (ay,...,an) as
the global action, and individual a;’s as sub-actions. If the policy of an FMDP selects sub-actions

independently, it is convenient to consider the policy as m(als) = Hf\il m;(a;|s), where m; is the
policy of the ith sub-action space.

DECOUPLED Q-NETWORKS

Decoupled Q-Networks (DecQN) were introduced by Seyde et al. (2022) to scale up Deep Q-
Networks (Mnih et al., 2013) to FMDPs. Rather than learning a Q-value directly, DecQN learns
utility values for each sub-action space. If we let Uy, (s, a;) be the ith utility function, parameterised

by 0;, then for a global action a = (a1, ..., ay) the Q-value is defined as

1 )
Qo(s,2) = = > U, (s,0) 3.1
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where § = {6;}¥ . This decomposition allows for efficient computation of the arg max operator:

argmax Q(s,a) = (argmax Uj, (s, a1),...,arg max Uj\ (s,aN)> .
a a1 €A anEAN

To learn the network parameters 6, the following loss is minimised:

1
LO)=1z 2. Lu-Qsa), (32)
(s,a,r,s")EB
where L is the Huber loss, B is a batch sampled from the replay buffer, y = r +
> Zfil maxy e, U 5( al) is the Q-learning target, and 6 = {6;}¥., correspond to the parame-

ters of the target network.

4 METHODOLOGY

DECQN TARGET ESTIMATION BIAS AND VARIANCE

Considering the well-known issue of positive estimation bias associated with Q-learning with func-
tion approximation (Thrun and Schwartz, 1993; Hasselt, 2010), our interest lies in understanding
how the DecQN decomposition of the global Q-value impacts this over-estimation bias and the
variance in the target. Following the assumptions outlined by Thrun and Schwartz (1993), we
propose that the approximated Q-function carries some uniformly distributed noise, defined as
Qo(s,a) = Q7(s,a) + €5,. Here, Q™ represents the true Q-function corresponding to policy =,
and €, , are independent, identically distributed (i.i.d) Uniform(—b, b) random variables. We then
define the target difference as

zdam &y 4 fyméing(s’,a) - (7‘ —|—7m§LXQ”(s’,a)) ;
=7 (maaXQg(s’,a) — m:LXQ’T(s’,a)) . 4.1

We refer to Z29™ as the target difference when using a DQN, i.e. when no value-decomposition is
used.

In terms of the DecQN decomposition of the Q-value, it can be assumed that the uniform approxi-
mation error stems from the utilities. Hence, we can define U (s, a;) = U;" (s, a;) + €, ,,. Anal-
ogous to the previous scenario, U™ is the true sth utility function for policy 7; and eim are i.i.d
Uniform(—b, b) random variables. Using the DecQN decomposition from Equation (3.1) in Equa-
tion (4.1) we can write the DecQN target difference as

N

1

zdee = (N Zameajt( U, (s, ai) — N 2 max U’ (s',ai)> . 4.2)
i=1

This leads us to our first result:
Theorem 1. Given the definitions of Z"™ and Z3°° in Equations (4.1) and (4.2), respectively, we
have that:

1. B[Z{*] < E[Z{™];

b

2. Var(Z3%) < Var(Zde°) .

The detailed proof can be found in Appendix A. The key takeway from this result is that, whilst the
expected value of the target difference is reduced when using the DecQN decomposition — a benefi-
cial factor for reducing the over-estimation bias typically associated with Q-learning — it also results
in an increased variance of the target. This trade-off requires further investigation, particularly with
respect to its impact on the stability and robustness of learning. The increased variance may lead to
more fluctuation in the utility estimates and cause potential instability in learning, which is a notable
challenge.
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The proposed methodology for the REValueD approach is characterised by the use of an ensemble
of critics to address the higher variance observed under the DecQN decomposition. The ensemble
approach uses K critics such that each critic Q* (s, a) is the mean of the utilities Uj (s, a;), where
0;.1. denotes the parameters of the ith utility in the kth critic. Each critic in the ensemble is trained
with a target

y=r+— Z;HE%U aj) ;

where U'(s,a;) = + Zk U ,(8,a;) represents the mean utility across all critics, with 0; x

being the parameters of the target utlhty networks. By applying this ensemble-based approach in
REValueD, we aim to effectively reduce the variance introduced by the DecQN decomposition, thus
facilitating more stable and efficient learning.

To show that the ensemble-based approach adopted by REValueD brings the variance down, we
define the new target difference that incorporates the ensemble as

Z =~ < Z max Ui(s',a;) — Z max Uli(s, al)> . 4.3)

U/LE i CL'LE i

It is important to note that the utility function for each critic in the ensemble is now considered
to have some uniformly distributed noise, such that Uj (s, a;) = U (s, a;) + €i% , where b%

are assumed to be i.i.d random variables following a Uniform(—b, b) distribution. Using this target
difference, we present our second result:

Theorem 2. Given the definitions of Z2¢ and Z¢"* from Equations (4.2) and (4.3), respectively,
we have that

1. E[Z¢™) = E[Z2] ;

2. Var(Ze®) = & Var(Z3)

The proof is given in Appendix A. Leveraging an ensemble of critics, REValueD provides an ef-
fective means to counteract the increased variance inherent in the DecQN decomposition. whilst
the ensemble framework leaves the expected value of the target difference unaltered, it reduces its
variance. This is an essential property, as it underpins stability throughout the learning process. A
further advantageous feature is that the variance reduction is directly proportional to the ensemble
size, denoted by K. This grants us a direct means of control over the variance, thus allowing for
a more controlled learning process. A detailed analysis of how the ensemble size influences the
performance of REValueD is presented in Section 5 and in Appendix G we investigate how the
ensemble approach affects the training stability.

REGULARISED VALUE-DECOMPOSITION

FMDPs involve multiple sub-actions being executed simultaneously, with the system offering a sin-
gle scalar reward as feedback. This creates a situation where an optimal sub-action in one dimension
might be detrimentally impacted by exploratory sub-actions taken in other dimensions. Under such
circumstances, if we minimise the DecQN loss as per Equation (3.2), the utility for the optimal
sub-action could be undervalued due to extrinsic influences beyond its control. This insight paves
the way for the introduction of the regularised component of REValueD. Given that feedback is
exclusively available for the global action, a credit assignment issue often arises. A global action
can see optimal sub-actions from one dimension coupled with exploratory sub-actions from other
dimensions. These exploratory sub-actions could potentially yield a low reward or navigate to a low-
value subsequent state. Both consequences adversely affect the utility values of optimal sub-actions
within the global action by resulting in an underestimated TD target for the optimal sub-action.

To counteract this impact, we propose the introduction of a regularisation term in the model’s update
equation, thereby minimising the following 1033'

1
L,(0) = @ Z Zwl U(, s, a;) — Ugi(s,ai)) ; 4.4)

(s,a,r,s’")EB 1=1
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where w; = 1 — exp (—|d;]) and 6; = y — Uy, (s, a;), with y being defined as in Equation (3.2).

The functional form for the weights is chosen such that as |0;| grows larger, the weights tend to
one. The rationale being that, for large |J;|, the reward/next state is likely influenced by the effect of
other sub-actions. As a result, we want to regularise the update to prevent individual utilities from
being too under or overvalued. This is achieved by keeping them in close proximity to the existing
values — a process managed by weights that increase as |d;| increases. We offer more insight into the
functional form of the weights in Appendix I.

By introducing this regularisation loss, we gain finer control over the impact of an update at the
individual utility level. Unlike the DecQN loss, which updates the mean of the utility estimates, our
approach facilitates direct regulation of the impact of an update on specific utilities. Consequently,
the total loss that REValueD aims to minimise is then defined by

Liot(0) = L(0) + BL4(0) ; (4.5)

where 3 acts as hyper-parameter determining the extent to which we aim to minimise the regular-
isation loss. Throughout our experiments, we keep [ at a consistent value of 0.5, and we perform
an ablation on the sensitivity to 5 in Appendix D. It is worth noting that although we introduce the
regularisation loss for a single critic (i.e. K = 1) for ease of notation, its extension to an ensemble
of critics is straightforward.

5 EXPERIMENTS

In this Section we benchmark REValueD on the discretised versions of the DeepMind Control Suite
tasks (Tunyasuvunakool et al., 2020), as utilised by Seyde et al. (2022). These tasks represent
challenging control problems, and when discretised, they can incorporate up to 38 distinct sub-action
spaces. We also provide results for a selection of discretised MetaWorld tasks (Yu et al., 2020) in
Appendix J. Finally, as an additional baseline, we compare REValueD to a version of DecQN with
a distributional critic in Appendix L.

Unless stated otherwise, we employ the same Bang-Off-Bang discretisation as Seyde et al. (2022),
in which each dimension of the continuous action is discretised into three bins. For comparative
analysis, we evaluate REValueD against the vanilla DecQN (Seyde et al., 2022) and a Branching
Dueling Q-Network (BDQ) (Tavakoli et al., 2018). For a more like-to-like comparison, we compare
REValueD to an ensembled variant of BDQ in Appendix K in select DMC tasks. To measure the
performance, after every 1000 updates we plot the returns of a test episode where actions are selected
according to a greedy policy. Implementation details are given in Appendix C.

DEEPMIND CONTROL SUITE

The mean performance, together with an accompanying 95% confidence interval, is shown in Figure
1. This comparison includes the results achieved by REValueD, DecQN, and BDQ on the DM
Control Suite tasks. It is immediately clear that BDQ is the least successful, with a complete failure
to learn in the humanoid environments. We also observe that REValueD demonstrates considerable
improvement over DecQN in most tasks, especially the more challenging tasks where the number of
sub-action spaces is larger. This advantage is particularly noticeable in the humanoid and dog tasks,
which have an exceptionally large number of sub-action spaces. These findings provide strong
evidence for the increased learning efficiency conferred by REValueD in FMDPs.

The performance of these algorithms as the number of sub-actions per dimension increases is another
important factor to consider. We investigate this by varying the number of bins used to discretise
the continuous actions. In Figure 2 we see the results in the demanding dog-walk task. For n = 30,
REValueD maintains a strong performance, whereas the performance of DecQN has already started
to falter. We can see that even for n = 75 or larger, REValueD still demonstrates an acceptable
level of performance, whereas DecQN is only just showing signs of learning. Interestingly, BDQ
performs consistently in the dog-walk task, despite the large n, values, managing to learn where
DecQN falls short. We present further results in Figure 5 in Appendix E.
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Figure 1: Performance for the Discretised DeepMind Control Suite tasks. We compare REValueD
with DecQN and BDQ. The solid line corresponds to the mean of 10 seeds, with the shaded area
corresponding to a 95% confidence interval.
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Figure 2: Here we assess how the performances of DecQN, BDQ and REValueD are affected by
increasing the size of each sub-action space. We conduct experiments on the fish-swim, cheetah-run
and dog-walk tasks. n corresponds to the size of the sub-action spaces, i.e. |A;| = n for all i.
The solid line corresponds to the mean of 10 seeds, with the shaded area corresponding to a 95%
confidence interval. Further results are given in Figure 5 in Appendix E.

ABLATION STUDIES

Relative contribution of the regularisation loss: To demonstrate the effect that the regularisation
loss (Equation (4.4)) has on the performance of REValueD we analyse its contribution in the most
challenging DM Control Suite tasks. We also provide a further ablation in Appendix H that demon-
strates how the loss can delay the negative effects of exploratory updates on optimal sub-action
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Table 1: This Table demonstrates the impact of the regularisation loss by contrasting the perfor-
mance of REValueD with DecQN equipped only with an ensemble. Our comparison leverages the
humanoid and dog tasks, deemed to be the most demanding tasks, thus necessitating careful credit
assignment for sub-actions. We report the mean =+ standard error of 10 seeds.

Task Algorithm
DecQN DecQN+Ensemble REValueD

Humanoid-Stand  604.82 4+ 85.1 832.99 £ 11.3 915.80 £+ 6.12
Humanoid-Walk  670.62 + 34.1 817.63 + 7.66 874.33 1+ 3.63
Humanoid-Run 416.81 £8.77 478.11 £ 4.59 534.81 +10.8
Dog-Walk 641.13 + 28.8 819.95 £ 22.0 862.31 + 12.0
Dog-Trot 856.48 +12.2 878.47 + 6.33 902.01 £ 7.65
Dog-Run 625.68 + 12.5 750.73 +11.2 821.17 £ 8.10
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dog-run

Test episode returns
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Figure 3: Stochastic environment tasks. In the top row we added Gaussian white noise (o = 0.1)
to the rewards, whilst in the bottom row we added Gaussian white noise to the state. Further results
are given in Figure 6 in Appendix F.

utility values in a Tabular FMDP. Table 1 compares the performance of REValueD both with and
without the regularisation loss; the latter we refer to as DecQN+Ensemble. As demonstrated in the
Table, the inclusion of an ensemble of critics noticeably enhances the performance of DecQN. Fur-
ther, the incorporation of the regularisation loss further augments the performance of the ensemble,
clearly illustrating the merits of the regularisation loss.

Stochastic Environments: Here we extend our analysis to stochastic variants of a selection of the
DM Control Suite tasks. Stochastic environments exacerbate the credit assignment problem outlined
in Section 4 as there is now an extra source of uncertainty that each decoupled actor must contend
with. We consider two types of stochasticity, adding Gaussian white noise to the reward and states,
respectively. Figure 3 shows the results in the three variants of the dog task. We observe that all
three algorithms are robust to stochasticity being added to the rewards with the performance being
largely the same in the three dog tasks. When stochasticity is added to the states, the performance of
all three algorithms drops, though we see that the same hierarchy of performance is maintained, i.e.
REValueD outperforms DecQN whilst both outperform BDQ. In Appendix F we show show similar
results in more stochastic DM Control Suite environments.

Assessing the impact of the ensemble size: Of particular interest is how the size of the ensemble
used in REValueD affects performance. In Table 2 we provide the final asymptotic results. In gen-
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Table 2: Asymptotic results for REValueD with varying ensemble size across various DM Control
Suite tasks. We report the mean =+ standard error over 10 seeds.

Ensemble Size

Task
1 3 5 10 15 20

Walker-Run 763.97 £4.75 779.40 £1.29 769.25+259 761.74+2.30 762.32+4.95 755.86+7.35
Cheetah-Run 759.01 +£12.5 843.46+16.3 781.30+14.3 828.60+25.9 883.55+2.99 807.75+9.94
Quadruped-Run  911.01 +13.4 927.34 +5.14 927.32+8.17 924.52+3.92 926.79 £4.27 922.33 +7.56
Dog-Walk 838.39 +8.40 914.51 +4.01 904.47+£2.11 886.73+£7.38 899.77 +7.90 878.40 £+ &.81
Dog-Trot 843.61 +£19.8 915.67 £4.14 912.97+5.09 910.24 £10.4 915.63 +3.59 897.34+5.16
Dog-Run 675.51 +£9.10 771.254+11.6 815.29+15.9 821.17+8.10 834.77 £4.16 823.20+7.29

eral, the performance is reasonably robust to the ensemble size for the walker/cheetah/quadruped-run
tasks. In particular, we note that an ensemble size of 3 in walker-run has the best asymptotic per-
formance. It has been noted that some target variance can be useful for exploration purposes (Chen
et al., 2021), and so it is possible that for an easier task like walker using a higher ensemble reduces
the variance too much. However, as the complexity of the task increases we start to see the benefi-
cial impact that a larger ensemble size has. This is evident in the demanding dog-run tasks, where
performance peaks with an ensemble size of 15. To summarise these findings, it may be beneficial
to use a smaller ensemble size for tasks which are easier in nature. A larger ensemble size improves
performance for more complex tasks.

6 CONCLUSION

Recent works have successfully taken the idea of value-decomposition from MARL and applied it to
single agent FMDPs. Motivated by the known issues surrounding maximisation bias in Q-learning,
we analyse how this is affected when using the DecQN value-decomposition. We show theoretically
that whilst the estimation bias is lowered, the target variance increases. Having a high target variance
can cause instabilities in learning. To counteract this, we introduce an ensemble of critics to control
the target variance, whilst showing that this leaves the estimation bias unaffected.

Drawing on the parallels between single agent FMDPs and MARL, we also address the credit assign-
ment issue. Exploratory sub-actions from one dimension can effect the value of optimal sub-actions
from another dimension, giving rise to a credit assignment problem. If the global action contained
some exploratory sub-actions then the TD-target can be undervalued with respect to optimal sub-
actions in the global action. To counteract this, we introduce a regularisation loss that we aim to
minimise alongside the DecQN loss. The regularisation works at the individual utility level, mitigat-
ing the effect of exploratory sub-actions by enforcing that utility estimates do not stray too far from
their current values.

These two contributions lead to our proposed algorithm: REValueD. We compare the performance
of REValueD to DecQN and BDQ in tasks from the DM Control Suite. We find that, in most
tasks, REValueD greatly outperforms DecQN and BDQ, notably in the challenging humanoid and
dog tasks which have N = 21 and 38 sub-action spaces, respectively. We also provide various
ablation studies, including the relative contribution that the regularisation loss has on the overall
performance of REValueD and how the performance changes as the number of sub-actions per
dimension increases.

Potential avenues for future work include a more rigorous exploration of the work in Appendix L
to better understand the benefits of distributional reinforcement learning (Bellemare et al., 2023) in
FMDPs, as a distributional perspective to learning can help deal with the uncertainty induced by ex-
ploratory sub-actions. Further, using an uninformative e-greedy exploration strategy can be wasteful
in FMDPs due to the many possible combinations of sub-actions, and so more advanced exploration
techniques could be developed to effectively choose optimal sub-actions in one dimension whilst
continuing to explore in other dimensions.
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A PROOF OF THEOREMS 1 AND 2

Lemma 1. Let {X;} | be i.i.d Uniform(—b,b) random variables, and let Z = max;{X,;}? | be
their maximum. Then, E[Z] = bZ—_H and Var(Z) = WZ&H).

Proof. Let Fx (z) = £t be the CDF of a random variable with distribution Uniform(—b, b). Thus,
we have that

Fz(z) =P(Z < 2)
= P(m?X{Xl}?:l < Z)

= [Fx(2)]"
_[z+0]"
L2
o d n (z+b\"" .
Now, the pdf of Z is given by fz(z) = d—FZ(z) =5 {75 . From this, we can deduce
z

that

b n—1 o
E[Z]:/ P 2tb dz:bLl;
IRSTANET) )
b n—1 2
n (z+b 4b°n
V) = (/ 5 (o) dz) B = ey

Note that the first integral can be solved by using the substitution y = Z;Zb and the second can be

solved by parts followed by a similar substitution. O

_ 1Y, ns
Lemma 2. Forn; € N,n; > 2, wehaveNZZ IZ;J& < El_lfii 1;

for N > 1.

Proof. Note that f(z) =
have

—1 is concave and increasing on R_.. Thus, using Jensen’s inequality we

o1
1 < 1 &
NZ:: n; <f<N;nz>

Since f is increasing we also have

‘We have thus shown that

N
Z n; — 1 <Hi=1 nl) - 1
N n;+1 7~ (Hf\ilnl>+1
O
Lemma 3. Forn; € N,n; > 2, we have (1+H§V:1m)21(2+1_[§\':1m) < NE Dimt CrES for

N > 1.

PrOOf: Note that f(x) = m
using Jensen’s inequality we have

1 (1 & _ ! N
—f N;ni fﬁ;f(nl)

is convex and decreasing on {z : x € Ry,z > 2}. Thus,
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Now we need to show that f (Hfil nz> < %f (% Zfil nl) ; that is, we want to show that

N N
Hi:l g < % 21':1 n;
N 2 N - 1 N 2 1 N
(1 S | ni) (2 +ITizy nl) N (1 + ¥ st ”l) (2 + ¥ izt ”1)

or, equivalently, that

&Y 2 N 2
( N N Dini M i=1 [z n

Let g(z) = (1 + x)? (1+ 2). It is straight-forward to verify that g is increasing for z > 2 and
satisfies g(2z) > 2g(x) for z > 2. We have that [[, n; > 2¥-1 LSV, nz since all factors

are greater than or equal to 2, and at least one factor is greater than or equal to + Z ;=1 n;. It then
follows that

9<Hm> Zg<2N1N;m> > 2Ny (N;m> > Ng (N;m) ;

i=1

)

where in the last step we have used Bernoulli’s inequality:
2V =14+ D)V > 1+ (N-1)=N.

We have thus shown that g(H 17%) > Ng (% Zfil nl) and, subsequently, that
f <HZI\;1 m) < W Zi:l f(ng).
O

Theorem 1. Given the definitions of Z%™ and Z%° in Equations (4.1) and (4.2), respectively, we
have that:

1. E[Z§*] <E[Z7] ;
2. Var(qu") < Var(dec) .
Proof of Theorem 1: First note that in Lemmas 2 and 3 we have assumed that n; € N, n; > 2. This

is because n; corresponds to the size of a discrete (sub)action space, so we know it must be at least
size 2 (otherwise there would be no decision to make).

I As shown in Thrun and Schwartz (1993), E[Z34"] = ybi4t=1. For an FMDP, |A| =
(vazl ni), from which it follows that E[Z99"] = vb%~ For the DecQN decom-
i=1 "

position, the expectation is

2

E[Z2] = %ZE {mea( €, } :
a

Z

Yb n; —1
Nlln—i—l'

Here, we have used the expectation from Lemma 1, as the errors are i.i.d Umform( b, b)
1

random variables. We have shown in Lemma 2 that LV micl o (T

ni)-
=1 n;+1 — ( 71,”1)_,’_19
therefore E[Z9¢¢] < E[Zda].
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2. First, since the errors are i.i.d Uniform(—b, b) random variables we use the variance from
Lemma 1 to get

4p? Hfil i
2
(1 + Hf\; ”1) (2 + Hf\]:l n,)

b

Var(Z%") = 2 Var (max es,a) =7’
a

d 72 N . "}/2 N 4b2n

ecy _ I ) - ?
Var(ZS ) T N2 Z Var (meail(: Es’ai) N2 1:21 (le + 1)2(711‘ + 2) ’
N

i=1 "

(1""1_[?’:1 ni)2(2+HiN=1 ”1)

1 N [
< N7 Lt At

We have shown in Lemma 3 that

therefore Var(Z24™) < Var(Zdec).
Theorem 2. Given the definitions of Z2° and Z¢"* from Equations (4.2) and (4.3), respectively,
we have that

1. E[Z{™] = E[Z{*];
2. Var(Ze®) = & Var(Z3)

Proof of Theorem 2

1. Since for fixed 7 the errors are i.i.d. across &, and in fact have the same distribution as the
error terms in the DecQN decomposition, we have that

~y N 1 K
ens] __ I - i,k .
]E[ZS ] - N g K P E [(}{Ileaj(, 65,(17‘,:| ’

N
_ 7 1 i
= N;E KE a,nlea,iies’“} ;
5 N
“ W LRl
= E[7:]
2. Using a similar argument to 1., we have that
,2 N K
V(2% = 25 3 gz Y- Var (g i)
=1 k=1
9 N
1 .
= LQ ; —5 - K'Var (;ineaji 62,@;) ;
N
1 | A2 i
=% |z ;Var (arineaj; 657(“)1 ;
1 dec
= EVar(ZS )

B ANALYSIS OF THE SUM VALUE-DECOMPOSITION

Tang et al. (2022) propose a value-decomposition similar to the decomposition proposed by Seyde
et al. (2022) (Equation (3.1)). Their value-decomposition approximates the global Q-value as the
sum of the utilities, whereas DecQN define their decomposition as the mean of the utilities. Using
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our notation, the value-decomposition proposed by Tang et al. (2022) is defined as

N
Qo(s,a) = ZUéi(s,ai) .
i=1

Using this decomposition in Equation (4.1) we can write the sum target difference as

N N
Zsum — Ui (s, a;) — U™ (s a;) | . B.1
: 7(23@3 ACHOED o Ui (s a)) (B.1)

1=

Whilst the decompositions are similar, we will now show that under this value-decomposition the
expected value and the variance of this target difference are higher than that of the DQN target
difference.

Theorem 3. Given the definitions of Z%™ and Z3"™ in Equations (4.1) and (B.1), respectively, we
have that:

1. E[Z{m] <E[Z:*™;
2. Var(qu") < Var(Zz%m) .
Proof of Theorem 3

1. We can see that E[Z5"™] = NE[Zd] = 4pS N =L o it remains to be shown that

i=1 n;1°
N " - —
Zﬁil Z_T_% > Enj\?:l;i. First, let f(x) = =L and note that lim,_, o, f(z) = 1and
o i=1"4

x+1
that f is increasing for x > 2. Since f is increasing, and recalling that n; > 2, for N > 1
we have
N N
D Fm) =D F(2);
=1 =1
oyl
- 4L~v3 3
=1

Now, f (Hfil m) <1< % for N > 3 and the case for NV = 1 is trivial. For N = 2 we
want to show that
ning — 1 n—1 ng—1
n1n2+1in1—|—1 Tl2+1
Re-arranging this term, we get
(n1n2 — 1)(77,1 — 1)(112 — 1) > 0 .
(Tll + 1)(7?,2 + 1)(’/11712 + 1) =7

which is clearly true for ny,no > 2, and so the inequality also holds for N = 2.

2. We can see that Var(Z5%™) = N2var(Z%ec) =42 32N | mﬁgiﬁ. As we have shown

that Var(Zd¢¢) > Var(Z24") it follows immediately that Var(Z5%™) > Var(Zd4").

Theorem 3 tells us that, when using function approximators, decomposing the Q-function using the
sum of utilities leads to a higher bias in the target value compared to no decomposition. This is
in contrast to the DecQN value-decomposition, which reduces the bias. However, both decompo-
sitions come at the cost of increased variance — though we show as part of the proof that the sum
decomposition also has a higher variance than the DecQN decomposition.

Experimentally, we compare REValueD and DecQN with the sum value-decomposition (which we
name DecQN-Sum) in Figure 4. We can see from the Figure that using the sum value-decomposition
generally results in poorer performance than the mean. The poor performance of DecQN-Sum
compared to DecQN and REValueD can likely be attributed to our findings in Theorem 3, that
the sum value-decomposition increases the overestimation bias compared to using the mean as in
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DecQN. In Appendix K we offer a further comparison of REValueD with DecQN-Sum equipped
with an ensemble for a fairer comparison.

ball_in_cup-catch reacher-hard walker-walk w0 walker-run
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@ — —
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Figure 4: Further results comparing REValueD and DecQN to DecQN using the sum value-
decomposition (DecQN-Sum). The solid line corresponds to the mean of 10 seeds, with the shaded
area corresponding to a 95% confidence interval.

C EXPERIMENT DETAILS

Hyperparameters: We largely employ the same hyperparameters as the original DecQN study, as
detailed in Table 4, along with those specific to REValueD. Exceptions include the decay of the
exploration parameter (¢) to a minimum value instead of keeping it constant, and the use of Polyak-
averaging for updating the target network parameters, as opposed to a hard reset after every specified
number of updates. We maintain the same hyperparameters across all our experiments. During
action selection in REValueD, we follow a deep exploration technique similar to that proposed by
Osband et al. (2016), where we sample a single critic from the ensemble at each time-step during
training and follow an e-greedy policy based on that critic’s utility estimates. For test-time action
selection, we average over the ensemble and then act greedily according to the mean utility values.

Architecture and implementation details: As in the original DecQN study, our architecture con-
sists of a fully connected network featuring a residual block followed by layer normalisation. The
output from this sequence is fed through a fully connected linear layer predicting value estimates for
each sub-action space. In implementing the ensemble for REValueD, we follow the approach given
by Tarasov et al. (2022), which has been demonstrated to have minor slowdowns for relatively small
ensemble sizes (Beeson and Montana, 2024, Table 8).

In Table 3 we report the mean time taken for DecQN and REValueD, in minutes, when run on
the same machine. Each task was run for 500k environment interactions (100k updates). We can
see from the table REValueD takes around 25% longer than DecQN, though it is important to note
that REValueD is more sample efficient than DecQN so less environment interactions are needed to
achieve a superior performance.
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Table 3: Wall time comparison for DecQN and REValueD. Each task was ran for 500k environment
interactions (100k updates), and the mean (£ variance) is reported in time (minutes) over 3 seeds.

Task DecQN REValueD
walker-walk  30.47 £ 0.00 37.05+0.32
dog-walk 55.46 +£0.31 69.55 +0.32

To expedite data collection, we adopt an Ape-X-like framework (Horgan et al., 2018), with multiple
distributed workers each interacting with individual instances of the environment. Their interactions
populate a centralised replay buffer from which the learner samples transition data to learn from.
It is crucial to note that all the algorithms we compare (REValueD, DecQN, BDQ) use the same
implementation, ensuring a consistent number of environment interactions is used for each algorithm
for fair comparison.

Environment details: In Table 5 we show the state and sub-action space size of the DM Control
Suite tasks we use in the experiments in Section 5. In particular, we can see that the humanoid
and dog environments have large state and action spaces, each having 21 and 38 sub-action spaces,
respectively. With 3 bins per sub-action space, this would correspond to 32! and 33® atomic actions.
It is particularly challenging to solve these tasks given the interdependencies between sub-actions.

Table 4: Hyperparameters used for the experiments presented in Section 5.

Algorithm Parameters Value
Optimizer Adam
Learning rate 1x10*
Replay size 5 x 10°
n-step returns 3
Discount, ~y 0.99
Batch size 256
General Hidden size 512
Gradient clipping 40
Target network update parameter, ¢ 0.005
Imp. sampling exponent 0.2
Priority exponent 0.6
Minimum exploration, € 0.05
€ decay rate 0.99995
Regularisation loss coefficient 3 0.5
REValueD Ensemble size K 10

Table 5: Details of the DM Control Suite environments used in the experiments presented in Section
5. Note that /N corresponds to the number of sub-action spaces in the FMDP.

Task S| N
Cartpole Swingup Sparse 5 1
Reacher Hard 6 2
Ball in Cup Catch 8 2
Finger Spin 9 2
Fish Swim 24 5
Cheetah Run 17 6
Walker Walk/Run 24 6
Quadruped Walk/Run 78 12
Humanoid Stand/Walk/Run 67 21
Dog Walk/Trot/Run 223 38
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Table 6: Asymptotic results for REValueD with varying 3 across various DM Control Suite tasks.
We report the mean =+ standard error over 10 seeds.

Task B

0 0.25 0.5 0.75 1
Finger-Spin 947.80 +10.6 847.15+20.3 905.86+16.1 849.26 +20.3 927.39 +25.9
Walker-Run 755.724+3.25 75091 +2.95 761.744+2.30 768.60 & 1.62 758.87 4 3.66
Cheetah-Run 756.71 +20.1 802.80 =18.3 828.60 =259 R814.62+19.5 792.52+16.9
Quadruped-Run  885.91 +5.88 910.16 £8.86 924.524+3.92 922.57+12.3 927.21 4+ 5.35
Dog-Walk 838.81 +£14.3 870.7549.99 886.73 £7.38 895.54 +9.94 880.50+ 9.96

D SENSITIVITY TO (8

Whilst we did not tune [ for the results presented in Section 5, here we analyse how sensitive
REValueD is to the value of /3. Recall that in Equation (4.5) /3 controls how much the regularisation
loss contributes to the overall loss. In Table 6 we present asymptotic results for various DM Control
Suite tasks using a varying [ value. Note that we performed the same number of updates per task as
in Figure 1.

We can see that REValueD is reasonably robust to 3, typically with the best performing 3 value
lying somewhere between 0.5 and 0.75. In the finger-spin task, we see that a 3 value of 0 offers the
best performance. Intuitively this would make sense, since there are only two sub-action spaces it is
less likely that credit assignment would be an issue. Similarly in walker-run we see that there is not
much difference in performance for the tested 8 values. Much like finger-spin, this can be attributed
to the fact that walker-run is a reasonably easy task and has only 6 sub-action spaces. Consequently,
credit assignment may not have a major impact on the performance. In the dog-walk task we see
that a 3 value of O performs significantly worse, with the best performing 3 values being 0.5 and
0.75. This further demonstrates the benefits of the regularisation loss, particularly in tasks with large
N, whilst also showing the robustness to the value of 3.

E FURTHER RESULTS FOR VARYING 7n;

In this Section we present further results for varying n; in more DM control suite tasks. The results
can be found in Figure 5. We observe that as n; increases, REValueD continues to exhibit better
performance compared to DecQN and BDQ. However, it’s worth noting that in the cheetah-run task,
as n; surpasses 75, the performance difference becomes less pronounced.

F FURTHER RESULTS IN STOCHASTIC ENVIRONMENTS

In Figure 6 we present more comparisons for stochastic environments. We see that the results
remain similar to those observed in Section 5, with the exception of the stochastic state variant of
Quadruped-Run, where there is not a significant difference between REValueD and DecQN.

G TRAINING STABILITY

To investigate how this variance reduction influences the stability of the training process, we present
in Figure 7 the Conditional Value at Risk (CVaR) for the detrended gradient norms, as suggested by
Chan et al. (2019). The CVaR provides information about the risk in the tail of a distribution and is
expressed as

CVaR(g) = E[glg > VaRgs%(g)] -

Here, g stands for the detrended gradient norm and VaR (Value at Risk) represents the value at
the 95th percentile of all detrended gradient norm values. We perform detrending of the gradient
norm by calculating the difference in the gradient norm between two consecutive time steps, that
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Figure 5: Further results assessing how the performance of DecQN, BDQ and REValueD are af-
fected by increasing the size of each sub-actions space. n corresponds to the size of the sub-action
space, i.e. |A;| = n for all i. The solid line corresponds to the mean of 10 seeds, with the shaded
area corresponding to a 95% confidence interval.
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Figure 6: Stochastic environment tasks. In the top row we added Gaussian white noise (¢ = 0.1) to
the rewards, whilst in the bottom row we added Gaussian white noise to the state.
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is, g1 = |Vir1| — |V¢|, where V denotes the gradient. As shown in the Figure, employing the
average of the ensemble for the learning target in REValueD considerably lowers the CVaR for the
tasks under consideration.
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Figure 7: Conditional Value at Risk (CVaR) for the gradient norms (which have been detrended) for
both DecQN and REValueD, evaluated on six tasks from the DeepMind Control Suite. The CVaR
values presented here are the average across ten separate runs, and the figure includes both the mean
values as well as error bars representing the standard error for each.

H CONTRIBUTION OF THE REGULARISATION LOSS IN A TABULAR FMDP

In this Section we design a simple FMDP encompassing N sub-action spaces, each containing n
sub-actions. The FMDP includes one non-terminal state, with all actions resulting in a transition
to the same terminal state. We have assumed that each sub-action space has a single optimal sub-
action. A reward of 41 is obtained when all optimal sub-actions are selected simultaneously, whilst
areward of —1 is given otherwise.

For these experiments, we randomly initialise the utility values for every sub-action across all sub-
action spaces using a Uniform(—0.1, 0.1) distribution, with the exception of the optimal sub-action
in the N'th sub-action space, which is initialised with a value of 41. Actions are then chosen follow-
ing an e-greedy policy (e = 0.1). After this, an update is performed on the transition data and we
record the frequency at which the optimal sub-action in the final sub-action space has been taken.
Since the utility values have been randomly initialised, the probability of jointly selecting the first
N — 1 optimal sub-actions is approximately #, which means that most of the transitions are
likely to result in a reward of —1. Under the DecQN loss, performing an update on a transition with
a reward of —1 will result in the value of the optimal sub-action in the Nth sub-action space being
decreased, despite it being initialised at an optimal value. We aim to show that using the regularisa-
tion loss from Equation (4.4) mitigates the effect that the transition has on the value of the optimal
sub-action.

Figure 8 shows the mean frequency of optimal Nth sub-action selection for both REValueD and
DecQN. The mean is averaged over 1000 runs, and the shaded region represents a 95% confidence
interval. A clear observation from this Figure is that, as both NV and n increase, REValueD starts
to outperform DecQN. This result underscores the efficacy of the additional regularisation loss in
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reducing the impact of the sub-optimal sub-actions from the first N — 1 dimensions on the value of
the optimal sub-action in the Nth dimension.
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Figure 8: This figure presents the outcomes from the tabular FMDP experiment (see Section 5). The
z-axis represents the number of model updates performed, whilst the y-axis signifies the frequency
with which the optimal Nth sub-action was selected, expressed as a percentage. The solid line
corresponds to the mean performance over 1000 trials, and the shaded region corresponds to a 95%
confidence interval.

I FUNCTIONAL FORM OF THE REGULARISATION WEIGHTS

In Equation (4.4) we define the weighting as w; = 1 — exp(—|d;|). The motivation for this form
was that, for large differences, we want the weight to tend to 1, and for small differences be close
to 0. In this Section we look to assess how the performance of REValueD is affected when using
a different function to define the weights that also satisfies this property. In Figure 9 we compare
to a quadratic function of the form w; = min(67,1). The results can be found in Figure 10. We
can see that generally speaking, the exponential weighting function offers a better performance in
terms of sample efficiency, although both reach roughly the same asymptotic performance. The
explanation for this can likely be attributed to the functional forms, demonstrated in Figure 9, where
the quadratic function will return a weight of 1 for any |d;| > 1. This leads to regularising the utility
functions too harshly. It is possible that a temperature parameter ¢ could be incorporated to scale §;,
such that we now have §; = ¢;/c as the input to the weighting function, but an analysis of this is
beyond the scope of this paper.
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Figure 9: Here we show the plots of the exponential weight function and the quadratic weight
function.
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Figure 10: This Figure compares the performance of REValueD using the definition of the weights
from Equation (4.4) (exponential) vs. a quadratic function. The solid line corresponds to the mean
performance over 10 seeds, and the shaded region corresponds to a 95% confidence interval.

J METAWORLD

In this Section we offer further comparisons between DecQN and REValueD in some manipulation
tasks from MetaWorld (Yu et al., 2020). The results can be found in Figure 11. We can see that in
these tasks REValueD achieves stronger asymptotic performance than DecQN, whilst also generally
having smaller variance. This demonstrates the efficacy in domains other than locomotive tasks.

K FURTHER COMPARISONS WITH ENSEMBLED BASELINES

For a more like-to-like comparison between REValueD and BDQ/DecQN-Sum, we have compared
REValueD with variants of these baselines equipped with an ensemble — note that we have compared
REValueD with DecQN+Ensemble in Table 1. The results for select environments can be found in
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Figure 12. We can see that the results for BDQ remain largely unchanged, with the exception of
finger-spin with a bin size of 10, where BDQ+Ensemble now attains a similar performance to that
of REValueD. For DecQN-Sum+Ensemble we note that the performance in finger-spin is improved
by equipping an ensemble, with the performance achieving similar levels to REValueD for n =
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Figure 12: Here we compare the performance of REValueD with BDQ+Ensemble and Sum-
DecQN+Ensemble on discretised variants of the DM control suite tasks with varying bin sizes.
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confidence interval.

E

500k

500k

finger-spin, n = 10

0.2M 04M 0.6M 0.8M

z

fish-swim, n = 10

100k 200k 300k 400k 500k

cheetah-run, n = 10

%

100k 200k 300k 400k 500k

dog-walk, n = 10

\

02M 0.4M 0.6M 0.8M
Env Interactions

finger-spin, n = 30

0.2M 04M 0.6M 0.8M

z

fish-swim, n = 30

100k 200k 300k 400k 500k

cheetah-run, n = 30

100k 200k 300k 400k 500k

dog-walk, n = 30

0.2M 0.4M 0.6M 0.8M 1

=

Env Interactions

finger-spin, n = 75

z

0.2M 04M 0.6M 0.8M

fish-swim, n = 75

100k 200k 300k 400k 500k

cheetah-run, n = 75

100k 200k 300k 400k 500k

dog-walk, n = 75

finger-spin, n = 100

0.2M 04M 0.6M 0.8M

E

fish-swim, n = 100

100k 200k 300k 400k 500k

cheetah-run, n = 100

100k 200k 300k 400k 500k

dog-walk, n = 100

02M 0.4M 06M 0.8M
Env Interactions

==REValueD == DecQN-Sum+Ensemble == BDQ+Ensemble

25

0.2M 0.4M 0.6M 0.8M



Published as a conference paper at ICLR 2024

walker-walk quadruped-run finger-spin

Test episode returns

=

50k 100k 150k 200k 250k 0.2M 0.4M 0.6M 0.8M Y 0.2M 0.4M 0.6M 0.8M

Test episode returns

ES

o
50k 100k 150k 200k 250k 0.2M 0.4M 0.6M 0.8M M 0.2M 0.4M 0.6M 0.8M 1

Test episode returns

E

0
50k 100k 150k 200k 250k 0.2M 0.4M 0.6M 0.8M i 0.2M 0.4M 0.6M 0.8M
Env Interactions Env Interactions Env Interactions

— DecQN-C51 — REValueD

Figure 13: Comparison of DecQN-C51 and REValueD. The top row are non-stochastic DM control
suite tasks; whilst the middle and bottom rows correspond to the same environments with Gaussian
white noise (o = 0.1) added to the rewards and states, respectively. The solid line corresponds to
the mean of 10 seeds, with the shaded area corresponding to a 95% confidence interval.

L DISTRIBUTIONAL CRITICS

As noted in Section 6, a distributional perspective to learning can help deal with uncertainty induced
by exploratory sub-actions. To that end, similar to the work in Appendix I of Seyde et al. (2022), we
compare our method, REValueD, to a variant of DecQN which uses a distributional critic based on
C51, introduced by Bellemare et al. (2017). Rather than learning an expected utility value for each
sub-action, the critic now learns a distribution over values for each sub-action. The decomposition

now proceeds at the probability level by averaging over logit values £ = Ziil £;/N.
We observe the results of the comparison between DecQN-C51 and REValueD in Figure 13, with
comparisons being conducted in selected DM Control Suite environments and their stochastic vari-

ants. We observe that, even when equipped with a distributional critic, REValueD maintains a
superior performance in all of the tasks.
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